CHAPTER 1

OVERVIEW OF EMBEDDED SYSTEM

An embedded system is a special type of computer system. In this chapter, we
examine the basic characteristics of an embedded system, highlight its differences
from a general-purpose computer system, and introduce the concept and develop-
ment flow of a “high-end” FPGA-based embedded system, which the focus of this
bhook.

1.1 INTRODUCTION

1.1.1 Definition of an embedded system

An embedded system (or embedded computer system) can be loosely defined as a
computer system designed to perform one or a few specific tasks. The computer
system is not the end product but a dedicated “embedded” part of a larger system
that often includes additional electronic and mechanical parts. By contrast, a
general-purpose computer system, such as a PC {personal computer), is a general
computing platform and itself is the end product. It is designed to be flexible and
to support a variety of end-user needs. Application programs are developed based
on the available resource of the general-purpose computer system.

Since an embedded system is dedicated to specific tasks, its design can be opti-
mized to reduce cost. A good design should contain just enough hardware resources
to meet the application’s required functionalities. On the other hand, a general-
purpose computer system is expected to support a variety of needs and thus an ap-

Embedded SOPC Design with Nios If Processor and VHDI Ezamples. By Pong P. Chu 1
Clopyright © 2011 John Wiley & Sons, Inc.

2 OVERVIEW OF EMBEDRDED SYSTEM

plication program is provided with a relatively abundant hardware resource. From
this perspective, an embedded system can be thought of as a computer system with
severely resource constraint,

The terms “embedded system”™ and “general-purpose computer system” are not
strictly defined, as most systems have some elements of extensibility or programma-
bility. For example, a cell phone can be treated as an embedded system since it is
mainly for wireless communication. However, an advanced phone allows users to
load other types of applications, such as simple video games, and thus exhibits the
characteristics of a general-purpose computer systemmn.

In our book, we refer to a general-purpose computer system as a “desktop sys-
tem” since a desktop computer it is the most commonly used general-purpose sys-
fer.

1.1.2 Example systems

Embedded systems are used in a wide range of applications and each application
has its own specific requirements. We examine three example systems to illustrate
the basic characteristics of embedded applications:

o Microwave oven.
o Digital camera.
& Vehicle stability control system.

Microwave oven A microwave oven cooks or heats food with microwave radiation
generated by a magnetron. A microwave oven usually has a keypad to select the
cooking time and power level and an LCD or LED display that shows the status
or time. It contains an embedded computer that processes the keypad input, keeps
track of timing, generates the display patterns, and controls the magnetron unit.

The operation of the microwave oven requires no extensive computation and does
not involve high-speed data transfer. The tasks can be accomplished by a very
simple 8-bit processor (i.e., a processor with 8-bit internal data width) and a small
read-only program memory. The entire embedded system can be implemented by a
microcontroller, which is usually a single IC chip containing the 8-bit core processor,
small memory, and simple I/O peripherals.

The microwave oven is a representative “low-end” embedded system.

Digital camera A digital camera takes photographs by recording images electron-
ically via an image sensor and stores the digitized image in a flash memory card.
The image sensor contains millions of pixel sensors. A pixel sensor converts light
to an electronic signal. The cutput of the pixel sensors is digitized and stored as
an image file. A typical digital camera contains a set of buttons and knobs to con-
trol and adjust camera operation and a small LCD display to preview the stored
pictures.

The embedded system in the camera performs two major tasks. The first task
involves the general *housekeeping” 1/0 operations, including processing the button
and knob activities, generating the graphic on an LCD display, and writing image
files to the storage device. These operations are more involved than those of a
microwave oven and the system requires a more capable 16- or 32-bit processor
as well as a separate memory chip. The second task is to process the image and
perform data compression to reduce the file size. Because of the large number of

SYSTEM DESIGN REQUIREMENTS 3

pixels and the complexity of the compression algorithm, it requires a significant
amount of computation. An embedded processor is usually not powerful enough
to handle the computation-intensive operation. A custom digital circuit can be
designed to perform this particular task and take the load off the processor. This
type of circuits is known as hardware accelerators.

