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INTRODUCTION TO PATTERN
RECOGNITION AND DATA MINING

1.1 INTRODUCTION

Pattern recognition is an activity that human beings normally excel in. The task
of pattern recognition is encountered in a wide range of human activity. In a
broader perspective, the term could cover any context in which some decision or
forecast is made on the basis of currently available information. Mathematically,
the problem of pattern recognition deals with the construction of a procedure to
be applied to a set of inputs; the procedure assigns each new input to one of
a set of classes on the basis of observed features. The construction of such a
procedure on an input data set is defined as pattern recognition.

A pattern typically comprises some features or essential information specific
to a pattern or a class of patterns. Pattern recognition, as per the convention, is the
study of how machines can observe the environment, learn to distinguish patterns
of interest from their background, and make sound and reasonable decisions about
the categories of the patterns. In other words, the discipline of pattern recognition
essentially deals with the problem of developing algorithms and methodologies
that can enable the computer implementation of many recognition tasks that
humans normally perform. The objective is to perform these tasks more accu-
rately, faster, and perhaps more economically than humans and, in many cases, to
release them from drudgery resulting from performing routine recognition tasks
repetitively and mechanically. The scope of pattern recognition also encompasses
tasks at which humans are not good, such as reading bar codes. Hence, the goal
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2 INTRODUCTION TO PATTERN RECOGNITION AND DATA MINING

of pattern recognition research is to devise ways and means of automating certain
decision-making processes that lead to classification and recognition.

Pattern recognition can be viewed as a twofold task, consisting of learning
the invariant and common properties of a set of samples characterizing a class,
and of deciding that a new sample is a possible member of the class by noting
that it has properties common to those of the set of samples. The task of pattern
recognition can be described as a transformation from the measurement space
M to the feature space F and finally to the decision space D; that is,

M → F → D, (1.1)

where the mapping δ : F → D is the decision function, and the elements d ∈ D
are termed as decisions .

Pattern recognition has been a thriving field of research for the past few
decades [1–8]. The seminal article by Kanal [9] gives a comprehensive review
of the advances made in the field until the early 1970s. More recently, a review
article by Jain et al. [10] provides an engrossing survey of the advances made
in statistical pattern recognition till the end of the twentieth century. Although
the subject has attained a very mature level during the past four decades or so, it
remains green to the researchers because of continuous cross-fertilization of ideas
from disciplines such as computer science, physics, neurobiology, psychology,
engineering, statistics, mathematics, and cognitive science. Depending on the
practical need and demand, various modern methodologies have come into being,
which often supplement the classical techniques [11].

In recent years, the rapid advances made in computer technology have ensured
that large sections of the world population have been able to gain easy access to
computers on account of the falling costs worldwide, and their use is now com-
monplace in all walks of life. Government agencies and scientific, business, and
commercial organizations routinely use computers, not only for computational
purposes but also for storage, in massive databases, of the immense volumes
of data that they routinely generate or require from other sources. Large-scale
computer networking has ensured that such data has become accessible to more
and more people. In other words, we are in the midst of an information explo-
sion, and there is an urgent need for methodologies that will help us to bring
some semblance of order into the phenomenal volumes of data that can readily
be accessed by us with a few clicks of the keys of our computer keyboard. Tra-
ditional statistical data summarization and database management techniques are
just not adequate for handling data on this scale and for intelligently extracting
information, or rather, knowledge that may be useful for exploring the domain
in question or the phenomena responsible for the data, and providing support to
decision-making processes. This quest has thrown up a new phrase, called data
mining [12–14].

The massive databases are generally characterized by the numeric as well as
textual, symbolic, pictorial, and aural data. They may contain redundancy, errors,
imprecision, and so on. Data mining is aimed at discovering natural structures
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within such massive and often heterogeneous data. It is visualized as being
capable of knowledge discovery using generalizations and magnifications of
existing and new pattern recognition algorithms. Therefore, pattern recognition
plays a significant role in the data mining process. Data mining deals with
the process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data. Hence, it can be viewed as applying pattern
recognition and machine learning principles in the context of voluminous,
possibly heterogeneous data sets [11].

