CHAPTER 1

MATHEMATICAL FOUNDATIONS

In this chapter we will briefly review tools, methods and rofation from mathematics
and logic, which we will directly apply throughout the remaining of this volume.

1.1 SETS AND LOGIC; NAIVELY

The most elementary elements from “set theory™ and logic are a good starting point
for our review. The quotes are necessary since the term set theory as it is understood
today applies to the axiomatic version, which is a vast field of knowledge, methods,
tools and research [cf. Shoenfield {1967); Tourlakis (2003b)]—and this is not what we
outling here. Rather, we present the standard notation and the elementary operations
on sets, on one hand, and take a brief look at infinity and the diagonal method
of Cantor’s, on the other. Diagonalization is a tool of significant importance in
computability. The tiny fragment of concepts from set theory that you will find in
this section (and then see themn applied throughout this volume) are framed within
Cantor’s original “naive set theory”, good expositions of which (but far exceeding
our needs) can be found in Halmos (1960) and Kamke (1950).

We will be forced to interweave our exposition of concepts from set theory with
concepts—and notation—from elementary logic, since all mathematics is based on
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2 MATHEMATICAL FOUNDATIONS

logical dedunctions, and the vast majority of the literature, from the most elementary
to the most advanced, employs logical notation; e.g., symbeols such as “¥” and “3”,
The term “set” is not defined,!! in either the modern or in the naive Cantorian
version of the theory. Expositions of the latter, however, often ask the reader to
think of a sef as just a synonym for the words “class”,!? “collection”, or “aggregate™.
Intuitively, a set is a “container” along with its contents—its elements or members.
Taken together, contents and container, are viewed as a single mathematical object.
In mathematics one deals only with sets that contain mathematical objects (so we are

not interested in sets of mice or fish).

Since a set is itself an ebject, a set may contain sets as elements.

All the reasoning that one does in order to develop set theory—even that of
the naive variety—or any part of mathematics, including all our reasoning in this
book, utilizes mathematical logic. Logic is the mathematics of reasoning and its
“objects” of study are predominantly mathematical “statements” or “assertions™-—
technically known as formulae'>—and mathematical proofs. Logic can be applied to
mathematics either experientially and informally—learned via practice as it were—
or formally. The predominance of mathematical writings apply logic informally as
a vehicle toward reaching their objectives.'* Examples of writings where logic is
formalty applied to mathematics are the volumes that Bourbaki wrote, starting here
[Bourbaki {1966}]. More recent examples at the undergraduate and graduate levels
are Gries and Schneider (1994) and Tourtakis (2003b) respectively.

In this volume we apply logic informally. An overview is provided in the next
subsection.

1.1.1 A Detour via Logic

As is customary in matheinatics, we utilize Jetters, upper or lower case, usually
from near the end of the alphabet (u, v, y.x, 2, 5,7, V) to denote, that is, to name
mathematical objects—in particular, sets.

By abuse of language we say that w,v,y,x, 2, 5,7,V are (rather than denofe or
name) objects, These letters function just like the variables in algebra do; they are
object-variables.

"'The reader who has taken Euclidean geometry in high school will be familiar with this parallel: The
terms “point”, *line”, and “planc™ are not defined either, but we get to know them intimately through their
properties that we develop through mathematical proofs, starting from Euclid's axioms,

21n axiomatic set theery a “class” is a kind of collection that may be so “large™ that it technically fails to
be a set. The axioms force sets o be “small” classes.

More accurately, a “statement” and a formuta are two different things. However, the latter mathematically
“encodes” the former.

14Dcspitc the dangers this entails, as Godel's incompleteness theorems exposed [Gadel (1931)1, modern
mathematicians are confident that their subject and (ools have matured enough, to the point that one
can safely apply logic, once again, post-Gidel, informally. For example, Kunen states in his article on
set-theoretic combinatorics, Kunen (1978), “A knowledge of [formal] logic is neither necessary, nor even
desirable™.

?
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As is the case in algebra, the variables &, y, # are not the only objects set theory
studies. It also studies numbers such as 0,1, —7 and =, matrices such as ( (1) ;) and
objects that are the results of function applications such as 723900, x¥° and 2*.

Unlike axiomatic set theory, which intreduces its objects via formal constructions,
naive set theory allows us to use, “off the shelf”, all the mathematical objects such as
the above, as well as, of course, objects that are sets such as {2, 3, {1}} and AU B.13

Logicians like to call mathematical objects rerms. We utilize in this book the generic
names ¢ and s (with primes or subscripts, whenever we need more than two such
names) to refer to arbitrary terms that we do not want to be specific about.

1.1.1.1 Definition. The simplest possible relations of set theory are of just two forms:
t € s—read “t is a member of 57 or “f belongs to s”—and £ = s, read “¢ is equal to
57, where, as we indicated above, t and s are any terms whatsoever,

These relations are the atomic formulae (of set theory). The qualifier “atomic”
refers to two facts:

o These two types cannot be expressed (simulated) in terms of simpler relations
by using the notation and tools of logic.

+ Using these two relations as building blocks we can construct every possible
formula of set theory as we will explain shortly. ]

1.1.1.2Example. x € y,u = v, z € §and 3 € z and 2* = ¢ are atomic formulae,

N, the set of all natural numbers (i.e., all the numbers that we obtain by starting
at 0 and repeatedly adding 1: G, 1, 2, 3, 4, ...), is an important constant in naive set
theory.

By “N ... is an important constant” we mean, of course, via the habitual abuse of
language exercised by mathematicians, the accurate “N ... denotes (or names) an
important constant™.

Here is an example that uses [¥ in an atomic formula: —7 € N. Incidentally, this
formula makes (i.e., encodes) a false statement; we say the formula is false.

One may form this basic formula as well, N = { J:2{z}, where the meaning of
the symbols “{...}" and “J;_,” will be introduced later in this section.

Yet another example is {1} € {2, 1}—a false statement (formula) as we will be
able to determine soon. O

Logic (and mathematics) contain much more complex formulae than those of the
atomic variety. The added complexity is achieved by repeatedly “gluing” atomic

formulae together employing as glue the logical, or Boolean, connectives

_‘! /\! V?_>$E

1¥Notation for objects such as {.. .} and & L i will be reviewed shortly.

®
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and the quantifiers
¥,

As we have noted already, unlike the case of naive set theory—where we take for
granted the a priori presence of alf objects of mathematics, such as 3, —7, N and

E]

#¥ — axiomatic set theory needs no a priori existence of any objects, Starting just
with the relations © € y and & = y it uses powerful rules, which can be used to build
not only all formulae of set theory, but also all the objects of mathematics that we are
familiar with, such as the above-mentioned and many others.

What about arithmetic? The arithmetical objects of “pure” (Peano) arithmetic are
the variables, constants, and outputs of functions applied on objects that we have
already built. What are its formulae? If we are thinking of pure arithmetic, which
is studied outside set theory, then we may choose as atomic formulae all those that
can be built from the three start-up relations z = z+y, z = & X y and z = z¥: new
atomic formulae result by substituting arbitrary (arithmetical) objects for variables.
Note that the equality relation is obtained from z = x + y by substituting O for y.

All formulae of arithmetic can be built, starting from the atomic ones, as ex-
plained in the general Definition 1.1.1.3 below. This assertion is revisited in Subsec-
tion 2.11.1.

Gédel showed in Gédel (1931) that the atomic formula z = x¥ is, well, rot afomic:
It can be simulated (built) within pure arithmetic starting just with z = = + ¢ and
=1 Xy

The “practicing mathematician” prefers to work within an “impure” arithmetic, where
he has access to sets and their notations, operations, and properties. In particular, this
impure arithmetic employs set variables and, more generally, set objects in addition
to number variables and number objects.

Throughout this volume a formula (whether specific to set theory or to any other
area in mathematics, such as arithmetic—pure or impure} will be derofed by an upper
case calligraphic letter, such as &, B, %, 4.

We now indicate how formulae are put together using brackets, connectives, and
quantifiers, employing atomic formulae as basic building blocks. The definition be-
low is generic, thus unified: it applies to the structure of all formulae of mathematics.
The choice of atomic formulae (which presuppeses an a priori choice of mathemat-
ical symbols, such as 0, +, €} and of types of variables is what determines whether
we build set theory formulae, pure or impure arithmetic formulae, or “other™.

1.1.1.3 Definition. A set theory formula is one of:
(1) An atomic formula (1.1.1.1).
(2) (—&7), where & is known to be'® a formula.

[61 e.. to stand for one. Thus, the expression *(—.e#)" is constructed by writing “(*, followed by writing
“=", followed by writing in full whatever & names, and finally writing *)™.

4
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(3) (& A 28), where o and & are known to be formulae.

(4) (& v &), where & and %8 are known to be formulae,

(5) (& — 9B), where & and % are known to be formulae.

(6) {« = 2), where o and 4 are known to be formulae.

(7) ({(Vz)er), where & is known to be a formula and = is any variable.

(8) ({(Ja)), where & is known to be a formula and = is any variable, We say in
the last two cases that “< is the scope of Qz, where () is ¥ or 3",

We call ¥ the universal and 3 the existential quantifiers. We will extend the termi-
nology “quantifier” to apply to the compound symbols (¥x) or (3). O

1.1.1.4 Definition. (Immediate Predecessors) Let.# be aformula. By 1.1.1.3 it has
cne of the forms (1)-(8). If it is of type (1), then it has no immediate predecessors—
i.e., it was not built using connectives or quantifiers from simper formulae. If it has
the forms (2)—(8), then in each case its immediate predecessors are the formulae o7
and 42 [the latter enters in cases (3)-(6)] that were used to build it. We use the
acronym ip for immediate predecessors. J

The presence of brackets guarantees that the decomposition or deconstruction of a
formula into its immediate predecessors is unique. This fact can be proved, but it is
beyond our aims 50 we will not do so here [see Bourbaki (1966); Enderton (1972);
Tourlakis (2008, 2003a}]. Logicians refer to it as the unique readability of a formula.

1.1.1.5 Example. Here are some formulae:

rEYI=zz=a¥byl),

{—~z = y)—by (1), followed by an application of (2}, we usually write this more
simply as “z £ ¢,

{x € y vz =a")—by (1), followed by an application of (4),

{{¥x)z = x*)—by (1), followed by an application of (7),

(z = 0 — & = 0)—by (1), followed by an application of (5), and

(z =0 - {{(Vz)z = 0))—by (1), followed by an application of (7) to obtain
((¥z)x = 0}, and then by an application of (5).

The reader should check that we inserted brackets precisely as prescribed by
Definition 1.1.1.3. (]

1.1.1.6 Remark. (Building a formula) If .# is (stands for, that is) a formula we can
deconstruct it according to Definition 1.1.1.3 using a natural process.

Initialize: Write down .% . Flag it pending.
Repeat this process until it cannot be carried further:

¢
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Write down, above whatever you have written so far, the ip of all pending formulae
(if they have ip); and remove the flag “pending” from the latter. Add the flag to the
ones you have just written.

)

The process is terminating since we write shorter and shorter formulae at every
step (and remove the flags); we cannot do this forever!

Clearly, if we now review from top to botfom the sequence that we wrote, we
realize that it traces forward the process of constructing # by repeated application
of Definition 1.1.1.3. This top-down view of our “deconstruction” is a formula-
construction sequence for #,

For example, applying the process to the last formula of the preceding example
we get:

z=0

=0

{({(vx)z = 0)

{z =0— ((Vz)z = 0))
where one copy of z = 0 was contributed by the bottom formula and the other (at
the top) by ({¥z}x = 0).

Going forward we can discard copies that we do not need. Thus a valid formula
construction is also this one:

z=0

((va)e =0)

(x=0-> ((Vz)z =0))

Indeed, we validate the first formula in the sequence via (1) of 1.1.1.3; the second
using the first and (7); and the last one using the first two and (5). O

A term such as 2 has z as its only input variable. An atomic formulasuchas z € N
has z as its only input variable, while the (atomic) formuta z 4+ ¢ = ¢™ has x, y and w
as input variables. Whenever we want to draw attention to the input variables—say,
z,u, S and z—of aterm ¢ or a formula & we will write t(x, 4, S, z) or & {x, u, S, 2},
respectively. This is entirely analogous to writing “ f(z, z) = 2 + sin 2” in order to
name the expression (term) = +-sin 7 as a function f(z, z) of the two listed variables.

1.1.1.7 Definition. (Input Variables—in Terms) All the variables that occur in a
term—other than an z that occurs in a term of the form {z : ...} (which is a set
object that will be introduced shortly)—are input variables. O

1.1.1.8 Example. Thus, the term = has x as its only input variable; while the term 3
has no input variables, 22" has x, z, ¥ as its input variables. We will soon introduce
terms (set objects) such as {x : & = 0}. This object, which the reader may recognize
as a fancy way to simply write {0}, has no input variables. O
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1.1.1.9 Definition. (Input Variables—in Formulae) A variable occurrence!” in an
atomic formula ¢ € s or ¢ = s is an inpur occurrence precisely if it is an input
occurrence in one of the terms ¢ and s. Thus, “0 € {z : = 0}" has no input
variables while “x = (” has one.

Formation rules (2)—(6) in Definition 1.1.1.3 “preserve” the input occurrences of
variables in the constituent formulae & and 4 that we join together using one of
-, A, V,—, = as glue. On the other hand, each quantifier (Vz) or (3z) forces each
occurrence of a variable as described below to become non-input:

¢ The occurrence z in the quantifier

¢ Any occurrence of z in the scope of said (¥z) or {3z)

Thus, if we start with o («, . 2), of inputs &, 3, z, the new formula ((Qy).o7 (x, y, 2}),
where ¢} stands here for one of ¥, 3, bas only x and z as input variables. O

We have carefully referred to occurrences, rather than variables, in the above defi-
nition. A variable can be both input and non-input. An ocecurrence cannot be both.
For example, in (x = 0 — (Vz)x = 0) the first z-occurrence is input; the last two
are nen-input. The variable x is both.

Thus “x is an input/non-input variable” (of a formula) means that there are
occurrences of x that are input/non-input.

The standard name utilized in the literature for input variables is free variables.
Non-input variable occurrences are technically called bound eccurrences, but are
also called apparent occurrences, since even though they are visible, they are not
allowed—indeed it makes no sense—to receive arguments (input). This is analogous
to the “X-notation” for sums: Zg’;li means 1 + 2 + 3. While we can “see” the
variable i, it is not really there!'® It cannot accept inputs. For example, “2311 27 is
total nonsense.

The jargon input/non-input is deliberately chosen: We may substitute terms only
in those variable occurrences that are free (input).

If & is some formula and «,y, z,. .. is the complete list of variables that occur
in it, we can draw attention to this fact by writing #F{z,9,z,...}. If ,9,2,... 182
list of variables such that some'® among them occur in &, then we indicate this by
Flz,y,2,.. ]

In the context of F[x,y, 2, .. .| [or F(x, 4. 2,.. )] F[t1, b2, t5, . . .| [correspond-
ingly # (1, to,t3,...)] stands for the formula obtained from .# by replacing each
original occurrence of z, y, z, . . . in .% by the terms £, £z, t3, . . . respectively.

Some people call this operation simultaneous or paralfel substitution. Thus, if
F |z, y} names “z = ", whereas t1 is y + 1, and to is 5, then .# [t1, 2] is “y+ 1 = 5"
and not *“5+1 = 5”. The latter result would have been obtained if we first substimted

BEor example, in ¢ = & the variable & has two occurrences.
184 fact demonstrated strongly by the explicit form of the sum, 1 + 2 + 3.
19%Some™ includes “none™ and “all” as special cases.
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t; in x to obtain i + 1 = y, and #ren substituted ¢2 in y to obtain 5 + 1 = 5. If we
are to do this “simultaneous substitution™ right, then we must not substitute ¢3 into
the ¥ to the left of “="; this y is nof “original”.

Observe also that if @ does nof occur in . [], then . [£] is just the original F .

Before we turn to the meaning (and naming) of the connectives and quantifiers,
Tet us agree that we can get away with much fewer brackets than Definition 1.1.1.3
prescribes, The procedure to do 50 is to gagree on connective and quantifier “priorities”
so that we know, in the absence of brackets, which of the two comnnectives/quantifiers
is supposed to “win” if they both compete to apply on the same part in a formula.

By analogy, a high school student learng the convention that “x has a higher
priority than +7, thus 2 4+ 3 x 4 means 2 + {3 x 4)—that is, x rather than + claims
the part “3”,

Our convention is this: The connective — as well as the quantifiers ¥ and 3 have the
highest priority, equal among the three. In order of decreasing priority, the remaining
binary connectives® are listed as A, v, —, =. If two binary connectives compete to
glue with a subformula, then the higher-priority one wins. For example, assuming that
& has already in place all the brackets that are prescribed by Definition 1.1.1.3, then
o= &V means ... — (dv‘--,while.‘.—'d/\--- means . .. (_'ﬁf)/\"m

If rwo instances of the same binary connective compete to ghie with a subformuila,

then the one to the right wins. For example, assuming that .7 has all the brackets

prescribed by Definition 1.1.1.3 in place, then ... — & — --- means... — (ﬂ’ —

Similarly, if any of —, ¥, 3 compete for a part of a formula, again the one to the
right wins. E.g., ... ~(Vz)(Jy)« - means ... (-w((\?‘:.-:) ((33;)@’))) ++, where

once again we assumed that ./ has all the brackets prescribed by Definition 1.1.1.3
already in place.

How do we “compute” the truth or falsehood of a formula? To begin with, to
succeed in this we must realize that just as a function gives, in general, different
outputs for different inputs, in the same way the “output” of a formula, its fruth-
value, can only be computed, in general, if we “freeze” the input variables. For each
such frozen instance of the input side, we can compute the output side: true or false.

But where do the inputs come from? For areas of study like calculus or arithmetic
the answers are easy: From the set of real numbers—denoted by R—and the set of
natural numbers respectively.

For set theory it sounds easy too: From the set of all sets!

If it were not for the unfortunate fact that “the set of all sets” does not exist, or,
to put it differently, it is a rnon-set class due to its enormity, we could have left it

2Binary” since they each glue rwo subformulae,
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at that. To avoid paradoxes such as “a set that is nor a set”——cf, Section 1.3 on
diagonalization for an insight into why some collections cannot be sets—we will
want to take our inputs from a (comfortably luarge) ser in any given set-theoretic
discussion: the so-called reference set or domain.

1.1.1,10 Remark. The mathematician’s intuitive understanding of the statement “5
is true (vesp. false)” is that “.% is true (resp. false) for all the possible values of the
free (input) variables of #™.

Thus, if we are working in arithmetic, “27n + 1 is odd” means the same thing as
“it is true that, for alln € N, 2n + 1 is odd”. “2" > n”" again omits an implied prefix
“it is true that, for all n € N”. An example of a false statement with input variables
is “27 is odd”. O

1.1.1.11 Definition. An instance of a formula &, in symbols %', is a formula
obtained from .# by replacing each of its variables by some value from the relevant
reference set.

Clearly, .#' is variable-free—a so-called closed formula or sentence—and there-
fore it has a well-defined truth-value: exactly one of true or false.

Sometimes we use more explicit notation: An instance of #{(z,y,z,...) or of
Gix,y.2,..) s ¥, 5. k,...) or %[i, 7. k,.. .|, respectively, where 4,5, k,... are
objects (constants) from the reference set.

F' and ¥’ are consistent or common instances of & and ¥ if every free variable
that appears in both of the latter receives the same value in both instances. |

1.1.1.12 Example. Let & stand for “z(x 4 1} is even”, 9 stand for “2z + 1 is even”
and % stand for “z is even”, where z is a variable over N. Then,

&1 true,
98 is false, and
% is neither true, nor false,

The lesson from this is that if the truth-value of a formula depends on variables, then
not trie 18 not necessarily the same as false. O

We wiil not be concerned with how the truth-value of atomic formulae is “com-
puted”’; one can think of them as entities analogous to “built-in functions” of computer
programming: Somehow, the way to compute thetr trueffalse output is a matter that
a hidden procedure (alternatively, our math knowledge and sophistication) can do
Jor us.

Our purpose here rather is to describe how the connectives and guantifiers behave
toward determining the truth-value of a complex formula.

In view of Remark 1.1.1.10, the road toward the semantics of o v 3, {(¥z)&),
etc., passes through the semantics of arbitrary instances of these; namely, we need to
only define the meaning of &’ v &', ((Vx)&), etc., respectively.

N4
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1.1.1.13 Definition. (Computing with Connectives and Quantifiers) Let o and %
be any formulae, and ¢ and #’ be arbitrary common instances (1.1.1.11).

(1) —o/'—pronounced “not &’"—is true iff** " is false.

(2) &' v B'—pronounced “of! or B'°—is true iff either &' is true or 2’ is true,
or both (so-called inclusive or).

(3) &' A F'—pronounced “o’ and B'"—is true iff &’ is true and B’ is true.

(4) &' — FB'—pronounced “if &', then ZB'"—is true iff either & is false or &' is
true, or both.?

(5) &' = #'—pronounced “«’ iff '"—is true just in case®® &/ and %' are both
true or both false.

(6) The instance (¥z}o# (i1,..., %0, &, 41, . -, fn)—Which is pronounced “for all =,
4 CRUE Oy 3 SRR (holds)"¥*— is true iff, for all possible values & of

x from the domain, & {41, ... 4, K, J1,-. ., Jn) 15 true.

(7) Theinstance () (i1, ..., 4m, &, J1, - - -, Jn} —which is pronounced “for some
T, (81,0 b Ty J1, < -+ 5 Jn) (holds)’—is true iff, for some value k of x from
the domain, & (41,...,8m, &, 71, .-, Jn) IS true. O

1.1.1,14 Remark. (Truth Tables) The content of the preceding definition—cases
(1}-(5)}—is normally captured more visually in table form {we have removed the
primes for readability):

& B A FVB|ANB | B A=A
f f |t f f t t
f t t t f t f
t £ f t f f f
t t f t t t t

We read the table as follows: First, the symbols t and £ stand for the values “true”
and “false” respectively. Second, the two columns to the left of the vertical line || give
all possible pairs of values (outputs) of .« and 8. Third, below —.of, & V 4B, etc.,
we list the computed truth-values (of the formulae of the first row) that correspond
to the assumed o7 and # values.

The odd alignment under —¢f is consistent with all the others: It emphasizes the
placement of the “result” under the “operator”—here ——that causes it. O

2 if and only if

ZOther approaches to “implication” are possible. For exarmple, the Frtuitionists have a different under-
standing for — than that of the majority of mathematicians, who adopt the classical definition above,
23 A synonym of “iff”,

#The verb “holds™ means “is true”.

¢
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@ 1.1.1.15 Remark. According to Remark 1.1.1.10,
(V2) (Y1, -, Yms Ty 2L, - - 5 2p) 18 trUE (1)
means precisely this:
For every choice of the iy and j, from the reference set,
(Ye)a (41, . . .y trns €y 1, - - -5 Jn ) 18 true {*)
By 6 of Definition 1.1.1.13, (*) means

For every choice of the ¢; and 3, from the reference set,
and
for ail possible values k of z from the domain,

ed(:’il, et k,jl, - ,jn_} is true
The above, and hence also {}, translate via Remark 1.1.1.10 as

(YL oy Yms Ty Z1y oo 5 2p) 15 true (1)

Iterating this observation yields that (1) is an equivalent statement to the one we
obtain by quantifying universally any-—in particular, al/—of the variables 1, . . ., ¢,
T, 21, ..., 2 of &7, Thatis,

Adding or removing a “(Vz)” at the leftmost end of the formula makes

no difference to the latter’s meaning,

Hm. This begs the question: Then what do we need the universal quantifier for? [

1.1.1,16 Example. We note casily that, say, with R (the reals) as our domain, « =
0 — x = 0is true (cf. 4 in 1.1.1.13). However, x = 0 — (Vz)x = 0 is not, since
its instance 0 = 0 — (Vx)x = O s false: to the left of — we have true, while to the

right we have false.
Thus, adding or removing a “{¥x)” to parts of a formula can make a difference in
meaning! The universal quantifier is usetul after all. a

Carrying around the predicate “is true™ all the time is annoying. We will adopt im-
mediately the mathematician’s jargon: Simply stating “o/(x,y, ...)" is synonymous
to “& (z,y,...}is true” or “&(x,y, ...) holds™.

