
CHAPTER1
MATHEMATICS USED IN
ELECTROMAGNETISM

1.1 INTRODUCTION

Electromagnetics is the branch of physical science which deals with electric andmag-
netic fields and their interactions with each other and with physical objects. We nor-
mally think of electricity as the flow of electrons in a conductor, or as static electricity,
or lightning. We think of magnetism as in permanent magnets, the earth’s magnetism,
compass needles, electromagnets, patterns in iron filings, and the like. The physical
elements, electrons and charged particles on the one hand, and magnetic materials
on the other, are only a portion of the phenomenon. More powerful are the invisible
forces which draw objects together or repel them. These forces allow powerful elec-
tric machines, motors, and generators, to transform inchoate energy into useful form.
They allow the wireless transmission of information, and thus energy, over distances
great or small. Although not treated here, information is a form of energy, and thus
intimately intertwined with all electromagnetic phenomena. Electromagnetic fields
do not exist without physical manifestations, or the physical manifestations without
the invisible fields. In order to understand these complex interactions, a special form
of advanced mathematics had to be developed. More complex than the calculus used
to determine the motion of physical bodies. This mathematics covers diffuse energy
distributed over space, and within confined areas. Its first development was with the
study of the distribution of heat within a solid, the flow of fluids in pipes, and steam
in all its manifestations. When it was discovered that electricity was very similar to
a fluid in its behavior, the mathematics was then applied to electrical currents. The
distribution of heat inside a solid became the distribution of electric and magnetic
fields and variations in current density.

The mathematics and symbolism used in electromagnetics are often
unfamiliar and daunting to the uninitiated. With long partial differential
equations, hard-to-visualize fields and vectors, and unusual symbols such as

∇, ∇2, ∇, ∇ × 𝜕, ∮ ,∯ , ∰ , etc., the subject is often prickly and difficult to

approach. This chapter is intended to provide a summary of some of the fundamental
mathematical concepts used in electromagnetic field theory and the symbolism used
to convey them. In this way, the reader who has been exposed to them in the past will
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2 CHAPTER 1 MATHEMATICS USED IN ELECTROMAGNETISM

have a refresher, while the beginner will have a grasp of what is being discussed, and
all readers will have a page to turn to for reference during the course of this book.
This chapter is not intended to take the place of a mathematical textbook, but only
as an introduction to the concepts which may be found therein.

1.2 NUMBERS

The fundamental basis on which the calculation of physical quantities rests is the
concept of a number. Beginning with the numbers used for counting, many types
of numbers have been discovered, leading to an infinite complexity and array of
concepts. A number may be considered the object upon which the mathematical
procedure operates. Numbers are objects in their own right, not just concepts used
to count or measure physical objects. This is the reason that mathematics describes
reality so well; it is also reality, and follows the same rules. The mathematics and
physics of electrical theory is based on numbers. It is not possible to understand this
theory in full without a foundation in real and complex numbers, vectors and scalars,
coordinate systems, and other fundamental objects of mathematics. Indeed, the fun-
damental intuition necessary for safety relies on being able to judge the magnitude
of a possible hazard, whether voltage, current, temperature, or force. While there is
an extensive and well-developed science of number theory, for the purposes of this
introduction, only a few significant concepts and definitions are needed. The numbers
are diagrammed in Figure 1.1, the number line.

Natural numbers or counting numbers are the set ℕ = {1, 2, 3, …}. Natural
numbers are based on the principles of similarity and multiplicity. Objects which are
like each other can be grouped together and counted. Grouping together is recogniz-
ing a set of objects. Objects does not have to exist, either physically or mentally, to
be counted. A number can be a number, in and of itself. The minimum degree of sim-
ilarity is that the objects are identifiable. Multiplicity means that there is more than
one object, thus counting is possible.

Integers are the set ℤ = {… ,−3,−2,−1, 0, 1, 2, 3 …}. Adding zero to the set
was one of the significant discoveries of ancient times, without which mathematics
as we know it could not exist.