One of the important problems in real-life data analysis is uncertainty man-
agement. Some of the sources of this uncertainty include incompleteness and
vagueness in class definitions. In this background, the possibility concept intro-
duced by the fuzzy sets theory [15] and rough sets theory [16] have gained
popularity in modeling and propagating uncertainty. Both the fuzzy sets and
rough sets provide a mathematical framework to capture uncertainties associated
with the data [17]. They are complementary in some aspects. The generalized
theories of rough-fuzzy sets and fuzzy-rough sets have been applied successfully
to feature selection of real-valued data [18, 19], classification [20], image pro-
cessing [21], data mining [22], information retrieval [23], fuzzy decision rule
extraction, and rough-fuzzy clustering [24, 25].

The objective of this book is to provide some results of investigations, both
theoretical and experimental, addressing the relevance of rough-fuzzy approaches
to pattern recognition with real-life applications. Various methodologies are pre-
sented, integrating fuzzy logic and rough sets for clustering, classification, and
feature selection. The emphasis of these methodologies is given on (i) handling
data sets which are large, both in size and dimension, and involve classes that are
overlapping, intractable and/or having nonlinear boundaries; (ii) demonstrating
the significance of rough-fuzzy granular computing in soft computing paradigm
for dealing with the knowledge discovery aspect; and (iii) demonstrating their
success in certain tasks of bioinformatics and medical imaging as an example.
Before describing the scope of the book, a brief review of pattern recognition,
data mining, and application of pattern recognition algorithms in data mining
problems is provided.

The structure of the rest of this chapter is as follows: Section 1.2 briefly
presents a description of the basic concept, features, and techniques of pat-
tern recognition. In Section 1.3, the data mining aspect is elaborated, discussing
its components, tasks involved, approaches, and application areas. The pattern
recognition perspective of data mining is introduced next and related research
challenges are mentioned. The role of soft computing in pattern recognition and
data mining is described in Section 1.4. Finally, Section 1.5 discusses the scope
and organization of the book.

1.2 PATTERN RECOGNITION

A typical pattern recognition system consists of three phases, namely, data acqui-
sition , feature selection or extraction , and classification or clustering . In the data
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acquisition phase, depending on the environment within which the objects are
to be classified or clustered, data are gathered using a set of sensors. These are
then passed on to the feature selection or extraction phase, where the dimension-
ality of the data is reduced by retaining or measuring only some characteristic
features or properties. In a broader perspective, this stage significantly influences
the entire recognition process. Finally, in the classification or clustering phase,
the selected or extracted features are passed on to the classification or clustering
system that evaluates the incoming information and makes a final decision. This
phase basically establishes a transformation between the features and the classes
or clusters [1, 2, 8].

1.2.1 Data Acquisition

In data acquisition phase, data are gathered via a set of sensors depending on
the environment within which the objects are to be classified. Pattern recognition
techniques are applicable in a wide domain, where the data may be qualitative,
quantitative, or both; they may be numerical, linguistic, pictorial, or any combi-
nation thereof. Generally, the data structures that are used in pattern recognition
systems are of two types: object data vectors and relational data. Object data, sets
of numerical vectors of m features, are represented as X = {x1, . . . , xi, . . . , xn},
a set of n feature vectors in the m-dimensional measurement space �m. The ith
object observed in the process has vector xi as its numerical representation; xij is
the j th (j = 1, . . . , m) feature associated with the ith object. On the other hand,
relational data are a set of n2 numerical relationships, say rij , between pairs of
objects. In other words, rij represents the extent to which objects xi and xj are
related in the sense of some binary relationship ρ. If the objects that are pairwise
related by ρ are called O = {o1, . . . , oi, . . . , on}, then ρ : O × O → �.

1.2.2 Feature Selection

Feature selection or extraction is a process of selecting a map by which a sam-
ple in an m-dimensional measurement space is transformed into a point in a
d-dimensional feature space, where d < m [1, 8]. Mathematically, it finds a
mapping of the form y = f (x), by which a sample x = [x1, . . . , xj , . . . , xm]
in an m-dimensional measurement space M is transformed into an object y =
[y1, . . . , yj , . . . , yd ] in a d-dimensional feature space F.