1.1.1.17 Example. Let N be our domain. Then,
By <z (1)
is true. It says that “for every y, an x exists® such that y < 7. Accordingto 1.1.1.15

there is an implied (Vy) at the beginning of the formula.

23That is, “for every value of y. a value of « exists”. The mathematician is used to the sloppy language
that omits “value of . It is clear that he does not refer to the variables themselves, but rather refers to their
values.
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Note that there is no single value of & that makes (1) true (because N has no upper
bound). For each value n of y, n + 1 is an appropriate value of x {so are n + 2,
2n+41,etc.)

How can we write down the (false) statement that one valve of x works for all %?

(Az)(Vyly <z

A final remark: How do we write that “there exists a unigue x such that .27 is true”
(where & is any formula)?

(3z) (‘saé’[x] A=(E2)(s 2] A £ 2))
Fortunately, there is a short form for the above (3! reads “for some unique™)
() O

1.1.1.18 Example. The reader probably already knows that there is redundancy in
the chosen set of connectives, that is, some of them can be simulated by the others.
For example, it is immediate by comparing (4), (1), and (2) in 1.1.1.13, that
o — % is the same as (has the same meaning as) —&/ v 9. Similarly, & = % is
the same as {&/ — ) A (B~ o).
Even & A %8 can be expressed via — and V as ~{—.e7 vV 98). This is easiest to see,
perhaps, via a truth-table:

& B - ( ~ & V- @) o N B
£ f | @f (it At (2t t
f ot @f (Dt i f r
t | @f (DF Bt (Ot f
t t (4t () (3 (2f t

The numbers such as “(1)t” in the first row indicate order of evaluation using the
operator at the top of the column. Comparison of the column labeled (4) with the last
column shows that each of &/ A B and —(—&/ vV &) yield the same output for any
given value-pair of & and 2. Thus we proved the equivalence of the & A 2 and
—(—&f v Z). This result is known as “de Morgan’s Law”. O

1.1.1.19 Exercise. Prove that o vV 9 can be expressed as —(—.af A 98). This is the
“other” (technically dual of) de Morgan’s Law, D

1.1.1.20 Example. Weknow [(7)of Definition 1.1.1.13] that (3x) & (2, ..., 2m, 2, 41,
.- Un) Means

For every choice of 41,.. ., %m. 51, - - - 1 Jns (1.1)
there is a k such that (1.2)
=Q‘f('ils-Hs@‘mvk}jls-”:jn) (13)
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Now, the negation of “there is a k such that &' (31, .. .. %m. b, 1, -, Jn) " I8

“no k makes (i1, ..., 4n, K, 41, .., Jn) true” (1)
that is,
all k make = (i1, ...,y Ky 1, -, i) true @)
(2} says the same thing as
(Vm)ﬁ‘%f(ilv--siﬂux?jl'!"':j'n.) (3)

(1.2)1.3), (1), and (3) yield (via 1.1.1.13)

(Fx) (i1, . s Ky F1y e oo dn) = (V) (81, - S T s - -y T )
By (1.1} and 1.1.1.10, we have

(Fz) (21, s By T Y1y oy Yn) = V) (21,0 2ms Ty Y1, - 1Y)

for short
(Fa)ef = ~(Va)—of O

1.1.1.21 Exercise. Prove that (Vz)o = ~(Jz)-s#. O

1.1.1.22 Remark. We note that & — 44 is true, in particular, when re instance of
& 1s true, i.e., when & is false—in all its instances, that is. In this case the so-called
classical or material implication holds “vacuously”, even if there is no connection
between of and B at all and even if % is not true! For example, if & is 0 # 0 and
28 1s “in every Buclidean triangle the sum of the angles equals 97", then (& — %)
is true. The same helds if 22 stands for “n is even”. The latter has both true and
false instances over I, but that is immaterial. In each chosen instance, <’ — %' is
true—that is (1.1.1.10), & — A is true,

Equally disturbing is the fact that while both sides of the arrow might be true,
though rotally unrelated, the implication will be true, asin ¥ — Z where € is0 =0
and £ is “in every Euclidean triangle the sum of the angles equals 27",

The Intuitionists, a school of thought founded on the writings of Kronecker,
Brouwer and Hevting, do not like this state of affairs. The intended meaning, or
intended semantics, for their & — 2, connects the hypothesis & strongly to the
conclusion Z8. The meaning, informally speaking, is that, from a proof (intuitionistic
proof, of course!) of &7, a proof for 2 can be constructed.

We are not going to say what is an intuitionistic “proof™, as this is of no concem
tous. As a matter of fact, “proof™ (for classical logic) will be defined only later (see
1.1.1.34). Atpresent, let the reader think of “proof” as a process used to establish that
a formula holds. Nevertheless, the above stated infentions regarding (intuitionistic)
proofs are a clear enough indication of how strongly % and .% must be related before
the Intuittonist will agree to write & — 2.
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In particular, in intuitionistic logic — and Vv do not relate as in 1.1.1.18 above. In
fact, in both legics &/ — &/ holds, however, in intuitionistic logic & vV ~4f does
not hold! Or as we say, the law of the excluded middle does not hold. Intuitively
speaking, the reason behind this phenomenon is that the intuitionistic proofs are so
structured that, to establish that a formula & v 4 holds, in general you need to
construct a proof of one of & or 3.

For example, the following classical proof that there are irrational numbers?® a, b
such that a® is rational is unacceptable intuitionistically.

Take @ = b = /2. If this works, done. If not, that means that v/2 vz is irrational.
Well, then take ¢ = \/5\/} and b = /2. Now o = (\/5‘/5)‘/§ = \/52 =2, A
rational. End of proof.

Above, & is “/2 vz is rational” and % is “v/2 v is Irrational”. We used the
{classical) fact that & v 42 is true, since one or the other of & and 42 is (classically)
true. However, classically, we do not need to know which is which!

A thorough exposition of intuitionistic logic can be found in the advanced book
of Schiitte ([Schii]). O

1.1.1.23 Example. Suppose that x does not occur free in .«/[z).

Pause. Ensure that this is consistent with the notation introduced in Defini-
tion 1.1.1.11.«
Then
o [x] = (Va) o [z] (n

Indeed, let y, z, w, .. . be the complete list of free variables of &, where x is not cne
of them. To verity (1) we need to show that for any choice of values &,1, m, . .. from
the domain

Ak dom,.. )= (Vo) [z, klm,. . ] (2)

that is,
both sides of (2) are t or beth are f. (3)

We need to analyze (V2)«/ [z, k, I, m,...). It says
“for all n in the domain, & [n, k.1, m, .. ] is true”

But this is true exactly when 7 (k,I,m, ...} is, since n does not affect the output:
the variable x is non-input in 7. O

1.1.1.24 Exercise. Suppose we drop the condition “suppose that x does not occur
free in o [¢]” above. Does (1) still hold? You must provide the “why™! O

26 That is, not rational. A rational number has the form, by definition, p/g where both p and g # 0 are
integers.
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1.1.1.25 Exercise. In view of 1.1.1.15, “&[x] is true” iff “(Va).2#[z] is true”. So, is
this observation not all that we need to assert {1)? See also the previous exercise. [

Atomic formulae contain no Boolean connectives at all. On the other hand,
formulae with a leading quantifier, ¥ or 3, contain no explicitr Boolean connectives:
any Boolean connectives they may have are “hidden” in the quantifier’s scope. Thus,
one may view these two categories of formulae as “aromic, but from a Boolean point
of view”, meaning vou cannot split them into simpler ones by simply removing a
Boolean connective. For example, if you start with (¥z){z = 0v z = y) and remove
the v, you get the nonsensical (vx){x = { » = y). Logicians call these “Boolean
atomic formulae” prime formulae but also Boolean variables.

1.1.1.26 Definition. (Pritne Formulae; Tautologies) A prime formula or Boolean
variable is either an atomic formula, or a formula with a leading quantifier.

It a formula #F—when viewed as a Boolean combination of prime formulae,
that is, as a formula built from prime formulae using only the formation rules (2)—
(6) of 1.1.1.3—evaluates as t according to the truth table 1.1.1.14, for all possible
assumed truth-values of its Boolean variables, then we call it a rautology and write
this concisely as =140 F. O

1.1.1.27 Remark. Every formula is built by appropriately applying Boolean glue on
anumber of prime formufae: Indeed, in any formula built according to 1.1.1.3 we can
identify all its maximal prime subformulac—that is prime subformulae not contained
in larger prime subformulae.

For example, in (Vz)(z = 0 = (Jy)z = y) vV w = u A u = 2 we may indicate
the prime subformulae by “boxing” them as below.

(vo)(z=0]—= | @[z =y|p||v|{e=u]|r|ln=2] (1)

Double-boundary boxes enclose maximal prime formulae. The Beolean structure of
(1)is

V| All |

Only maximal prime formulae contribute to the Boolean structure and express the
original formula as a Boolean combination of prime formulae glued together by
connectives. The non-maximal prime formulae are hidden inside maximal ones.

The italicized claim above follows directly from an adaptation of the “deconstruc-
tion” in 1.1.1.6:

Just replace the step

Write down, above whatever you have written so far, the ip of all pending
formulae (if they have ip); and remove the flag “pending” from the latter,

by
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Write down, above whatever you have written so far, the ip of all non-
prime pending formulae (if they have ip); and remove the flag “pending”
from the latter.

Conversely, a Boolean combination of prime formulae is a formula in the sense of
1.1.1.3: Indeed, a Boolean combination is an expression built by applying (2)—~(6) in
the context of a formula-construction (cf. 1.1.1.6) with starting points prime formulae,
rather than atomic formulae. Since a prime formula is a formula, the process leads
to a formula, See Exercise 1.8.1 for a rigorous proof (that you will supply, equipped
with the induction tool). O

The quantifier “(for all possible) assumed” in Definition 1.1.1.26 is significant. It
means that we do not compute the actual {intrinsic) truth-values of the constituent
Boolean variables (in the domain that we have in mind)—evern if they do have such
a value; note that & = y does not.

Rather, we assume for each prime formula, alf the—in principle—possible output
values; that is, both of t and f.

For example, for the determination of tautologyhood of a formula, where x = x
enters as a Boolean variable, we assume two possible output values, t and f even
though we know that its intrinsic value is t.

In particular, x = x is not a tautology.
Pause. Ensure that this last ebservation fits with 1.1.1.26! =

We indicate this fact by writing i & = 2.

Assuming all possible truth-values of a prime formula (rather than attempting to
compute “the” value) is tantamount to allowing the Boolean structure and Boolean
strcture alone—that is how the connectives have glued the formula together—to
determine the truth-valve via truth tables (1.1.1.14).

1.1.1.28 Example, Some tautologies: © = 0 = z = 0, (Vo) v =(Vo)&, © =
y—orx=yVve=2",

Some non-tautologies: =z = 0 =z =5, Vrlr = zv(Yyly = .o =y —
& =wV 2z = 22", For example, looking at the value assumptions below—or vatue
assignments, as is the accepted term,

=y =t

x=w:=f, and

z2=22" =f,
weseethats =y — ¢ = wVz =27 evaluates as f, thus it is indeed not a tautology.
Incidentally, I used *:=" to denote (truth) value assignment. O

1.1.1.29 Definition. (Tautological Implication} We say that &, ..., &, tautolog-
ically imply B iff Eyp & = o > ... = & — B

We write o,..., 9%, Fiou % in this case. #, we say, is (the result of) a
tautological implication from &4, . . ., &, [

?
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@ 1.1.1.30 Remark. We note that a tautological implication preserves truth, from left
to right. See exercise below. L

1.1.1,31 Exercise. Let p,,...,p,, be all the Boolean variables that appear in the
formulae &, ..., o, B,
Show that &7, ..., 4, Equr P iff every set of values assigned to the Boolean

variables that makes ali the < t, also makes 4 t. O

1.1.1.32 Example. All of the following arecorrect: 2 = 0 e 2 = 0,2 < 9,9y <
ZEtut T<YAY < 2, T =Yy Erge & V0 (n0 matter what & stands for).
& g B — & 18 also correct, since & — % — &, that is, & — (B — &)
can be readily verified as a tautology using either 4 of 1.1.1.13 or the truth table
(1.1.1.14). A shortcut is to just consider the two assumed values, ¢ and f, for <.
The second makes the formula true outright, while the first makes the bracketed
subformula t, hence the whole formula t.

This is incorrect; © < ¥, ¥ < 2 Figue £ < 2 since choosing

r<y:=t
y < z:=t,and
z<z:=f
wesee that x < ¥ = ¥ < z — @ < z evaluates as f, so it is not a tautology. g

@ 1.1.1.33 Remark. (Capture of a Free Variable) Let () stand for {3y)y # 2—
recall that ¢ # x is short for ~y = x. It states (i.e., codifies the statement) “for any
value of x there is a value of y that is different”. Assuming that our domain is N,
this is clearly a true statement. So is & (z), obtained by substituting z for z, or, in
programining jargon, “calling” &/ (x) with argument 2.

What about ¢ (%}? This is {Jy)y # y which is evidently false: *“there is a value
of y which is different from itself™!

This is unfortunate because, intuitively, what & (z) says should have nothing to
do with the name of the input variable!

What happened here is that when we substituted y for x, the free i was captured—
i.e., became bound—by a lurking quantifier, (3y): y got into the latter’s scope.

We should never allow such substitutions since, as this example shows, they may
change the intended meaning of the resulting formula. In general, a substitution
into % [x] that results into 5 {t] should not be allowed, if the term t contains a free
variable y that will become bound {captured) after the substisution.

Is there a workaround? Yes!

Consider an instance {32).%# (41, ..., b, 2, J14- -« s Jn) Of
(Fz}F (21, ... B, DLW, - -, W) (1)
and a consistent instance (ef. 1.1.1.11) (Fu) F {41,.. . ,ims 4 14 - - -1 Jn) Of

(Fu)F (21, ooy 2m Uy, ..., Wy ) (2)
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where u is a new variable. The two instances are equivalent, since if x = & works
for the first, then « = & works for the second, and vice versa. The instance being
arbitrary, we get the equivalence of (1) and (2), that is

(32)F (21, 1 Zma Ty Wy -y W ) = (30 F (21, 2 Uy W1,y oo, )

In view of 1.1.1.20 and 1.1.1.21, or directly using a similar argument as above, one
sees at once that changing the bound variable of a universal quantifier into a brand
new variable does not change the meaning either.

This leads to the so-called “variant theorem™ of logic, that

Changing a bound variable in a formula into a new {i.e., not already used in the
Jormula) variable does not change the meaning: the original and the new formulae
are equivalent.

But then, given &/ [x], we can always effect o/ [t] with impunity as long as we
rename out of harm’s way, before the substitution takes place, all the original bound
variables;?” All we need to do in a successful renaming is to ensure that none of
them is the same as a free variable of ¢. Strictly speaking, in 27 [¢] we do not have the
original formula &, but a variant of the original—since we have renamed the latter’s
bound variables. Nevertheless since the old and the new are equivalent, we will use
the same name for both, &7. |

We now turn to what a mathematician or computer scientist does with logic: He
writes proofs.

1.1.1.34 Definition. (Proofs) A proof is a construction process that builds a finite
length sequence of true formulae, one at a time. We normally write this sequence
vertically on the page, with explanatory annotation. Three simple rules regarding
what formula we may write at each (construction-) step govern the process. We may
write

(1) A formula that we know as, or accept as, true,

(2) A formula that is a tawtological implication of formulae already written in the
course of the proof.

(3) (Vayed'(...,z,...) provided &/(..., x,...) has already been written in the
course of the proof.

Any formula & that appears in a proof we call a theorem. We say that the proof
“established” or proved the theorem 7. O

A theorem follows frem certain axioms I'. Saying just “theorem™ does not indicate
this dependence, unless what is the relevant set of axioms is clearly understood
from the context. If in doubt, or if we are discussing theorems of various theories

2TThis is a sufficient and straighiforwarg overkill. Tn principle, we only need to rename those bound
variables that are referenced in those quantifiers that will capture a variable in ¢, if we do nothing.
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simnltaneously, then we must name the applicable axiom set in each case by saying
“I"-theorem” or “theorem from T,

It is clear from what we have developed so far, that steps (2) and (3) preserve truth
(cf. 1.1.1.15). An application of step (3) is called application of generalization, or
tule Gen, as we will say.

What exactly is going on in step (1)? Well, we know that some formulae are true
because we recognize them as such outright, without the help of any complicated
process; they are “initial” truths—or inifial theorems—such as ¢ = x, which is true
in all mathematics, or & + 1 # 0, which is frue in a specific theory: arithmetic of
the natural numbers. These initial theorems, whether they are universal or theory-
specific, are called axioms.

1.1.1.35 Remark, All axioms are “atomic theorems”, that is, they are obtained by an
application of (1)—they are not “results” of the application of (2) or (3) on previous
theorems written in the course of a proof.

As indicated in the @-passage above, we have two types of axioms.

{(a) Those that are true because of the way the formulae that express them are put
together, using connectives and guantifiers. These axioms are rof specific to any
branch of mathematics: They hold for all mathematics.

We call such axioms logical 2

With some ingenuity, a very small set of formulae®® can be chosen, among the
universally or absolutely true formulae, to serve as logical axioms. Read on!

For example, * = z and {¥z)&/|[x] — 2/[t] are such universal truths, and we
will adopt both as logical axioms.

(b) A formula .« is a nonlogical axiom in a mathematical theory provided it is taken
as an important start-up truth of the theory—an “atomic theorem”— not because
of its form, but rather because of what it savs in connection with the various
symbols that are peculiar to the theory.

For example, © 4+ 1 # 0 is an important start-up truth—a nonlogical axiom—of
{Peano) arithmetic over M. There is nothing to render it “universal”; in fact, it is
not a true statement if our domain is either the reals, R, or the integers, Z (all of
positive, negative and zero). Ancther nonlogical axiom, for Euclidean geometry,
is “Euclid’s 5th postulate™, which asserts that through a point outside a line we
can draw precisely one parallel to said line. Again, the existence of so-called
non-Euclidean geometries shows that this is not a universal truth.

When we use the term “theory I'”', we mean somewhat ambiguously, but equivalently,
either

28They express universal truths of logic, that is.
P Serictly speaking, formula-forms or formula-schemata, since these formulae will contain, as subformulae,
formula-names of unspecified formulae (such as @), arbitrary (object) variables, function names, etc.
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s T is the set all its theorems, that is, the set of all formulae that can be proved
starting from the axioms of the theory repeatedly applying the proof-tools
{1)—(3) above.

Or

¢ I is identified with the set of all the postulated nonlogical axioms. Clearly, if
we have the nonlogical axioms, then using the logical axioms that are common
to all theories, along with the proof-process (1)}-(3) above, we may write down,
in principle,® all the theorems of the theory.

We prefer the viewpoint of the second bullet, as it gives prominence to our start-up
assumptions; the nonlogical axioms.

The terminology “F is true in the theory” simply means that .# is a theorem of
the theory. Its truth is relative to the truth of the nonlogical axioms;, it is not absolute
or universal. For example, “the sum of the angles of any triangle equals 180°” is true
in (is a theorem of} Euclidean geometry. It is not true in (is not a theorem of) either
Riemann’s or Lobachevski’s geometries.

That .# is true in a theory £ will be denoted symbolically as X F &,

Note that the logical axioms are not mentioned at the left of “F". Thus, if X is
empty and we have proved .F only using logical axioms, then we will write - .#.

It is immediate from the foregoing that since a proof is not obliged, in an appli-
cations of step (1) (1.1.1.34), to vse any nonlogical axiom, that every theory also
contains among its theorems all the absolute truths .% for which - .# %!

It is clear that F is fransitive, that is, if we have £ F ] fori = 1,...,n, and also
Ay, Ap B 2, then ¥ - 4. Indeed, we can clearly concatenate the proofs of
each A;-—-in any order—and then append the proof of 4 at the very end. What we
get is a proof of % as required.

Since at each step of writing a proof we look back rather than forward [steps (2)
and (3)], it is clear that chopping off the “tail” of a proof ai any point leaves us with a
proof. This observation entails that when we attempt to prove a formula from given
axioms, we just stop as soon as we have writien the formula down, £

1.1.1.36 Exercise. Elaborate on the remark above regarding the transitivity of -, (O

1.1.1.37 Exercise. In mathematical practice we are allowed to use in a proof any
already proved theorems, in a step of type (1) of 1.1.1.34. Carefully justify this
practice in the context of Definition 1.1.1.34. O

Since rules (2) and Gen on 1.1.1.34 preserve truth, and the logical axioms are
universally true, then so is any % for which we have - % . Logicians call the content
of this observation soundness.

30«In principle”: The set of theorems of an interesting theory such as arithmetic, Euclidean geometry, or
set theory is infinite.
*' By Gisdel’s completeness theorem, Godel (19307, the hedging “for which - .#™ is redundant.
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1.1.1.38 Definition. (Logical Axioms) The usually adopted logical axioms are (forall
choices of formulae, variables and terms that appear in them):

(i) All tautologies
(i) (Va)«[z] — 2/f] (see conclusion of 1.1.1.33)
(iii) o[z] — (¥z)2|z], provided z is not free in #[z]
(v} (Vz)(&[z] = Blz]) = (Vo) |»] — (Vz) B[z
Vyr==xr
(vi) t = s — (&[] = «[s]) (see conclusion of 1.1.1.33). 0

That the above logical axioms are adequate to prove all universal truths using the
proof mechanism of 1.1.1.34 is a result of Gdédel’s [completeness theorem; Gédel
(1930)].

1.1.1.39 Remark. It is casy to verify that all the logical axioms are indeed universal
truths. For group (i) and (v) this is trivial. The “truth” expressed (codified) in group
(ii} is that “if &/ [x] is true for all objects in its domain, then it must be true if we take
¥ to be a specific object t”. Note that even if ¢ has input variables, then as they vary
over the domain they generate objects from the domain. The generated cbjects are
part of “all objects in its domain”.

The truth of all formulae in group (ii) follows from a trivial medification of the
argument in 1.1.1.23,

Group (vi) is Leibniz’s characterization of equality: It states that replacing “equals
by equals” in an argument slot (z of of «[x] in our case) produces the same result.

Finally, let us look at group {iv). For simplicity we assume that « is the only
variable, so we will show the truth of (Va){e/(x) — HB(z)) - (Ve)o/(x) —
(V1) (x) in its domain. First off, this means

(Vx) (et (x) = Blx)) — ((Vx)ﬁ’(a:) o (V:r)&—?(x)) (1)

Since (1) is an implication, 1.1.1.14 indicates that the only real work for us is if
(Va) (< (x) — FB(z)) evalnates as t. If this is so, this means

For every k in the domain, &/ (k) — Z(k)ist (2)

We now try to prove that the right hand side of the leftmost = must evaluate as . As
it too is an implication, we will only consider the real work case where (Vz)«/(x} is
true, that is

For every % in the domain, &/ (k) is t (3)

and try to obtain that
(V) B () )
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is true. Now, via 1.1.1.14, (2) and (3) give “For every k in the domain, #{k) is t”,
which establishes (4). O

1.1.1.40 Example. Here are some proofs written in extreme pedantry.
(I) Establish the (universal) truth of & [t] — {3z).e/[2]. The proof follows:

(1) (Vo) [x] = ~[t] {axiom (i)}
(2) #[t] = —(¥z)~&[z] {(1) and rule (2) of proof-writing; 1.1.1.34)
(3) [t] - (Fz)[z] {(2) and rule (2) of 1.1.1.34, using 1.1.1.20}

The comments in {. . .}-brackets explain why we wrote the formula to their left. The
numbering to the left allows easy reference to previous formulae. The last step is
“replacing equivalents by equivalents” in a Boolean combination. The result stays
the same since it is as if we “called” & — 2 with inputs, first —(¥z )~/ {x] and
then {3}/ [z]. But these inputs have the same (truth} value, so both calls will return
the same answer. Since step (2) has written a truth (why?), so has step (2).