The digital camera is a representative “high-end” embedded system.

Vehicle electronic stability control system A vehicle ESC (electronic stability con-
trol) system helps to improve a vehicle’s maneuverability by detecting and mini-
mizing skids. During driving, it continues comparing the driver’s intended direction
with the vehicle’s actual direction. When the loss of steering control is detected
(e.g., due to a wet or iced surface), the ESC system intervenes automatically and
applies the brakes to individual wheels to steer the vehicle to the intended direction.

The embedded system obtains the intended direction from the steering wheel
angle and obtains the actual direction from the vehicle lateral acceleration and the
individual wheel’s rotating speed. It determines the occurrence and nature of the
skid and then calculates and applies brake forces to individual wheels to offset the
skid condition.,

The ESC embedded system has two special characteristics. First, the ESC sys-
tem imposes a real-time constraint — an operational deadline from the triggering
event (i.e., onset of skid condition) to the system response (i.e., application of the
brake forces). The system fails to work if the brake is not applied within a spe-
cific amount of time. Second, since the steering concerns the driver's safety, the
embedded system is mission critical and thus must be robust and reliable.

1.2 SYSTEM DESIGN REQUIREMENTS

When designing a computer system, we must consider a variety of factors:

» Cost

e (GGeneral computation speed

Special computation need

¢ Real-time constraint

» Reliability

¢ Power consumption
The term special computing need means the type of computation task, such as
data compression, encryption, pattern recognition, ete., which cannot be easily
accomplished by a general-purpose processor.

In general, we wish that every computer system would be inexpensive, fast,
reliable, and would use little power. However, these criteria are frequently fighting
against each other. For example, a faster processor is more expensive and consumes
more power. An embedded system can be used in a wide range of applications and
each system has its own unique needs. For each system, we need to identify the key
requirements and seek the best trade-off. One way to iltustrate these requirements
is to use a “radar chart” shown in Figure 1.1. There are six axes in the chart, each
indicating the importance of a factor. As a poiat in an axis moves outward from the
center, its importance increases from “not important” to “extremely important.”

A desktop PC is for general use and thus does not place weight on a particular
factor. Tts chart is “well rounded,” as shown in Figure 1.1(a). A microwave oven

OVERVIEW OF EMBEDDED SYSTEM

cost cost
real-time special real-time special
constraint computing constraint computing
- general L general
reliability computing reliability computing
power power
(a) Desk-top PC (b) Microwave oven
cost cost
real-time special real-time special
constraint computing constraint computing
L general - general
reliability computing reliability computing
power power

(c) Digital camera (d) Vehicle ESC system

Figure 1.1 Radar charts of various systems.

can be considered as a “commodity” and its profit margin is not very high. Thus,
it is extremely sensitive to the part cost. The embedded system for the microwave
is very simple and its key requirement is to reduce the cost. Its chart is shown in
Figure 1.1(b). A digital camera requires special image processing and compression
capability. Since it is a handheld device powered by a battery, reducing power usage
is important. Thus, the two key requirements of the camera’s embedded system
are the power and special computation need. Its chart is shown in Figure 1.1(c).
A vehicle ESC system imposes a strict operational deadline and is mission critical.
The key requirements of the ESC embedded system are the real-time constraint
and reliability. Its chart is shown in Figure 1.1(d).

From the requirement’s peint of view, we can treat an embedded system as a
computer system with extrerne design requirements.

1.3 EMBEDDED SOPC SYSTEMS

The main focus of this book is on the “high-end” embedded systems similar 1o
the digital camera. This type of system usually has a processor and simple /0
periphcerals to perform general user interface and housekeeping tasks and special
hardware accelerators to handle computation-intensive operations. These compo-
nents can be integrated into a single integrated circuit, commonly referred to as
SoC' (system on o chip). As the capacity of FPGA (field-programmable gate ar-

EMBEDDED SQOPC 5YSTEMS 5

ray} devices continues fo grow, the same design methodology can be realized in an
FPGA chip and is sometimnes known as SoePC {system on 6 programmable chip) or
P5oC (prograinmable system on o chip). We use the term SoPC in the book.