The main objective of this task is to retain or generate the optimum salient
characteristics necessary for the recognition process and to reduce the dimension-
ality of the measurement space so that effective and easily computable algorithms
can be devised for efficient classification. The problem of feature selection or
extraction has two aspects, namely, formulating a suitable criterion to evaluate
the goodness of a feature set and searching the optimal set in terms of the cri-
terion. In general, those features are considered to have optimal saliencies for
which interclass (respectively, intraclass) distances are maximized (respectively,
minimized). The criterion for a good feature is that it should be unchanging with
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any other possible variation within a class, while emphasizing differences that
are important in discriminating between patterns of different types.

The major mathematical measures so far devised for the estimation of fea-
ture quality are mostly statistical in nature, and can be broadly classified into
two categories, namely, feature selection in the measurement space and feature
selection in a transformed space. The techniques in the first category generally
reduce the dimensionality of the measurement space by discarding redundant or
least information-carrying features. On the other hand, those in the second cate-
gory utilize all the information contained in the measurement space to obtain a
new transformed space, thereby mapping a higher dimensional pattern to a lower
dimensional one. This is referred to as feature extraction [1, 2, 8].

1.2.3 Classification and Clustering

The problem of classification and clustering is basically one of partitioning the
feature space into regions, one region for each category of input. Hence, it
attempts to assign every data object in the entire feature space to one of the
possible classes or clusters. In real life, the complete description of the classes is
not known. Instead, a finite and usually smaller number of samples are available,
which often provide partial information for optimal design of feature selector or
extractor or classification or clustering system. Under such circumstances, it is
assumed that these samples are representative of the classes or clusters. Such a
set of typical patterns is called a training set . On the basis of the information
gathered from the samples in the training set, the pattern recognition systems
are designed. That is, the values of the parameters of various pattern recognition
methods are decided.

Design of a classification or clustering scheme can be made with labeled
or unlabeled data. When the algorithm is given a set of objects with known
classifications, that is, labels, and is asked to classify an unknown object based
on the information acquired by it during training, the design scheme is called
supervised learning ; otherwise it is unsupervised learning . Supervised learning
is used for classifying different objects, while clustering is performed through
unsupervised learning. Through cluster analysis, a given data set is divided into a
set of clusters in such a way that two objects from the same cluster are as similar
as possible and the objects from different clusters are as dissimilar as possible.
In effect, it tries to mimic the human ability to group similar objects into classes
and categories. A number of clustering algorithms have been proposed to suit
different requirements [2, 26, 27].

Pattern classification or clustering, by its nature, admits many approaches,
sometimes complementary, sometimes competing, to provide the solution to a
given problem. These include decision theoretic approach (both deterministic
and probabilistic), syntactic approach, connectionist approach, fuzzy and
rough set theoretic approaches and hybrid or soft computing approach. Let
β = {β1, . . . , βi, . . . , βc} represent the c possible classes or clusters in a
d-dimensional feature space F, and y = [y1, . . . , yj , . . . , yd ] be an unknown
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pattern vector whose class is to be identified. In deterministic classification or
clustering approach, the object is assigned to only one unambiguous pattern
class or cluster βi if the decision function Di associated with the class βi

satisfies the following relation:

Di(y) > Dj(y), j = 1, . . . , c, and j �= i. (1.2)

In the decision theoretic approach, once a pattern is transformed through fea-
ture evaluation to a vector in the feature space, its characteristics are expressed
only by a set of numerical values. Classification can be done by using determin-
istic or probabilistic techniques [1, 2, 8]. The nearest neighbor classifier [2] is an
example of deterministic classification approach, where it is assumed that there
exists only one unambiguous pattern class corresponding to each of the unknown
pattern vectors. In most of the practical problems, the features are often noisy
and the classes in the feature space are overlapping. In order to model such
systems, the features are considered as random variables in the probabilistic
approach. The most commonly used classifier in such probabilistic systems is
the Bayes maximum likelihood classifier [2].