(II) Establish that ¢ = ¢ for any term t. The proof follows:

(1) z== {axiom (v))
(2) (Ve)z = {(1) + Gen)
(3) (Va:):.c = =t {axiom {ii)}
4) t= {(2, 3) + tautological implication} 0

1.1.1.41 Remark. In the second proof above we used two important tools explicitly.
We identify both here so they can be used “off the shelf” in diverse sitwations in the
future.

The step from (2) to (4) via (3) generalizes to the rule “from (the truth of) (Vz )& [z]
follows (the truth of) «/{t]”. This rule is called specialization or Spec. It follows
from an application of this tautological implication, F | .F — 4 i ¥ known
as modus ponens, for short MP. The reader can easily verify that indeed MP is a
tautological implication, so it qualifies as a proof-step of type (2) (1.1.1.34). O

1.1.1.42 Exercise. Give a proof that from the truth of &/ [x] follows the truth of
A [t]. O

1.1.1.43 Example. We verify that with an assumption (nonlogical!} of the form
& -3 9B we can prove & — (¥x)48, on the proviso that x is not free in «. That is,
we verify, under the stated condition, that & — &+ & — (Vz)B.

1 =% (hyp)

(2) (Yz)(& — B) {(1) + Gen)
(3) (Vzl& = B) - (Vo) = (Vo)#  (axiom (iv))
4) (¥a)o — (VY2) 2B {(2,3) + MP)
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(5) o — (V2)B ()

In step (1) we said “hyp”. The formula is a “hypothesis”—a starting point; not
something that we claim as true; a nonlogical axiom. In step (5) I wrote (*) so
that I can explain the reasons for the step outside the proof, since the explanation is
long, namely: (3) follows from (4) by replacing “equivalents for equivalents”—see
1.1.1.23 and the similar situation in 1.1.1.40. O

1.1.1,44 Exercise. Prove that & — # - -4 — -, The two sides of F are called
contrapositives of each other. O

1.1.1.45 Exercise. Prove that & — %+ ()& — £ as long as x is not free in .
Hinr. Rely on 1.1.1.44 and use 1.1.1.43. W

1.1.1.46 Example. Let us establish the familiar commutativity property of equality
as a result of the logical axioms [in particular, of (v} and (vi); cf. p. 21].

Let & [2] stand for z = z. An instance of Leibniz’s axiom is ¢ = y — (&/[z] =
A y]) ie,
r=y—2(r=x=y=ux) (1M

We can now embark on a proof;

(6) z=y—=(z=r=y==) {logical axiom (1))

b)) z=z—z=y—oy==c (tautological implication of (a)}
(c) z==z {logical axiom)

(@ w=y—ry=2 (b, ) + MP)

Step (b) takes some doing, but is easy. Recall 1.1.1.29 and 1.1.1.31. We need to
argue that if line (a) is t, then this forces line (b)

r=r—=lz=y—2y=2x) (2)

to be t as well. By the way, the Boolean variables here are x = z,z = yand y = .
Well, the real work toward seeing that (2)istiswhenx = randx = yare t. If
$0, the assumption that line (a) is true forces * = z = y = z to be true (because the
part to the left of — in said line is). Since z = x is assumed t,*? then so must y = =,
which establishes {2).
Since the above proof containg no nonlogical axioms, we may write - = y —

y =z
The reader will note that this is not a tautology, since & = y and y = « are distinct
Boolean variables, O

RThe word “assumed” was inserted for emphasis: = = x in this argument is a Boolean variable. We are
not looking for its intrinsic value, rather we arc taking tums te consider each of its “possible” vatues, £ and
t. The argument skipped the first value because it trivially makes (2) wue.
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1.1.1.47 Exercise. Armed with the commutativity of =, prove the transitivity of =.
That is, establish the claimbF z =y vy =2 2 2 = z. (]

1.1.1.48 Example. There are a couple of trivial, but often-used proof tools. They
are expressed in the form .27, #, ... - &, that is, “if | know that 27, %/, ... hold—
either because they are assumptions (e.g., could be nonlogical axioms) or are already
proved theorems——then I can prove that & holds as well™.

(a} Proof by cases. & — #,% - B a vE = B.

It states that to prove that % follows from a disjunction, it suffices to prove
separately that 4 follows from each case—. and ¥"—of the disjunction.

(b) Ping pong., & — B, %8 — & + o = 8. It states that to prove an equivalence,
A = BB, it suffices to prove each direction—&f — 2 and 98 — &/ —separately,
since, from the two directions taken as hypotheses jointly, we can prove the
equivalence.

Each of (a) and (b) admitimmediate proofs: Once we have assumed the hypotheses
on each side, a tautological implication yields the conclusion at once [cf. 1.1.1.34,
rule (2} applied]. O

A major proof tool of the mathematician and computer scientist is the so-called
deduction theorem. It is stated without proof here-—for us it is its statement that
matters.

See Tourlakis (2003a) or Tourlakis (2008) for a proof of the deduction theorem,
but be warned that the two versions in these references are different, because the
specific foundations of logic in these two are different! The difference lies in how
generalization is applied, and that affects the statement, and proof, of the deduction
theorem. The present volume uses the style of generalization as it is practiced in the
first cited reference.

1.1.1.49 Theorem. (Deduction Theorem) If we can prove % from assumptions T’
and &, then we can prove & — 98 from the assumptions I" alone, on a condition.
The condition is that during the proof of % from hypotheses I and &, step (3) of
1.1.1.34 was never applied with a variable that occurs free in o

In other words, the free variables of & during said proof are “frozen”; they
behave like constants.

We can say the above symbolically as “if I', &/ - %, then I" |- & — H, on a
condition, etc.”

What is the deduction theorem good for? Well, for one thing, it tells us that instead
of proving & — 2 it suffices to prove the less complex—since the glue — and the
part &7 are removed—%. For another, we have the added bonus of “knowing more”
before starting the proof. While toward proving & — % we “knew” I', toward
proving % we also know 7.

€9
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Is the restriction on & too limiting? Not really. In practice, say, we want to prove
that T+ o (z, %) = B{z. 7, w). We proceed as follows:

Fix all the variables of <7, here x and y, to some unspecified values.
Remember not to use either x or y in a rule Gen during the proof!

Assume now &7 (x,y}. Proceed to prove 9(z,y,w)—recall that y is a
"constant™,

By the deduction theorem, we have proved & (x,y) — #(2,y, w) from
just I", because we never performed generalization with the frozen x
and y.

In practice we apply less pedantry in the process:

(1) We only say, “let us fix the values all free variables z, v, ... in &,

We are, of course, obliged to remember that this also fixes these same variables
in B, and everywhere else, throughout the proof. Thus, we cannot univer-
sally quantify any of these variables during the proof, nor can we (a subsidiary
operation this; ¢f. 1.1.1.42) substitute a term into such “frozen™ variables.

(2) The task ends as soon as we prove 4.
We do not need to repeat this kind of justification every time: “By the deduction
theorem, we have proved & — 2 from just I, ete.”

We will see this proof technique applied many times in this book, starting from
the next subsection.

We conclude with the ancient technique of proof by contradiction.®> We will define

a contradiction to be a formula of the form &/ A —&/. From the truth tables we know

that this evaluates as f regardless of whether & itself evaluates a t or f. The reader @
can verify at once, that for any .#, .o A —& Equ F.

1.1,1.50 Theorem. (Proof by Contradiction) For any closed «f, we have I' - uf
iff T, ~of = & A-F, for some X

Proof. Indeed, for the if-part, let ', ~a - & A -2, By the deduction theorem
{applicable without hedging as = is closed) we get

Th o > X A-Z (1)

Tt is straightforward to see that ~&f — 2 A -2 Eiqut &, hence by transitivity of
FowegetT'- o,

only if-part. Say, ' - «#. Adding to the assumptions I we can still prove & (see
that you agree! 1.1.1.34). Thus

T,~ b & {2)

3Often used by Euclid, for example.
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But also (why?)

T, -~ (3)
The trivial . | =&/ 0 & A~ along with (2) and (3) above, and transitivity of
F, yield T, ~of - o A . O

The technique is used as follows: To prove I' - & (closed &) we start by “Assume,
by way of contradiction, —&” and then proceed to indeed obtain one.

1.1.1.51 Definition, A mathematical theory, given by its set of nonlogical axioms, is
consistent of free from contradiction, provided it is impossible to prove acontradiction
from its axioms. Otherwise it is called inconsistent. il

Thus we can rephrase 1.1,1.50 as T' - o7 iff (the theory with axioms)
I', & is inconsistent,

1.1.1.52 Remark. (“Everyday” Proof Style) A few important remarks are in order
to conclude our digression into logic.

{1} The proof of truth of a formula using first principles from 1.1.1.13 and working
divectly with a reference set is now for us a thing of the past. The last time
we utilized the method was to establish that all the logical axioms were indeed
universal truths {1.1.1.39—see also 1.1.1.33). From then on we will ride on the
shoulders of our logical axioms 1.1.1.38, and whatever other assumptions we take
as true from time to time, to prove all our theorems, essentially “syntactically”,
that is, by writing proofs according to 1.1.1.34.

(2) The practicing mathematician or computer scientist uses a simplified, often
shorter, and rather conversational version of the proofs with annotation that
we presented so far (for example, in 1.1.1.43 and 1.1.1.46). We should get used
to this relaxed style. Here is an example. We will establish that

F(Yx) (o A B) = (Vo) A (V2)B

Proof. We employ ping pong. {—) direction: Assume (V& )(&/ A %) with all
its free variables frozen (we are going via the deduction theorem). Remove the
quantifier (Spec) to obtain o A 98 and apply two tautological implications to
obtain & and . Apply Gen to each to get (Vo) and (Vu)48. A tantological
implication yields what we want,

For the {+) direction, assume (V)& A (Vz).%, freezing all free variables of
the formula. Two tawtological implications yield (Va)e/ and (Va)%. Two
applications of Spec, followed by tautological implication yield « A 98, Via
Gen we get what we want,

(3) We finally establish that &/ — & (V)& — (¥x)48. Indeed, the hypothesis
yields (Vx){# — 28) by Gen. We are done via axiom (iv) (1.1.1.38) and modus
ponens. O
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1.1.1.53 Exercise. Establish the fact & = B+ (Vz)o = (Vz)B.
Hint. Use 1.1,1.52. O

1.1.1.54 Exercise. Establish the fuct & = 48+ (3x)of' = () HB.
Hint, Use 1.1.1.53. a

1.1.1.55 Exercise. Establish the fact - {(3x} (& v B) = ()« v (32)A.
Hint. Use 1.1.1.52. 0

1.1.2 Sets and their Operations

We now return to our brief study of sets. The naive set theory of Cantor is not
axiomatic, In our very brief and elementary review of it we will deviate only slightly
and adopt precisely one axiom. First off, consider the formulac » € A and ¢ € B.
By 1.1.1.38(vi), we obtain®*

A=B - (zc A=xe B)
and further, via 1.1.1.43 we get {since x, A, B are distinct variables)
A=B o (Vx)(reA=zxe B) (1)

Suppose next that A and B stand for sets—no such restrictive assumption was made
above. Then (1} says that if two sets are equal, then every member of one (x) is a
member of the other, and vice versa; they have precisely the same elements. Is the
converse® true?

That it is so is a fundamental property of sets; a nonlogical axiom. It is the
so-called axiom of extensionality.

Forany sets A and B, (Vz)(rc A=x€B)—-A=EB (Ext)

Extensionality says that the extension—what sets contain— is what matters to deter-

mine their equality. In particular, “structure” does not matter. Nor does “intention™:

¢.2., whether we say outright, “collect 1 and 2 into a set”, or, in a roundabout way,

“collect the roots of the equation 2 — 3z 4 2 = 0 into a set” we get the same set.
Taking (1) and ( Ext) together {ping pong) we have [cf. (b) in 1.1.1.48]:

Foranysets Aand B,A=B = (Vx)}(z € A=z € B) (2)
Since r € 2and » € 3 are false, as 2 and 3 are numbers and thus contain no elements,
(vr)(xre2=xe3)=+2=3

is false, since to the left of — we have a true formula, while to the right a false one.
Thus, the restriction o the type of A and B in (Ext) and (2} is essential. Of course,
(1) is valid for any type of variables A, B, x.

34 The mathematician and computer scientist will rather say “we obtain 2™ to indicate he proved so,
without using the provability symbol . He will also let the context fend for itself as to what the
assumptions were; here no nonlogical assumptions were made.

35The converse of the implication & — 9 is # — &,
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1.1.2.1 Example. Let us introduce the notation-by-listing of sets, {...}, where the
*..." is in each case replaced by an explicit listing of all the set members. Here
are two examples: {1,2,1,2,2} and {2, 1}. These two sets are equal by inspection,
according to extensionality, for every element of one appears in the other, and vice
versa. In particular, neither multiplicity, nor order of listing matter. Only the presence
of an element matters, not where (in the listing), or how many times. So, we may
write {1,2,1,2,2} = {2,1} orindeed {2,1} = {1,2,1,2,2}.

It should be clear that only the (intuitively) finite sefs (a concept we will soon
mathematically define) can be depicted by listing; and this only in principle, since
we may not want to list a set of one trillion elements. By the way, writing N =
{0,1,2,...} is not a by-listing depiction of N, rather, it is a sloppy and abused
notation (vet surprisingly commeon). The *. . .” indicates an unending, and understood
from the context, process whereby the next element i3 generated by adding one to
the previous, The notation taken out of context is nonsensical and gives no clue as to
what “...” means. O

The notation A C B, read “4 is a subset of B”, or “B is a superset of A”, means
that every member of A is in B as well. So itis given by the mathematical definition

below:
Def

ACB=(VaY{e € A—> z € B) (3)
So how does one prove, given some sets A and B that A € B? One uses definition (3}
above, and proves instead (Vz)(z € A — x € B). But to so prove, it suffices to
prove instead z € 4 — x € B, since an application of Gen to this formula produces
the preceding one.
Perfect! One can then proceed as follows: “Fix x and assume x € A”. All that
one needs to do next is to prove & € B (1.1.1.49).

At the intuitive level, and from the “word description of equality and subset
relations”, we expect, for sets 4 and B, that if A = B, then also 4 € B (and
by symmetry, also B € A). This can be mathematically proved as well: The
assumption means (Vz)(z € A = z € B). Dropping (Vx) (Spec) and following up
with a tautological implication we get z € A — ¢ € B. Reintroducing (Vz) (Gen)
we get A C B (Definition (3)).

Intuitively, for any to sets 4 and B, if we know that A € B and B C A, then
A = B (the vice versa was the content of the preceding paragraph). Indeed, the two
assumptions and (3) above expand to (Vz){z € A — = € B) and (Vz){(x € B —
x € A), respectively. Dropping (Vz) (Spec) we obtainz € A —» ¢ € Bandax €
B — x € A. Following up with a tautological implication we getz € A=z € B,
Applying (vVx)} we get A = B.

So, in practice, to prove set equality, A = B, we go about it like this: “{C)
direction: Fix x € 4 ... therefore, x € B is proved”. Then we do: “(2) direction:
Fix x € B ... therefore, x € A is proved”.

If AC Bbut A # B we say that “A is a proper subset of B” and write A C B,
As is usual in mathematics, negating a relation is informally denoted by the relation
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symbol superimposed with a “/”. So A ¢ B, A¢Z Band A ¢ B mean -4 € B,
—A C Band —A C B, respectively.

1.1.2.2 Definition, (Bounded Quantification) In much of what we doin this volume
we will find bounded quantifiers very useful. That is, in set theory we will often
want to says things like “for all z in A, 2" [z] holds”. While this can be captured
by (Vz)(z € A = Z'[]), the alternative shorthand is much in use, and preferable:
(Vz € A)& [z] or also (Vz)c 4 2 [z].

In arithmetic we will correspondingly often want to say “for all z < y, 2’[z]
holds”. This is coded directly as (Vi){x < y — & [x]}. The preferred shorthand is:
(Vo < y) 2 [z] or also (V). 2 [x]. In these two cases, respectively, A and y are
free variables. O

1.1.2.3 Remark. The corresponding “for some x in A, 2 [z] holds” and “for some
T < y, & [z] holds” have the shorthands (3x € A)}% [z] or (x)ea & [z] for the
former and (Ax < y). 2 [«] or also () ., Z [«] for the latter.

The shorthand (3 € A).2Z [x] and (Fo < y) 2 [«] stand tor () (¢ € AN Z[z])
and (x}(z < y A Z'|x]), respectively.

Translating to ¥V notation we do not get any nasty surprises. For example,

(Fz)(z € A A Z[z]) ()

is equivalent to =(Vz)—~({x € A A 2" [z]). Using 1.1.1.53 and an obvious tautology,
we see that this is the same as —(Vz){(z € A — —X|[z]); in shorthand: —(Vz €
A)-~X[z]. Neat! The original () has the bounded-quantifier expression (Jz &
A) & |z], so the “3 = ~¥-" property (1.1.1.20) holds for bounded quantifiers! [

1.1.2.4 Exercise. Show that the “Y = —3-" property (1.1.1.21) holds for bounded
quantifiers. U

There is a more general way to build sets than by just collecting together and
listing a finite number of elements; by “defining property”. That is, for any formula
()} we collect into a set all the z (values) for which /() is true. We denote this
set by the term {x : & (x)}. Of course, & (x} is the defining property or “entrance
requirement” that determines membership. To make this precise we define

1.1.2.5 Definition. S = {z : o/ {z)} is shorthand, suggestive, notation for (Vx){z €
S = o (x)). a

1.1.2.6 Remark. Several remarks are in order.

(1) The S that enters in (Vz)(z € S = &/(x)) is unique, that is, if also (Vz)(x €
T = & {x)}, then § = T. Indeed, the two imply (Spec) x € S = «/(x) and
2 € T'= &/ (x), thus, z € § = x € T by tautological implication. Generalizing
weget (Ve {x € S=ux € T), andhence § =T.
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Pause. Why not just say “The twomean 5 = {z: &/{z)} and T = {z : &/{2)},
hence S = T by transitivity of equality”?«

Because the notation 5 = {x : .« (z)}" is only shorthand for something else.
The symbol of equality “=" is inserted in anticipation, but not due to an a priori
knowledge, that it will behave correctly, as equality. Now we know—through
the longer argument and post facro—that it was all right to have written =" after
all.

(2} Renaming the bound variable of (V&)(x € § = &/ (x)) into (a new) 2 we get
the equivalent formula (cf. 1.1.1.33) (¥z)(z € 5§ = &/(z)). The latter says
S ={z:&(2}}. So, x (and 2} in {= : & (x)} is a bound variable that can be
renamed without changing the meaning.

(3) By specializing (Va)(z € S = «(z)) we gett € 8§ = &/ (¢) for any term t.
This says what our intuition wants; To test if an object ¢ is in the set S, just test
that it passes the entrance requirement: . (t).

@ Another way to say the same thing is £ € {w : & (=)} iff & (1).

(4) I is time to be reminded (this was mentioned in passing earlier} that it is rot the
case that every formula .« (z} leads to a set {z : &/ (z)}. To think so leads to
nasty contradictions, as it did in Cantor’s naive set theory. Examples of formulae
that are not set-builders are x ¢ x and & = x (cf. Section 1.3}.

(5) The statements {2 : &/[x]} = {x : Bz]} and & [z] = RBz] are equivalent.
Indeed, if we assume the first, then by (1) on p. 27 [which is no more than an
application of (vi) from 1.1.1.38] we get x € {x : 2]} = = € {z : B[]},
which by (3) above is (replacing equivalents by equivalents) & [z] = B|z].
These steps can be reversed [in this direction Ext is invoked rather than (1) on
p. 27} to prove the converse.

This is not unexpected at an intuitive level, but it is nice to have it affirmed
mathematically: If two “defining properties” are equivalent, then they yield the
same resitlt, true or false, on every object we apply them. Thus, precisely the
same objects will “pass” each of the two.

6) {z: &(z,y, 2, ...)} denotes several different sets (modulo the previous wam-
ing), one for each choice of the unspecified values ¢, z,.... These y, z,... are
called parameters. (|

1.1.2.7 Example. A few paragraphs ago we called the set-building process by defin-
ing property “more general” than the process of building sets by grouping members
and listing them explicitly between braces { }. Here is why: {a.b} = {z:z =
@V & = b}. This simple “trick” can be applied to any finite set, to represent it by a
defining property, namely, the disjunction of atomic formulae of the form x = a for
every a that we want to include in the set. ()
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@@ There is nothing in naive set theory that helps us argue that the collection of just
two objects—the so-called (unordered) pair—is a set (one that does not lead to
contradictions, that is).*® In the naive approach we take it for granted as a “self
evident” fact! Equipped with the hindsight of the early (naive) set theory paradoxes
and their workarounds, we can be content that a pair is so “small” as a collection—
Jjust two elements—and is not about to cause any problems. In axiomatic approaches @
there is an axiom which says that we can indeed form a ser of two elements,

L1.Z28 Example. {z : © € N Az > y} consists of all numbers in N greater
than . Thatis: v + 1,4 + 2,y + 3,... We may also use the (abuse of) notation
{x € N: z > y} for this set. O

1.1.2.9 Example. Sometimes we collect more complicated objects than values of
variables. For example, {22 : x = 2 v x = 9} is the set {22, 9%}, i.e,, {4,81]}.

A more complicated exampleis § = {z+y : 0 < 2 < y}, where &, y are varying
over M.

(1) Suppose that y is the only a parameter. Then S = {y+ 1,y +2,...,2y — 1}.

(2) Suppose = is the only a parameter. Then S = {2z + 1,2z + 2,...}. This is
all of N, except the segment from () to 2:¢.

(3) Suppose neither of « or y are parameters. Then § = {3,4,5,...}.

(4) Finally, suppose that both & and y are parameters. Then what § = {z + ¢ :
0 < & < y} denotes is an infinite family of one-element sets, using all the elements
of Nexcept 0, 1,2: {3}, {4}, {5},... O

@ Because of (4) in 1.1.2.6, mathematicians found a way to limit the size of collections
to ensure they are, technically, sets. An easy (but not the only) way to do this is to
build any new sets as parts (subsets) of some other set that we have already built.

Thus all our discussions in set theory will have some—usually unspecified, large
enough to be useable but not too large to be troublesome; and totally unobtrusive®’—
reference set tucked away somewhere; let us call it U.

This U is our “resource” where we take our set theory ohjects from, give values
to our variables from, and have our quantifiers vary over. Thus, in set raive theory,
when we write (Yz) or (Jz) we really mean (Vz € U} or (dz € U), respectively.
This reference set that we put aside for a discussion is also called the domain (of
discourse).

In other branches of mathematics whose objects can be collected into a set we
are less vague about the reference set; thus the calculus of one variable has R as its @
domatn, while Peano arithmetic has N as its domain,

It is convenient te have a set with no elements around, the “empty set”. This is
the set S given by the condition

(Vez € S =z £z} (%)

3B er's face it: naive set theory is not exactly clear as to what a set is, nor does it care.
We do not pin it down.
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By (1) in 1.1.2.6, there is just one set S that satisfies {*), and the symbol reserved
for it is @. That it is a set is not in question as it is far too small! It contains nothing,
Indeed, by 3in 1.1.2.6,

reEP=x#x (%)

thus ne x passes the entrance test, the later being false for all x. Of course, we can
write

0={x:~z=2z}

It is useful to note that for any set A, we have @ € A. Indeed, this means z € § —
@ € A, This is true since, by (xx), x € @ is false.

If we want to build more complex sets we will do well to devise operations on
sets. Thus,

1.1.2.10 Definition. If A and B are sets, then their union, AU B, is the set {x : x €
Avz € B} O

AU B is formed by emptying the members of 4 and B in a single {...} “bag”.

The union makes sense even if one or both of A and B stand for atomic elements
with no set-theoretic structure, such as numbers.>® For example, if B is atomic, then
x € Bisfalse,andhencex € Avar € B=x € Aby 1.1.1.14. Thatis, AUB=A
in this case. If both A and B are urelements, then 4 U B = 0,

The reader may be wondering: Is it not better to not allow things like z € 2—to
make it “illegal”, rather than false? No. For one thing, that would mean that before
we build an atomic formula £ € s we would then have to analyze first s to ensure it
is not an urelement; betraying that syntax has to be determined, well, syntactically!
Secondly, it would require far too many special cases to be considered in all our
definitions.

