
CHAPTER 1

Basic Concepts

It is often said that computers are revolutionizing science and engineer-
ing. By using computers we are able to construct complex engineering
designs such as space shuttles. We are able to compute the properties
of the universe as it was fractions of a second after the big bang. Our
ambitions are ever-increasing. We want to create even more complex
designs such as better spaceships, cars, medicines, computerized cellu-
lar phone systems, and the like. We want to understand deeper aspects
of nature. These are just a few examples of computer-supported mod-
eling and simulation. More powerful tools and concepts are needed
to help us handle this increasing complexity, which is precisely what
this book is about.

This text presents an object-oriented component-based approach
to computer-supported mathematical modeling and simulation through
the powerful Modelica language and its associated technology. Mod-
elica can be viewed as an almost universal approach to high-level
computational modeling and simulation, by being able to represent a
range of application areas and providing general notation as well as
powerful abstractions and efficient implementations. The introductory
part of this book, consisting of the first two chapters, gives a quick
overview of the two main topics of this text:

• Modeling and simulation
• The Modelica language
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2 CHAPTER 1 Basic Concepts

The two subjects are presented together since they belong together.
Throughout the text Modelica is used as a vehicle for explaining dif-
ferent aspects of modeling and simulation. Conversely, a number of
concepts in the Modelica language are presented by modeling and sim-
ulation examples. The present chapter introduces basic concepts such
as system, model , and simulation. Chapter 2 gives a quick tour of
the Modelica language as well as a number of examples, interspersed
with presentations of topics such as object-oriented mathematical mod-
eling. Chapter 3 gives an introduction to the Modelica class concept,
whereas Chapter 4 introduces modeling methodology for continuous,
discrete, and hybrid systems. Chapter 5 gives a short overview of
the Modelica Standard Library and some currently available Modelica
model libraries for a range of application domains. Finally, in two
of the appendices, examples are presented of textual modeling using
the OpenModelica electronic book OMNotebook tool, as well as very
simple graphical modeling.

1.1 SYSTEMS AND EXPERIMENTS

What is a system? We have already mentioned some systems such as
the universe, a space shuttle, and the like. A system can be almost any-
thing. A system can contain subsystems that are themselves systems.
A possible definition of system might be:

• A system is an object or collection of objects whose properties
we want to study.

Our wish to study selected properties of objects is central in this defi-
nition. The “study” aspect is fine despite the fact that it is subjective.
The selection and definition of what constitutes a system is somewhat
arbitrary and must be guided by what the system is to be used for.

What reasons can there be to study a system? There are many
answers to this question but we can discern two major motivations:

• Study a system to understand it in order to build it. This is the
engineering point of view.

• Satisfy human curiosity, for example, to understand more about
nature—the natural science viewpoint.
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1.1.1 Natural and Artificial Systems

A system according to our previous definition can occur naturally,
for example, the universe, it can be artificial such as a space shuttle,
or a mix of both. For example, the house in Figure 1.1 with solar-
heated warm tap water is an artificial system, that is, manufactured
by humans. If we also include the sun and clouds in the system, it
becomes a combination of natural and artificial components.

Even if a system occurs naturally, its definition is always highly
selective. This is made very apparent in the following quote from Ross
Ashby (1956, p. 39):

At this point, we must be clear about how a system is to be defined. Our
first impulse is to point at the pendulum and to say “the system is that
thing there.” This method, however, has a fundamental disadvantage:
every material object contains no less than an infinity of variables, and
therefore, of possible systems. The real pendulum, for instance, has not
only length and position; it has also mass, temperature, electric
conductivity, crystalline structure, chemical impurities, some
radioactivity, velocity, reflecting power, tensile strength, a surface film
of moisture, bacterial contamination, an optical absorption, elasticity,
shape, specific gravity, and so on and on. Any suggestion that we should
study all the facts is unrealistic, and actually the attempt is never made.

Collector

Storage tank

PumpCold water

Hot water

Electricity

Heater

Figure 1.1 A system: a house with solar-heated warm tap water, together with clouds
and sunshine.
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What is necessary is that we should pick out and study the facts that are
relevant to some main interest that is already given.

Even if the system is completely artificial, such as the cellular phone
system depicted in Figure 1.2, we must be highly selective in its def-
inition, depending on what aspects we want to study for the moment.