When a pattern is rich in structural information such as picture recognition,
character recognition, scene analysis, that is, the structural information plays
an important role in describing and recognizing the patterns, it is convenient
to use the syntactic approach [3]. It deals with the representation of structures
via sentences, grammars, and automata. In the syntactic method [3], the ability
of selecting and classifying the simple pattern primitives and their relationships
represented by the composition operations is the vital criterion for making a
system effective. Since the techniques of composition of primitives into patterns
are usually governed by the formal language theory, the approach is often referred
to as a linguistic approach . An introduction to a variety of approaches based on
this idea can be found in Fu [3]. Other approaches to pattern recognition are
discussed in Section 1.4 under soft computing methods.

1.3 DATA MINING

Data mining involves fitting models to or determining patterns from observed
data. The fitted models play the role of inferred knowledge. Typically, a data
mining algorithm constitutes some combination of three components, namely,
model, preference criterion, and search algorithm [13].

The model represents its function (e.g., classification, clustering) and its rep-
resentational form (e.g., linear discriminants, neural networks). A model contains
parameters that are to be determined from the data. The preference criterion is a
basis to decide the preference of one model or a set of parameters over another,
depending on the given data. The criterion is usually some form of goodness of
fit function of the model to the data, perhaps tempered by a smoothing term to
avoid overfitting, or generating a model with too many degrees of freedom to
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be constrained by the given data. On the other hand, the search algorithm is the
specification of an algorithm for finding particular models and parameters, given
the data, models, and a preference criterion [5].

1.3.1 Tasks, Tools, and Applications

The common tasks or functions in current data mining practice include asso-
ciation rule discovery, clustering, classification, sequence analysis, regression,
summarization, and dependency modeling.

The association rule discovery describes association relationship among dif-
ferent attributes. The origin of association rules is in market basket analysis.
A market basket is a collection of items purchased by a customer in an individ-
ual customer transaction. One common analysis task in a transaction database
is to find sets of items or itemsets that frequently appear together. Each pat-
tern extracted through the analysis consists of an itemset and its support, that is,
the number of transactions that contain it. Knowledge of these patterns can be
used to improve placement of items in a store or for mail-order marketing. The
huge size of transaction databases and the exponential increase in the number
of potential frequent itemsets with increase in the number of attributes or items
make the above problem a challenging one. The a priori algorithm [28] provides
an early solution, which is improved by subsequent algorithms using partitioning,
hashing, sampling, and dynamic itemset counting.

The clustering technique maps a data item into one of several clusters, where
clusters are natural groupings of data items based on similarity metrics or proba-
bility density models. Clustering is used in several exploratory data analysis tasks,
customer retention and management, and web mining. The clustering problem
has been studied in many fields, including statistics, machine learning, and pattern
recognition. However, large data considerations were absent in these approaches.
To address those issues, several new algorithms with greater emphasis on scal-
ability have been developed in the framework of data mining, including those
based on summarized cluster representation called cluster feature [29], sampling
[30], and density joins [31].

On the other hand, the classification algorithm classifies a data item into one
of several predefined categorical classes. It is used for the purpose of predictive
data mining in several fields such as scientific discovery, fraud detection, atmo-
spheric data mining, and financial engineering. Several classification methodolo-
gies have been mentioned earlier in Section 1.2.3. Some typical algorithms suit-
able for large databases are based on Bayesian techniques [32] and decision trees
[33, 34].

Sequence analysis [35] models sequential patterns such as time series data. The
goal is to model the process of generating the sequence or to extract and report
deviation and trends over time. The framework is increasingly gaining impor-
tance because of its application in bioinformatics and streaming data analysis.
The regression [13, 36] technique maps a data item to a real-valued prediction
variable. It is used in different prediction and modeling applications.
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The summarization [13] procedure provides a compact description for a subset
of data. A simple example would be mean and standard deviation for all fields.
More sophisticated functions involve summary rules, multivariate visualization
techniques, and functional relationship between variables. Summarization func-
tions are often used in interactive data analysis, automated report generation, and
text mining. On the other hand, the dependency modeling [37] describes sig-
nificant dependencies among variables. Some other tasks required in some data
mining applications are outlier or anomaly detection, link analysis, optimization,
and planning.