Thus the following is true [with or without a leading (¥x): cf, 1.1.1.15]:
rcAUB=xcAvzecB

We can form the union of three sets as either A U (B U C) or (AU B)Y U, Since
x € AU (B 11 is equivalent to

:reA\/(;reB\/a:eC) (1)
and & € (AU B)UC is equivalent to
(a:eA\/a:eB)v:ceC (2}

The equivalence of (1) and (2) proves that AU (B U C) = (AU B} U which renders
brackets irrelevant in a chain of two U—indeed, in any finite chain of U by refining

383uch atomic elemants are called wrelements in the literature.

®
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the previous argument (e.g., using induction* on the number of U symbols in the
chain).

1.1.2.11 Exercise. For any sets A and B, prove AUB = BU A, |

1.1.2.12 Example. For any set 4, we have A U0 = 4, Indeed, this translates to
[using 1.1.1.15 to eliminate (Vz}, and (3} in 1.1.2.6]

zeAvr#r=ze A

which is clearly true, since & # x is false (cf. 1.1.1.14). O

The “big U” is a very important generalization of union applied to any collection
of sets (and/or urelements), not just finitely many.

1.1.2.13 Definition. (Generalized Union) Let S be a set (may contain sets and/or

urelements; may be, intuitively, finite or infinite). The symbol [ |5 denotes the set

that we build by emptying the contents of every sef in § into a new container.
Mathematically,

UJsZ{x: Q4 e Sz c 4}

That is, an “z” is put into the new container iff we can spot it inside some A, which
in turn is in S. O

We have some special cases of the | JS: If S is a collection of sets 4;,—
{Ap, Aj, Az, .. .}—indexed by i € N we may write alternatively

DA@OI’ UA;‘_OI' UA‘
i=0 i20 ieN

More generally, we may have a collection of sets A, indexed by a set { other than
N—e.g., 7 =R, I = {2,3}. We indicate | S in this case by the alternative

J

acT
1.1.2.14 Example. |,z 53 Ao = A2 U A3, O

1.1.2.15 Definition. If A and B are sets, then their intersection, A N B, is the set
{z:x€ Anz € B} If AN B = 0 then we call A and B disjoint. O

A B is formed by emptying onfy the common members of A and B in a single
{...} bag. Theintersection makes sense even if one or both of A and B are urelements.

¥ Knowledge of induction, as well as of everything else in this review is presupposed; this is only a review!
Induction will be our review-subject in Section 1.4
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For example, if B is atomic, then € B is false, and hence x € A Az € B is false
1.1.1.14. Thatis, A "1 B = @ in this case.

1.1.2.16 Definition. (Generalized Intersection) Let 5 be a set (may contain sets
and/or urelements; may be, intuitively, finite or infinite). The symbol (7] S denotes
the set that we build by emptying the contents that are common to every member of
S into a new container. Mathematically,

5=z : (YA€ S)z € A}
That is, an “z* is put inte the new container iff we can spot it inside every 4in 5. ]

Thus, if a urelement or @ are members of .S, then [ .$ = .

For this definition too we have some special cases of the {1 .5: If 5 is a set of sets
{Agp, 41, Az, ...} we may write alternatively

ﬁA.;or mA,-or nA‘
i=0 =0 ieM

More generally, we may have a collection of sets 4, indexed by a set I other than
N—eg.,.I=R,7I={0,1,2,3,11}. Weindicate [} 5 in this case by the alternative

N4

acf
1.1.2.17 Example, ﬂag{o,” Ay = Ag M Ax. _ a
1.1.2.18 Example. What is ()@? By 1.1.2.16
zef|0=(VAchzc A

that is
ze( 8= (VA A €O~z € A)

Since A < @ is false, the entire right hand side of = is true. That is, the left hand side
is true precisely for every x. Recalling that “every x” means “every z-value in the
domain U”, we have

X € m f=zeU
hence P = U.
Were it not for the “protection” afforded us by the domain, “every ™ would mean
“everything”, and we cannot form the set of everything! |

1.1.2.19 Definition. If A and B are sets, then their difference, A — B, is the set
{x:z € Anx ¢ B}. We may also write thisas {x € A: x ¢ B}. If A= U then
we write B for U — B-and call it the complement of B, O
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1.1.2.20 Theorem. A — B = AN B.

Proof r€ A—Bmeansz € AAx ¢ B. Giventhatr ¢ B == € B, we are
done. O

1.1.2.21 Example. Letus compute {a,b} — {a}. Now, if a = b, then {e, b} = {a},
hence the difference equals §. Soleta # b. We have {8} ={x:z =avz =b}
and {a} = {x : x = a}, thus

{a,b} —{a}={z: (z=avz=0b Az #a} (1)

The reader will have no trouble verifying that, sincebothx = avz =band ~z =a
are true in our context, we have

{(r=avr=bWnr-r=a=zx=0b (2)

Indeed, in the context of {a, b} — {a}, the truth-value of x = a is f and thus the left
hand side of = in (2) has the same truth-value as the right hand side—<cf. 1.1.1.14 and
note the truth-value of & A %8 when 27 is t and also the truth-value of & Vv 28 when
o is f. Therefore the right hand side of (1) simplifies to {z : = b} [cf. 1.1.2.6,
itern (5)), i.e., {b}. This is the difference. O

1.1.2.22 Example. What conclusions may we draw from the following equality?

{fa} {a,}} = {{4}.44.B}} M

Well, we get, first off, that

N {{a} et} =N {{4}. 14, B}}

by an application of Exercise 1.8.4 (p. 85). That is,

{a} = {4}
hence

a=A (2)
This time let's apply | to both sides of (1), We get {a, b} = {4, B}, which, by (2),

becomes
{a,b} = {a, B} (3)
Applying again Exercise 1.8.4 (p. 85), to the function & — {«} this time, we get via (3)
{a,b} —{a} = {a, B} — {a} (4)

if @ = &, then the left hand side of (4) is ©, so a = B and therefore

b= B (5)
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If & % b, then, also a # B (else the right hand side, and hence the left, is ). By the
previous example, (4) yields {b} = { B} in this case, so0 we obtain (3) once more.
In summary, (1) implies (2) and (5). O

L.1.2.23 Definition. (Kuratowski’s Ordered Pair) For any objects & and y (sets or
not), we reserve the symbol (i, y) as an abbreviation of the set {{z}, {z,y}}. We
call (z,y) the ordered pair of x and y.

The nomenclature tor {u, ) stems from the property established in 1.1.2.22, that
If (z,y9) =(X.Y)thenz = Xandy =Y (pair)

that is, order or position matters in the pair. This property is not shared by {a, b}
since, by extensionality, {a, b} = {b, ¢}, as we know. Of course, the converse—that
=X and y = Y implies (x,y) = (X, Y )—is not miraculous at all, and simply
follows by two applications of Exercise 1.8.4, p. 85: First, {x, 2) = (X, z) and then
(z,y) = (X, Y).

The reader is familiar with ordered pairs from analytic geometry, where ordered
pairs of real numbers give the coordinates of points on the Cartesian plane. Indeed,
the concept of Cartesian product relies on the (i, 3) objects,

1.1.2.24 Example. So, (1,2) # (2,1)lest1 = 2. Is (1, 1} = {1}7? To ask explicitly,
is {{1},{1,1}} = {1}-—that is, by extensionality, twice—is {{1}} = {1}? Not
unless {1} = 1, but this cannot be since 1 is an urelement, it has no set-theoretic
structure. O

How about
A= {4} (x)

in general, for some set A7 We cannot use here a “type” argument as we did above,
since both sides of = are of type set.

Can this be? An unfair question this, since naive set theory cannot resolve it. If
we grant (), then we have 4 € A. Well, can this be?

Axiomatic foundations disallow this state of affairs, basing it on an intuitive
concept*® that “sets are formed by stages”, so you can’t have a set (built) before
you have (built) its members. A € A requires the left A being available before the
right A is—an untenable proposition. Thus set theorists have adopted an axiom (of
foundation) which precludes bottomless (unfounded) chains such as

...eEdecebea

The impossibility of 4 € A follows from this, since otherwise it would lead to
L.EAeAdeAc A

40 A1l reasonable axioms are based on intuitively accepiable concepts. The idea that sets are formed by
stages led to many nice axioms of axiomatic set theory,

L4 4
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Ordered triples, quadmiples and beyond can be easily defined using the ordered
pair as the basic building block:

1.1.2.25 Definition. (Ordered Tuples) We define the symbol {z1,...,z,), pro-
nounced the ordered 1-tuple or just—n-tuple—by two recurrence equations:

{x1, T2) = (T, %2)
and, forn > 2,
(3715 vy Ly xn+1>: ((331: R 33%)3 1'ﬂ-&—l)

; is the i-th component of the tuple. (a,b) is also called an 2-ruple (as well as an
ordered pair).
We often employ the abbreviation &, for the (ordered) sequence x4, ...,2,. The

presence o will not permit the confusion between the sequence I, and the
component &,. H the length » is immaterial or known, we may just write Z. ]

The above is a simple recursive or inductive definition. It compactifies and renders
finite an infinite-length definition such as:

(x,y) ={
(x!y:z) =((9:,y),z)
(5‘;‘, ¥ & u) = Eéma Y, z)}u)

(‘T: Y, z,u, ’LU): Ty, <, u)! ’U_J)

[T 1

In essence, it finitely describes the ;" above.

This is entirely analogous with loops in programming where a variable-length (and
therefore syntactically Hllegal)-—it depends on the value of N-—program segment is
correctly implemented as a loop; that is, the following, where X + X + 1 ocours NV
times

read N, X
X «0
X «X+1

X «X+1

is captured by this

read N X
X — 0
repeat NV times

{

X +— X+1
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}

The reader has seen recursive definitions similar to the one in 1.1.2.25, for example,
the one that defines nonnegative {integer) powers of a non zero real number ¢ by two
equations:

a® =1
and, forn > 0,
a*tl=q. a”

Recursive definitions of this and of more general types are reviewed in Section 1.4. @

1.1.2.26 Exercise. Show that the name ordered (4-) tuple is apt for {x, ¥, z, w} by
showing that {z,y,z,w) = (XY, Z, W} implies that z = X,y =Y, 2 = Z and
w=W. O

1.1.2.27 Exercise. Write down explicitly the set for which the wple {x, y, z,w) is
compact notation.

1.1.2.28 Definition. (Cartesian Product) Let 4,, ..., 4, be sets. Then their Carte-
sian product, in the given order, is the set

{(a-l,...,an) :aieAf,forizl,...,n}

We will employ the symbols

>< A«; or >< Ag;

1<i<n i=1

as alternative shorthands for this product. \
If A, = Aand A, = B then we write A x B rather than X o Qi Itisall right,
but sloppy, to write 4; x - -- x A,, for the general case. If 4; = C for all ¢, then we
T
write C™ for )X ,_, A;. O

1.1.229 Example. {1} x {2} = {{1,2)} and {2} x {1} = {{2,1}}. Thus {1} x
{2} # {2} x {1}: the Cartesian product is not commutative in general. d

X A; can be given by a simple recursive (inductive) definition:
i=1

1
X A=A
-
' and, forn =1,
n+1

><Ag_(><A)><An+1
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The reader should verify that this is consistent with 1.1.2.28 and 1.1.2.25.
Similarly, A" can be defined inductively (recursively) as

Al =4
and, forn > 1,
Artl= A" x 4

4

1.1.2.30 Example. A x ) = @, since {x,y} € 4 x fisequivalenttox € AAy B,
which is false. Similarly, @ x 4 = §, O

We comnclude our review of set operations with the power set.

1.1.2.31 Definition. (Power Set) For any set A, its power ser~—denoted as P(A) or
24is {z 1z C A} O

1.1.2.32 Example. Thus,2? = {0}; 2{" = {6, {#}}; and 21®-(8}} = (B {6}, {{0}},
{0.{P}}}-

2101} — {9, {0}, {1}, {0,1}}.
Since  C A and A C A for any set A, we have always @ € 24and 4 €24 O

1.1.3 Alphabets, Strings and Languages

A string or expression or a word is just a tuple, all of whose components come from
the same set, A, the latter being called the alphabet. We say that “x is o string of
length n over the alphabet A” meaning x € A™.

Traditionally, strings are written down without separating commas or spaces, nor
with enclosing angular brackets. So if 4 = {a,b} we will write cababa rather than
{a,a,b,a,b,u).

Concatenation of {ay,...,6ay,) and {by, ..., b,) in that order, denoted as
{01y ooy ) % b1, p)
is the string of length m -+
(@1, 8m, b1, by}

Clearly, concatenation as defined above is associative, that is, for any strings x, y and
zwehave (z*y)xz =z (y*z).

It is convenient to introduce a null or empry string, that has no members, and hence
has length 0. We will denote it by e. We will not attempt to give it a precise tuple
counterpart, but some people write “{}” with nothing between brackets.

At the intuitive level, and given how concatenation was defined, we see that
Z*€=¢xg = x for any string x. We will distinguish @ and ¢ since one is an
“unordered set” will the other is ordered; but both are empty.
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The set of all strings of non zero length over A is denoted by A'. This is, of
course,
o
U
i=1

Adding ¢ to the above we get the unqualified set of all strings over A, denoted by A*;
that is, A* = A U {€}. This set is often called the Kieene star of A.

A string A is a prefix of a string B if there is a string C' such that B = A« C. It
is a suffix of B if for some D), we have B = D) + A. The prefix (suffix) is proper if it
is not equal to B.

Just as we use implied multiplication, ab for @ > b or a - b, we also use implied
concatenation, ry for x * y —leaving it up to the context to fend off ambiguities.

]

1.1.3.1 Example. Notall alphabets are amenable to writing tuples in *‘string-notation”.
For example, A = {1,11} has a problem. The notation 111 is ambiguous: Do we
mean {1,1, 1}, (11,1}, or {1,11}? O

1.1.3.2 Definition, (Languages) A language, L, over an alphabet A is just a subset
of A*. O

The “interesting” languages are those that are finirely definable. Automata and
language theory studies the properties of such finitely definable languages and of the
“machinery” that effects these finite definitions.

1.1.3.3 Definition, (Concatenation of Languages) If L and M are two languages
over an alphabet A, then the symbol L » M or simply (implied concatenation) LA
means the set {zy:x € LAye M}, O

One can learn to live with = as both a unary (one-argument) operation, 4*, and as a
binary one, L = M, much the same way we can see no ambiguity in uses of minus as
—randy — z.

1.2 RELATIONS AND FUNCTIONS

Intuitively, arelation is a formula, &/ (i, y, z). We say that ¢, b, e are related according
to & (x,y, z) justincase & (a, b, ¢) is true. Influenced by the set theorist who wants to
realize “everything” (even formulae) as some set, the moedern mathematician views
relations extensionally (by what they contain) as sets. For example, o (z,v, )
naturally defines this set, its extension: {{x,y, 2} : &/ {x,y,2)}. One goes one step
further and forgets the role of &, As a result, we give a totally extensional definition
of a relation as a set of wples, disregarding how it may have been formed by a
“defining property”,
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1.2.0.4 Definition. A binary relation —or simply relation—R is a set of 2-tuples.
We use the notations (i, ¥} € R, xRy and R(x,y) to mean the same thing, d

A relation R, on the other hand, immediately gives rise to an atomic formula —
variably denoted by one of the forms {x,4) € R, xRy or R{x,y)— just as the
specific relations < and & lead to the atomic formulaez < yand z € y (cf. 1.1.1.1}.

Pause. So, every formula </ (z, .. .) definestherelation 4 = {{z,.. .} : #(x,...)},
and every (binary) relation £ defines the (atomic) formula x Ry; right? «

Not exactly. If we have an “enormous”™*' supply of symbols for formulae, then we

could do this, since for every relation we could then tntroduce a formula symbol (so-
called “predicate”)}—say, K, ¢, <, or whatever—by a definition, such as “z < yif and
only iff {z, ) is a member of the given relation”. This fails in most practical cases,
e.g., in set theory and arithmetic, where our symbol-alphabet is finite or enumerable
(cf. Definition 1.3.0.40). To write down —that is, to “have”—a formula, we need
notation for it. As we will see in Section 1.3, we have far “more” binary relations R
than we have means to “write them down™ as formulae xRy, if our symbol-alphabet
is finite or enumerable.

Hm. Did I not just write down “zRy”7? Well, yes; however, writing one or two
symbols down, like “R” or “(}” and saying that they “stand for relations™ does not
equate to having a system of notation o write down all binary relations.

Intuitively, a relation is a table—possibly infinite in length—of pairs like

& z
a1 | az
af | af

The head-row names the relation’s variables. The entries in each row represent the
tuples-members of the relation. It is standard convention to think of the left column,
headed by x as the “input-side”, while the right column as the “output-side”. This is
consistent with a “black box" view of the relation

a; — — ap

where we don’t know or don’t care what makes it tick, but we do know which inputs
cause which output(s).

It is not @ priori precluded to have the same input produce several owputs, For
example, think of R = {{1,2},{1,1},{1,7}}.

Thus, the relation (table) establishes a one-fo-many input/output correspondence.

Contrary to our viewpoint with formulae & (x, y)—where the input variables are all
the free variables, here z and y—in the case of relations we arc allowed swo peints
of view, one being the one presented above, and the other where both = and y are the
inputs of the relation R(x, y). The context will fend for us!

41gee also Section 1.3 to appreciate that not all infinities are equal in size.

¢®

4
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Of course, when we take all the variables of a relation as input, then the output
that is implied—just as in the case of formulae—is one of t or f.

Since {@nt1) = ({Gn), @nt1), there is no loss of generality in focusing mostly on
binary relations. In other words, the left (input) column may well be a column of
n-tuple entries o] = (A, A], ..., AL, The relation is then said to be (n + 1)-ary

and, in table form, would look like

#1 ... xp | 2

T T T
A% A,21 a%
Ay o AL | o3

The set consisting of the entries in the input column is the relation’s domain—that
is, those inputs that cause some output—while those in the output column constitute
the range—that is, the set of all outputs.

1.2.0.5 Definition. Let R be a (binary) relation. Its domain, denoted by dom(R), is
the set {z : (Jy)axRy}. Its range, denoted by ran(R}, is the set {z : (Jy)yRz}. O

1.2.0.6 Example. Let B = {{x,x} : « € N}. Then dom{R) = ran(R} = N.
Let Q = {{0,2) : # € N}. Then dom(Q)) = {0} and ran(}) = N.
Let § = {{z,0) : x € N}. Thenran(S} = {0} and dom(S5) = N.
Let T = {{0,0},{0,7)}. Then dom(T) = {0} and ran(T") = {0, 7}. &

An abstract rerm of logic captures well the intentional aspect of a function—indeed
a function call—of mathematics and programming: we have a “rule” that defines the
input/output dependence. For example, the “rule” z + y that tells us how the output
is to be obtained, once we have the = and y values,

While, in logic, a term is a totally different type of object from a formula, on the
other hand, extensionally—i.e., in its set theory realization—a function is a subsidiary
construct of a relation, Referring back to the black box analogy, a function is simply
a relation that obeys the restriction that neo input can cause more than one output. 50
a function, extensionally, is a single-valued relation.

1.2.0.7 Definition. A function R is a single-valued relation. That is, whenever we
have both zHy and z Kz, we will alse have y = z,

It is traditional to use, generically, lower case letters from among f, g, h, k to
denote functions but this is by no means a requirement. d

1.2.0.8 Example. The empty set is a relation of course, the empty set of pairs. It is
also a function since

() EOA {2y e o y=2
vacuously, by virtue of the lett hand side of — being false. i
It is often the case that we study relations, and functions, that take their inputs from

a given set A that i3 fixed throughout the study, and, similarly, produce their outputs
in a given fixed set B.
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For example, our work on computability in this volume deals exclusively with
functions and relations whose inputs and outputs are from N,

Additional terminology has been invented to name these fixed “input-" and
“output-spaces” and also to name relations that filly utilize one or the other of
these spaces. The input space is called the left field while the output space is called
the right field.

If A and B are the adopted left and right fields of the function or relation R
then clearly R C A x B, and, in particular, dom{R) C A while ran{R) C B. A
well-established abbreviation—other than R C A x B— for “R is relation with left
field A and right field B” is R : A — B, read “R is a relation from A4 to B”.

If A = B, then we say “ K is a relation on A”.

If dom(R) = A, then R is totally defined on A. We just say “R is total”. If
ran{R) = B, then R “covers” the entire right field with its outputs. We say “R is
onto”.

Pause. Totalness and ontoness are relative to a left field and a right field, respec-
tively; they are not absolute notions. «

A relation B : 4 — B is either total or not (rontotal). An indifference to-
ward which is which will be expressed by calling R partial. Thus “partial” is not
synonymous with “nontotal”, All relations are therefore partial relations.

All the terminology introduced in this @-segment applies to the special case of
functions as well.

We now turn {o notation and concepts specific to functions. Let f be a function.
First off, f(a) denotes the unique b such that o fb or {a, b} € f. Note that such a b
exists iff ¢ € dom(f). Thus

b= f(a) iff (o, b) € fiff afb

We write f{a) |—pronounced “f(a} is defined” or “f(a) converges”—to mean
a € dom(f). Otherwise we write f(a) t—pronounced “f{a) is undefined” or “ f(a)
diverges”.

The set of ail outputs of a function, when the inputs come from a particutar set X,
is called the image of X under f and is denoted by f_.(X). Thus,

fo(X) ={f{z):w e X} (1)
Pause. So far we have been giving definitions regarding functions of one variable.

Or have we?«

Not really: We have already said that the multiple-input case is subsumed by
our notation. If £ : A — B and A is a set of n-tuples, then f is a function of
“ne-variables”, essentially. We usually abuse the notation f({¥,}) and write instead
$(E).

The inverse image of a set Y under a function is useful as well, that is, the set of
all inputs the generate f-outputs in Y. It is denoted by f.—(Y") and is defined as

FoV={az: fla) e Y} (2}

Q



44 MATHEMATICAL FOUNDATIONS

Regarding, say, the definition of f_,:
What if f(a) 1?7 How do you “collect” an undefined value into a set?

Well, you don’t. Both (1) and (2) have a rendering that is independent of the notation
“f(ﬂ:)”.
f5(X)={y: (Fz € X){z,y) € f} (1)

feY)={z: (FyeY)z,y) € f} (2)

}-}02(-0-)9}"13131!!111& Thus, f,({a}) = {f(z) : © € {a}} = {f/(z} : 3 = a} =
Let now g = {(1,2), ({1,2},2), (2,7)}. Thus, g({L,2}) = 2, but g ({1,2}) =
{2,7}. Also, g(5) Tand g_,({5}) = D.
On the otherhand, g ({2,7}) = {1,{1,2},2}and g, ({2}} = {1,{1,2}}, while
g ({8}) =0 a

When f(e) |, then f(a} = f(a) as is naturally expected. What about when
f(a) 17 This begs a more general question that we settle as follows:

First, seeking help from logic. For any formula &/[z] and term ¢ that does not
contain the variable z,

- it = (3z)(z = t A Fx]) 1)

We settle (1) by a ping pong argument (putting aside an urge to proclaim “bu, it is
obvious!™).
(—) direction. We want to prove & [t] — (3x)(z = t A &7[x]). Note that

At =t =t A ]

is true. So is
t=tAF[t] = Fx){z =t A [z]}

by 1.1.1.40 since we may view x = t A &[x] as (z = ¢ A &[z])[x] and thus view
t=tAHt)as (z =t A [z])[t] due to the absence of x in t. Using this and the
previous displayed formula along with tautological implication we get what we want.

(+) direction. We want to prove (3 )(x = ¢ A & [x]}) — &[t]. We will employ
the deduction theorem, so we freeze all free variables in (Az)(x = t A &[z]}, and
assumeit. S0, let us call ¢ an z-value that makes the quantification work (cf. 1.1.1.13),
‘We have

o =1tA ¥ (2}

Since the @ = ¢ part of (2) and the Leibniz axiom [(vi) of 1.1.1,38] yield & 2] = &[¢],
the remaining part of (2) yields the truth of &[¢], as needed.