An important property of systems is that they should be observ-
able. Some systems, but not large natural systems like the universe,
are also controllable in the sense that we can influence their behavior
through inputs, that is:

• The inputs of a system are variables of the environment that
influence the behavior of the system. These inputs may or may
not be controllable by us.

• The outputs of a system are variables that are determined by
the system and may influence the surrounding environment.

In many systems the same variables act as both inputs and outputs . We
talk about acausal behavior if the relationships or influences between
variables do not have a causal direction, which is the case for relation-
ships described by equations. For example, in a mechanical system the
forces from the environment influence the displacement of an object,
but on the other hand the displacement of the object influences the
forces between the object and environment. What is input and what
is output in this case is primarily a choice by the observer, guided by
what is interesting to study, rather than a property of the system itself.

Regional
processor

Regional
processor

Regional
processor

Incoming callsIncoming callsIncoming calls

Central processor
in cellular phone system

Figure 1.2 Cellular phone system containing a central processor and regional proces-
sors to handle incoming calls.
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1.1.2 Experiments

Observability is essential in order to study a system according to our
definition of system. We must at least be able to observe some outputs
of a system. We can learn even more if it is possible to exercise a sys-
tem by controlling its inputs. This process is called experimentation ,
that is:

• An experiment is the process of extracting information from a
system by exercising its inputs.

To perform an experiment on a system, it must be both controllable
and observable. We apply a set of external conditions to the accessi-
ble inputs and observe the reaction of the system by measuring the
accessible outputs.

One of the disadvantages of the experimental method is that for
a large number of systems many inputs are not accessible and con-
trollable. These systems are under the influence of inaccessible inputs,
sometimes called disturbance inputs . Likewise, it is often the case that
many really useful possible outputs are not accessible for measure-
ments; these are sometimes called internal states of the system. There
are also a number of practical problems associated with performing
an experiment, for example:

• The experiment might be too expensive: Investigating ship dura-
bility by building ships and letting them collide is a very expen-
sive method of gaining information.

• The experiment might be too dangerous: Training nuclear plant
operators in handling dangerous situations by letting the nuclear
reactor enter hazardous states is not advisable.

• The system needed for the experiment might not yet exist . This
is typical of systems to be designed or manufactured.

The shortcomings of the experimental method led us to the model con-
cept. If we make a model of a system, this model can be investigated
and may answer many questions regarding the real system if the model
is realistic enough.
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1.2 THE MODEL CONCEPT

Given the previous definitions of system and experiment, we can now
attempt to define the notion of model:

• A model of a system is anything an “experiment” can be applied
to in order to answer questions about that system .

This implies that a model can be used to answer questions about a
system without doing experiments on the real system. Instead we
perform simplified “experiments” on the model, which in turn can
be regarded as a kind of simplified system that reflects properties of
the real system. In the simplest case a model can just be a piece of
information that is used to answer questions about the system.

Given this definition, any model also qualifies as a system.
Models, just like systems, are hierarchical in nature. We can cut out
a piece of a model, which becomes a new model that is valid for a
subset of the experiments for which the original model is valid. A
model is always related to the system it models and the experiments
to which it can be subjected. A statement such as “a model of a
system is invalid” is meaningless without mentioning the associated
system and the experiment. A model of a system might be valid
for one experiment on the model and invalid for another. The term
model validation, see Section 1.5.3, always refers to an experiment
or a class of experiment to be performed.

We talk about different kinds of models depending on how the
model is represented:

• Mental model—a statement like “a person is reliable” helps us
answer questions about that person’s behavior in various situa-
tions.

• Verbal model—this kind of model is expressed in words. For
example, the sentence “More accidents will occur if the speed
limit is increased” is an example of a verbal model. Expert
systems is a technology for formalizing verbal models.

• Physical model—this is a physical object that mimics some
properties of a real system, to help us answer questions about
that system. For example, during design of artifacts such as
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buildings, airplanes, and so forth, it is common to construct
small physical models with the same shape and appearance as
the real objects to be studied, for example, with respect to their
aerodynamic properties and aesthetics.

• Mathematical model—a description of a system where the rela-
tionships between variables of the system are expressed in math-
ematical form. Variables can be measurable quantities such as
size, length, weight, temperature, unemployment level, infor-
mation flow, bit rate, and so forth. Most laws of nature are
mathematical models in this sense. For example, Ohm’s law
describes the relationship between current and voltage for a
resistor; Newton’s laws describe relationships between velocity,
acceleration, mass, force, and the like.