While designing a system based on a conventional embedded processor, we exam-
ine the required functionalities and then select a processor, external I/O peripherals,
and ASSP (application specific standard product) devices to construct the hard-
ware platform. Because of the fixed-sized processor architecture, a limited choice of
ASSP devices, and the cost of tmanufacturing printed circuit boards, the hardware
configuration is usually rather “rigid” and the desired system funectionalities are
usually done by customized software.

An FPGA device contains logic cells and interconnects that can be configured
(i.e., “programmed”} to perform a specific function. The desired hardware function-
alities are usually described in HDL {(hardware description language) code, which
is then gynthesized and implemented by the FPGA device. Because of the pro-
grammability of FPGA devices, customized hardware can be incorporated into the
embedded system as well. We can tailor the processor, select only the needed
I/QO peripherals, create a custom F/O interface, and develop specialized hardware
accelerators for computation-intensive tasks. The SoPC-based embedded system
provides a new dimension of flexibility because both the hardware and software can
be customized to match specific needs.

1.3.1 Basic development flow

The embedded SoPC system development consists of the following parts:

» Partition the tasks to software and hardware accelerators.

¢ Develop the hardware, including the hardware accelerators and 1/0 periph-

erals, and integrate it with the processor.

¢ Develop the software.

¢ Implement the hardware and software and perform testing.

Since the design examples in this book are targeted for Altera prototyping
boards, our discussion uses the Altera development platform and its Nios IT pro-
cessor. Note that Nios IT is a soff-core processor, which means the processor is
described in HDL code and synthesized later by using FPGA’s generic logie cells.

The basic Nios IT-based development flow is shown in Figure 1.2. The four basic
parts arc elaborated in the following subsections.

Software—hardware partition Step 1 {labeled 1 in the diagram) is to determine the
software—hardware partition. An embedded application usually performs a collec-
tion of tasks. In an SoPC-based design, a task can be implemented by hardware,
software, or both. Based on the performance reguirement, complexity, and hard-
ware core availability, we can decide the type of implementation accordingly.

Hardware devefopment flow The left branch represents the hardware design flow.

Step 2 derives the basic hardware architecture. The custom hardware can be divided
into three categories:

e Nios If processor and standard I/0 peripherals {labeled “Nios configuration”

in the diagram). Altera provides the soft cores of the processor and a col-

lection of frequently used 1/Q peripherals. A third-party vendor supplies

6 OVERVIEW OF EMBEDDED 5YSTEM

)
partition
- v)
uhcl)mcl:sof;s dé‘\?emrgnt e o defrglﬂovfaan:eem HAL
| i
H 1 :

|
Yy

! § T—
: Nios user user ' user APt
/ US@*'W‘C//mﬁguraﬁo / WO & HA // drivers / | / functonS/ functlonS/

SCPC
builder 0

BSP
0 Editor
v ‘ y Y ¥ ¥
BSP usev application
-level
/s o o
¥
synthesis . compile
Y’E,&R 0 @ fini
JF h 4
f sof file ; i elf file
k 4 b 4
device
programming | € L9] load

Altera fest @
libra

Figure 1.2 Development flow of a system with Nios IL

EMBEDOED SORC SYSTEMS 7

additional 1/O cores as well. We can select the needed 1/O peripherals and
configure the basic Nios IT systern.

o User I/0 peripherals and hardware accelerators (labeled “User I/O & HA” in
the diagram). For certain specialized /0 functions or computation-intensive
tasks, a pre-designed core may not exist or cannot satisfy the performance
requirement. We must design the hardware from scratch and integrate it into
the Nios II system as a custom 1/Q peripheral.

» [ser logic. Some portion of the hardware may be separated from the Nios 11
system. It is not attached to the Nios interconnect structure and does not
interact directly with the processor.