¢
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Transferring the above result to the specific case of substituting terms into input
variables*? of relations, we have the following.

1.2.0.10 Remark. For any (m + n + 1l-ary) relation R{z1,..., 20, T2 ULs-- - ¥n b
function f, and object a, the substitution R(zy,. .., z2m, f(@),¥1,---,¥n) is short-
hand for

(3w) (1w = f@) A R(5, 2031, ) ) 3)

Note that w = f(a} entails that f{a) |, so that if #o such w exists {the case where
fla) 11 then (3) is false; not undefined!

This convention is prevalent in the modern literature [cf. Hinman (1978), p. 9].
Contrast with the convention in Kleene (1943), where, for example, an expression
like f{a) = g(b) [and even f{a) = b] is allowed to be undefined! O

1.2.0.11 Example. Thus, applying the above twice, f(a) = g(b) means (Ju)(Fw){(u =
fla) Aw = g(b)) which simplifies to (Fu)(u = f(e) A u = g(h)). In particular,
f(a) = g(b) entails that f(a) | and g(b) |. O

The above is unsettling as it fails to satisfy the reflexivity of equality [axiom (v)
of 1.1.1.38]: If f{a) 1, then = f(a) = f(a). To get around this difficulty, Kleene
(1943} has extended equality to include the undefined case, restoring reflexivity in this
“generalized” equality relation. We will use this so-called Kieene-complete-equality
quite often in the chapter on computability. This version of equality uses a different
symbaol, ~, to aveid confusion with the “standard” equality, =, of Remark 1.2.0.10
that compares only objects (not “undefined values™). For any two functions f and g,
we define

Fla) ~ g(b) E F(a) 1 Ag(b) 1 V(F(a) L Ag(d) L Af(a) = g(B))

while f{a) ~ b means the same thing as a fb, that is, f(a) =b.

1.2.0.12 Example. Let ¢ = {{1,2),{{1.2},2),{2,7)}. Then, g(1) = g({1,2})
and also g(1) =~ g{{1,2}). Also, g(1) % g(2) and also ¢g{1) # g(2). Moreover,
9(3) = g(9). O

If f and g are functions and f C g then ¢ is an extension of f while f is a
restriction of g. If g : A — B, one way to restrict g to f is to choose for f a
“smaller” left field, C' C A, and take for f only those 2-tuples that have the their first
component in C'. We write thisas f =g [ C. Thus, g | C =gn{C x B).

Note that every function f extends the totally undefined function § since § C f.

1.2.0.13 Definition. A function f is 1-1 if for all z and g, f(z) = f{y) implies
T o=q. O

Note that f{z) = f(y) implies that f{:) | and f(y} | (1.2.0.10). g%

“Here we view every variable of R as input; cutput is t or £, CF. discussion on p. 42,
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1.2.0.14 Example. {(1,1}} and {{1,1},{2,7)} are 1-1. {{1,0),{2,0}} is not. @ is
1-1 vacuously. O

1.2.0.15 Definition. (Relational Converse) If R is a relation, then its converse, de-
noted by B! is the relation {{z, ) : yRx}. O

1.2.0.16 Exercise. Prove that if f is a 1-1 function, then the relation converse f~1
is a function (that is, single-valued). N

1.2.0.17 Definition. (1-1 Correspondence) A function f : A — B is called a /-
correspondence iff it is all three: 1-1, total and onto.

Often we say that A and B are in I-1 correspondence writing A ~ B, omitting
mention of the function that /s the 1-1 correspondence. n

The terminology is derived from the fact that every element of A is paired with
precisely one element of B and vice versa.

1.2.0.18 Definition. (Composition of Relations and Functions) Let R : A — B
and ¢} : B — ' be two relations, The relation Ro @ : A — C, their relational
composition, is the relation

{my) - (3z)(xRz /\zQz)} (1)

If R and ¢} are functions, then their functional composition—or composition as
functions-—refers to their relational composition, but has a different notatien: {QQ.R)
(no “o”) is an alternative notation for B o (J; note the order reversal. 0O

So xR o Qyiff (3z)(xRz A 2Qy). Let then R o Qy and also xR o Qw. For some
a and b, guaranteed to exist, we have xRa and «(}y on one hand and x Rb and dQuw
on the other. Let next R and ¢ both be functions. Then a = b (from R) and hence
y = w (from ). Thus,
If R and @ are functions, then so is their composition, R o @} or (QR).
Let R and (} still be functions. Assume that (QR2){a) |. Then, for some b,
all o @b, and hence, for some ¢, aRe and c¢@Qb. That is,

R{a) = cand @(c) = b. For short, (@R)(a) = Q{R(a)) (2)
The above justifies the order reversal for the alternative notation of “functional

composition”.

1.2.0.19 Theorem. Relational composition is associative, that is, Ro (Q o S} =
(R o @) oS for any relations R,(Q, S. If the relations are functions we may also

write ((SQ)R) = (S{QR)).

Proof. See Exercise 24 in Section 1.8. O
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1.2.0.20 Definition. The identity funcrion on a set Ais 14 : A — A given by
14(z) = xforall z € A O

By 1.2.0.19,if R, Q, T, S are relations, then R o Q o T o 5 is unambiguous, as it
means the same thing regardless of how we insert brackets. In particular,

RoRo.-.oR
2
nz1 copies of A

is unambiguous regardless of the absence of brackets. We have the shorthand B" for
the above chain of compositions. We can put this into an inductive definition similar
to the one that defines positive powers of a positive real:

1.2.0.21 Definition. (Relational Powers) The symbol £%, for n > 1, is the rela-
tional power of R and is defined as

R' =R
and, forn > 1,
JRFH_I' — RO R‘n

If R is a relation on A, then we replace the first equation by B = 14 and the
condition for the second becomes “and, for n > (. O

The following interesting result connects the notions of ontoness and 1- Iness with
the “algebra” of composition,

1.2,0.22 Theorem. Let f : A — Band g : B = A be functions. If (9f) = 14,
then g is onto while f is total and -1,

We say that g is a left inverse of f and f is a right inverse of g.

Proof About ¢g: Our goal, ontoness, means that, for each 2 € A, ay exists such that
g{y) = x. Fix thenan x € A. By (gf) = 14, we have (gf)(z) = 14(z) = 2. But
(9f)(@) = g(f(x)). Sotake y = f(z).

About f: As seen above, z = g(f(x)) for each # € A. Since this is the same as
“zf o gr is true”, there must be a z such that 2 fz and zgx. The first of these says
f(z) = z and therefore f(x) |. This settles totalness.

For the 1-1ness, let f{a) = F(b). Applying ¢ to both sides (that is, using
Exercise 1.8.4) we get g(f(a}) = g(f(b}). But this says a = b, by (¢f) = 14, and
we are done. O

1.2.0.23 Example. The above is as much as we can be expected to prove. For

example, say A = {1,2} and B = {3,4,5,6}. Let f : A — Bbe {{1,4),{2,3}}
and g : B — Abe {{4,1),(3,2),{6,1)}}, or in friendlier notation

=4
f(2)=3
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and

g(3)=
g(4)=
g(5)1
g(6)=1

Clearly, (gf) = 1.4 holds, but note:
(1) f is not onto. @
(2) g is neither 1-1 nor total. O
1.2.0.24 Example. With A = {1,2}, B = {3,4,5,6}and f: A— Bandg: B —
A as in the previous example, consider also the functions f and g given by

f:(l): 4]
f12)=3
and
(3)=2
(4)=1
(5)1
(6)=2

Clearly, (§f) = 14 and (gf) = 14 hold, but note:

W f#1
(2yg# 3.
Thus, neither left nor right inverses need to be unique. The article “a” in the

definition of said inverses was well-chosen. (]

2
1

g
g
g
g

The following two partial converses of 1,2.0.22 are useful.

1.2.0.25 Theorem. Let f: A — Bbetotaland 1-1. Thenthereisanontog: B - A
such that (gf )y = 14.

Proof. Consider the converse relation {1.2.0.15) of f and call it g:

= {{z,y) : fly) ==} (1)

By Exercise 1.2.0.16, ¢ : B — A is a (possibly nontotal) function. Note that, for
any a € A, there is a b such that f{a) = b (f is total), and, by (1), g(b) = a. That is,

g(fla)) =a.0r(gf) =14 O
1.2.0.26 Remark. By(l)above.dom{g) = {z: () {z, 4 € g} ={&: (W) fy) = @
x} =ran(f). D

1.2.0.27 Theorem. Let f : A — B beonto. Thenthereisatotaland1-1g: B - 4
such thar (fg) = 1p.

Proof. By assumption, § # f_({b}) C A, forall b € B. To define g(b) choose one
¢ € f({b}) and set g(b) = c. Since f(c} = b, we get f(g(b)} = bforallb € B,
and hence g is 1-1 and onto by 1.2.0.22. O
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@@ The above argument makes potentially infinitely many choices, one from each

F—{{b}). Of course, these sets are pairwise disjoint.
Pause. Why is it that f—({z}) N f={{y}) =D if z # y7=
Contrast with the case where B = {b,b'}, a set of two elements, Then we can
define g by simply saying
Letc e f ({b}), and set g(b) = ¢. Let ¢ € f ({V'}), and set g(b'} = C.

We can contain our (two) choices in the space of a proof. The same is true if B
had 2350990 efements. We would just have to write a proof that would be, well, a bit
longer, using a copy of the sentence “Let y € f({x}), and set g(z) = ¢ once for
each one of the 23°°0°C members of B that we generically called here “z”.

However, the “Let . .. approach does not work for an infinite B, since we cannot
contain infinitety many such sentences in the space of a finite-length proof; unless we
have a way to codify the infinitely many choices in a finite manner. For example, if
A is a set of natural numbers then so is f..({b}) for each b and we can say precisely
how a ¢ can be chosen in each case: For example, “for each b € B, choose the
smallest ¢ in f,_{{b})” would do just fine.

Some mathematicians did not accept that one may effect infinitely many choices,
in the absence of a finitely describable process of how to go about making them; this
was not mathematically acceptable. They argued that in the absence of some kind
of known “structure” in the various f..({b}), all the elements of these sets “look
the same” and therefore the infinite process of “choosing” cannot be compacted into
a finite weli-defined description. This observation hinges on the number of choices
one needs to make rather than on the number of elements in a f_ {{b}).

An example of the difficulty, in layman’s terms, attributed to Russell, contrasts
two cases: One where we have an infinite set of pairs of shoes, and another, where
we have an infinite set of pairs of socks.

In the former case we can finitely define infinitely many choices of one shoe per
pair by always choosing the lefr shoe in each pair. In the case of socks this “rule”
does not define well which sock to pick, because, the two socks in a pair have no
distinct “left” or “right” members.

I used past tense above, “Some mathematicians did not accept, etc.”, for the
dissenting opinion. This is because mathematicians nowadays feel comfortable with
the notion of effecting infinitely many choices without having a finite process to
describe said choices. They even have an axiom {the Axiom of Cheice, or AC) that
says they can do so [for a thorough discussion of AC, see Tourlakis (2003b}].

1.2.0.28 Definition. (Equivalence Relations) Let R be a relation on a set 4. We
call it an equivalence relation iff it has all the three following properties:

(1) It is reflexive, that is, Rz holds, forall z € A

(2) It is symmetric, that is, xRy implies y Rz, for all ¢ and ¢

(3) It is transitive, that is, xRy and y Rz imply xRz, for all z,y and 2. O

%
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The concept “equivalence relation” does not apply to relations B : A — B with
A # B. The concept of reflexivity requires reference to the left {and right, since they
are equal) field. If we make the fields larger, without adding any pairs to the relation,
a previously reflexive relation will cease being reflexive.

1.2.0.29 Example. The function 1,4 : 4 — A is an equivalence relation,

The relation < on M is transitive, but neither symmetric, nor reflexive; on the other
hand, < has reflexivity (still fails symmetry).

The relation 2 on Z given by: “xRy iff the difference x — y is divisible by
5" (divisible with 0 remainder, that is) can be easily verified to be an equivalence
relation. J

Given an equivalence relation R on a set A, we define for each x € A the set of
all its equivalents in 4. This is known as an equivalence class of R. We employ the
symbol [z] g, thus

2]r Z{y € A : 2Ry} (1)

Despite employing the term “class™ in this context, which is standard practice in the
literature, we do not imply at all that these classes are “too large” to technically be
sets. On the contrary, any such class is a subset of A.

1.2.0.30 Theorem. Given an equivalence relation R on A. Its equivalence classes
[x] g satisfy

(1) [zlr #0

(2) fzRy iff [z]r = [ylr

(3) fe]r N [y|r # 0. then (2| = [y]r
(4) Uealzlr =4

Proof.

(1) [z]r # & Infactz € [2]g by zRz.
(2) if zRyiff [x]g = [y]a:

First, assume the left hand side of the “iff ", which also yields y Rz by symmetry.
For the (C) of the right hand side let z € [z]g. Thus zRz. Transitivity yields
yRz, hence z € [y]a.

For the (2), let z € [y]g, i.e., yRz. Along with tRy and transitivity we have
xRz, thatis, 2 € [2]g.

Now assume the right hand side of the “iff*. By the proof of (1), ¥ € [z]g, thus
xRy,

(3) if [z]r N [y]r # O, then [x]g = [y]r: By the assumption, there is a z such
that z € [¢]g and z € [y]g. Thus 2Rz and y Rz, the latter implying zRy. By
transitivity, x Ry; done by {2).

¢
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(4) Uycalzlr = A: The {C) is trivial, since [z]g C A for any x € A. For (2),
let z € A. But ¢ € [z}g and this meets the entrance requirement for z in
UmEA{‘T‘}R' O

1.2.0.31 Remark. (Partitions) Thus the equivatence clagses of an R on A meet the
three conditions a partition of A must satisfy, by definition:
A partition on A is a set of sets P such that

(@) fC e P, thenC #0
(b} {(Nonoverlap) If ¢ and D arein Pand C N D # @, then C' = D
(¢} (Coverage) S = A.

So equivalence classes furnish an example of partitions. More is true (cf. Exer-
cise 1.8.33); If P is a partition on A, then an equivalence relation on A can be defined
in a natural way, whose equivalence classes are precisely the members of P. 0

1.2,0.32 Definition. (Order) A relation R on a set A is called an order or order
relation iff it is transitive and irreflexive, the latter meaning —~(3x)z Rz,

We normally use the abstract symbol < for orders and let the context fend off
confusion with concrete usage of the symbol as the order on N or R. O

‘We call all orders partial, since some orders, < on A, are total or linear, while others
are not.

Indeed, we will seldom use the qualifier “partial” for ovders as it is automatically
understood. Exception: Often one presents the “package” consisting of the order
and the underlying set A together, in symbols (A, <), and calls it a partially ordered
set or POset,

That an order < on A is total means that every pair of members x and y of A are
comparable: That is, one of * = ¢, & < y or ¥ < « holds (this is alsc know as the
trichotomy property of linear orders).

1.2.0.33 Example. A standard example of a total order is < on N. A standard
example of a nontotal (nonlinear) order is C on 2#, For example, taking as A =
{0,1}, we see that {0} and {1} are not comparable under C. That the latter is an
order is trivial to verify (it is irreflexive by definition), a task that we leave to the
reader. g

1.3 BIG AND SMALL INFINITE SETS; DIAGONALIZATION

Two broad distinctions of sets by size are finite vs. infinite. Intuitively, we can count
the elements of a finite set and come up with a (natural) number at some distinct
point in (future) time. No such possibility is open for infinite sets. Just as finite sets
come in various sizes, a 5-element set, vs. a 0-element set, vs. a 23500000 _clement set,

?
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Cantor has taught us that infinite sets also come in various sizes. The technigue he
used to so demonstrate is of interest to us, as it applies to computability, and is the
key topic of this section.

1.3.0.34 Definition. (Finite sets) A set A is finite iff it is either empty, or is in 1-1
correspondence with {& € N : & < n}. We prefer to refer to this “normalized” finite
set by the sloppy notation {0, ...,n},

In this case we say that “A has n + 1 elements”. If A = §} we say that “A has 0
elernents”, If a set is not finite, then it is infinite. O

1.3.0.35 Example. If A and I have n+1 elements, then A ~ B (cf. Exercise 1.8.31).
O

1.3.0.36 Theorem. ff X < {0,...,n}, then there is no onto function f : X —
{0,...,n}.

Proof. First off, the claim holds if X = @, since then f = 0 and its range is empty.
Let us otherwise proceed by way of contradiction, and assume that it is possible to
have such ontc functions, for some n. Suppose then that the smallest n that allows
this to happen is nyg, and let X, be a corresponding set “X™ thae works, that is, we
have an onto f : Xo — {0,...,ne}. Thus Xy # @, by the preceding remark, and
therefore ng > 0, since otherwise X = .

Letus set H = f._({no}). ® # H C X; the # by ontoness.

Case 1. ng € H. Then f [ (X — H)is onto, from Xo — Hto {0,...,np — 1}—
where Xy — H C {0,...,n9 — 1}—contradicting minimality of ng.

Case 2. ng ¢ H. If ng ¢ Xy, then we are back to Case 1. Otherwise,
Xo~H ¢ {0,...,ng—1} and we need a bitmore work togetaY  {0,...,np~1},
and an onto function from left to right, to get our contradiction.

Well, we first look at the subcase where f{ng) 1: then just ignore nyg; that is, take
Y = Xo — H — {ng}. Our function {onto {0,...,np —1}is f { Y.

Finally, consider the subcase where f{ng) = m. Take g = ( f = ({{ng,m)} u

H x {nn})) U (H x {m}). Essentially, g is f; except that it ensures that (a) we
get no output 1, (b) no ¢ dom(g), and yet (¢} we do obtain output m—to maintain
ontoness. Now, taking Y = Xy — {ng} weseethatg: ¥ — {0,...,n9 — 1} is
onto. O

1.3.0.37 Corollary. (Pigeon-Hole Principle} Ifm < n, then{0,...,m} #£ {0,...,n}.

Proof. If the conclusion fails then we have an onto f : {0,...,m} — {0,...,n},
contradicting 1.3.0.36. D

Here is a “quick proof™ of 1.3.0.37 that does not utilize 1.3.0.36: Since 4 ~ A for
any non-empty set, {0,...,m} has m + 1 elements. If {0,...,m} ~ {0,...,n},
then, by 1.3.0.34, it also has n + 1 elements. Impossible!

Pause. Do you accept this “proof” 7«
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You shouldn’t. “4 has ©» + 1 elements” is just informal jargon for “4 ~
{0,...,n}”. It may well be that this naming was unfortunate, and that it fails
te uniquely assign a number to a finite set as “the number of its elements™. That the
nomenclature in quotes is apt is the content of Corollary 1.3.0.37, not the other way
around.

1.3.0.38 Corollary. There is no onto function from {0,...,n} to N.

“For all n € N” is, of course, implied (cf, 1.1.1.10).

Proof. Fix an n. By way of contradiction, let g : {0,...,n} — N be onto. The

function f given below is onto from N to {0....,n + 1}
o =0
fly =1
f(2) =2

fin+)=n+1
flm) =0,forallm>n+1

Thus (cf, Exercise 1.8.34) (fg} : {0,...,n} — {0,...,n+ 1} is onto, contradicting
1.3.0.36. g

Our mathematical definitions have led to what we hoped they would: That N is
infinite!

N is a “canonical” infinite set, and sets that can be enumerated using natural
number indices
Qo 1y ...

have a special name.

1.3.0.39 Definition, (Countable Sets) A set A is countable, if it is empty or (in the
opposite case) if there is a way to arrange all its members in an infinite sequence, in
a “row of locations”, utilizing one location for each member of N. It is allowed to
repeatedly list any element of A4, so that finite sets are countable. For example, {1}

1,1,1,...

Technically, this enumeration is a total and onto function f : N — A. We say that
f(n) is the nth element of A in the enumeration f. We often write f,, instead of f(n)
and then call 72 a “subscript” or “index”. [

A closely refated notion is that of a set that can be enumerated using the elements
of N as indices, but without repetitions.
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1.3.0.40 Definition. (Enumerable Sets) A set A is emumerable iff it is in 1-1 corre-
spondence with [, O

1.3.0.41 Example. Every enumerable set is countable, but the converse fails. For
example, {1} is countable but not enumerable due to 1.3.0.38. {2rn : n € N} is
enumerable, with f(n) = 2n effecting the 1-1 correspondence f : N = {2n : n €
N} 0O

1.3.0.42 Theorem. if A is an infinite subset of N, then A ~ N,

Proaf. We will build a 1-1 and total enumeration of A, presented in a finite manner
as a (psendo) program below:

X — A

n {0

repeat forever:

pick a, the smallest member of X
tag ¢ with n as a subscript; print o,
n —n+1

X X —{an}

Since A in not finite, this process never ends. In particular, all the members of A will

be picked (picking always the smallest avoids gaps) and all numbers from N will be

utilized as indices, considering the non-ending nature of the process, the sequential

choice of indices, and the starting point n = 0. That is, the function f : N — A,

given for all n by f(n) = a,, is total and onto. Since f is strictly increasing—-

f(nr) < f(n + 1)—it is -1 (distinct inputs cause distinct outputs). ]
See also Exercise 1.8.35.

1.3.0.43 Theorem. Every infinite countable set is enumerable.

Proof. Let f : N — A be onto and total, where A is infinite. Let g : 4 — N such
that ( fg) = 1.4 (1.2.0.27). Letus set B = ran{g}. Thus, ¢ is onto B, and by 1.2.0.22
is also 1-1 and total. Thus itis a 1-1 correspondence g : 4 — B,or A ~ B.

B must be infinite, otherwise (1.3.0.34), for some n, A ~ B ~ {0,...,n}.
By transitivity of ~ (Exercise 31), this proves that A is finite, contradicting the
hypothesis. Thus, by 1.3.0.42, 4 ~ B ~ N, hence (again, Exercise 1.8.31) A is
enumerable. O

So, if we can enumerate an infinite set at all, then we can enumerate it without
repetitions. It is useful to observe that we can convert a multirow enumeration

(fi,j)foral] %7 in M

into a single-row enumeration quite easily. This is shown diagrammatically below.
The “linearization™ or “unfolding” of the infinite matrix of rows is effected by walking
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along the arrows.

{0,0) {0,1) (0,2} (0,3)
b 7 /

1LY Ly (12
A 2

2.0 @1
P

(3,0)

Technically, the set N x N—the set of “double subscripts” (¢, j)—is countable. This
can be seen by a less informal argument; in fact, N x N ~ N:

Perhaps the simplest way to see this is to consider the function f : N x N - N
given by f{m,n) = 2M3". 1tis clearly total, and (less) clearly 1-1: For the latter
just show that

9m3" = 2™ 3% implies m = m’ and n = n’

But ran( f) is infinite (see Exercise 1.8.36). Thus N x N ~ ran(f) ~ N.

This unfolding of a matrix into a straight line yields a very useful fact regarding
strings over countable sets (alphabets):

If the string alphabet V7 is countable, then the set of all strings of length 2 over
V is also countable. Why? Because the arbitrary string of length 2 is of the form
d;d;, where d; and d; represent the ith and j elements of the enumeration of V,
respectively. Unfolding the infinite matrix exactly as above we get a single-row
enumeration of these strings.

By induction on the length n > 2 of strings we see that the set of strings of any
length n > 2 is also countable. Indeed, a string of length n + 1 is a string ab, where
@ has length n and & € V. By the induction hypothesis, the set of all strings a can be
arranged in a single row (is countable), and we are done exactly as in the case of the
d;d; above (think of d; as an “a” and d; as a *b”).

Finally, let us collect all the strings over 1V into a set 5. Is S countable? Yes! We
can arrange 5, at first, into an infinite matrix of strings n; ;, that is, the jth string of
length i. Then we employ our matrix-unfolding trick above,

Given what we understand as a “string” (cf. subsection 1.1.3), the above argument
translates as

(1) If V is countable, then so is V™ for any n > 2.
(2} If V is countable, then so is VT

With little additional effort one can see that if A and B are countable, then so is

A x B and generalize to the case of X A,

i=1
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1.3.0.44 Remark. Letus collecta few more remarks on countable sets here. Suppose
now that we start with a countable set A. Is every subset of 4 countable? Yes, because
the composition of onto functions is onto (Exercise 1.8.34). As a special case, if 4
is countable, then sois AN B forany B, since AN B C A,

In particular, there is only an enumerable set of formulae if we start with a countable
alphabet V, since the set of formulae is a subset of V. This comment relates to the
discussion under the Panse on p. 41.