The kinds of models that we primarily deal with in this book are
mathematical models represented in various ways, for example, as
equations, functions, computer programs, and the like. Artifacts rep-
resented by mathematical models in a computer are often called virtual
prototypes . The process of constructing and investigating such mod-
els is virtual prototyping. Sometimes the term physical modeling is
used also for the process of building mathematical models of physical
systems in the computer if the structuring and synthesis process is the
same as when building real physical models.

1.3 SIMULATION

In the previous section we mentioned the possibility of performing
“experiments” on models instead of on the real systems corresponding
to the models. This is actually one of the main uses of models, and
is denoted by the term simulation, from the Latin simulare, which
means to pretend. We define a simulation as follows:

• A simulation is an experiment performed on a model.

Analogous to our previous definition of model , this definition of sim-
ulation does not require the model to be represented in mathematical
or computer program form. However, in the rest of this text we
will concentrate on mathematical models , primarily those that have
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a computer-representable form. The following are a few examples of
such experiments or simulations:

• A simulation of an industrial process such as steel or pulp man-
ufacturing, to learn about the behavior under different operating
conditions in order to improve the process.

• A simulation of vehicle behavior, for example, of a car or an
airplane, for the purpose of providing realistic operator training.

• A simulation of a simplified model of a packet-switched com-
puter network, to learn about its behavior under different loads
in order to improve performance.

It is important to realize that the experiment description and model
description parts of a simulation are conceptually separate entities. On
the other hand, these two aspects of a simulation belong together even
if they are separate. For example, a model is valid only for a certain
class of experiments. It can be useful to define an experimental frame
associated with the model, which defines the conditions that need to
be fulfilled by valid experiments.

If the mathematical model is represented in executable form in
a computer, simulations can be performed by numerical experiments ,
or in nonnumeric cases by computed experiments . This is a simple
and safe way of performing experiments, with the added advantage
that essentially all variables of the model are observable and con-
trollable. However, the value of the simulation results is completely
dependent on how well the model represents the real system regarding
the questions to be answered by the simulation.

Except for experimentation, simulation is the only technique that is
generally applicable for analysis of the behavior of arbitrary systems.
Analytical techniques are better than simulation, but usually apply
only under a set of simplifying assumptions, which often cannot be
justified. On the other hand, it is not uncommon to combine analytical
techniques with simulations, that is, simulation is used not alone but
in an interplay with analytical or semianalytical techniques.

1.3.1 Reasons for Simulation

There are a number of good reasons to perform simulations instead of
performing experiments on real systems:
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• Experiments are too expensive, too dangerous , or the system to
be investigated does not yet exist . These are the main difficulties
of experimentation with real systems, previously mentioned in
Section 1.1.2.

• The time scale of the dynamics of the system is not compatible
with that of the experimenter. For example, it takes millions
of years to observe small changes in the development of the
universe, whereas similar changes can be quickly observed in a
computer simulation of the universe.

• Variables may be inaccessible. In a simulation all variables can
be studied and controlled, even those that are inaccessible in the
real system.

• Easy manipulation of models. Using simulation, it is easy to
manipulate the parameters of a system model, even outside the
feasible range of a particular physical system. For example, the
mass of a body in a computer-based simulation model can be
increased from 40 to 500 kg at a keystroke, whereas this change
might be hard to realize in the physical system.

• Suppression of disturbances . In a simulation of a model it is
possible to suppress disturbances that might be unavoidable in
measurements of the real system. This can allow us to isolate
particular effects and thereby gain a better understanding of
those effects.

• Suppression of second-order effects . Often, simulations are per-
formed since they allow suppression of second-order effects
such as small nonlinearities or other details of certain system
components, which can help us to better understand the primary
effects.

1.3.2 Dangers of Simulation

The ease of use of simulation is also its most serious drawback: It is
quite easy for the user to forget the limitations and conditions under
which a simulation is valid and therefore draw the wrong conclusions
from the simulation. To reduce these dangers, one should always try
to compare at least some results of simulating a model against exper-
imental results from the real system. It also helps to be aware of the
following three common sources of problems when using simulation:
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• Falling in love with a model—the Pygmalion1 effect. It is easy
to become too enthusiastic about a model and forget all about the
experimental frame, that is, that the model is not the real world
but only represents the real system under certain conditions. One
example is the introduction of foxes on the Australian continent
to solve the rabbit problem, on the model assumption that foxes
hunt rabbits, which is true in many other parts of the world.
Unfortunately, the foxes found the indigenous fauna much easier
to hunt and largely ignored the rabbits.