Positive integers are the same as the natural numbers. The search for clarity can
lead to multiple definitions. Here the definition is descriptive, rather than functional,
as in “counting.”

Negative integers are the negatives of the natural numbers {−1,−2,−3, …}.
The opposite of positive is negative, leading to another descriptive category.

Nonnegative integers are natural numbers plus zero, the set {0, 1, 2, 3, …}. And
the opposite of negative may also be nonnegative, rather than positive. There can also
be “non-positive” integers.

Rational numbers are the set ℚ of numbers which can be expressed as the
ratio of two integers, a∕b, where b ≠ 0. When written as decimals, the digits either

–3 –2 –1 0 1 2 3

Figure 1.1 The number line.
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Figure 1.2 The real numbers on the number
line.

terminate or are repeating. Rational numbers are the numbers usedmost often in com-
putations. The longer decimals must be terminated somewhere when calculations are
performed, resulting in truncation error. This is why it is best to keep ratios intact
as long as possible when simplifying equations. Rational numbers are an example of
the paradox of infinity. There are an infinite number of integers, extending to posi-
tive and negative infinity. Technically, one could say that there are twice infinity plus
one (for zero) integers. The number of rational numbers would be determined from
each integer divided by each other integer, except zero, resulting in a double infinite
number of infinites.

Real numbers are the set ℝ of numbers, such as the points on a line, where for
every subset S which has an upper bound, there is a least upper bound (not a member
of S) which is a member of ℝ. This means that for any set of numbers which does
not increase to infinity, thus possessing an upper bound, there is one number which
is not a member of the set but is larger than all members of the set, see Figure 1.2.
This least upper bound is infinitely close to the largest number in the set. Thus the
real numbers encompass all points on the number line.

Irrational numbers, such as 𝜋, 𝜀,
√
2, are the set of all real numbers which

are not rational numbers. They cannot be expressed as the ratio of two integers,
a∕b, where b ≠ 0. When written as decimals, the digits do not terminate and do not
repeat. Irrational numbers cannot be written as the quotient of two integers. In order
to calculate using irrational numbers, they must be rounded to rational numbers.
This is one reason why it is best to simplify an equation as much as possible before
computation, so that the irrational numbers are approximated only in the final
result. This results in greatest accuracy. Irrational numbers fill in the gaps on the
number line between rational numbers. There is thus an infinite number of irrational
numbers between each rational number. The number of infinities is basically beyond
comprehension.

The differential dx of a number, x, is the smallest possible difference Δx as Δx
is reduced toward zero. The concept of differential will be followed through different
kinds of numbers, so that differentials in multiple dimensions can be defined.

Imaginary numbers are numbers whose square is a negative real number. An
imaginary number is the product of a real number and the imaginary unit, usually
called simply the “square root of minus one” expressed in mathematical notation as
“i” where

i =
√
−1 (1.1)

A typical imaginary number would be bi, where b is a real number. Imaginary num-
bers are expressed as the product of a real number and the imaginary unit, not as a
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single symbol, unless the real number is one. In mathematical notation “i” is always
placed after the number it multiplies. In electrical engineering notation, the imaginary
unit is represented by “j”:

j =
√
−1 (1.2)

Unlike i, which is always placed after the number it multiplies, j is always placed
before the number it multiplies. A typical imaginary number in electrical engineering
format would be jb. When b = 1, the letter symbol alone is usually shown, as in 1i = i
and j1 = j. The powers of j are important in many calculations:

j0 = 1 (1.3)

j1 =
√
−1 (1.4)

j2 = −1 (1.5)

j3 = −j (1.6)

j4 = j0 (1.7)

These powers then repeat in groups of four.
Angles in geometry are formed by two rays (half lines) called the sides which

meet at a point called the vertex. Angles are formally unitless, but in practice are
measured in radians or degrees. Angles are measured in the counterclockwise direc-
tion from the positive real axis. Angle measurements and definitions are shown in
Figure 1.3. One radian (rad) is the angle subtended by an arc having a length equal to
one radius of the circle. Since the circumference of a circle of radius r is 2𝜋r, there are