How about A U B? If both A and B are countable, then so is 4 B, Indeed, and
without inventing a new technique, let

Iy, 31, - - -

be an enumeration of 4 and
b(], f)l -

for B. Now form an infinite matrix with the A-enumeration as the st row, while
every other row is the same as the B-enumeration. Now unfold this matrix!

Of course, we may alternatively adapt the unfolding technique to an infinite matrix
of two rows. O

1.3.0.45 Example. Suppose we have a 3 % 3 matrix

s R
—_— O =
()

and we are asked: Find a sequence of three numbers, using only 0 or 1, that does not
fit as a row of the above matrix—i.e., is different from all rows.

Sure, you reply; Take 0 0 0.

That is correct. But what if the matrix were big, say, 10350000 5 1350000 o1 pven
infinite?

Is there a finitely describable techrigue that can produce an “onfit” row for any
sguare matrix, even an infinite one? Yes, Cantor’s diagonal method or technique.

He noticed that any row that fits in the matrix as the, say, i-th row, intersects the
main diagonal at the same spot that the i-th column does.

Thus if we take the main diagonal—a sequence that has the same length as any
row—and change every one of its entries, then it will not fit anywhere as a row!
Because no row can have an entry that is different than the entry at the location where
it intersects the main diagonal!

This idea would give the answer 0 1 0 to our criginal gquestion. While
1000 11 3 also follows the principle and works, we were constrained by “us-
ing only 0 or 1”7, More seriously, in a case of a very large or infinite matrix it is best to
have a simple technique that works even if we do not know much about the elements
of the matrix. Read on! 0
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1.3.0.46 Example, We have an infinite matrix of 0-1 entries. Can we produce an
infinite sequence of 0-1 entries that does not match any row in the matrix? Yes, take
the main diagonal and flip every entry (0to 1; 1 to 0).

If the diagonal has an a in row ¢, the constructed row has an 1 — ¢ in column ¢, so
it will not fit as row ¢, So it fits nowhere, 7 being arbitrary. [J

1.3.0.47 Example. (Cantor) Let 5 denote the set of all infinite sequences of 0s and
Is,

Pause. What is an infinite sequence? Our intuitive understanding of the term
is captured mathematically by the concept of a total function f with left field (and
hence domain) N. The #-th member of the sequence is f(n).«

Can we arrange g/l of S in an infinite matrix—one element per row? No, since
the preceding example shows that we would miss at least one infinite sequence (i.e.,
we would fail to list it as a row), for a sequence of infinitely many Os and/or 1s can
be found, that does not match any row!

But arranging all members of .S as an infinite matrix—one element per row—is
tantamount to saying that we can enumerate all the members of § using members of
N as indices.

So we cannot do that. S is not countable! O

1.3.0.48 Definition. (Uncountable Sets) A set that is not countable is called un-
countable. O

So, an uncountable set is neither finite, nor enumerable. The first observation
makes it infinite, the second makes it “more infinite” than the set of natural numbers
since it is not in 1-1 correspondence with N (else it would be enumerable, hence
countable) nor with a subset of N: If the latter, our uncountable set would be finite or
enumerable (which is absurd) according as it is in 1-1 correspondence with a finite
subset or an infinite subset (cf. 1.3.0.42 and Exercise 1.8.31 ).

Example 1.3.0.47 shows that uncountable sets exist. Here is a more interesting
one,

1.3.0.49 Example. (Cantor) The set of real numbers in the interval
(0,1 =z eR: 0 <z <1}

is uncountable, This is done via an elaboraticn of the argument in 1.3.0.47.

Think of a member of {0}, 1), in form, as an infinite sequence of numbers from
the set {0,1,2,3.4,5,6,7,8,9} prefixed with a dot; that is, think of the number’s
decimal notation.

Some numbers have representations that end in Os after a certain point. We call
these representations finite. Bvery such number has also an “infinite representation”
since the non zero digit d immediately to the left of the infinite tail of Os can be
converted to ¢ — 1, and the infinite tail into 9s, without changing the value of the
number.

k4
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Disallow all finite representations.

Assume now by way of contradiction that a listing of all members of (0, 1] exists,
listing them via their infinite representations

LApo g1 o2p3os - - -
SA1pt 12014014 - -
2002382202302 - - -
3003 432633034 - . .

The argument from 1.3.0.47 can be easily medified to get a “row that does not fit”,
that is, a representation
.dgdl(}fg e

not in the listing.
Well, just et

d = 2 ifaﬁ:UVam-zl
" 11 otherwise

Clearly .dgdrds--- does not fit in any row ¢ as it differs from the expected digit
at the i-th decimal place: should be a;;, but d; # a;;. It is, on the other hand, an
infinite decimal expansion, being devoid of zeros, and thus showld be listed. This
contradiction settles the issue. O

L.3.0.50 Example, (1.3.0.47 Revisited) Consider the set of all total functions from
N to {0, 1}. Is this countable?
Well, if there is an enumeration of these one-variable functtons

Jo,frfo e (1)

consider the function ¢ : N — {0, 1} given by g(x) = 1 — f.(x). Clearly, this must
appear in the listing (1) since it has the correct left and right fields, and is total.

Too bad! If g = f; then g(¢) = f;(¢). By definition, it is also 1 — f;{{}. A
contradiction.

This is a “mathematized” version of 1.3.0.47; as already noted, an infinite sequence
of 0s and 1s is just a total function from N to {0, 1}. O

The same argument as above shows that the set of all functions from N to itself is
uncountable. Taking g(x) = f,(2)+1 also works here to “systematically change the
diagonal” fo{0}, f1(1),... since we are not constrained to keep the function values
in {0,1}.

1.3.0.51 Remark. Worth Emphasizing. Here is how we constructed g: We have
a list of in principle available indices for g. We want to make sure that none
applies. A convenient method to do that is to inspect each available index, i, and
using the diagonal method do this; Ensure that g differs from f; at input i, setting

g(i) = 1 - fi{3).

?
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This ensures that g # f;; period. We say that we cancelled the index i as a possible
“f-index” of g.

Since the process is applied for each i, we have cancelled all possible indices for @
g: For no i can we have g = f;. |

1.3.0.52 Example. (Cantor) What about the set of all subsets of N —P(N) or 21'?
Cantor showed that this is uncountable as well: If not, we have an enumeration of

its members as
S, 51,593, ... (1)

Define the set _
DE{zecN:z¢ 8.} (2
So, D C N, thus it must appear in the list (1) as an 5;. Butthen i € D iff i € 5,
by virtue of I} = 5;. However, also ¢ € D iff ¢ ¢ S; by (2). This contradiction
establishes that 2N is uncountable. @
In particular, it establishes that D is not an 5;. il

1.3.0.53 Example. (Characteristic functions) First a definition: Given a set S in
the context of a reference set U, the characteristic function of .S, denoted by yg, is

given by
(z) = 0 ifxes
XSV itz ed
If the reference set is N, the characteristic function of § C N is

(z) = 0 ifzecsS

XS ifzen-8

Note that there is a i-1 correspondence F' between subsets of N and 0-1-valued
functions from N simply given by F(S) = xg—cf. Exercise 1.8.37. Thus

The set of 0-1-valued functions from N is in 1-1 correspondence with P(N)

In particular, the concept of characteristic functions shows that Example 1.3.0.52 fits
the diagonalization methodology. Indeed, xp{z) = 1 ~ xg_ () for all z. In other
words, ¥ p is nothing else but the altered “main diagonal” (in bold face type) of the

infinite matrix
So(0) So(1) So(2) So(3)
S1(0)  81(1) S51(2) 5(3)
5(0) S(1) S2(2) S(3)

0 €

1.3.0.54 Example. By Exercise 1.8.38 we have that 2N ~ 2N 5o that

The set of all subsets of N x M is uncountable
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The above can be rephrased to
The set of all binary relations on M is uncountable

Thus, if we build our formulae with symbols out of a countable alphabet, then we do
not have enough symbols to represent (in our notation) all binary relations on N by
formulae. This observation concludes our discussion that started on p. 41, following
Definition 1,2.0.4 and continued in 1,3.0.44, O

1.3.0.55 Example. (Russell’s Paradox is a Diagonalization) Russell formed the col-
lection of sets x given as
R={x:z¢x} (1)

He argued that it is contradictory to accept R as a set; For if it is, and given that (1)
is equivalent to the statement (for all sets )

reR=zédzx {2}

we can substitute the specific set B into the set variable x to obtain—from the truth
of {2)—the truth of the special case

RcR=R¢R

This, of course, is absurd!

Let us now argue infuitively—taking liberties with working with ali sets at once!—
that the above argument is a diagonalization over all sets.

Imagine an infinite matrix, Af, whose columns and rows are labeled by all sets,
arranged in the same order along rows and columns. Assume that the matrix has as
entries only the numbers 0 and 1, entered such that in the location determined by the
row (named) x and the column (named) y we have a 0 iff ¥ € x is true (we have 1
otherwise). That is,

yexitt M{z,y)=0 (1

It follows that each row represents a set as an array of Os and Is—that is, as the set’s
characteristic function.®

Thus, the partial depiction of the row for set @ informs us that the following are
true: a £ a, b € @ and x ¢ a. Indeed, any array, X, of Os and 1s whose entries are
labeled by the column names represents a collection of sets that has y as a member
iff the y-th entry of X is 0. For example, the diagonal collection

ab x
11
d=10---1---

“Recall that this is an inwitive argument showing the (ironic) indebtedness of Russell’s argument 0
Cantor’s criginal diagonalization method. Thus we will not be splitting hairs about quaims such as:
“Hrmn, is this characteristic function defined over the collection of all sets? Can we do that? Yes,
because this is only a gualitative argument (o tease ont the diagonal argument that was hidden in Russell’s
proof.
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contains b, but neither @, nor .

The matrix M

a b - =z

Let us do Cantor’s trick now: We take the main diagonal d and form an array d from
it, by swapping aif 1s with Os. This d cannot fit as a row anywhere in the matrix M
since it will disagree at the diagonal entry in any placement,

The fact that the collection of sets (named) d does not fit as a row of M means
that i is not a ser—because all sets are accounted for as row labels in M

But which collection does d represent?

Well, using the analogy of X above, yisin diff the y-thentry of d is Uiff the y-th
entry of dis 1 iff y ¢ y. Thus,

d = R, Russell’s “paradoxical collection”

1.4 INDUCTION FROM A USER’S PERSPECTIVE

In this section we will review the two widely used forms of induction, complete (or
strong) induction (also called course-of-values induction) and simple induction. We
will see how they are utilized, and when one is more convenient than the other; relate
them to each other, but also to another principle that is valid on natural numbers, the
least (integer) principle.

1.4.1 Complete, or Course-of-Values, Induction

Suppose that £2(n) is a “property”—that is, a formula of one free variable, n—of
the natural number n. To prove that $2(n) holds for all n € N it suffices to prove for
the arbitrary n that #(n) holds.

What we mean by “arbitrary™ is that we do not offer the proof of Z?(n) for some
specific o such as n = 42; or n even; or any n that has precisely 105 digits, etc. If
the proof indeed has not cheated by using some property of n beyond the generic
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“n & N, then our proof is equally valid for any n € N; we have succeeded in effect
to prove P(n), foralln € N (cf. 1.1.1.10 and 1.1.1.15).

1.4.1.1 Example. Suppose F(n) stands for the statement
0+14+243+--+2n=n(2n+1) (1)

One way to prove (1), for all n, is as follows: Fix, but de not specify, n—that lack of
specification makes it arbitrary. Note the pairs below—separated by semicolons—
each consisting of two nembers that are equidistant from the two ends of the sequence
0,1,2,3,...,2n

0,2m1,2n—-1;2,2n-2;...:n,2n—n

The above sequence is {almost) a permutation of the sequence 0,1,2,3,...,2n,
hence the sum of its terms is the same as the left hand side of (1), plus n.

Pause. Why “plus "7
We have .+ 1 pairs, the sum of each being 2n, thus the left hand side of (1) equals
(n+ 1)2n — n. An easy calculation shows that (n + 1}2n —n =n(2rn +1). O

Now the above endeavor—proving some F?(n) for the arbitrary n—is not always
easy. In fact, the above proof—attributed to Gauss—had a rabbit-off-a-hat flavor.
It would probably come as a surprise to the uninitiated that we can pull an extra
assumption out of the blue and use it toward proving £?(n), and not only that: When
all is said and done, this process, with the extra assumption, is as good as if we have
proved Z?(n) wirhout the extra assumption!

This out-of-the-blue assumption is that
Z(k) holds forallk < n (1)
or, put another way, that the history, or the course-of-values, of 2?(n), namely,
Z2(0), 2(1),...,P(n—1) (In

holds—that is, it is a sequence of valid statements.
The extra assumption, {7} or (IT), goes by the name induction hypothesis (LH.)
The technique of proving

for all n, we have that #°(n) holds (2)

using an LH. woward the proof, is called proaf by strong {complete, course-of-values)
induction.

The application (technique) of the proof by strong induction is:

(a} Pick an arbitrary n and prove the validity of 22{n) having also assumed the
validity of (I} or (I1}.
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{b) Once step (a) is completed, we conclude (2).

We note that the history, (11, of &#(n) is empty if = = 0. Thus every proof by
strong induction has two cases to consider: the one where the history helps, because
it exists, i.c.,, when we have n > 0; and the one where the history does not help,
because it simply does not exist, i.e., when n = 0.

Thus, the application of strong induction morphs into a two-step method:

(A) Pick an arbitrary n > 0 and prove the validity of 22{n), having assumed the
validity of (I) or (1I).

(B) For nn = 0 prove #(n)—i.e., P(0)—directly.
(C) Once steps (A) and (B} are completed, we conclude (2).

Some jargon: As we noted, (I} or (1) are called the LH. Step (A) above is called
the Induction Step (1.5.). Step (B) is called the basis of the induction. The process
(A)-(C) is proof by induction on n.

One often sees the basis done first, but it should be clear that it is just one of two
cases to be considered, and the cases can be taken care of in any order,

It cannot be emphasized enough that the phrase “Pick an arbitrary n > 0 and
prove. ..” is synonymous with “Fix, but do not specify, an n > 0 and prove ..."”

Clearly the LH., is for a fixed but unspecified n—not for all n, as the latter would
beg the very question we are called 1o settle by induction!

1.4.1.2 Example, (Example 1.4.1.1 Revisited) We will prove (1) above, for all =,
by strong induction, faithfully following the plan (A)~(B) above. Fix an arbitrary 7.
We have two cases:

Case n > 0. We assume the LH. and try to prove (1}). Well, we calculate as
fellows:

04+1+2+4 - +2n—D+2n—1+2n=(n—1){2An—-1)+1) +4n—1
=n—1}2n—-1)+4n -1
=2 -n-2n+1+dn—1

=2n2+n
=n{2n+1)
Note that the L.H. says
O+14+2+3+--+2k=k(2k+ D, fork <n (3)

This, in particular, is true for & = n — 1, a fact we have used in the first calculation
step above.

Case n = 0. In this case the statement to prove, namely, (1), becomes 0 = 0,
which is true. O

4
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Hm. The LH. (3) above seems to be an overkill given that only the case k =n — 1
was utilized in the 1.S. Good point! We take it up in the next example.

1.4.1.3 Example, This time we prove, for all n,
itn > 1, then n has a prime factor (4)

The reader will recall that a factor of n is a natural number m such that for some
natural number & we have n = mk. A natural number p is a prime number (or justa
prime) if and only if it is greater than 1, and all its factors are p and 1.

By strong induction, we take up first the case for an arbitrary (but fixed) n that
allows a non-empty history; thus we assume the LH. corresponding to {(4):

forall k < n,if k > 1, then k has a prime factor (I.H)

The non-empty history case corresponds ton > 3, since 1 < kand & < 2 are
inconsistent.

Let then n = 3. If nis a prime, then we are done (n is a factor of n). Alternatively,
suppose that it is not. Then there exist ¢ and b such that n = ab, where o £ 1 # b—
else n would be prime! Can a < 17 No, for then a = 0 and hence n = 0, contrary
to the case we are in. Thus ¢ > 1. Similarly & > 1. The latter yields n = ab > a.

Therefore the LH. applies to a, that is, 2 has a prime factor, p. This means that for
some m, ¢ = pm. But then, » = pmb, and hence n has a prime factor.

The “basis” encompasses all the cases that have empty history: n = 0,1, 2. For
the first two the claim is vacuously satisfied as n > 1 is false. For n = 2 it is satisfied
by virtue of 2 being a prime. (]

This example shows the value of an [.H. that refers to the entire history below n:
We have no way of controlling where a falls in the sequence 0,1,2,...,n — 1. Itis
unreasonable to expect that @ = n — 1 in general. For example, if n = 6, theng = 2
andb=3,ora=3andb=2 Butn—1=3.

1.4.2 Simple Induction

Since on occasion we will alse employ simple induction in this book, let me remind
the reader that in this kind of induction the LH. is not the assumption of validity of the
entire history, but that of just ?(n — 1). As before, simple induction is carried out
for the arbitrary n, so we need to work out two cases: when the 1 H. exists (n > )
and when it does not (n = 0). The case of proving £?(0) directly is still called the
basis of the (simple) induction.

The reader will notice that Example 1.4.1.2 can be recast under a simple induction
proof since in the fivst step of the n > 0 case we only have used the assumption that
(Distruefork=n—1.

Common practice has it that in performing simple induction the majority of users
in the literature take as LH, £?{n) while the LS. involves proving £#(n + 1).
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1.4.3 The Least Principle

The least principle states that each non-empty subset of natural numbers contains a
smallest (least) number.

1.4.3.1 Example. (Euclid) We prove that given a natural number & > 1, each natural
number n can be expressed as n = bg + r for some natural numbers ¢ and r , where
0 < r < b. We only argue the case . > 0 since the case n = 0 is trivial: n = 0b+ 0.

Soletn > 0. Note thatthe set S = {bx —n : 2 € NAbr — n > 0} is not
empty. For example, since bn. > n (by b > 1), itis bn —n > 0. By the least
principle, 5 containg a smallest number, which has the form dm — n for some m.
From m £ 0 (since — is not positive and cannotbe in S) wegetg=m — 1 € N.
Since by —n < b — n,itisbg —n & 5. Thus bg —n < 0,ie.n—bg = 0.

We set » = n — bg. Now, since bg < n < b{q + 1} (recall, m = g + 1) we have
0<n—bg<blg+1)—bg, thatis, 0 <r < b, O

A related result that does not need the least principle (nor induction} is that the
quotient g and remainder r are uniquely determined by n and b: Indeed, suppose that
we have

n="b¢' +7 (5)
0<r <b (6)
n=bq" +r" (7)
o< <b (8}
By (5) and (7) we have
blg' —q"| = |r" —+"| (9)

Can it be that |¢’ — ¢”| # 0? If 80, |¢’ — ¢| > 1, hence, multiplying both sides by b
and using (%),
| — [ > b (10)

(6) and (8) tell a different story though! They yield [e.g., think of (8)as —b < —"" < 0
and add with (6), term by term] —b < ¢ — r"” < b, that is |# — r”'| < b, which
contradicts (10).

We thus must answer the earlier question *“Can it be that |¢' — ¢”/| £ 37" by “no™.
But then (9) yields also # = r”, as needed.

14.4 The Equivalence of Induction and the Least Principle

Somewhat surprisingly, all three proof techniques, by least principle, by simple or by
course-of-values induction, have exactly the same power.

1.4.4.1 Theorem. The least principle is equivalent to course-of-values induction,

Proof. This proof requires two directions.
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One, we can prove the least principle, using strong induction: Indeed, let ) #£
& C N. We will argue, by way of contradiction, that 5 has a least element.

So let instead S have no such element. The plan is to use strong induction to
armive at a contradiction. We may encounter more than one such contradictions,
but the “primary” one that we will strive for is to prove that 5 = @—contrary to
hypothesis—which is tantamount to N = N — 5, or in many words:

for all natural numbers n,n € N— § (1)

For the basis, we argue that 0 € N — 5. Indeed, if not, then {} € 5 will be least in
S, contradicting what we assumed for 5. Let then pick an » > 0 and accept as L.H.
that for all k < n we have & € N — 5. It immediately follows that n € N — . for
otherwise it is the first n to enter S, which makes it least in 5! We have proved (1).

Two, we prove that strong induction is valid, by assuming that the least principle
is. That is, we will show the following, for any property &#(n):

If 2(0) holds, and if, foranyn > 0, 2(n) holdswheneverall of (0), ..., P(n—1}
hold; then P (n) holds for all n.

So we assume that the if-part of the italicized statement above is valid and prove
the then-part, that “3?(n) holds for all n”.

Well, assume we are wrong in our conjectured conclusion (then-part). But then
S = {n:-5(n)} is not empty.

By the least principle, we have a smallest member of 5, let us call it m, Now, m = 0,
since the italicized statement’s if-part includes the validity of £2(0). What about
0,1,2,...,m — 1 then? (Now that we know that m — 1 > 0, we may ask.) Well,
none are in S (all being smaller than m), that is, they all satisfy £2. But then, the
if-part of the italicized statement guarantees that 5?{m} must hold as well. This is
no good because it says m ¢ S

This contradiction forces us to backtrack over our “assume we are wrong” above.
So it is, after all, the case that £?(n} dees hold for all n. O

1.4.4.2 Theorem. Simple induction and course-of-values induction have the same
power.

Proof. That is, one tool can simulate the other. We need to prove two things:

One, whatever property £?(n} we can prove (for all n) via simple induction, we
can alse prove it using strong induction. Simple induction achieves this:

If 2(0) holds, and if, for any n > 0, F2(n} holds whenever % (n — 1) holds;

then P (n) holds for all n.

So assume the if-part of the italicized statement. Can course-of-values induction
prove the then-part, namely, that “4?{n} holds for all n"?

Well, strong induction will have to check that £2(0) holds: That much is given

by the if-part above. Now, for the arbitrary n > 0, strong induction’s LH, is that
2(0),...,2(n—1)allhold. Can this assumption produce the truth of $?(n)? Yes,
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because this strong LH. yields the truth of #?(n — 1). By the if-part of the italicized
statement above, this alone yields the truth of $2{n).
Now, by strong induction, we indeed get the then-part: Z(n) holds for all n.

Tiwo, conversely, we prove that strong induction is valid, by asswuming that simple
induction is. That is, we will show that the following statement is valid, for any
property #{n):

If 92(n) holds on the assumption that, for all & < n, 2(k} holds;
then 4%(n) holds for all . (2)

S0 we will assume the validity of if-part of (2), and then employ simple induction to
prove the then-part, that
Z?(n) holds for all n (3)

We will be a bit trickier here, so let us consider the new property 2(m) defined as
follows:
for all & < m, £2(k) holds {4)

So, instead of directly proving (3),
I will prove that, for all n € N, 2(n) holds (5)

1 deliver on the promise (5) by simple induction, which, by assumption, i$ the tool at
my disposal in this part of the proof: First, by (4), 2(0) says “for all k < 0, (k)
holds”. 1need to verify this, my (simple) induction’s basis. Fortunately, the statement
in quotes is vacuously rrue since it is impossible to refute it since a refutation requires
a k < 0 [that makes Z{k) false].

Next, let us fix an » and take the LH. that Z(n) is tue. We proceed to show
that . 2(n + 1} is true too, and this will conclude (5). Now, Z(n + 1) says “for all
k < n+1, 22(k) holds”, or, “for all k < n, £(k) holds”. Another way of putting
itis: for all k < n, and for k = n, 22(k) holds. That is, we want to show that

2(n) and #(n) hold (6)

Now 2(n) is true by the LH. of our simple induction. That is, for all k& < n, F(k)
is true, by the definition of £ in (4), But we have assumed the if-part of (2), and this
yields the truth of #(n). Thus (6) is established, i.e., 2(n + 1), is true. Hence we
have concluded (5). Having moreover just seen that 2(xn) implies &7 (n}, for any n,
(5) implies that $?(r) too holds for all n—and this statement is (3). O

At this point we can “strengthen” our inductions to “start” (basis) at any integer
ng > 0.