• Forcing reality into the constraints of a model—the Procrustes2

effect. One example is the shaping of our societies after cur-
rently fashionable economic theories having a simplified view
of reality, and ignoring many other important aspects of human
behavior, society, and nature.

• Forgetting the model’s level of accuracy. All models have sim-
plifying assumptions, and we have to be aware of those in order
to correctly interpret the results.

For these reasons, while analytical techniques are generally more
restrictive since they have a much smaller domain of applicability,
such techniques are more powerful when they apply. A simulation
result is valid only for a particular set of input data. Many simula-
tions are needed to gain an approximate understanding of a system.
Therefore, if analytical techniques are applicable, they should be used
instead of a simulation or as a complement.

1.4 BUILDING MODELS

Given the usefulness of simulation in order to study the behavior of
systems, how do we go about building models of those systems? This

1Pygmalion is the mythical king of Cyprus who also was a sculptor. The king fell in love
with one of his works, a sculpture of a young woman, and asked the gods to make her
alive.
2Procrustes is a robber known from Greek mythology. He is known for the bed where he
tortured travelers who fell into his hands: If the victim was too short, he stretched arms
and legs until the person fit the length of the bed; if the victim was too tall, he cut off the
head and part of the legs.
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is the subject of most of this book and of the Modelica language, which
has been created to simplify model construction as well as reuse of
existing models.

There are in principle two main sources of general system-related
knowledge needed for building mathematical models of systems:

• The collected general experience in relevant domains of
science and technology, found in the literature and available
from experts in these areas. This includes the laws of
nature, for example, including Newton’s laws for mechanical
systems, Kirchhoff’s laws for electrical systems, approximate
relationships for nontechnical systems based on economic or
sociological theories, and so on.

• The system itself, that is, observations of and experiments on
the system we want to model.

In addition to the above system knowledge, there is also specialized
knowledge about mechanisms for handling and using facts in model
construction for specific applications and domains, as well as generic
mechanisms for handling facts and models, that is:

• Application expertise —mastering the application area and tech-
niques for using all facts relative to a specific modeling appli-
cation.

• Software and knowledge engineering —generic knowledge
about defining, handling, using, and representing models and
software, for example, object orientation, component system
techniques, expert system technology, and so on.

What is then an appropriate analysis and synthesis process to be used
in applying these information sources for constructing system models?
Generally, we first try to identify the main components of a system
and the kinds of interaction between these components. Each com-
ponent is broken down into subcomponents until each part fits the
description of an existing model from some model library, or we can
use appropriate laws of nature or other relationships to describe the
behavior of that component. Then we state the component interfaces
and make a mathematical formulation of the interactions between the
components of the model.
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Certain components might have unknown or partially known
model parameters and coefficients. These can often be found by
fitting experimental measurement data from the real system to the
mathematical model using system identification , which in simple
cases reduces to basic techniques like curve fitting and regression
analysis. However, advanced versions of system identification may
even determine the form of the mathematical model selected from a
set of basic model structures.

1.5 ANALYZING MODELS

Simulation is one of the most common techniques for using models
to answer questions about systems. However, there also exist other
methods of analyzing models such as sensitivity analysis and model-
based diagnosis or analytical mathematical techniques in the restricted
cases where solutions can be found in a closed analytical form.

1.5.1 Sensitivity Analysis

Sensitivity analysis deals with the question how sensitive the behav-
ior of the model is to changes of model parameters. This is a very
common question in design and analysis of systems. For example,
even in well-specified application domains such as electrical systems,
resistor values in a circuit are typically known only by an accuracy of
5 to 10%. If there is a large sensitivity in the results of simulations to
small variations in model parameters, we should be very suspicious
about the validity the model. In such cases small random variations
in the model parameters can lead to large random variations in the
behavior.

