
Moving on to HTML5
HTML5 is the newest incarnation of the HTML family of languages. HTML, which
stands for HyperText Markup Language, is one of the main reasons the Web is
as powerful and useful as it is. HTML is a reasonably simple system of plain-text
codes that provide the structure of all Web pages on the Internet.

In this part, you take a quick look at how HTML5 fits in the history of the Web,
and put together a few tools you’ll need to get started.

 Be sure to check out my Web site for working examples of every code fragment
in the book: www.aharrisbooks.net/h5qr.

In this part . . .

✓ Looking at the History of HTML

✓ Understanding What HTML5 Is

✓ Running Tests for Browser Features

✓ Deciding on a Suitable Browser

✓ Utilizing Chrome Frame to Add Support to IE

Part 1

03_9781118012529-ch01.indd 103_9781118012529-ch01.indd 1 3/21/11 9:36 AM3/21/11 9:36 AM

CO
PYRIG

HTED
 M

ATERIA
L

2 Part 1: Moving on to HTML5

A Quick History of HTML
HTML is a key part of the Internet. It has a short but extremely vibrant history.
In order to understand what HTML5 is about, it’s useful to look at where it came
from. The Internet (and the Web in particular) has been changing at a dizzying
pace. HTML has been trying to keep up.

When HTML was first devised, it comprised a handful of tags, and HTML did
little more than determine how a page was laid out. As the Web matured, many
features were added. Today’s Internet is still about documents, but it’s also
about applications. Today’s Web sites are dynamic interactive applications.

The kinds of devices used on the Internet are changing, too. In the early days,
only desktop computers used the Web. Now cellphones and mobile devices are
among the most important players on the Web. They require a different way of
thinking than the standard desk-based behemoths of a few years ago.

It’s time for a fresh new set of standards that will help support the way people
are using the Internet today. HTML5 is that set of standards.

A bit of ancient history

In the distant mists of time (1989) Tim Berners-Lee created a new system of con-
necting electronic documents. He devised a simple language that allowed docu-
ment authors to link various documents together with limited formatting
options. This language was called HTML.

At that point, the Internet existed, but it was mainly accessed by basic com-
mand-line programs, and was not easy to use. HTML (and some other underly-
ing technologies) was designed from the beginning to be easy to work with, and
to create documents that were easy for users to manage. The design of HTML
was deliberately kept simple, so as many people as possible could participate in
the process of building documents in this new format.

Of course, the Web took off in a very major way, and soon Web pages became
ubiquitous. It became clear that the simple features in basic HTML were not
enough to satisfy the interests of the many people who were now building Web
pages.

And the first browser war begins . . .

As various organizations started building Web browsers (the tools that read
HTML and display it to the user), they began competing by adding new HTML
features. By 1993, the Mosaic browser included the ability to add images (which
were not part of the original specification). Many browsers were being created
by small teams all around the world, and each had its own set of new features.

By 1994, one platform emerged as the dominant browser. Netscape Navigator was
a profoundly successful browser. At the same time, there were working groups

03_9781118012529-ch01.indd 203_9781118012529-ch01.indd 2 3/21/11 8:52 AM3/21/11 8:52 AM

A Quick History of HTML 3

forming to address the lack of standards in the Web browser world. The most
important of these groups was called the World Wide Web Consortium (W3C)
headed by Tim Berners-Lee (the same guy who started all this mess). However,
Netscape had such a dominant position that Netscape representatives often
skipped the standards meetings and created whatever features they wanted.

Microsoft did not come into the browser world until 1995. Internet Explorer (IE)
was designed to compete directly with Netscape’s browser. For a time (some-
times called the first browser wars), Netscape and Microsoft were in an arms
race, each trying to produce exclusive features that would steer developers
toward their own vision of the Web.

While there was a standards body in place, the reality was both Netscape and
Microsoft added whatever features they wanted and basically ignored the W3C.
There was some small progress made on Web standards. HTML 2 was adopted as
a standard in 1994/1995 (although none of the manufacturers stuck with it com-
pletely). HTML 3.2 was released in 1997, followed by HTML 4 in Spring of 1998.

By about the same time HTML 4 was gaining traction, it became clear that
Microsoft was dominating the browser space. By 2002, Internet Explorer was
used by approximately 95 percent of Internet users. With that kind of clout, the
future of HTML was almost entirely in Microsoft’s hands, and efforts of standards
bodies were largely irrelevant. By any measure, Microsoft won the first browser
war. Internet Explorer 6 (which used mainly HTML 4) was the only browser that
really mattered, and there was very little innovation for several years.