A wide variety and number of data mining algorithms are described in the
literature, from the fields of statistics, pattern recognition, machine learning,
and databases. They represent a long list of seemingly unrelated and often
highly specific algorithms. Some representative groups are statistical models
[2, 14], probabilistic graphical dependency models [38], decision trees and
rules [39], inductive-logic-programming-based models, example-based methods
[40, 41], neural-network-based models [42, 43], fuzzy set theoretic models
[12, 44, 45], rough set theory-based models [46–48], genetic-algorithm-based
models [49], and hybrid and soft computing models [50].

Data mining algorithms determine both the flexibility of the model in repre-
senting the data and the interpretability of the model in human terms. Typically,
the more complex models may fit the data better but may also be more difficult
to understand and to fit reliably. Also, each representation suits some problems
better than others. For example, decision tree classifiers can be very useful for
finding structure in high dimensional spaces and are also useful in problems
with mixed continuous and categorical data. However, they may not be suit-
able for problems where the true decision boundaries are nonlinear multivariate
functions.

A wide range of organizations including business companies, scientific lab-
oratories, and governmental departments have deployed successful applications
of data mining. Although early adopters of this technology have tended to be in
information-intensive industries such as financial services and direct mail mar-
keting, the technology is applicable to any company looking to leverage a large
data warehouse to better manage their operations. Two critical factors for success
with data mining are a large, well-integrated data warehouse and a well-defined
understanding of the process within which data mining is to be applied. Sev-
eral domains where large volumes of data are stored in centralized or distributed
databases include financial investment, hospital management systems, manufac-
turing and production, telecommunication network, astronomical object detection,
genomic and biological data mining, and information retrieval [5].

1.3.2 Pattern Recognition Perspective

At present, pattern recognition and machine learning provide the most fruitful
framework for data mining [5, 51, 52]. They provide a wide range of linear and
nonlinear, comprehensible and complex, predictive and descriptive, instance and
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rule-based models for different data mining tasks such as clustering, classification,
and rule discovery. Also, the methods for modeling probabilistic and fuzzy
uncertainties in the discovered patterns form a part of pattern recognition research.
Another aspect that makes pattern recognition algorithms attractive for data min-
ing is their capability of learning or induction. As opposed to many statistical
techniques that require the user to have a hypothesis in mind first, pattern recog-
nition algorithms automatically analyze the data and identify relationships among
attributes and entities in the data to build models that allow domain experts to
understand the relationship between the attributes and the class. Several data
preprocessing tasks such as instance selection, data cleaning, dimensionality
reduction, and handling missing data are also extensively studied in pattern
recognition framework. Besides these, other data mining issues addressed by
pattern recognition methodologies include handling of relational, sequential, and
symbolic data (syntactic pattern recognition; pattern recognition in arbitrary met-
ric spaces); human interaction (knowledge encoding and extraction); knowledge
evaluation (description length principle); and visualization.

Pattern recognition is at the core of data mining systems. However, pattern
recognition and data mining are not equivalent considering their original defini-
tions. There exists a gap between the requirements of a data mining system and
the goals achieved by present-day pattern recognition algorithms. Development
of new generation pattern recognition algorithms is expected to encompass more
massive data sets involving diverse sources and types of data that will support
mixed initiative data mining, where human experts collaborate with the computer
to form hypotheses and test them.