Simple induction with non zero basis: To prove that, for all n > ng, °(n) holds
just do:

(A} Prove the truth of F(ny).

(B) Fix an arbitrary n > ng and prove the truth of #2(n + 1} on the assumption that
Z(n) holds.
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Strong induction with non zero basis: To prove that, for all n > ng, £2(n} holds
just do:

() Prove the truth of 2(ng).

(b) Fix an arbitrary n > ng and prove the truth of 22(n) on the assumption that
(k) holds forall ny < k < n,

1.4.4.3 Exercise. Start by the trivial observation that the least principle helds on the
set Ny, = {ng,no + 1,m9 + 2, .. .}, namely: Every non-empty subset of N, has a
feast element. Now modify the proof of 1.4.4.1 (using N,,, instead of N, judiciously)
to conclude that the proof schema (a)—{b) above is equivalent to the least principle
on the set N, |

Conclude that the proof schema (a)—(b) is valid. O

1.4.4.4 Exercise. Imitate the proof of 1.4.4.2 to prove that the schemata (a)-(b} and
(A)—~(B) above are equivalent in power.
Conclude that the proof schema (AX(B) is valid. O

1.5 WHY INDUCTION TICKS

Induction is neat, but is it a valid principle? Why should we believe such a thing?
Unfortunately, the previous section does not shed much light other than the somewhat
surprising equivalence of the twe induction principles with the least principle.

It turns out that we cannot prove either of the three as valid from any substantially
simpler and therefore more readily believable facts of arithmetic. We can build
a plausible case, however. Given the equivalence of the three, let us use simple
induction as the pivot of our plausibility argument.

Stmple induction is, intvitively, a proof generator that, for each given property
22(n), certifies the latter’s validity for any n that we want: Recall that the combination
of the LH. and LS. establish for the arbitrary n, that if #{n) is valid, then so is
Z{n+1). Thus given the starting point, that is, the validity of Z2({(}}, we can certify
the validity of 22(1}. And then of Z2(2). If we repeat this process—of inferring the
truth of Z#(n + 1} from that of 2(n)—forn =0.1,2,3,...,k — 1, for any & that
we desire, then we will obtain the validity of $2(k} (in k steps).

Imagine the process running for ever. Then the truth of #?(n), forn =0,1,2,...
is established!

This argument is quite plausible, but glosses over two things: A mathematical
proof has finite length so it cannot be an infinite process running forforn = 0,1,2, ...
Moreover, we must be sure that “for all n € N” really means the same thing as “for
n=10,1,2,3,...7, or that N is the smallest set around with the properties*

(a) it contains 0

“4Some bigger sets that have the propertics (a) and (b) include Z, the set of all integers; {, the set of all
rational numbers; B, the set of all real numbers; and more.
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(b) if it contains n, it also contains 7 + 1.

By the way, by “smallest” we mean that any other set T with the properties will
satisfy N C T,

Hm. This sounds right! N is the smallest set there is that satisfies (a) and (b),
is it not? And if we are content with that, then here is a *real” proof of the simple
induction principle, one that has finite length!

Pick any property £?(n:) and assume that we have performed the steps of simple
induction, that is, we have already proved that

(A) 2(0) is true.
(B) Onthe LH. that &7(n) is true we have proved that 2 (n + 1) is true too.

Now let us form the set § = {n : F(n}}. By (A), we have that 0 € S—that is, S
satisties (a) above. By (B), if n € &, then also » + 1 € S—again, 5 satisfies (b)
above, Since N is the smallest that satisfies {a) and (b), we have N C 5. That is, for
all n € N we have n € 5. Expressing this in terms of 2(n) we have

for all n € N, ##(n) holds (1)

That is, performing successtully the steps of simple induction—(A) and (B)—on
Z(n) we have succeeded in obtaining (1) as induction promises. Induction works!

Not so fast. Let us pick any set K that satisfies (a) and (b} above. I will show by

induction that
foralln € N, n € R holds (2)

Well, the basis 0 € R is satisfied, since R obeys (a). Let us fix an » now and take
the LH. n € E. But, because R obeys (b}, we will also have n + 1 € R. By simple
induction, we have proved (2). But that says N C R. Since R was grbitrary we have
used inducticn to prove that M is the smallest set satisfying (a) and (b).

Thus the validity of induction and the just stated property of N are equivalent
principles and we are back to square one: We have not succeeded in providing a
proof of the validity of induction that is based an more primitive, non equivalent to
induction, principles.

However, it is expected that our discussion brought some degree of comfort
to the reader about the plausibility {and naturalness) of the induction principle!
Mathematicians have long ago stopped worrying about this, and have adopted the
induction principle as one of the starting points, i.e., nonlogical axioms, of (Peano)
arithmetic.

1.6 [INDUCTIVELY DEFINED SETS

One frequently encounters inductive—or, as they are increasingly frequently called,
recursive—definitions of sets. This starts like this: Suppose that we start with the
alphabet {0, 1} and want to build strings as follows: We want to include €, the empty
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string. We also want the rule or operarion that asks us to include 0A1 if we know
that the string A is included. So, some strings we might include are ¢, 01,0011 and
001, The first was included outright, while the second and third are justified by the
rule, via the presence of € and 01, respectively. The last one would be legitimate if
we knew that 0 was included. But is it? That is not a fair question. It becomes fair
if we consider the smallest—with respect to inclusion C—set of strings that we can
build, by including € and repeatedly applying the rule. Then it can be proved that
neither 0 nor 001 can be included in this smallest set.

There are several examples in mathematics and theoretical computer science of
“smallest™ sets defined from some start-up objects via a set of operations or rules
whose application on existing objects yields new ones to include, Another one is the
set of terms, formulae and proofs of logic. Further down we will encounter more
examples such as the set of partial recursive and primitive recursive functions. But
why look that far: Perhaps the simplest such smallest set built from initial objects
and the application of operations i1s N, as we have noted already: the initial object is
0 and the operation is ** + 17, the successor function.

The purpose of this section is to offer some unifying definitions and discuss their
connection to each other.

1.6.0.5 Definition. (Operations) An n-ary operation or rule is a (binary) relation R
such that whenever a Rb, then ¢ is an n-tuple. We will write R(a1,. .., a,, b) rather
than R({aj,...,an),b} or {a;,...,a,}Rb. We will call the sequence of objects
@1, ..., 0, inputs, and the object b an curput, or a result of R applied to the listed
inputs.

It is not required that the relation be single-valued in its outputs. O

1.6.0.6 Definition. (Derivations) Given a set of objects, 7—the initial objects—and
a set of operations 3. An {Z, O)-derivation, or just derivation if the context makes
clear which Z and  we have in mind, is a finite sequence of objects, a4, . . ., @, such
that every a; is one of

(1} amemberof 7

(2) aresult of some k-ary operation, from the set (, applied on k inputs among the
a; that appear before a; in the sequence —i.e., § < i for all such inputs a;.

We call the number n the length of the derivation. |

Since the legitimacy of any ¢, in a derivation never depends on a ay with & > 14, itis
clear that if @y, ..., @, ..., ay is a derivation, then so is a1, ..., ay.

Note also that nowhere does the definition ask that the o; be distinct. Indeed,
once an 4; is placed as the i-th element, for the first time, it can be placed again
thereafter—as a; = a;, with § > ¢-—any number of times we wish. The same reason
of legitimacy that applied originally to a; still applies to all the additional placements
Gg.

®
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1.6.0.7 Example. Let T = {0} and  contain just the relation (given in atemic
formula form} x + 1 = g, with y being the output variable. Then the reader can
readily verify that the sequences

0,0,1,2,2,2,3,0,0,4

and
0.1.2,3,4

are derivations. O

1.6.0.8 Example. Let Z = {0} and  contain just the relation (given in atomic
formula form) = + 1 = y, this time x being the output variable. Then the reader can
readily verify that the sequences

0,0,—1,—-2,-2,—2,-3,0,0,—4

and

0,—1,-2,—3,—4,—5,—6

¥

are derivations. O

1.6.0.9 Definition. A set S is built by steps from a set of initial objects, Z, and a set
of operations O as follows: 5 = {a : a appears in some (Z, O)-derivation}. O

If S is a set built by steps, then we can prove properties of its members by induction
on the lengths of their derivations.

1.6.0.10 Example. Given the alphabet {0,1}. Let T = {¢}, while  contains just
the operation on strings 0x1 = y—r being the input and y the output variables. We
will show that the set .S built by steps from the given pair {Z, () is {0™1" : 1 > 0},
where, for any string A, and n > 0, A" means

S —

. cupies of A

while A° means e.
We have two directions to establish set equality:

€. Forany e € 5 we do induction on its derivation length to show ¢ = "1™
for some . If the length is 1, then it can only contain e (initial object). Thus
a = 0°1° We take as L.H. the truth of the claim when « is in a derivation of length
< 1.

For the 1.H., suppose that ¢ has a derivation, a1,..., 5.

If o = a; with i < n, then since a,, ..., a; is a shorter derivation, we are done by
the LH. If @ = a,, we have two cases: One, ¢ is initial. This has already been dealt
with, Two, a = Da;1, for some ¢ < n.

By the LH. a; = 0™1™. Thus, a has the same form.
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2. Forany n > 0 we prove that 0"1™ must appear in some derivation. This is
done by (simple} induction on n. For n = 0 (basis) 0"1™ = ¢; in 5. Fix an n and
assume that 071" € § (this is the LH.)

For the LS. note that 07117+ = 00" 1" 1. The LH. guarantees a derivation exists
in which 0" 1™ occurs. Without loss of generality (see remark following 1.6.0.6) the
derivation has the form @y, as....,0™1". This can be extended to the derivation
ay, as,...,0"1" 00"171, hence 00™1"1 € 5. O

1.6.0.11 Definition. A set S is closed under an n-ary operation iff, for every n-tuple
of inputs chosen from S, all the results that the operation produces are alsoin 5. [0

For example, N is closed under x + y = 2 (z is output),  x y = z (z is output),
but not under x — y = z (z is output). For example, 1 — 1= -1 ¢ N,

1.6.0.12 Definition. (Closure) Given a set of initial objects, Z, and a set of opera-
tions, &. A set S is called the closure of T under O—in symbols S5 = CI{T, O)—iff
it is the smallest set that contains Z as a subset and is closed under all of the operations
of O.

A set such as Cl{Z, ) is also called recursively ot inductively defined from the
initial objects Z and rules ©. O

Note that “smallest” means C-smallest, that is, if 2 set T' contains 7 and is closed
under @, then S € 7. This attribute, smallest, directly leads to the technique of
(structural) induction over CI{Z, O):

Structural Induction: Let 5 = CI{Z, ) and ${z) be a property (formula). To
show that all ¢ € S have the property, do the following:

(1) Prove #{a)foralla € I.

(2) Prove that the property propagates with every R € O, that is, whenever the
inputs of R have the property, then so does the output.

The part “the inputs of R have the property” above is the LH. for B. There will be
one LH. for each E € ©. The LS. for the R in question is to prove that, based on the
L.H., the output has the property—i.e., the property propagates from the input side to
the output side of the “black box” R.

Why “structural”? Because the induction is with respect to how the set was built.

The process (1)~2) is (structural} induction over 8, or induction with respect

to S,

1.6.0.13 Theorem. Structural Induction works: That is, if (1} and (2) above are
indeed proved, then, for all a € S, P(a) holds.

Proof. Let P = {a: ?({a) holds}. Now (1) translates into Z C PP, while, by (2), for
any & € O, whenever all the inputs of B are in P [i.e., they all satisfy 2#(x}], then
so is the output, that is, P is closed under alf the operations of 0. By the “smallest”
property of 5 (1.6.0.12), we have 5 C P, that is, for all @ € S, Z#{a) holds. O
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@@ It turns out that not all properties $(x) lead to sets {z : J?{x)}—some such

collections are “too big” to be, rechnically, “sets” (c¢f. Section 1.3).

Qur preof above was within Cantor’s informal or naive set theory that glosses
over such small print. However, formal set theory, that is meant to save us from
our naiveté, upholds the “principle” of structural induction, (1)—(2), albeit using a
slightly more complicated proof. Cf. Tourlakis (2003b).

1.6.0.14 Theorem. Given a set of initial objects, I, and a set of operations, ©O. The
two sets: S—built by steps (1.6.0.9) from T and O—and CI(Z, O) are equal.

Proaf. For C we do induction on derivation length of @ € S. If the length equals 1,
then a € 7. Since T C CI(Z, O) by 1.6.0.12, the basis is settled. Assume next (I.H.)
that for all £ < n, if e occurs in a derivation of length &, then ¢ is in the closure.

I.S.: Let a occur in a derivation of length n. If it does not occur at the right
end, then the LH. kicks in and a is in the closure. So let ¢ be the last object in
the derivation. If it is initial, we have nothing to add to what we said for the basis.
Suppose instead that a is the result of an operation from € that was applied on inputs
@j,,- - -, @, that appeared to the left of o in the derivation. By the LH. all the a; ,
are in the closure. The later being closed under all operations from & we conclude
that the result of the operation, g, is in the closure.

For 2 we do induction over CI{Z, O): For the basis, if ¢ € Zthen q¢ € § via
a derivation of length 1. We now show that the property “a € 5” propagates with
every i} € . To unclutter exposition, and without loss of generality, fix an R—and
pretend without loss of generality that its arity is 3—and let its inputs a, b, ¢ be all in
8. Let R{q,b,c,d). Wewantd € S,

Well, by LH. there are three derivations . ...a,...;...,5..;and ... ,¢c,...

If we concatenate them into one sequence

S Y K <A
we have a derivation (why?). Due to the way d is obtained, so is
U TN K NP

But then d € S by the way S is obtained. 0

1.6.0.15 Remark. The above is a significant theorem: If we want to prove properties
of CI{Z, () as a whole, the best idea is to do structural indaction over the set, If on
the other hand we want to prove that some a is 2 member of CI{Z, O), then the best
idea is to provide a derivation for it,

Compare: If we want to prove a property of all theorems of a theory, then we do
induction over the theory that is built using 1.1.1.34 (and 1.1.1.38). If on the other
hand we want to verify that a formula is a theorem, then we produce a proof for it.
Evidently, by1.0.0.14 we have that the iterative definition of “theorem” in 1.1.1.34
is equivalent with the inductive one: The set of all theorems is CI(Z, O) where T is

(4%
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the adopted set of axioms and O is the adopted rules of inference. Cf. also 1.6.0.17
below.

Note that since b appears in a derivation iff it is either initial or a result of
some R € O applied on prior members of the derivation—and the latter
is tantamount to saying “members of C1{Z, O)” because of 1.6.0.14—we
have the following very useful “membership test”:

b€ CHZ, O) iffb € T orb is the result of some rule applied to members
of CU(Z, 0).

In words, the theorem says that the inductive approach—forming the closure—and
the iterative approach, building one element at a time via a derivation, yield the same
result. |

1.6.0.16 Example. Let 7 = {3} and O consist of juste + ¢y = 2z and ¢ — ¢y = z,
where in both cases z is the output variable. We are thinking of Z as our reference
set here. Let us see why we have

CUZ,0) = {3k : k € 7} (1)

For the C we do, of course, induction over CL{Z, (7). Well, T contains just 3, and
3 = 3 x L, hence is in the right hand side (rhs) of (1).

Let us see that membership to the right propagates with the two rules: So let g
and b be in the rhs. Then a = 3m and b = 3r for some m, r in Z. Trivially, each of
a+ band ¢ — bis a multiple of 3.

As for 2, let a be in the ths, that is, « = 3k for some k € Z.

Case 1. £ > 0. Let us do induction on & > 0 to show that 3% in the left hand
side (lhs). Well, if & = 0, then we are done by the derivation 3,0 (why is this a
derivation?}.

Take as LH. the truth of the claim for (fixed) & and go to k£ + 1. Given that
3(k + 1) = 3k + 3, we are done by the LH. and since the lhs is closed under
&+ y = 2z (of course, 3 is in lhs).

Case 2. k < 0. Well, 0 € CI{Z, ©): indeed, apply x — y = 2 to input 3, 3. But
then 3k € ClZ,O) as well, since 3k = 0 — 3(—k); now apply the same rule on
inputs 0 and 3{ —k) with the help of Case 1. O

1.6.0.17 Example. Let us work within arithmetic (simply for the sake of having a
fixed alphabet of symbols). We take as 7 the set of all logical axioms {1.1.1.38), and
these two rules form O:

M{Z , %, %) holds iff % has the form 2 — % {MP)

and
G(Z, %) holds iff & has the form (Vz).2" for some = (Gen)

That is, our familiar MP and Gen. So, what is C1{Z, ¢}? But of course—immediately
from 1.6.0.14—it is the set of all absolute thecrems (provable without nonlogical
axioms) that we can prove if we employ as our only rules Gen and MP (cf. 1.1.1.34).
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By induction over this Cl{Z, ())—or as logicians prefer to say, by induction on
theorems—we can prove the soundness of this proof system: That every theorem,
i.e., member of CL(Z, O}, is true.

Well, the claim holds for Z as we already know (1.1.1.39).

We only need to show that the claim propagates with the two rules above: Indeed,
the MP is a special case of tautological implication, and Gen preserves truth by
1.1.1.15. O

In 1.1.1.34 we adopted all tautological implications—not just MP—as rules. This
was expedient. It suffices to include just one such implication: MP. The interested
reader can see why in Tourlakis (2008, 2003a).

Both examples 1.6.0.7 and 1.6.0.16 employ rules that are functions (single valued).
Example 1.6.0.17 on the other hand has a rule that is not a function:

input: < output: (¥}

since for each of the infinitely many choices of & we have a different cutput (why
“infinitely many”7)

A more crucial—and troublesome—observation is this: In 1.6.0,7 every member
of the closure has a unique immediate predecessor. Not so in Examples 1.6.0.16
and 1.6.0.17. In the former, 12 could be 15 — 3 or 6 + 6 or 9 + 3. Indeed, 3 is
both initial, and something that can be (re)built: 6 — 3, for example. In the latter
example, if & & — & yield 2 so do infinitely many pairs 2, 2" — # for all
possible choices of 2. This phenomenon is called armbiguity.

1.6.0.18 Definition. (Ambiguity) A pair Z, O is ambiguous if one or more of the
following hold. Otherwise it is unambiguous.

(1) For some a € CHZ, ©) and some n-ary rule B € O, there are (p1,....p.) #
{q1,...,qn) suchthat R(py,... p,, a) and R{qy,..., qn, a);

(2) For some ¢ € CH{Z, ) and two distinct n-ary and m-ary rules R and
in @, there are (p1,...,pnr and {¢1,..., ¢} such that R(p1,...,pp,a) and
Q(qls iy fmy Ct.);

(3) For some element & € 7, there is an n-ary rule R € O, and a tuple {py,....p,)
such that B(py,...,pn. @)

Ifa € CI{Z, Q)Y and R(p1, . .., pn. ) holdsforsome R € O, wewillcall {p1,...,pn}
a vector {or sequence) of immediate predecessors of a. For short, i.p. O

1.6.0.19 Example. Here is why ambiguity is trouble. Let us start with the alphabet of
symbols A = {1,2, 3, +, x }. We will inductively define a restricted set of arithmetic
expressions (for example, we employ no variables) as follows. Let T = {1,2,3} and
let {7 consist of just two string operations;

from strings X and ¥ form X 4+ Y {1)

%
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from strings X and ¥ form X x Y (2)

Some examples are 1 4 1, 2 x 1 and, more interestingly, 1 + 2 x 3, What do these
strings mean? Let us assign the “natural” meaning: “1” means 1, “2” means 2, and
“3” means 3. “+” means add {plus) and “x” means multiply. Thus, extending this to
an arbitrary member of CI(Z, O) we will opt for the natural approach: As CI{Z,0)
is defined inductively itself, why not effect a recursive definition of meaning via a
function “EV” (for “evaluate”), which will compute the value of a member A of
CI{Z, O) by calling itself recursively on A’s i.p.
Therefore, we define (if you will, we program) EV by:

EV() =1
EV(2) =2
EV(3) =3

EV(X +Y)= EV(X) + EV(Y)
EV(X x Y)= EV(X) x EV(Y)

So what is the value (meaning) of 1 + 2 x 3? Well,
EV{1 +2x3)=EV(l +2}x EV(3)
- (EV(1) + EV(Q)) x 3
(1 + 2) %3
9

Ne, no, you say. Itis

EV(1+2x3)=EV(1) + EV(2 x 3)
= BV(1) + (EV(?) x EV(3))

iH(ZXS)

We are both “right”, of course. The pair Z, © is ambiguous; in particular, the string
142 x 3has twoi.p.: {1+2,3} on which the first computation is based, and {1, 2 x 3)
on which we based the second computation. O

While we are on the subject of closures, let us look at the very important transitive
closure of a relation.

1.6.0.20 Definition. (Transitive Closure) The transitive closure of a relation R is
the smaliest (in the sense of inclusion, C) transitive relation that includes R, that is,
if € is a transitive closure of R, then we must have

MWDRCQ

(2) @ is ransitive, and

(3) If T is transitiveand R C T, then @ C T 0O

(1) While we have no a priori reason to expect that transitive closures exist just by
virtue of us coining this term, we can say one thing:
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A relation R cannot have more than one transitive closure. Indeed, if ¢} and Q°
are both transitive closures of R, then having ' pose as “T™ we get () C €. Next,
having (J so pose, we have (' C . Thus, = .

(2) Intuitively, we can imagine the (we can now say “the™) transitive closure of a
relation R as the relation that we get from R by step-by-step adding pairs {a. ¢) to the
relation that we have built so far, as long as, for some b, {a, b) and (b, ¢} are already
included. We stop this process of adding pairs as soon as we obtain a transitive
relation via this process. This observation is made precise below.

1.6.0.21 Theorem. Forany relation R, its unique transitive closure exists and equals
ClZ, ), where I = R—a set of ordered pairs—and O contains just one operation
on pairs that, for any fwo input pairs {a,b) and {b.c) (note the common b), the
operation produces the pair {a.c).

We will denote the transitive closure of R by BT,

Proof, We show that CI{T, (0) satisties (1)}-(2) of 1.6.0.20, which will confirm that
R* = Cl{Z, O). For (1), we are done by the property Z C CI(Z, O) of any closure.
For (2) we are done since CI(Z, O) is closed under the operation in O: If {a.b) and
{b, ¢} are in CK{Z, (0}, then so is {a, ¢}.

For (3), let T be transitive and R C T'. We want to show that Cl{Z, 0} C T. Well,
both T and CI(Z, ) are supersets of R and are closed under the operation “if {a, b}
and {b, ¢} are included, then so is {a,c}”. But, as a closure, Cl(Z, ©) is C-smallest
with these two properties, therefore C1(Z, ) C T as needed. a

T

1.6.0.22 Corollary. Forany relation R, its transitive closure R isequalto|J,, >1 R"

We also may write
[
R*={Jrm
n=1

Proof Letusset @ = |J,_, R" and prove that Q = Cl{Z, @), where Z,  are as in
[.6.0.21.

For Q C CI(Z, ) it suffices to prove that R™ C CI{Z, O}, for n > 1, by induction
onn: Forn =1, a R! bmeans ¢ Rbthus {a, b} € CI(Z, O) since R = Z. Taking the
obvious LH. for n we next let o B**! b, This means that for some ¢ we have o R e
and ¢ R™ b. By the basis and LH. respectively we have {a, ¢} and {c, b} in C1(Z, ),
hence {a, b) is in C1{(Z, O) (transitivity).