A new challenger arises from the ashes

However, there were some new browsers that challenged Microsoft’s domi-
nance. The Firefox browser (first released in 2004) in particular was especially
important, as it introduced a number of innovative features and followed most
of the standards of the W3C working group. Firefox (and to a lesser extent other
browsers like Apple’s Safari, Opera, and eventually Google Chrome) shook up
the Web. These other browsers tended to be more committed to following stan-
dards than IE was, and they prompted new versions of IE following a long era of
stagnation. Even Microsoft began to at least pay lip service to the notion of stan-
dards, promising more standards compliance in each of the new versions of IE
introduced. Some consider this the opening of the second browser war, with
various developers competing for share of the browser market.

However, there is a difference this time around. The Web is no longer a novelty,
but now a key part of business and society. A Web-based document is now held to
the same visual standards as printed documents, and HTML 4 is simply not capa-
ble of easily meeting this standard. In fact, the entire notion of the Web as a series
of documents is being challenged. Web pages are being replaced by Web applica-
tions. Much of what people now do on the Internet isn’t about reading documents
any more. Today, developers are using the Web itself as a programming interface.

03_9781118012529-ch01.indd 303_9781118012529-ch01.indd 3 3/21/11 8:52 AM3/21/11 8:52 AM

4 Part 1: Moving on to HTML5

HTML 4 was getting old

Changes in the Web required a change in the thinking about document stan-
dards. HTML 4 was clearly not up to the task of supporting modern Web devel-
opment. The various proprietary tags added through the years added some
visual flexibility, but not nearly enough. There was not a satisfying solution for
page layout or font management. There was a set of features for entering form
data, but these tools were limited and ugly. Most browsers featured a form of
the JavaScript programming language, but the implementations varied wildly,
and making a real application using Web technologies was a chancy proposition.

The W3C introduced XHTML in 2002 to address some of these concerns. XHTML
was proposed as a version of HTML adhering to the stricter standards of the
XML markup language. XHTML is much less forgiving than HTML, so if a page
meets the stringent requirements of the standard, it is (presumably) well-
behaved and predictable. Unfortunately, the idealism of the XHTML movement
was never realized. Creating valid XHTML documents proved difficult enough
that very few developers tried. Browsers rendered inaccurate XHTML code
decently (if not perfectly). In fact, most browsers didn’t really render XHTML at
all, but quietly converted it to a form of HTML. There was little incentive for
developers to adhere to XHTML standards (unless they were taking my class).

In order to get the functionality that was missing from HTML, many developers
turned to plug-in technology like Java Applets and embedded Flash. Java never
caught on as a client-side environment (although it remains extremely important
in other applications) but Flash was very popular for a time. Unfortunately,
Flash introduces problems of its own. The content of a Flash applet can only be
modified by a Flash editor, and it cannot be read (at least easily) by search
engines. Many of the new features of HTML5 (particularly the font support and
the canvas tag) can be seen as a direct response to Flash.

The W3C moved to create a new form of XHTML called XHTML 2.0, but in the
mean time, a second group called WHATWG (Web Hypertext Application
Technology Working Group) began working on their own competing standard,
which came to be known as HTML5. The main reason for these competing stan-
dards was a sense that XHTML was too rigid, and was still focused on HTML as a
document language. Part of the motivation for HTML5 was to create a frame-
work for building Web applications that would really be used by developers.
Eventually, W3C dropped support for XHTML 2 and is now supporting the
WHATG proposal, so HTML5 appears to be the next standard.

Getting to Know the Real HTML5
The WHATWG group seems to have learned a few lessons from history. The
design of HTML5 indicates these priorities:

03_9781118012529-ch01.indd 403_9781118012529-ch01.indd 4 3/21/11 8:52 AM3/21/11 8:52 AM

A Quick History of HTML — HTML5 Is More than HTML! 5

 ✓ The core language should be simple. HTML5 is quite a bit cleaner than
XHTML. The document type in particular is a breath of fresh air compared
to the nonsense you have to write to start an XHTML page. Every tag is
about describing some feature of the page. Most of the tags are plain
English with few abbreviations.