On the other hand, if the simulated behavior is not very sensitive
to small variations in the model parameters, there is a good chance
that the model fairly accurately reflects the behavior of the real system.
Such robustness in behavior is a desirable property when designing
new products, since they otherwise may become expensive to man-
ufacture since certain tolerances must be kept very small. However,
there are also a number of examples of real systems which are very
sensitive to variations of specific model parameters. In those cases that
sensitivity should be reflected in models of those systems.
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1.5.2 Model-Based Diagnosis

Model-based diagnosis is a technique somewhat related to sensitivity
analysis. We want to find the causes of certain behavior of a system by
analyzing a model of that system. In many cases we want to find the
causes of problematic and erroneous behavior. For example, consider
a car, which is a complex system consisting of many interacting parts
such as a motor, an ignition system, a transmission system, suspension,
wheels, and the like. Under a set of well-defined operating conditions
each of these parts can be considered to exhibit a correct behavior
if certain quantities are within specified value intervals. A measured
or computed value outside such an interval might indicate an error in
that component or in another part influencing that component. This
kind of analysis is called model-based diagnosis.

1.5.3 Model Verification and Validation

We have previously remarked about the dangers of simulation, for
example, when a model is not valid for a system regarding the intended
simulation. How can we verify that the model is a good and reliable
model, that is, is it valid for its intended use? This can be very hard,
and sometimes we can hope only to get a partial answer to this ques-
tion. However, the following techniques are useful to at least partially
verify the validity of a model:

• Critically review the assumptions and approximations behind
the model, including available information about the domain of
validity regarding these assumptions.

• Compare simplified variants of the model to analytical solutions
for special cases.

• Compare to experimental results for cases when this is possible.
• Perform sensitivity analysis of the model. If the simulation

results are relatively insensitive to small variations of model
parameters, we have stronger reasons to believe in the validity
of the model.

• Perform internal consistency checking of the model, for
example, checking that dimensions or units are compatible
across equations. For example, in Newton’s equation F = ma,
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the unit (N) on the left-hand side is consistent with (kg m s−2)

on the right-hand side.

In the last case it is possible for tools to automatically verify that
dimensions are consistent if unit attributes are available for the quan-
tities of the model. This functionality, however, is not yet available
for most current modeling tools.

1.6 KINDS OF MATHEMATICAL MODELS

Different kinds of mathematical models can be characterized by differ-
ent properties reflecting the behavior of the systems that are modeled.
One important aspect is whether the model incorporates dynamic time-
dependent properties or is static. Another dividing line is between
models that evolve continuously over time and those that change at
discrete points in time. A third dividing line is between quantitative
and qualitative models.

Certain models describe physical distribution of quantities, for
example, mass, whereas other models are lumped in the sense that
the physically distributed quantity is approximated by being lumped
together and represented by a single variable, for example, a point
mass.

Some phenomena in nature are conveniently described by stochas-
tic processes and probability distributions, e.g. noisy radio transmis-
sions or atomic-level quantum physics. Such models might be labeled
stochastic or probability-based models where the behavior can be rep-
resented only in a statistic sense, whereas deterministic models allow
the behavior to be represented without uncertainty. However, even
stochastic models can be simulated in a “deterministic” way using a
computer since the random number sequences often used to represent
stochastic variables can be regenerated given the same seed values.

The same phenomenon can often be modeled as being either
stochastic or deterministic depending on the level of detail at which
it is studied. Certain aspects at one level are abstracted or averaged
away at the next higher level. For example, consider the modeling of
gases at different levels of detail starting at the quantum mechanical
elementary particle level, where the positions of particles are described
by probability distributions:
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• Elementary particles (orbitals)—stochastic models
• Atoms (ideal gas model)—deterministic models
• Atom groups (statistical mechanics)—stochastic models
• Gas volumes (pressure and temperature)—deterministic models
• Real gases (turbulence)—stochastic models
• Ideal mixer (concentrations)—deterministic models

It is interesting to note the kinds of model changes between stochastic
or deterministic models that occur depending on what aspects we want
to study. Detailed stochastic models can be averaged as deterministic
models when approximated at the next upper macroscopic level in
the hierarchy. On the other hand, stochastic behavior such as turbu-
lence can be introduced at macroscopic levels as the result of chaotic
phenomena caused by interacting deterministic parts.

1.6.1 Kinds of Equations

Mathematical models usually contain equations. There are basi-
cally four main kinds of equations, where we give one example
of each.