1.4 RELEVANCE OF SOFT COMPUTING

A good pattern recognition system should possess several characteristics. These
are online adaptation to cope with the changes in the environment, handling
nonlinear class separability to tackle real-life problems, handling of overlap-
ping classes or clusters for discriminating almost similar but different objects,
real time processing for making a decision in a reasonable time, generation of
soft and hard decisions to make the system flexible, verification and valida-
tion mechanisms for evaluating its performance, and minimizing the number of
parameters in the system that have to be tuned for reducing the cost and com-
plexity. Moreover, the system should be made artificially intelligent in order to
emulate some aspects of the human processing system. Connectionist or artificial
neural-network-based approaches to pattern recognition are attempts to achieve
some of these goals because of their major characteristics such as adaptivity,
robustness or ruggedness, speed, and optimality [53–57]. They are also suit-
able in data-rich environments and are typically used for extracting embedded
knowledge in the form of rules, quantitative evaluation of these rules, clustering,
self-organization, classification, and regression. They have an advantage, over
other types of machine learning algorithms, for scaling [58, 59].
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The fuzzy set theoretic classification approach is developed on the basis of the
realization that a pattern may belong to more than one class, with varying degrees
of class membership. Accordingly, fuzzy decision theoretic, fuzzy syntactic, fuzzy
neural approaches are developed [4, 6, 60, 61]. These approaches can handle
uncertainties, arising from vague, incomplete, linguistic, and overlapping patterns
at various stages of pattern recognition systems [4, 15, 60, 62].

The theory of rough sets [16, 63, 64] has emerged as another major math-
ematical approach for managing uncertainty that arises from inexact, noisy, or
incomplete information. It is turning out to be methodologically significant to
the domains of artificial intelligence and cognitive sciences, especially in the
representation of and reasoning with vague and/or imprecise knowledge, data
classification, data analysis, machine learning, and knowledge discovery [48,
64–66]. This approach is relatively new when compared to connectionist and
fuzzy set theoretic approaches.

Investigations have also been made in the area of pattern recognition using
genetic algorithms [67, 68]. Similar to neural networks, genetic algorithms [69]
are also based on powerful metaphors from the natural world. They mimic some
of the processes observed in natural evolution, which include crossover, selection,
and mutation, leading to a stepwise optimization of organisms.

There have been several attempts over the past two decades to evolve new
approaches to pattern recognition and to derive their hybrids by judiciously com-
bining the merits of several techniques [6, 70] involving mainly fuzzy logic,
artificial neural networks, genetic algorithms, and rough set theory, for develop-
ing an efficient new paradigm called soft computing [71]. Here integration is done
in a cooperative, rather than a competitive, manner. The result is a more intelli-
gent and robust system providing a human interpretable, low cost, approximate
solution, as compared to traditional techniques. Neuro-fuzzy approach is perhaps
the most visible hybrid paradigm [6, 61, 72–75] realized so far in soft comput-
ing framework. Besides the generic advantages, neuro-fuzzy approach provides
the corresponding application-specific merits [76–82]. Rough-fuzzy [63, 83] and
neuro-rough [84–86] hybridizations are also proving to be fruitful frameworks
for modeling human perceptions and providing means for computing with words.
Rough-fuzzy computing provides a powerful mathematical framework to capture
uncertainties associated with the data. Its relevance in modeling the fuzzy granu-
lation (f -granulation) characteristics of the computational theory of perceptions
may also be mentioned in this regard [87–89]. Other hybridized models for pat-
tern recognition and data mining include neuro-genetic [90–94], rough-genetic
[95–97], fuzzy-genetic [98–103], rough-neuro-genetic [104], rough-neuro-fuzzy
[105–109], and neuro-fuzzy-genetic [110–115] approaches.

1.5 SCOPE AND ORGANIZATION OF THE BOOK

This book has nine chapters describing various theories, methodologies, and
algorithms, along with extensive experimental results, addressing certain pattern
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recognition and mining tasks in rough-fuzzy computing paradigm with real-life
applications. Various methodologies are described using soft computing
approaches, judiciously integrating fuzzy logic and rough sets for clustering,
classification, and feature selection. The emphasis is placed on the use of the
methodologies for handling both object and relational data sets that are large both
in size and dimension, and involve classes that are overlapping, intractable and/or
having nonlinear boundaries. The effectiveness of the algorithms is demonstrated
on different real-life data sets taken from varied domains such as remote sensing,
medical imagery, speech recognition, protein sequence encoding and gene expres-
sion analysis with special emphasis on problems in medical imaging and mining
patterns in bioinformatics. The superiority of the rough-fuzzy models presented
in this book over several related ones is found to be statistically significant.