 ✓ Markup is based on semantics. One of the original ideas in HTML was
markup based on meaning rather than details. For example, a headline is
simply marked as <h1> rather than specifying a particular font size or
typeface. HTML5 returns to this tradition, adding a number of new tags to
describe common parts of a page.

 ✓ CSS is used for style details. Like XHTML, HTML5 relies heavily on another
language, called CSS (Cascading Style Sheets), to handle the details of how
a particular element looks. In essence, HTML describes what a page ele-
ment is, and CSS describes how that element looks. HTML5 does not con-
tain tags like or <center> because these characteristics are
handled in a more flexible way by CSS.

 ✓ Pages are often applications. Forms (the elements that allow users to
enter data in a Web site) have been a part of HTML since the beginning,
but they have not seen much improvement over the years. HTML5 adds a
number of very exciting new form elements that make HTML a much better
tool for interacting with users.

 ✓ JavaScript is central. Most Web browsers have had a form of the
JavaScript (JS) programming language built in for years. However, it
was difficult to take JavaScript very seriously because it had a number of
limitations. Some limitations were because of legitimate security concerns,
and others were simply poor or incompatible implementation. With the
advent of new powerful JavaScript engines and a new paradigm called
AJAX (Asynchronous JavaScript and XML), JavaScript has re-emerged as
a powerful and important programming environment. Many of the most
interesting features of HTML5 (like the canvas tag) are mainly improve-
ments in the JavaScript language. (The canvas tag is an HTML tag, but it
doesn’t do anything interesting without JavaScript.)

HTML5 Is More than HTML!
It’s a little unfortunate that this technology has been called HTML5, because the
HTML language is actually only one part of a much bigger picture. In truth, the
thing we call HTML5 is the integration of several different technologies (HTML,
CSS, and JavaScript, and server-based technologies), which each have their own
role as follows:

03_9781118012529-ch01.indd 503_9781118012529-ch01.indd 5 3/21/11 8:52 AM3/21/11 8:52 AM

6 Part 1: Moving on to HTML5

HTML

Of course, there have been changes to the HTML language itself. A few tags
have been added to the HTML 4 standard, and a number have been taken away.
However, HTML5 remains backwards-compatible with HTML 4, so there’s no abso-
lute requirement to write your code in the HTML5 standard. Adapting from HTML
4 to HTML5 is probably the easiest part of moving to the complete HTML mindset.

Here are the main HTML features:

 ✓ Semantic markup: HTML5 now includes new tags that describe parts of a
document. Now there are dedicated tags for navigation elements, articles,
sections, headers, and footers.

 ✓ New form elements: HTML5 forms have some major updates. There are
several new versions of the <input> element, allowing users to pick
colors, numbers, e-mail addresses, and dates with easy-to-use elements.

 ✓ Media elements: At long last, HTML5 has native support for audio and
video with tags similar to the tag.

 ✓ canvas tag: The canvas tag allows the programmer to build graphics
interactively. This capability will allow for very intriguing capabilities like
custom gaming and interface elements.

CSS

Probably the biggest adjustment for those used to HTML 4 isn’t really the HTML
itself, but the changing relationship between HTML and CSS. In HTML5 (like in
XHTML), the markup language only describes what various elements mean. CSS
is used to describe how things look. If you’re really going to switch to HTML5,
you can no longer use tags like and <center>, which are about describ-
ing details. CSS could be considered an optional add-on to HTML 4, but it’s cen-
tral to the HTML5 way of thinking. If you haven’t yet learned CSS, it’s definitely
time. CSS is a different way of thinking, but it’s incredibly powerful and flexible.
Along with the HTML5 standard comes a new standard for CSS, called CSS3. It’s
nearly impossible to talk about HTML5 without also including CSS3 because
they’re so closely related. Here are the main new features:

 ✓ Embedded font support: With this long-awaited tool, you can include a
font with a Web page, and it will render even if the user doesn’t have the
font installed on her operating system.

 ✓ New selectors: Selectors are used to describe a chunk of code to be modified.
CSS3 now supports new selectors that let you choose every other element, as
well as specific sub-elements (different types of input tags, for example).

 ✓ Columns: HTML has never had decent support for columns, and all kinds
of hacks have been used to overcome this shortcoming. Finally, CSS
includes the ability to break an element into any number of columns easily.