Differential equations contain time derivatives such as dx /dt , usu-
ally denoted ẋ , for example,

ẋ = a · x + 3 (1.1)

Algebraic equations do not include any differentiated variables:

x 2 + y2 = L2 (1.2)

Partial differential equations also contain derivatives with respect to
other variables than time:

∂a

∂ t
= ∂2a

∂z 2
(1.3)

Difference equations express relations between variables, for example,
at different points in time:

x(t + 1) = 3x(t) + 2 (1.4)



16 CHAPTER 1 Basic Concepts

1.6.2 Dynamic Versus Static Models

All systems, both natural and man-made, are dynamic in the sense
that they exist in the real world, which evolves in time. Mathematical
models of such systems would be naturally viewed as dynamic in
the sense that they evolve over time and therefore incorporate time.
However, it is often useful to make the approximation of ignoring time
dependence in a system. Such a system model is called static. Thus
we can define the concepts of dynamic and static models as follows:

• A dynamic model includes time in the model. The word
dynamic is derived from the Greek word dynamis meaning
force and power, with dynamics being the (time-dependent)
interplay between forces. Time can be included explicitly as a
variable in a mathematical formula or be present indirectly, for
example, through the time derivative of a variable or as events
occurring at certain points in time.

• A static model can be defined without involving time, where
the word static is derived from the Greek word statikos , mean-
ing something that creates equilibrium. Static models are often
used to describe systems in steady-state or equilibrium situa-
tions, where the output does not change if the input is the same.
However, static models can display a rather dynamic behavior
when fed with dynamic input signals.

It is usually the case that the behavior of a dynamic model is
dependent on its previous simulation history. For example, the pres-
ence of a time derivative in a mathematical model means that this
derivative needs to be integrated to solve for the corresponding vari-
able when the model is simulated, that is, the integration operation
takes the previous time history into account. This is the case, for
example, for models of capacitors where the voltage over the capac-
itor is proportional to the accumulated charge in the capacitor, that
is, integration/accumulation of the current through the capacitor. By
differentiating that relation the time derivative of the capacitor volt-
age becomes proportional to the current through the capacitor. We can
study the capacitor voltage increasing over time at a rate proportional
to the current in Figure 1.3.

Another way for a model to be dependent on its previous history is
to let preceding events influence the current state, for example, as in a
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Time 

Resistor voltage

Capacitor voltage

Input current pulse

Figure 1.3 Resistor is a static system where the voltage is directly proportional to the
current, independent of time, whereas a capacitor is a dynamic system where voltage is
dependent on the previous time history.

model of an ecological system where the number of prey animals in the
system will be influenced by events such as the birth of predators. On
the other hand, a dynamic model such as a sinusoidal signal generator
can be modeled by a formula directly including time and not involving
the previous time history.

A resistor is an example of a static model that can be formulated
without including time. The resistor voltage is directly proportional to
the current through the resistor, for example, as depicted in Figure 1.3,
with no dependence on time or on the previous history.

1.6.3 Continuous-Time Versus Discrete-Time
Dynamic Models

There are two main classes of dynamic models: continuous-time and
discrete-time models. The class of continuous-time models can be
characterized as follows:

• Continuous-time models evolve their variable values continu-
ously over time.

A variable from a continuous-time model A is depicted in Figure 1.4.
The mathematical formulation of continuous-time models includes
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Time

A

B

Figure 1.4 Discrete-time system B changes values only at certain points in time,
whereas continuous-time systems like A evolve values continuously.

differential equations with time derivatives of some model variables.
Many laws of nature, for example, as expressed in physics, are for-
mulated as differential equations.

The second class of mathematical models is discrete-time models,
for example, as B in Figure 1.4, where variables change value only at
certain points in time:

• Discrete-time models may change their variable values only at
discrete points in time.

Discrete-time models are often represented by sets of difference
equations or as computer programs mapping the state of the model at
one point in time to the state at the next point in time.

Discrete-time models occur frequently in engineering systems,
especially computer-controlled systems. A common special case is
sampled systems, where a continuous-time system is measured at reg-
ular time intervals and is approximated by a discrete-time model.
Such sampled models usually interact with other discrete-time sys-
tems like computers. Discrete-time models may also occur naturally,
for example, an insect population which breeds during a short period
once a year; that is, the discretization period in that case is one year.