The basic notions and characteristics of two soft computing tools, namely,
fuzzy sets and rough sets are briefly presented in Chapter 2. These are followed
by the concept of information granules, f -granulations, emergence of rough-
fuzzy computing paradigm, and their relevance to pattern recognition. It also
provides a mathematical framework for generalized rough sets incorporating the
concept of fuzziness in defining the granules as well as the set. Various roughness
and uncertainty measures with properties are introduced. Different research issues
related to rough granules are stated.

A generalized hybrid unsupervised learning algorithm, termed as rough-fuzzy-
possibilistic c-means , is reported in Chapter 3. It comprises a judicious integration
of the principles of rough sets and fuzzy sets. Although the concept of lower
and upper approximations of rough sets deals with uncertainty, vagueness, and
incompleteness in class definition, the membership function of fuzzy sets enables
efficient handling of overlapping partitions. It incorporates both probabilistic and
possibilistic memberships simultaneously to avoid the problems of noise sen-
sitivity of fuzzy c-means and the coincident clusters of possibilistic c-means.
The concept of crisp lower bound and fuzzy boundary of a class, introduced
in rough-fuzzy-possibilistic c-means, enables efficient selection of cluster proto-
types. The algorithm is generalized in the sense that all the existing variants of
c-means algorithms can be derived from this algorithm as a special case. Several
quantitative indices are described on the basis of rough sets for evaluating the
performance of different c-means algorithms on real-life data sets.

A rough-fuzzy model for pattern classification based on granular computing is
described in Chapter 4. In this model, the formulation of class-dependent gran-
ules in fuzzy environment is introduced. Fuzzy membership functions are used
to represent the feature-wise belonging to different classes, thereby producing
fuzzy granulation of the feature space. The fuzzy granules thus generated pos-
sess better class discriminatory information that is useful in pattern classification
with overlapping classes. The neighborhood rough sets are used in the selection
of a subset of granulated features that explore the local or contextual information
from neighborhood granules. The model thus explores the mutual advantages of
class-dependent fuzzy granulation and neighborhood rough sets. The superiority
of this model over other similar methods is established with seven completely
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labeled data sets, including a synthetic remote sensing image, and two partially
labeled real remote sensing images collected from satellites. Various performance
measures, including a method of dispersion estimation, are used for comparative
analysis. The dispersion score quantifies the nature of distribution of the classified
patterns among different classes so that lower the dispersion, better the classifier.
The rough-fuzzy granular space-based model is able to learn well even with a
lower percentage of training set that makes the system faster. The model is seen
to have the lowest dispersion measure (i.e., misclassified patterns are confined
to minimum number of classes) compared to others, thereby reflecting well the
overlapping characteristics of a class with others, and providing a strong clue for
the class-wise performance improvement with available higher level information.
The statistical significance of this model is also supported by the χ2 test.

The selection of nonredundant and relevant features of real-valued data sets
is a highly challenging problem. Chapter 5 deals with a feature selection method
based on fuzzy-rough sets by maximizing the relevance and minimizing the
redundancy of the selected features. By introducing the concept of fuzzy equiv-
alence partition matrix, a new representation of Shannon’s entropy for fuzzy
approximation spaces is presented to measure the relevance and redundancy of
features suitable for real-valued data sets. The fuzzy equivalence partition matrix
is based on the theory of fuzzy-rough sets, where each row of the matrix rep-
resents a fuzzy equivalence partition that can be automatically derived from the
given data set. The fuzzy equivalence partition matrix also offers an efficient way
to calculate many more information measures, termed as f -information measures .
Several f -information measures are shown to be effective for selecting nonredun-
dant and relevant features of real-valued data sets. The experimental study also
includes a comparison of the performance of different f -information measures
for feature selection in fuzzy approximation spaces. Several quantitative indices
are described on the basis of fuzzy-rough sets for evaluating the performance of
different methods.