03_9781118012529-ch01.indd 603_9781118012529-ch01.indd 6 3/21/11 8:52 AM3/21/11 8:52 AM

HTML5 Is More than HTML! 7

 ✓ Visual enhancements: CSS has a number of interesting new capabilities:
transparency, shadows, rounded corners, animations, gradients, and trans-
formations. These provide a profound new level of control over the
appearance of a page.

JavaScript

If HTML describes what parts of the document are, and CSS describe how these
parts look, JavaScript is used to define how elements act. JavaScript is a full-blown
programming language, and it deserves its own book (which, of course it has; look
to my book JavaScript and AJAX For Dummies [Wiley] for one example). It is not
possible to describe JavaScript completely in this reference guide, but JavaScript
is a very critical part of the HTML5 point of view. A few of HTML5’s most interest-
ing features (the canvas tag, geolocation, and local data storage, for example) are
accessible only through JavaScript. I describe these features in this book. See
Bonus Part 1 for an overview of JavaScript if you need a review or an introduction.

 ✓ Vector graphics support: Vector-based graphics provide an interesting
alternative to traditional graphics because they can be created on the fly
through code. HTML5 actually has two ways to do this: through SVG
(Scalable Vector Graphics) and the canvas tag.

 ✓ New selectors: Most JavaScript programming begins by grabbing an ele-
ment by ID. HTML5 now allows you to select elements by tag name, or by
the same mechanisms you use to select elements in CSS.

 ✓ Local storage mechanisms: Previous versions of HTML allowed very lim-
ited storage of information on the client. HTML5 now allows the developer
to store data on the client. There is even a built-in database manager that
accepts SQL commands.

 ✓ Geolocation: This interesting feature uses a variety of mechanisms to
determine where the user is located.

Server technologies

Modern Web development is about communication. All of the technologies that
make up HTML5 reside in the Web browser, which is an important part of the
Web. However, an equally important part of Web development is a raft of technol-
ogies that live on the Web server. Many of the most interesting things happening
today use technologies like PHP or ASP to run programs that create Web pages.
Many interesting applications also use database programs like Oracle or MySQL
to manage large amounts of data. The advent of AJAX has made integration
between those technologies and the browser much easier. Interesting as these
tools are, I do not focus on them in this reference book. If you’re interested in
them, please see my book HTML, XHTML, CSS All-in-One For Dummies (Wiley) for a
thorough treatment of these and other topics.

03_9781118012529-ch01.indd 703_9781118012529-ch01.indd 7 3/21/11 8:52 AM3/21/11 8:52 AM

8 Part 1: Moving on to HTML5

Looking At Browser Features
As you can see in the history of HTML, calling something a standard doesn’t
make it so. Officially, HTML5 hasn’t been accepted yet, and there isn’t a single
popular browser that implements all of its features. If that’s the case, you might
wonder if it’s worth it to study this technology yet. I think so, for these reasons:

 ✓ Most of the ideas are accepted. While HTML5 itself has not yet been rati-
fied as a formal standard, most of the critical ideas are available today.
Today’s Web browsers will work fine with HTML5 even if they don’t know
how to do all the cool things with it.

 ✓ There is little doubt that HTML5 is the new standard. W3C has essentially
conceded that XHTML 2.0 is not a viable solution, leaving HTML5 as the
clear winner in the standards war. If there is to be any standard at all,
HTML5 (and the related features in CSS and JS) is it.

 ✓ Standards-compliance is now a desirable feature. In the first browser
war, manufacturers were competing to add new features without any
regard to standards. Today, browsers are judged by their adherence to
accepted Web standards. Even Microsoft has gotten into the mix, claiming
that IE 9 supports a majority of the HTML5 features.

 ✓ HTML5 promotes good coding habits. The separation of content from
layout is a critical part of modern Web development. If you’re coming from
XHTML, you’re already comfortable with this situation. If you’re more
familiar with HTML 4, it’s a new idea, but one that has been inevitable.

Officially, HTML5 is not expected to be completely accepted as a standard until
2022. This seems like an eternity in Web time. However, parts of the standard
(such as the canvas tag) are universally available right now and are worth explor-
ing immediately. Others (like most of the form elements and the semantic markup
tags) provide suitable backups automatically if the browser doesn’t support the
advanced features. Others (like drag-and-drop) are simply not ready for use yet. A
few (like the local data support mechanism) are hotly debated, and it is not clear
which form of the technology will become part of the standard. As I discuss each
of these topics throughout the book, I try to give you a sense of whether it is
ready to be used yet, and which browsers support particular features.