For ) D CI{(Z, ) we do induction on the closure. Since Z = R C Q. we only
need show that @ is transitive. Let then a @ ¢ and ¢ (b, hence, for some m and n,
& R™ cand ¢ R™ b, Therefore ¢ R™ ¢ R™ b and thus @ R™1™ b by Exercise 1.8.42.
Thus a Q b. O

1.6.0.23 Remark. (1) Thus, we have a BT b iff, for some n, « B" b iff, for some

sequence
Ay ... 0y

4
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where ap = « and a,, = b, we have
a;Ra; 1, fori=0,1,...,n—1
The notation below is also common.
a BT b iff, for some aj, itisaRa; RasRaz-+-a; Rajy1  dn_2 Ra, 1 RE

(2)If Ris on A, then its reflexive transitive closure is denoted by R* and is defined @
by 14 URT, Thatis,a R*biffa =bora Rt b O

1.7 RECURSIVE DEFINITIONS OF FUNCTIONS

We often encounter a definition of a function over the natural numbers such as

Ffio,m)y=10
Ffin+1,m)= fln,m) +m

Is this a legirimate definition? That is, is there really a function that satisfies the
above two equalities for all n and m? And if so, is there only one such function,
or is the definition ambiguous? We address this question in this section through a
somewhat more general related question.

1.7.0.24 Example. Let us fock at a simpler question than the above and see if we
can produce a good answer. First off, is there a function ¢ given by the following two
equalities for all values of n?

9(0) =1
gln+1)= 29(n)
Well, let’s see: By induction on rn we can show that g{=n) | for all n: Indeed, this is

true for n = 0 by the first equality. Taking the LH. that g(n) .| (for a fixed unspecified
n) we can compute g(n + 1) so indeed

g{n) | foralln

We can say then that the function ¢ exists; right?

Wrong! A function is a set, in this case an infinite table of pairs (if we take its
existence for granted). We did nof show that it exists as a tabie of pairs; rather we
have only shown that

If a g satisfying the given equalities exists, then it is total *

43The set of texts on the subject of the theory of compitation, which seriously propose the above erronecus
“proof” of existence is non-empty.
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We can however prove that any two functions satisfying the equalities must be
equal, That is, if A 1s another such function, then & = g or, on an input by input basis,

g{n) = h(n), foralln (1}

Note that we wrote = in (1), rather than = (¢f. 1.2.0.11), since we already Inow that
if a function satisfies the given equalities, then it is total,

As for (1), for n = 0 we are done by the first equality. Taking as LH. the case for
some fixed n, the case for n4-11is easily settled: g(n+-1) = 290" = 22} — p(n 1),
where the middle = is due to the LH. O

So how do we settle existence? We build a function f (or g) given as above
either iteratively, by stages [which is the usual approach in the literature, when
done correctly; cf. Tourlakis (1984)] or as a closure; a set of the form C1(Z, O) for
appropriate Z, ¢). The latter approach is from Tourlakis (2003b}, which also develops
the iterative appreach. Mindful of the example in 1.6.0.19, we will define functions
recursively on an inductively defined set C1{Z, () that is given via an unambiguous
pair Z, O,

1.7.0.25 Theorem. (Function definition by recursion) Let 7, O be an unambigu-
ous pair and CI(Z, 0} C A, for some set A. Leth:T — Band gg : A x B" —+ B,
for each r-ary R € O, be given functions. 3

Under these assumptions, there i a unique funcion f : CL(Z,0) — B such that

y = hiz) andr el

y = f(z)iff OR, forsomeR e O,
¥ = gr(c,01,...,0.) oand Rla;,..., a.,x} holds,
where o, = flag), fori=1,...,r

(1

The reader may wish to postpone studying this proof, but he should become
thoroughly familiar with the statement of the theorem, and study the examples that
follow the proof.

Praof, To prove the existence of a “solution” f to the given recursive definition (1),
we will build a single-valued binary relation F € A x B, which, when we rewrite
F(z,y)as “y = F(z)"—with y as the output variable—satisfies (1) above. To build
it, we will realize it as an appropriate C1{.7,7'), for appropriately chosen initial set
J and set of rules 7. R

For each r-ary rule R € O, define the r-ary rule R by

R({a1,01), - (@r, 0,0, (b, gr(Br 01y - ., 0,))) iff Rar,... a0, 8)  (2)

# An r-ary operation (rule) is an (r + 1)-ary relation; ¢f. 1.6.0.5.

4
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For any a1, ..., a, b, the above definition of R is effected for all possible choices of
01, ...,0p in B for which gg(b,01,..., 0.} is defined,

By the way, there is no mystery in the definition of R (the name chosen to show
the close association with R): If we anticipate that (1) does have an f-solution, we
can then view the o; as the f{a;). Then R’s job is—once we give if, in the form of
input/output pairs, where the outputs are those of f on all the i.p. of b—to compute
F(b} using g and to output the input/output pair (5, f(b})}.

Collect now all the rules R as defined, to form the rule-set 7.

As the initial objects-set .7, which we will associate with the rule-set 7, we take
J = h—thatis, {x,y) € Jiff h(z) = y.

Claim 1. The set F = C1{7, T) is a single-valued binary relation CI{Z, ?) — B.

Proof of Claim 1. Firstoff, that F' C CI{Z, () x Bisimmediate: 7 C CI(T, ) %
B, and each relation of T has as output a pair in Cl{Z, O) x B, by definition (2).

We next establish that F is single valued in its second component, doing induction
over CI{J, 7). The claim to prove will be

if {a,b) € Fand {a,c) € F,thenb=c¢ (%)

Basis: Suppose that {a,b) € 7 and let also {a,c) € F.
By 1.6.0.15, the latter entails, in principie:

(i) {a,c) € J. Then ¢ = h{a) = b,

OR,
(i) for some r-ary B € T, we have R({a1,01),...,{ar, 0.}, {a,c)), where
Riay,...,an,a), ¢ = grla,o1,...,00),and {a1,01),...,{Gr Or) arein F.

The right hand side of the capitalized “or” cannot be applicable—due to its
requirement that R(a;, . . -, ¢, a)—given that ¢ € T and (Z, O)is unambiguous.
We next prove that the property () propagates with each @ € 7. So, let

Qllar, 01}, ... {ar, 00, (@, 1))
Since by the previous argument {a,c) ¢ 7, let also
P((@}, 04}, -, af, o}), (a,))
where Q(a,...,a.,a) and Pla},...,a},a), but also [cf. (2)]
b=ggola,01,...,0-)and ¢ = gpla,o},...,q}) (3)

Since (Z,}) is unambiguous, } = P (hence also é = 13); thus » = {, and
a =a,fori=1,...,r
ByLH., 0; = o}, fori =1,...,r, hence b = e by (3). End of proof: Claim 1.

Claim 2. F satisfies (1). Now that we know that F' is a function we can write

b= F(a) for {a,b} € F
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Our task here is to show that if we replace the “(function) variable” f in (1) by the
constructed F, the “iff” stated in (1) will hold.

() direction: We prove that the right hand side (rhs) of (1) implies the left, if
the letter f is replaced threughout by F'. The rhs is a disjunction, so we have two
cases to consider [cf. 1.1.1.48(a)]. First, let z € T and y = h{x). Since h = 7 C F,
we have that F'(x, y) is true, that is, y = F(z).

Second, consider the complicated side of OR in (1): So let, for some B € O,
y=gr(z,01,...,00), where R{ay,... ,a..7)and 0; = Fla;), fori=1,...,7.

By (2), ﬁ( {a1,01), ..., {ar, 0.}, {2, 1)), thus—F being closed under all the rules
in R—{z,y) € F; for short, y = F(z).

{—) direction Now we assume that F'(x,y) holds. We want to infer the right
hand side (of i) in {(1)—with f replaced by F.

So let y = F(z)}. There are two cases according to 1.6.0.15:

Case 1. {z,y) € J. Thus (by 7 = h) y = h(z), and x € T (definition of 7); the
top case of (1).

Case 2. Suppose next that {z, 3} € F because, for some é & T, the following
hold (see (2)):

(a) ©(<a1}01>,...,(a,«,Or),(«"'},y))
o Qley,...,a,,7)
©) y=gglz,01,...,0;)

(d) Allof {a1,01),....{a.,0.) arein F

By (d), o; = F(a;),fori = 1,...,r. But then the conjunction of the foregoing
observation with {b) and (c) is the right hand side of the OR,; as needed. End of proof:
Claim 2.

Uniqueness of F'. Let the function K also satisfy (1). We show by induction over
CNZ,O) that

Forallz e C{Z,O)and ally € B, y= F(x)iffy = K(x) {4}

(=) Letx € 7, and y = F(z). By lack of ambiguity, = has no i.p. Thus,
y = h{z). But then, y = K {x), since K satisfies (1).

Let now Q}{ai1,...,a.,z) and y = F(x). By (1), there are (unigue, as we now
know) 01,...,0.suchthato; = Fa;), fori =1,...,r,and y = go(z,01,...,0.).
By the LH., 0; = K({co;}. As K satisfies (1), y = K(z).

(<) The roles of the letters ' and K in the above argument being symmetric,
we need say no more. O
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The above formulation with the so-called “graphs™ of the utilized functions—a
term applying to the relation y = f(xt)*"-—rather than writing, say,

h{x) ifec?l

golz, flay). ..., fla.)) ®Qf{ay,...,ar,2) holds,

=) =

appears to be unnecessarily cumbersome. Cumbersome, yes, but not “unnecessarily™:

In the used formulation, by keeping an eye on both the input and output sides at
once, we took care of the partial function case (fotaf or not) without having to worry
about points of undefinition of the defined function or to use Kleene equality. In fact,

i

using “=" above is incorrect in the nontotal case.

1.7.0.26 Example, Referring back to Example 1.7.0.24, we see that the defined
by recursion g exists (and is, of course, unique): Tt is defined over the set N =
CI({0}, {S}), where I denoted by S the successor rule:

S(z,z+ 1), forallxin N

The rule is clearly unambiguous, so Theorem 1.7.0.25 applies. O

1.7.0.27 Example. Fix rz > 0 from N and consider the rule B below
R{{z. %), (z + L Yn)), forall z, y; in N

and form Ny, = CI(Z,{R}), where 7 = {(0,§,) : forally; in N}.

The rule R is clearly unambiguous: every (1, 1, ) is either initial or has the unique
ip. {x — L,y,). Thus Theorem 1.7.0.25 applies—N,, = N"*!, of course—and
enables recursive definitions like the following, based on two given functions A and
g from N” and N"*! x B respectively to some set I3, to produce unique f-solutions.

h(g) itz =0
fla,in) =~ (1)
g(.’f_.‘,, :'l:':‘H.'.‘ f(ﬂi - 1: gﬂ)) otherwise

As isusual, we listed the arguments, e.g., in f, in their proper order, however omitting
the {...} brackets.

The above recuerence is the primitive recursion schema of Kleene, and it will play
quite an active role in the next chapter. It is customary to write the schema in this
form:

FL0,5n) = h(¥n)
fle+1,80) ~ §'(2,Fn, f(2.50))

“TToplot f{z) you plot the pairs (. ) such that y = f(x); hence the terminology “graph™.

N4
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where g’ is g, but modifted to accept input 2 rather than x + 1 in the first argument
slot.

Incidentally, the recursion given at the very opening of this section—taking there
B = N—fits the primitive recursion schema above, so the function it defines exists
and is unique. The reader will immediately recognise that the function defined there
is multiplication, 1 % . O

1.7.0.28 Exercise. Prove that if k and g are total, then so is f defined by (1) above,
so we can replace ~ by =. O

1.7.0.29 Example. What aboul a rccursion like this, where we still take our inputs
(of £} from N?

h{Fn) ifz=0
g(:r,, Ty {f(D,jr}',,,), e fle =2, 80, fle— l,ﬁn)}) otherwise

Before we answer this, a few comments on intentions, and notation. We intend that
the value f{z, 7, ) is computed based on our knowledge of the entire history of values
of f—or course-of-values [Kleene (1952)]—at the set of all previous “points”

{40, 5b. (1, G (2 — 1,5} | (0

As we can have no functions of a variable number of arguments, we have tentatively
grouped the entire history into a single ser-argument. It turns out that it is more
profitable to use a set of pairs of inputs and outputs {of f) rather than just outputs in
the recursive call embedded in g above, since such pairs can natarally handle nontotal
functions—the pair {a, f{a)} is listed iff f(a) |.

F(0,5) = h(fh)
P+ 1,50) = g/ (2.5, { (0.5, FO.F))s- - (& = 1,50}, Flz — 1.G)) })

The switch to g’ from g reflects the modification to the z-argument and to the set-

argument.
Now, if we call the set (1) “S;_, gz, for the sake of convenience, we may rewrite
the above recurrence more correctly, and without “...”, as

F0.5a) = 1) @)
f@+ 1,8 = ¢ (2,901 [ Seg) @
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Here is now why the recurrence (2)-(3) has a unique f-solution: Let us write
H{z,¥,) as an abbreviation of f [ 5, 7 . We can then have—using (2)-(3)—a
(simple) primitive recursion (as in 1.7.0.27) for H:

H(0.90) = {{(0,8a), h(Fn) | @
Hz+L§) = H@. ) U{({e+ LG, ¢ (2,50, Hiz 3)) )} )

A unique H exists that satisfies (4)-(5), by 1.7.0.27. But f(x, §in) ~ H(z, ) (x gn)
for all z, #,; so f exists and is unique.*®

Given that H{x,%,.) = f | 5S¢ 5, —a single-valued table of tuples—we
see that evaluating H(xz.¢,) at (§,7,}), fori = 0,1,..., 2, we end up
with the output (if it exists) of f at input {2, #,}. That is, the expression
“H(z,¥n)(x,%,)" above makes sense, and, when defined, teases out
f(z, 7).

It we work strictly within arithmetic-—that is, we allow no set arguments, in
particular—then one neat way to deal with a sequence of numbers is to code them by
a single number. Applying this trick reduces once again the original recursion to the
standard schema of Example 1.7.0.27. This approach has additional important side
benefits and we will revisit it in the next chapter. O

1.7.0.30 Example. Let A = {1, 2}. In this example we consider only functions with
inputs from A* and outpats in A*, Suppose that £, g; and go are such given functions
of n for the first and n + 2 variables for the other two. The recursion (for fixed n > 0)

fle,gn) = h(gn)
f(l? * 13 g’n)z §1($, gm f(;t,, gn))
f($ * 2, gﬂ)g 92(371 J.":"-;h f(.’.i’:, ?;".n))

“

is called right primitive recursion on notation—"right” since we change x by con-
catenating & 1 or 2 to its right; “on notation” since we are thinking in terms of the
notation rather than value of = when we increment it.

Given the h and the g; there is a unique f that satisfies the three equalities above,
for all , §,,. To apply Theorem 1.7.0.25 we define A}, as CI{Z, () where (7 has two
rules,

Ri{{x, §a), {& + 1,9,)), for all £, §, in A*

and
RQ((LE, ﬁz): (x * 2: ?;’.n))’ for all &, gn in A*

We define T as {{¢,#,) : forall g; in A%}
Clearly the pair 7, O is unambiguous and 1.7.0.25 applies to the recursion on
notation schema above, proving existence and uniqueness of f.

“¥The “g-function” in (5) is G{z, Fn, Z) =~ Z U {<{:c + 1, gn) g (:r, T, Z]))}, where Z is a set
argwment. Tf the right field of the original / and g is a set B, then Z takes its values from P(N™+! x B).
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One can similarly utilize /eft recursion on notation, going from x to i+, fori = 1

or: = 2. O

1.8 ADDITIONAL EXERCISES

1.

7.

Let us first define: The set of propositional formulae of, say, set theory, denoted

here by Prop, is the smallest set such that

(1) Every Boolean variable is in Prop (cf. 1.1.1.26)

(2) If & and 2 are in Prop, then so are {~.) and (& o %} —where T used o as
an abbreviation of any member of {A, v, —, =}.

If we call WFF the set of all formulae of set theory as defined in 1.1.1.3, then

show that WFF = Prop.

Hint. This involves two siructural inductions, one each over WFF and Prop.

. Prove the general case of proof by cases (cf. 1.1.148): & — B, - 2 +

FdNE > BV G,

. Letusprove b z = y. By way of contradiction, let us assume —x = y (i.e., & 3 ).

Using substitution (1.1.1.42) we obtain ~x = x which along with axiom (v)
(1.1.1.38) and tautological implication yields the contradiction x = z A ~x = .
Done.

Hm. There is something very wrong here! Clearly, x = y is not true, hence a
proof of it must be impossible (cf. soundness, p. 20). What exactly went wrong
with our “proof™?

. Verify that for any (formal) function f[z] we have F z =y — flz] = fly].

Hint. Start with (vi) of 1.1.1.38 taking as “.&/[z]” the formula flz] = f[z].

. Give the missing details of Example 1.1.2.14.

. This is a useful but simple exercise! For all sets A, B, C prove:

(i) AUA=A and ANA=A
(i) AU(ANB)=A and AN(AUB) = A

(1) AU(BNC)={AUBIN(AUC)and AN(BUC)=(4NBYU{ANC)
(ivy ACB=AUB=B8 mdACB=ANB=4

Compute | J{2}.

8. Compute [ &.

9.

Compute ({7}
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10.

11,
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Use induction on n > 2 to prove that if (&, @2, .., zn) = {¥1,¥2, -

fori=1,...,n, wehave z; = ;.
Can A" be also defined as

Al =4

and, forn > 1

12.
13.
14,
15,
16.

17

18.

19.
20.

21.

22,

Artl= A x A7

Why?

What is 4 x 17 Why?

Provethat Ax B =0 x A =49.

Prove that A x B=@iff A=0or B=0.

What is P{A) if A is an orelement?

-+ Hn ). then,

Assume an intuitive understanding of “the set A has n elements”. Prove by
induction on n that 2 has 2" elements. This motivates the notation *24”.

Hint. Show carefully that adding one new element to A doubles the number of its

subsets.

Show that for any function f : A — B, f{a) 1= f_.{{a}) = @; and f is onto iff

(o € B)fo_({z}) #D.

Show by an example that function composition is not commutative. That is, in

general, (gf) # (fg).

For any function g and sets X and Y, we have g (X — Y} = g (X) — g (Y.

Let f: X = Ybegivenaswellas A C Y and B C Y. Prove that

* f{AUB)=f (AU f_(B)
o f(ANB)=f. (AN f(B)

Let f: X ~ Y begivenaswell as A C X and B C X Prove that

e fL(AUB) = f,(A)U,(B)
o fL{ANB)C fL{A)N f(B)
e B C Aimplies that f,{A~ B) 2 f,{A) - f(B)

Let f: X — Ybegivenas wellas A C X and B C Y, Prove that
o« fe (1)) 24



23,

24,
. Suppose that f : A — B. Then (15f)= fand{f14) = f.

27.

28,

29,

30,
31.
32
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T

Let the relation B : )X A; — Aj be given by

=1

R={{{a1,....0%,... an}.ax) :a; € Aj,forj=1,...,n}

(1) Prove that R is a total function. We call it the k-th Cartesian projection
n
function of X A;, and often denote it by p.
i=1

(2) Prove thatif f : B = X ;1 A; is a {(vector- or tuple-valued) function, then
we may decompose it into n functions, f;,fori =1,...,n! f; : B — A;, 50 that,
for all a € dom(f), we have f{a) = (fi(a),..., fa{a)}

We say that the f; is the i-th component or projection of the tuple-valued (vector-
valued) function f.

Hint. Consider (p} f) (i.e., f o p}').
Prove Theorem 1.2.0.19.

. Let f : A — Bbea l-1correspondence. Then show thatg = f~1: B — Aisa

1-1 correspondence as well and ( fg) = 15 while (gf) = 1.4.
Consider f : A - B,g: B — Aand h : B — A such that (fg} = 1p and
{(hf) = 14 hold.

Show that f is a 1-1 correspondence and that g = b = f~1,

Hint. Start with expanding (h{fg)) = (h1g). using associativity and Exercise 25.

Let f: A — Bbeal-1 correspondence and ¢ : B — A be a function for which
{gf) = 1a. Then show that ¢ = f~! and therefore (fg) = 1 g as well.

Let f : A — Bbeal-1 correspondence and g : B — A be a function for which
{f¢) = 1p. Then show that g = f~! and therefore (gf) = 14 as well.

Exercises 27, 28 and 29 show that if an f has both a left and a right inverse, then
the two are equal to ' and in fact f is a 1-1 correspondence. Moreover, a 1-1
correspondence has a unique left and right inverse, equal in each case to f~1.

This unique inverse is called—for 1-1 correspondences— ‘the” (two-sided) in-
verse.

Prove that R is transitive iff £ € R.
Prove thatif A ~ B and B ~ (' then A ~ .,

Prove, for any two functions f and g, that f = g (as sets of tuples) iff (Vx)(f(z) ~

g(z)).
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33.

35.

37.
38,

39.

41.
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Prove the claims made in Remark 1.2.0.31.

. Let f: A— Bandg: B — C be onto functions. Show that (¢f) : 4 = C'is

onto.

Hint. Anh: X — Y is onto iff for any b € Y, the “equation” h{x) = bhas a
solution.

Revisit Theorem 1.3.0.42 and give it a mathematical proof, using tools from
Seciion 1.4, Specifically, if A C N is infinite, define by recursion the function f
by f(0) = min A and f(rn + 1} = min{A — {f(0),..., f(n)}) and prove that
dom(f) =N, ran{f) = Aand fis 1-1.

. Prove that the range of f : N x N — N given by f(z.y} = 2*3¥ is infinite.

Prove that there is a 1-1 correspondence that corresponds each S C N to x 5.

Let A and B be enumerable. Then 24 ~ 25,

Hint. Let f : N — Aand g : N — B be 1-1 correspondences. Define F : 24 —
2B so that F(#) = @ and F sends the set {f{io), f{i1), f(iz), f(is),...} tothe
set {g(40), g(#1), g(d2), g(i3),...}. Argue that F'is total, i-1, and onto.

Refer to 1.6.0.19. Define the simple arithmetic terms of that example differently:
Let us start with the alphabet of symbols A = {1,2,3,4+, %,(,)}. WeletZ =
{1,2,3} and O consist of just two string operations:

from strings X and ¥ form (X + V) (1)

from strings X and Y form {X % V) (2}

Prove that 7, () is unambiguous and thus E'V, defined as in 1.6.0.19, over C1(Z, O)
exists and is upique.

Toward a proof of lack of ambiguity you may want to prove a couple of lemmatu:
(a) Every member of CI{Z, ©) has an equal number of left and right brackets.

(b) Every proper non-empty string prefix of an 4 € CI(Z, O} has an excess of lefl
brackets.

(c} Every A € CI{Z, ) has unique i.p. and 1, 2, 3 have no i.p.

. Prove, as Euclid did, that every natural number »n > 1 is a product of primes in a

unique way, except for permutation of factors.

Hint. Use strong induction and 1.4.1.3,

Prove thatif R : A — A is reflexive and also satisfies, for all z, ¢ and z,
xRy nxBz — yRz

then it is also symmetric and transitive, hence an equivalence relation.



42.

43,

45.

46.
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Prove, by induction on n, that for any relation B on a set A we have

(1) R™ o R* == R™+n

@) (R™)" = R™™

Suppose that R is on a finite set of n elements. Prove that R* = | JI | R
Hint, Cf. 1.6.0.22. Prove the redundancy of all terms beyond R™ in this case.

. Suppose that R, defined on a finite set of n elements, is reflexive. Prove that

Rt =R L
Hint. Prove the redundancy of all terms but B! in this case.

Let m > 1 be an integer. Prove that any integer n > O can be uniquely written as
n=mqg+r,where0 < r <m.

Hint. Note the inequalities! Either imitate the proof given in 1.4.3.1, or base a
proof on the result of 1.4.3.1.

(rm-ary notation.) Prove that every integer » > 0 has a unique representation as
n=dm" +do_1m" N b dpom"E 4+ dy (1

where 0 < d; < mforalli=0,...,7. (1) is called the m-ary notation of n, and
the d; are the m-ary digits.

(mn-adic notation.) Prove that every integer n > 0 has a unique representation as
n=dom’ +dr_m" V Hdo_om™ 2 4 dy (2)

where 0 < o; <mforalli =0,...,r. (2} is called the m-adic notation of n [cf,
Smuilyan (1961); Bennett (1962)], and the d; are the m-adic digits.

48. Prove that for any set X, we have X £ 2%,