0

r

r

Radius

Angle

0 rad = 0°

π/2 rad = 90°

3π/2 rad = 270°

π rad = 180°

θ = 1 rad = 57.30°

+

Vertex

Side

Side
2π rad = 360°

θ

Figure 1.3 Angular measure in radians and degrees.
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2𝜋 radians in a complete circle. One degree (∘) is the angle subtended by one 360th
part of the circumference, thus there are 360∘ in a complete circle. The conversion
factor between degrees and radians is

1 rad = 1
2𝜋

= 0.159 circumference = 0.159 × 360∘ = 57.30∘ (1.8)

Complex numbers are the set ℂ of numbers defined as the sum of one real and
one imaginary number:

Z = a + jb (1.9)

When expressed in this format, complex numbers are said to be in rectangular form.
The process of definition as the sum of a real and an imaginary may be somewhat
circular. A complex number is an object which may be expressed as the sum of a real
and an imaginary number. This does not mean that it must be, or even needs to be.
The two parts of a complex number may be extracted by the functions “Re” for real
and “Im” for imaginary:

a = Re(Z) (1.10)

b = Im(Z) (1.11)

Complex numbers may be plotted in the complex plane where the horizontal axis is
the real axis and the vertical axis is the imaginary axis. The rectangular form of a com-
plex number a + jb is shown graphically as a point on the complex plane. Figure 1.4
shows the complex number 3 + j4 plotted in the complex plane.

The object which is a complex number can also be expressed radially, based on
a circle instead of a rectangle. The polar form of a complex number is represented

j3

j1

j2

–4

j4

40

Z

Z = 3 + j4

–5 5

–j5

–j4

–j3

–j2

–j1

j5

Real axis

Im
ag

in
ar

y 
ax

is

–3 –2 –1 1 2 3

M
ag

ni
tu

de

Figure 1.4 Complex numbers in rectangular form.



6 CHAPTER 1 MATHEMATICS USED IN ELECTROMAGNETISM

by a magnitude and an angle. The magnitude (Mag) of a complex number Z is the
length of line OZ:

Mag(Z) = |Z| = √
a2 + b2 (1.12)

The vertical bar expression is a shorthand for magnitude. This equation is the
first of two equations which change the expression of a complex number from rect-
angular to polar form. The second one extracts the angle. The argument (Arg) of a
complex number is the angle between the real axis and the line OZ:

Arg(Z) = 𝜃 = tan−1
b
a

(1.13)

For the example in Figure 1.4, |Z| = √
32 + 42 = 5

and
𝜃 = tan−1

4
3
= 53.13∘

The polar form of a complex number is written as

Z = |Z|∠𝜃 = |Z|(cos 𝜃 + j sin 𝜃) (1.14)

Figure 1.5 shows the complex number 3 + j4 in polar form as 5∠53.13∘.
The exponential form of complex numbers is a variation on the polar form. It

is derived from the rectangular form using Euler’s formula:

ej𝜃 = cos 𝜃 + j sin 𝜃 (1.15)

where 𝜃 is the argument in radians.
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Figure 1.5 Complex numbers in polar form.
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The irrational number e = 2.718281828 … is Euler’s number, the basis of the
natural logarithms, named in honor of the Swiss mathematician Leonhard Euler. The
expression ej𝜃 describes a circle with a radius of 1. A circular trajectory is followed as
𝜃 is increased from 0 to 2𝜋. The natural logarithms are so called because this number
is observed in nature in many forms. And yet, one cannot measure e to the degree of
accuracy, to which it is known. The number e is its own entity, and can be calculated
to any degree of precision, regardless of what is known about nature.