Assessing your browser’s capabilities
HTML5 has a lot of different technologies going on, and different browsers have
adopted different parts of the standards. It can be very confusing to determine
which features can be used. There are a couple of good solutions to this problem.
A number of sites have charts that indicate which features are supported in which
browser. I like the ones at http://caniuse.com and http://en.wikipedia.
org/wiki/Comparison_of_layout_engines_%28HTML5%29. These tools can
help you see what is currently supported by the major browsers. It’s especially
handy for checking browsers you don’t have on your own machine.

03_9781118012529-ch01.indd 803_9781118012529-ch01.indd 8 3/21/11 8:52 AM3/21/11 8:52 AM

Looking At Browser Features 9

However, browser support for HTML5 features literally changes every day. New
versions of major browsers are appearing all the time, and it’s very hard to keep
track of what’s currently happening. For that reason, I’ve provided you with a
program you can use to check your current browser to see which HTML5 fea-
tures it supports. Figure 1-1 shows the detect.html program in action.

Figure 1-1

The detect.html page can be found at my Web site, www.aharrisbooks.net/
h5qr/detect.html. Use it with any browser to get real-time analysis of which
HTML5 features are available in your browser.

The program uses a script called Modernizr, which automates checking for vari-
ous browser features. You can get Modernizr for free from www.modernizr.com.

Checking for features in your code

You can also use the Modernizr script in your own code. Essentially, Modernizr
creates a Boolean (true/false) value for each of the HTML features. You can
check a variable to see if the current browser supports a particular feature. If it
does, you can implement the feature. If not, you will generally implement some
sort of fallback. Here’s how it’s done:

 1. Download the Modernizr script. The Modernizr script can be downloaded
free from www.modernizr.com. Install the script in the same directory as
your Web page. (If you move your page to a server, you’ll also need to
make a copy of the script available.)

03_9781118012529-ch01.indd 903_9781118012529-ch01.indd 9 3/21/11 8:52 AM3/21/11 8:52 AM

10 Part 1: Moving on to HTML5

 2. Include a reference to the script. Use the <script> tag to make a refer-
ence to the script in your header (before any other JavaScript code):

<script type = “text/javascript”
 src = “modernizr-1.6.min.js”></script>

 3. Add a special class to the HTML tag. The Modernizr script needs to have a
special tag available so it knows what to do. Add the “no-js” class to the
HTML tag:

<html lang = “en”
 class = “no-js”>

 4. Write a new JavaScript function. Add a new JavaScript function to do the
actual testing. Specific examples are shown in the code listing later in this
section.

 5. Use the appropriate Boolean property to check for a particular feature.
Each of the HTML5 features supported by Modernizr has a corresponding
variable. (You can look up the variables on the Modernizr site, or look at
my detect.html script, which uses them all.)

 6. Use the feature or an alternative. Normally, you’ll use Modernizr to check
for a feature. If that feature exists, you’ll use it. If not, you’ll implement
some other alternative.

As an example, the following page uses the Modernizr script to test whether the
current browser supports the HTML5 video tag. If so, it also checks for support
of the two main video codecs.

<!DOCTYPE HTML>
<html lang = “en”
 class = ”no-js”>
<head>
 <title>checkVideo.html</title>
 <meta charset = ”UTF-8” />
 <script type = ”text/javascript”
 src = ”modernizr-1.6.min.js”></script>
 <script type = ”text/javascript”>
 function init(){
 var output = document.getElementById(”output”);
 if (Modernizr.video){
 output.innerHTML =
 ”Your browser supports video
 ”;
 if (Modernizr.video.h264){
 output.innerHTML += ”H.264 codec supported
”;

03_9781118012529-ch01.indd 1003_9781118012529-ch01.indd 10 3/21/11 8:52 AM3/21/11 8:52 AM

Looking At Browser Features 11

 } // end if
 if (Modernizr.video.ogg){
 output.innerHTML +=
 ”Ogg Theora video codec supported
”;
 } // end if
 } else {
 output.innerHTML = ”Your browser does not support
the HTML5 video tag”; } // end if
 } // end init
 </script>
</head>

<body onload = ”init()”>
 <h1>Check for HTML5 Video</h1>
 <div id = ”output”>
 checking video...
 </div>
</body>
</html>

Figure 1-2 shows the video-checking script in action.