Step 3 generates the HDL code from the customized Nios I system. It is done by
using Altera’s SOPC Builder software package. In this software, we can configure
the processor, select the desired standard I/O cores, and incorporate the user-
designed I/O peripherals. SOPC Builder then generates the HDL codes for the
customized Nios II system and also generates the .sopcinfo file that contains system
configuration information. We can combine this code with the other use logic codes
to form the final top-level HDL description.

The top-level HDL code contains the description of the complete hardware.
Step 4 performs synthesis and placement and routing and eventually generates
the FPGA configuration file (i.e., the .sof file).

Software development flow The right branch represents the software design flow.
Step 6 derives the basic software structure. Altera provides a software library, which
is integrated into its HAL (hardware abstraction layer) platform, for the Nios II
system. It comsists of I/0 device drivers, which are low-level routines to access I/O
periphcrals, and a collection of high-level functions in an application programming
interface (API). From the hardware—software interface’s point of view, we can
divide the software code into three categories:

o API functions. These are the functions from the Altera HAL platform.

o User I/0 drivers. When designing a custom I/O peripheral or hardware accel-
erator, we also need to develop software I/0 routines to control its operation
and to exchange its data with the processor.

o User functions. These implement the needed functionalities for the embedded
application.

We can utilize these drivers and functions to construct the application program.

When a Nios II system is created, the processor and I/O configuration is recorded
in the .sopecinfo file. In Step 7, the BSP Editor software program examines this file,
extracts the needed device drivers from the HAL library, and builds up a BSP
(board support package} library to support the system.

Step 8 compiles and links the software routines and BSP library and builds the

final software image file (i.e., the .elf file).

Physical implementation and test Physically implementing the system invelves two
steps. We first download the FPGA configuration file to the FPGA device (i.e.,
“program” the device}, as in Step 5, and then load the software image into Nios II's
memory, as in Step 9. The physical system can be tested afterwards, as in Step 10.

The most unique characteristics of an SoPC-based embedded system are that
custom 1/0 peripherals and hardware accelerators can be integrated into the sys-
tem. The major task involves the development of custom hardware and a software

8 OVERVIEW OF EMBEDDED SYSTEM

driver, as shown in the dotted box in Figure 1.2. This is the main focus of the
book.

1.4 BOOK ORGANIZATION

The remaining book is divided into four parts. Part I introduces the basic HDL
constructs and synthesis procedure and discusses the development of custom digital
circuits. Part II provides an overview of a Nios [I-based system and embedded
software development with the emphasis on low-level I/O access and drivers. A
simple flashing-LED design is used to illustrate the key concepts. Part III applies
the techniques from Parts I and II to design an array of complex I/O peripheral
modules on the Altera DE1 prototyping board, including a PS2 keyboard and mouse
controller, a graphic video controller, an audio codec controller, and an SD (secure
digital) card controller. Part IV presents three case studies of the integration of
hardware accelerators, including a custom GCD (greatest common divisor) circuit,
a Mandelbrot set fractal circuit, and an audio synthesizer based on DDFS (direct
digital frequency synthesis) methodology.

1.5 BIBLIOGRAPHIC NOTES

In this book, a short bibliographic section appears at the end of each chapter to
provide the most relevant references for further exploration. A more comprehensive
bibliography is included at the end of the book.

Embedded systemns cncompass a spectrum of design issues. The two books, Em-
bedded System Design: A Unified Hardware/Software Introduction by F. Vahid and
T. D. Givargis and Computers as Components: Principles of Embedded Computing
System Design, 8nd edition by W. Wolf, provide a comprehensive discussion. Most
processor-oriented embedded system books are around specific low-end microcon-
trollers. However, Programming 32-bit Microcontrollers in C: Exploring the PIC32
by L. Di Jasio, as its title indicates, is based on 32-bit PIC processors and covers
more advanced design examples.

Software-hardware co-design is an emerging research area. A Practical Intro-
duction to Hardware/Software Codesign by P. R. Schaumont addresses the basic
concepts and issues of combining hardware and software into a single systern design
process.