Then
z ej𝜃 = a + jb (1.16)

and
a = z cos 𝜃 (1.17)

b = z sin 𝜃 (1.18)

Vectors are geometric quantities which possess both magnitude and direction.
Vectors are primarily used for the mathematical representation of forces. A mechan-
ical force will have a certain magnitude and direction. The gravitational force vector
points to the center of mass of the object, with the magnitude of weight. The vector of
a hammer’s force will be down onto the head of the nail. The vector of wind velocity
will have a direction by the compass (N–S–E–W) and amagnitude of speed. Electro-
magnetic vectors are the same. An electric field vector will have a magnitude of volts
per meter and direction to (or from) the point charge. A magnetic field vector will go
from north to south with a magnitude of tesla. An electron or moving charge will have
a force vector perpendicular to both the electric andmagnetic fields, with a magnitude
proportional to their product. This is what produces generator or motor action.

Vectors belonging to the set ℝn exist in n dimensions. The unit vector of the
one-dimensional rectangular coordinate systemℝ𝟏 is the vector î (designated in low-
ercase with a cap) of magnitude 1 in the direction of the x-axis, shown in Figure 1.6.
Vectors are designated as uppercase bold face letters. A one-dimensional vector can
be written as

A = âi (1.19)

While complex numbers exhibit characteristics also belonging to vectors, they
are not, strictly speaking, the type of vectors we are talking about. This is because
geometrical vectors do not contain imaginary numbers. In the wider mathematical
sense, one can, and does, have vectors containing imaginary numbers. Phasors are
the vector representations of complex numbers. A phasor is drawn as a directed line
on the complex plane from 0 + j0 to the complex number Z at point a + jb. The pha-
sor representation is shown as the arrow in Figures 1.4 and 1.5. Phasors are used to
represent the magnitude and phase angle of sinusoidal waveforms, such as voltage
and currents. The angle 𝜃 in Z = z∠𝜃 is replaced by the angle 𝜔t, where 𝜔 = 2𝜋f ,
where f is the frequency of the sinusoidal wave.

–4 40–5 5

x axis

–1–2–3 1 2 3

î

6 7–6–7

Figure 1.6 One-dimensional vectors.
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Scalar is another name for a real number, especially as in contrast to a vector.
The norm ‖A‖ of the vector A in the set ℝ𝟏 is defined as the magnitude or

length of the vector. For the one-dimensional vector A, the norm is a. This appears to
be redundant, saying that the magnitude of a number is the number itself. In mathe-
matics, the definitions must be precise and even apply to the cases of the obvious.

The unit vectors of the two-dimensional rectangular coordinate system ℝ𝟐 are
the vectors î and ĵ (designated in lowercase with a cap) of magnitude 1 in the direction
of the axes x and y. Rectangular coordinates are often called Cartesian coordinates in
honor of their discoverer René Descartes. A two-dimensional vector can be written
as the ordered pair (a, b) or as the sum of vectors âi + b̂j. Thus the unit vectors can
be written as:

î = (1, 0) (1.20)

ĵ = (0, 1) (1.21)

The origin of a two-dimensional Cartesian coordinate system is the point (0, 0).
The origin of an n-dimensional Cartesian coordinate system is the n-dimensional
point (0, 0,… , 0). The origin may seem trivial, but the placement of the origin in a
logical location will greatly simplify the solution of many a geometrical problem.

The norm ‖A‖ of the vector A in the set ℝ𝟐 is defined as the magnitude or
length of the vector. This is comparable to the magnitude of a complex number. The
magnitude of vector (a, b) is

A = ‖A‖ =
√
a2 + b2 (1.22)

The magnitude of vector (4, 5) is calculated as

A =
√
42 + 52 = 6.40

Figure 1.7 shows the vector A = (4, 5). In the rectangular plane, a differential length
vector dl may be derived from the differential lengths of the axes dx and dy as

dl = dx̂i + dŷj (1.23)

In the rectangular plane, a differential area vector dS may be derived from the
differential lengths dx and dy as

dS = dx̂idŷj (1.24)