1.6.4 Quantitative Versus Qualitative Models

All of the different kinds of mathematical models previously discussed
in this section are of a quantitative nature—variable values can be rep-
resented numerically according to a quantitatively measurable scale.
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Time

Good

Tasty

Superb

Mediocre

Figure 1.5 Quality of food in a restaurant according to inspections at irregular points
in time.

Other models, so-called qualitative models, lack that kind of pre-
cision. The best we can hope for is a rough classification into a finite
set of values, for example, as in the food quality model depicted in
Figure 1.5. Qualitative models are by nature discrete-time models,
and the dependent variables are also discretized. However, even if
the discrete values are represented by numbers in the computer (e.g.,
mediocre—1, good—2, tasty—3, superb—4), we have to be aware
of the fact that the values of variables in certain qualitative models are
not necessarily according to a linear measurable scale, that is, tasty
might not be three times better than mediocre.

1.7 USING MODELING AND SIMULATION
IN PRODUCT DESIGN

What role does modeling and simulation have in industrial product
design and development? In fact, our previous discussion has already
briefly touched this issue. Building mathematical models in the com-
puter, so-called virtual prototypes , and simulating those models, is
a way to quickly determine and optimize product properties without
building costly physical prototypes. Such an approach can often dras-
tically reduce development time and time to market, while increasing
the quality of the designed product.

The so-called product design V , depicted in Figure 1.6, includes
all the standard phases of product development:

• Requirements analysis and specification
• System design
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Specification

Design

Design 
Refinement  

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Achitectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

Figure 1.6 Product design V.

• Design refinement
• Realization and implementation
• Subsystem verification and validation
• Integration
• System calibration and model validation
• Product deployment

How does modeling and simulation fit into this design process?
In the first phase, requirements analysis , functional and

nonfunctional requirements are specified. In this phase important
design parameters are identified and requirements on their values
are specified. For example, when designing a car, there might be
requirements on acceleration, fuel consumption, maximum emissions,
and the like. Those system parameters will also become parameters
in our model of the designed product.

In the system design phase we specify the architecture of the sys-
tem, that is, the main components in the system and their interactions.
If we have a simulation model component library at hand, we can use
these library components in the design phase or otherwise create new
components that fit the designed product. This design process itera-
tively increases the level of detail in the design. A modeling tool that
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supports hierarchical system modeling and decomposition can help in
handling system complexity.

The implementation phase will realize the product as a physical
system and/or as a virtual prototype model in the computer. Here a
virtual prototype can be realized before the physical prototype is built,
usually for a small fraction of the cost.

In the subsystem verification and validation phase, the behavior
of the subsystems of the product is verified. The subsystem virtual
prototypes can be simulated in the computer and the models corrected
if there are problems.

In the integration phase the subsystems are connected. Regard-
ing a computer-based system model, the models of the subsystems
are connected together in an appropriate way. The whole system can
then be simulated, and certain design problems corrected based on the
simulation results.

The system and model calibration and validation phase validates
the model against measurements from appropriate physical prototypes.
Design parameters are calibrated, and the design is often optimized to
a certain extent according to what is specified in the original require-
ments.

During the last phase, product deployment , which usually
only applies to the physical version of the product, the product is
deployed and sent to the customer for feedback. In certain cases this
can also be applied to virtual prototypes, which can be delivered
and put in a computer that is interacting with the rest of the
customer physical system in real time, that is, hardware-in-the-loop
simulation.

In most cases, experience feedback can be used to tune both
models and physical products. All phases of the design process con-
tinuously interact with the model and design database, as depicted at
the bottom of Figure 1.6.

1.8 EXAMPLES OF SYSTEM MODELS

In this section we briefly present examples of mathematical models
from three different application areas, in order to illustrate the power
of the Modelica mathematical modeling and simulation technology to
be described in the rest of this book:
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• A thermodynamic system—part of an industrial GTX100 gas
turbine model

• A three-dimensional (3D) mechanical system with a hierarchical
decomposition—an industry robot

• A biochemical application—part of the citrate cycle (TCA
cycle), see Figure 1.11

A connection diagram of the power cutoff mechanism of the GTX100
gas turbine is depicted in Figure 1.8, whereas the gas turbine itself is
shown in Figure 1.7.

The connection diagram in Figure 1.8 might not appear as a math-
ematical model, but behind each icon in the diagram is a model
component containing the equations that describe the behavior of the
respective component.