In pattern recognition, there are mainly two types of data: object and relational
data. The former is the most common type of data and is in the form of the usual
data set of feature vectors. On the other hand, the latter is less common and con-
sists of the pairwise relations such as similarities or dissimilarities between each
pair of implicit objects. Such a relation is usually stored in a relation matrix and
no other knowledge is available about the objects being clustered. As the rela-
tional data is less common than object data, relational pattern recognition methods
are not as well developed as their object counterparts, particularly in the area of
robust clustering. However, relational methods are becoming a necessity as rela-
tional data becomes more and more common. For instance, information retrieval,
data mining, web mining, and bioinformatics are all applications which could
greatly benefit from pattern recognition methods that can deal with relational
data. In this regard, the next chapter discusses a rough-fuzzy relational cluster-
ing algorithm, termed as rough-fuzzy c-medoids algorithm , and demonstrates its
effectiveness in amino acid sequence analysis.
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Although several experimental results on both artificial and real-life data sets,
including speech and remotely sensed multispectral image data, are provided in
Chapters 3, 4, and 5 to demonstrate the effectiveness of the respective rough-
fuzzy methodologies, the next four chapters are concerned only with certain
specific applications in bioinformatics and medical imaging. Problems considered
include selection of a minimum set of basis strings with maximum information
for amino acid sequence analysis (Chapter 6), grouping functionally similar genes
from microarray gene expression data through clustering (Chapter 7), selection of
relevant genes from high dimensional microarray gene expression data (Chapter
8), and segmentation of brain magnetic resonance (MR) images using clustering
(Chapter 9).

In most pattern recognition algorithms, biological molecules such as amino
acids cannot be used directly as inputs as they are nonnumerical variables. They,
therefore, need encoding before being used as input. In this regard, bio-basis
function maps a nonnumerical sequence space to a numerical feature space. It is
designed using an amino acid mutation matrix. One of the important issues for
the bio-basis function is how to select a minimum set of bio-basis strings with
maximum information. In Chapter 6, the rough-fuzzy c-medoids algorithm is used
to select most informative bio-basis strings. It comprises a judicious integration
of the principles of rough sets, fuzzy sets, c-medoids algorithm, and amino acid
mutation matrix. The concept of crisp lower bound and fuzzy boundary of a
cluster, introduced in rough-fuzzy c-medoids, enables efficient selection of a
minimum set of most informative bio-basis strings. Several indices are stated for
evaluating quantitatively the quality of selected bio-basis strings.

Microarray technology is one of the important biotechnological means that
allows recording the expression levels of thousands of genes during important
biological processes and across collections of related samples. An important
application of microarray data is to elucidate the patterns hidden in gene expres-
sion data for an enhanced understanding of functional genomics. However, the
large number of genes and the complexity of biological networks greatly increase
the challenges of comprehending and interpreting the resulting mass of data.
A first step toward addressing this challenge is the use of clustering techniques.
In this regard, different rough-fuzzy clustering algorithms are used in Chapter 7
to cluster functionally similar genes from microarray data sets. The effectiveness
of these algorithms, along with a comparison with other related gene clustering
algorithms, is demonstrated on a set of microarray gene expression data sets
using some standard validity indices.

Several information measures such as entropy, mutual information, and
f -information have been shown to be successful for selecting a set of relevant
and nonredundant genes from high dimensional microarray data set. However,
for continuous gene expression values, it is very difficult to find the true
density functions and to perform the integrations required to compute different
information measures. In this regard, the concept of fuzzy equivalence partition
matrix, explained in Chapter 5, is used in Chapter 8 to approximate the
true marginal and joint distributions of continuous gene expression values.
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The performance of this methodology in selecting relevant and nonredundant
continuous valued genes from microarray data is compared with that of existing
ones using the class separability index and predictive accuracy of support vector
machine.

Image segmentation is an indispensable process in the visualization of human
tissues, particularly during clinical analysis of MR images. In Chapter 9, differ-
ent rough-fuzzy clustering algorithms are used for the segmentation of brain MR
images. One of the major issues of the rough-fuzzy clustering-algorithm-based
brain MR image segmentation is how to select initial prototypes of different
classes or categories. The concept of discriminant analysis, based on the maxi-
mization of class separability, is used to circumvent the initialization and local
minima problems of the rough-fuzzy clustering algorithms. Some quantitative
indices are described to extract local features of brain MR images, when applied
on a set of synthetic and real brain MR images, for segmentation.
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