The differential area vector of dx and dy will point in the vertical, or z-direction.
While logical and easy to analyze, rectangular formulations are inconvenient

for many geometrical arrangements. In order to make calculations easier, or even pos-
sible, coordinate systems often need to be adjusted to suit the physical arrangement
being investigated. Much geometry is circular, such as the cross-section of a wire or
of a rotating machine, motor, or generator. It is therefore much simpler to consider
the fields and vectors based on radius and angle than in x and y. The polar form of a
two-dimensional vector which would be (a, b) in Cartesian coordinates is defined as

A = (r, 𝜙) (1.25)



1.2 NUMBERS 9

3

–3

–2

–1

1

2

–4

–4

4

40

A

A = (4, 5)

–5 5

–5

5

x axis 

y 
ax

is
–1–2–3 1 2 3

M
ag

ni
tu

de

6 7–6–7

–6

–7

7

6

dS

dx

dy

dx î

î

dl

Differential length dl of
line L

Differential surface dS of
surface S

d
y 

ј̂

ј̂

Figure 1.7 Two-dimensional vectors in rectangular form.

where r is the radius and 𝜙 is the angle of the vector relative to the positive x-axis.
Angles are measured in the counterclockwise direction from the positive x-axis. The
polar coordinate system is shown in Figure 1.8.

The unit vectors of the polar coordinate system are r̂ and �̂�, but unlike the
Cartesian unit vectors, they are not on fixed axes, but are located at the endpoint
of a vector A whose starting point is the origin. Thus their location changes with
magnitude A and angle 𝜙. The radial unit vector r̂ touches the end point of the vector
A and is normal (perpendicular) to a circle C with its center in the origin. The angular
unit vector �̂� is normal to the vector A, with its starting point at the end of A and is
tangential to the circle C, in the direction of increasing angle. The polar unit vectors
can be expressed in terms of the Cartesian unit vectors:

r̂ = cos𝜙i + sin𝜙j (1.26)

�̂� = − sin𝜙i + cos𝜙j (1.27)
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Figure 1.8 Two-dimensional vectors in polar form.

The components of the vector (a, b) converted to polar coordinates (r, 𝜙) are

r =
√
a2 + b2 (1.28)

𝜙 = tan−1
b
a

(1.29)

The Cartesian unit vectors are expressed in polar form as

î = cos𝜙r̂ − sin𝜙�̂� (1.30)

ĵ = sin𝜙r̂ + cos𝜙�̂� (1.31)

The components of the vector (r, 𝜙) converted to rectangular coordinates (a, b) are

a = r cos𝜙 (1.32)

b = r sin𝜙 (1.33)
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The vector A = (4, 5), which has been plotted in Cartesian coordinates in Figure 1.7,
has the following polar coordinates:

r =
√
42 + 52 = 6.40

𝜙 = tan−1
5
4
= 51.34∘

A plot of the vector A = (6.40, 51.34∘) in polar coordinates is shown in Figure 1.8.
In the polar plane, differential area dS may be defined from the differential

length dr and the differential angle d𝜃 as

dS = rdrd𝜃 (1.34)

As with the rectangular formulation, dS is a unit vector in the vertical or z-direction.
Cartesian coordinates in three dimensions are members of the set ℝ3 and are

similar to those in two dimensions, with the addition of the vertical z-axis and the unit
vector k̂ in the positive z-direction. We have already entered into the third dimension
with the differential surface vectors. The unit vectors can be written as

î = (1, 0, 0) (1.35)

ĵ = (0, 1, 0) (1.36)

k̂ = (0, 1, 0) (1.37)

The Cartesian coordinates of a three-dimensional vector (a, b, c) are defined as B =
(a, b, c) where a and b are the x and y dimensions of the projection of the vector
B on the x–y plane and c is the height of the end of the vector B above the x–y
plane. The vector B = (4, 5, 6) is shown in Figure 1.9, the vector A = (4, 5) is the
projection of the vector B on the x–y plane. The magnitude of a vector B = (a, b, c)
in three-dimensional Cartesian coordinates is

B = ‖B‖ =
√
a2 + b2 + c2 (1.38)

The magnitude of the vector B = (4, 5, 6) is

B =
√
42 + 52 + 62 = 8.775

In the three-dimensional Cartesian coordinate system, a differential length vector dl
may be defined from the differential lengths dx, dy, and dz as

dl = dx̂i + dŷj + dzk̂ (1.39)

In the three-dimensional Cartesian coordinate system, three differential area vectors
dSx, dSy, and dSz, may be defined from the differential lengths dx, dy, and dz as

dSx = dy dz

dSy = dx dz

dSz = dx dy

⎫⎪⎬⎪⎭ (1.40)
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Figure 1.9 Three-dimensional vectors in rectangular form.