In Figure 1.9 we show a few plots from simulations of the gas
turbine, which illustrates how a model can be used to investigate the
properties of a given system.

The second example, the industry robot, illustrates the power of
hierarchical model decomposition. The 3D robot, shown to the right
of Figure 1.10, is represented by a two-dimensional (2D) connection
diagram (in the middle). Each part in the connection diagram can be a
mechanical component such as a motor or joint, a control system for
the robot, and so forth. Components may consist of other components
that can in turn be decomposed. At the bottom of the hierarchy wehave
model classes containing the actual equations.

Figure 1.7 Schematic picture of the gas turbine GTX100. (Courtesy Siemens Industrial
Turbomachinery AB, Finspång, Sweden.)



8

8

8

−

C

C
G

pa
ra

m
et

er
_s

et
tin

gs
f..

.
f..

.
P

el
...

pe
l..

.
dr

oo
p

dr
o.

..
LC

LC
t0

t0

t7
p0

p0
p3

G
rid

P
gr

id

xg
p

x.
..

IG
V

P
...

f

pi
lo

...
pi

lo
...

pi
lo

...
F

u.
..

m
ai

...
m

ai
...

ma...

pr
e.

.. A
ir.

..
A

ir.
..

A
ir.

..

C
on

te
st

...
In

f..
.

In
er

tia
1

J 
=

 1
00

0
T

ur
bi

...

S
l..

.

T
ei

R
am

p1

du
ra

tio
...

A
dd

1 +
1

+
1

+

G
ea

r1

A
ir.

..
A

ir.
..P

G
en

...
cl

ut
ch

J 
=

 1

In
er

tia
2

va
ria

bl
eD

am
pe

r

ef
fe

ct
... P
1

{1
}

lo
ad

 s
...

F
ee

...

H
zS

...
po

w
er

...

po
w

er
...

po
w

er
_c

on
tr

ol

lo
ad

_d
ro

p

lo
ad

_g
ai

n

st
ar

t t
im

e 
=

 {
40

0}

st
ar

t t
im

e 
=

 {
0}

k 
=

 {
2}

k 
=

 {
0}

k 
=

 {
30

0.
..

cl
ut

ch
...

cl
ut

ch
...

cl
ut

ch
...

cl
ut

ch
...

cl
ut

ch
...

du
ra

tio
...

k 
=

 {
−1

}

k 
=

 {
0}

ze
ro

 g
...

P switch

f switch

st
ar

t T
im

e 
=

 {
35

0}

st
ar

t t
im

e 
=

 {
50

}

m
ec

h_
br

ea
k

co
nt

ro
lle

r

F
ig

ur
e

1.
8

D
et

ai
l

of
po

w
er

cu
to

ff
m

ec
ha

ni
sm

in
40

M
W

G
T

X
10

0
ga

s
tu

rb
in

e
m

od
el

.
(C

ou
rt

es
y

Si
em

en
s

In
du

st
ri

al
T

ur
bo

m
ac

hi
ne

ry
A

B
,

Fi
ns

på
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The third example is from an entirely different domain—
biochemical pathways describing the reactions between reactants, in
this particular case describing part of the citrate cycle (TCA cycle)
as depicted in Figure 1.11.

1.9 SUMMARY

We have briefly presented important concepts such as system, model,
experiment, and simulation. Systems can be represented by models,
which can be subject to experiments, that is, simulation. Certain mod-
els can be represented by mathematics, so-called mathematical models.
This book is about object-oriented component-based technology for
building and simulating such mathematical models. There are different
classes of mathematical models, for example, static versus dynamic
models, continuous-time versus discrete-time models, and so forth,
depending on the properties of the modeled system, the available
information about the system, and the approximations made in the
model.

1.10 LITERATURE

Any book on modeling and simulation needs to define fundamental
concepts such as system, model, and experiment. The definitions in this
chapter are generally available in modeling and simulation literature,
including Ljung and Glad (1994) and Cellier (1991). The example of
different levels of details in mathematical models of gases presented in
Section 1.6 is mentioned in Hyötyniemi (2002). The product design-V
process mentioned in Section 1.7 is described in Stevens et al. (1998)
and Shumate and Keller (1992). The citrate cycle biochemical pathway
part in Figure 1.11 is modeled after the description in Allaby (1998).
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