Figure 1-2

03_9781118012529-ch01.indd 1103_9781118012529-ch01.indd 11 3/21/11 8:52 AM3/21/11 8:52 AM

12 Part 1: Moving on to HTML5

 This example simply checks for the support for the video elements. A more
sophisticated example would actually embed the appropriate tags or code in the
page to display a video according to the browser’s capabilities.

For more information on the video tag, please check Part 3.

Picking a Suitable Browser
If you’re going to be writing HTML5 code, you’ll probably want to view your pages
in a browser that interprets HTML5 correctly. That’s not as easy as it sounds.
HTML5 isn’t really one specification, but a number of different standards. The var-
ious browsers have differing versions of support. It’s best to have a wide variety
of browsers to see which one works best for you. There are several browsers cur-
rently available, which all have varying levels of HTML5 support.

While there are a large number of browsers available, most are based on a
smaller set of tools called rendering engines. It’s the rendering engine that really
supports features or not. Here is a list of the primary engines, the browsers that
use them, and how well they support HTML5:

 ✓ Gecko (Firefox): The Gecko engine is the main engine of Firefox, Mozilla,
and a number of other related browsers. It has support for many, but not
all features. Gecko 2.0 is expected to include most features of HTML5, but
that version of the engine is not yet released (and will probably be the
foundation of Firefox 4). Although Firefox is a well-known and respected
browser in the Web development community, it does not (yet) have
extremely good support for HTML5.

 ✓ Trident (Internet Explorer): The various forms of Internet Explorer all
use the Trident engine. So far, this engine has the weakest support of
HTML5 features among all the major browsers. IE9 promises to have
much more complete support for HTML5, but even this version is pro-
jected to be missing some key features, including advanced form element
support and geolocation.

 ✓ WebKit: The WebKit engine was originally created by Apple based on code
from the open source KHTML project. Apple then released the code as
open source, where it became the foundation of a number of browsers.
The Safari browser on Macs, iPhones, and iPads all uses the WebKit
engine. WebKit is also the foundation of the Google Chrome browser, and
the browser on the Android mobile platform. WebKit has become the stan-
dard rendering engine for mobile platforms. If you want to see how your
pages will look on mobile platforms, you should check with a WebKit-
based browser like Chrome or Safari. WebKit has the widest support for
HTML5 elements, although it still doesn’t support everything. Most of the

03_9781118012529-ch01.indd 1203_9781118012529-ch01.indd 12 3/21/11 8:52 AM3/21/11 8:52 AM

Looking At Browser Features — Using Chrome Frame to Add Support to IE 13

code in this book was tested in Google Chrome 6, which supports the cur-
rent WebKit rendering engine.

 ✓ Presto: The Presto engine is the engine underlying the Opera family of
browsers. Opera has long been considered a technically superior browser,
but it has never gotten the market share it should. A number of gaming and
portable browsers are based on Presto, including the Wii Internet Channel,
the Nintendo DS Browser, and Opera Mobile, available on numerous cell-
phones and portable devices.

 Browser specifications are likely to change. It’s likely that new features have
been added by the time you read this book. You should always test your page in
as many browsers as you can, so you won’t be surprised. You might also check
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_
(HTML5). This Wikipedia site tends to have the latest information on what fea-
tures of HTML are supported by which browser.

Using Chrome Frame to Add Support to IE
It might be depressing to note that the browser with the largest market share
has the least support for HTML5 standards. However, there is an answer. Google
Chrome Frame is a special tool that embeds the Chrome rendering engine inside
IE. To use it, put the following code in your page:

<!DOCTYPE html>
<html lang=”en”>
<head>
 <title>ChromeFrame.html</title>
 <meta charset=”UTF-8”>
 <script type=”text/javascript”
 src=”http://ajax.googleapis.com/ajax/libs/chrome-
frame/1/CFInstall.min.js”></script>
</head>

<body onload = ”CFInstall.check()”>
</body>

</html>

The rest of your code can be written assuming the user has Chrome (which has
excellent support for HTML5). This is the best way to use HTML5 in IE until
Microsoft decides to add meaningful support to HTML5.

03_9781118012529-ch01.indd 1303_9781118012529-ch01.indd 13 3/21/11 8:52 AM3/21/11 8:52 AM

14 Part 1: Moving on to HTML5

03_9781118012529-ch01.indd 1403_9781118012529-ch01.indd 14 3/21/11 8:52 AM3/21/11 8:52 AM