Each surface vector will point in the subscripted dimension, exactly as the differential
surface vectors in a plane. A differential volume dV may be defined as

dV = dx dy dz (1.41)

There are two versions of the polar format for three dimensions, cylindrical and spher-
ical.

The cylindrical coordinate system is simply a vertical extension of the
polar coordinate system into three dimensions. The cylindrical coordinates of
a three-dimensional vector B = (a, b, c) in Cartesian coordinates are defined as
B = (r, 𝜙, k) where r is the magnitude of B, 𝜙 is the angle of the projection of the
vector on the x–y plane relative to the positive x-axis and k is the height of the end
of the vector above the x–y plane. It can be seen that r and 𝜙 are the same as the
two dimensions of polar coordinates. Angles are measured in the counterclockwise
direction from the positive x-axis, looking downward from the positive z-axis. The
cylindrical coordinate system is shown in Figure 1.10.

The unit vectors of the cylindrical coordinate system are r̂, �̂�, and k̂, but, except
for k̂, which is identical to the Cartesian unit vector k̂, they are not on fixed axes but
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Figure 1.10 Three-dimensional vectors in cylindrical form.

are located at the endpoint of a vector whose starting point is the origin. Thus their
location changes with radius r, angle 𝜙, and height k. The radial unit vector r̂ is
parallel to the x–y plane and normal to the surface of cylinder C and normal to and
pointing away from the z-axis. The angular unit vector �̂� is normal to the plane A,
defined by the vector B and the vertical z-axis. The angular unit vector �̂� is tangential
to the cylinder C, in the direction of increasing angle. The cylindrical unit vectors can
be expressed in terms of the Cartesian unit vectors:

r̂ = cos𝜙i + sin𝜙j (1.42)

�̂� = − sin𝜙i + cos𝜙j (1.43)

k̂ = k̂ (1.44)
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The components of the vector (a, b, c) converted to cylindrical coordinates (r, 𝜙, k)
are

r =
√
a2 + b2 + c2 (1.45)

𝜙 = tan−1
b
a

(1.46)

k = c (1.47)

The cylindrical coordinates of the example vector of B = (4, 5, 6), shown in
Figure 1.10 are

r =
√
42 + 52 + 62 = 8.775

𝜙 = tan−1
5
4
= 51.34∘

k = 6

The Cartesian unit vectors are expressed in cylindrical form as

î = cos𝜙r̂ − sin𝜙�̂� (1.48)

ĵ = sin𝜙r̂ + cos𝜙�̂� (1.49)

k̂ = k̂ (1.50)

The components of the vectorB = (r, 𝜙, k) converted to Cartesian coordinates (a, b, c)
are

a = r cos𝜙 (1.51)

b = r sin𝜙 (1.52)

c = k (1.53)

In the three-dimensional cylindrical coordinate system, a differential length
vector dl may be defined from the differential lengths dr, d𝜙, and dz as

dl = drr̂ + rd𝜙�̂� + dzk̂ (1.54)

In the three-dimensional cylindrical coordinate system, three differential area vectors
dSr, dSz, and dS𝜙, may be defined from the differential lengths dr, dz, and d𝜙 as

dSr = r d𝜙 dz

dSz = r d𝜙 dr

dS𝜙 = dr dz

⎫⎪⎬⎪⎭ (1.55)

Each surface vector will point in the subscripted dimension, exactly as the differential
surface vectors in a plane. A differential volume dV may be defined as

dV = rdrd𝜙dz (1.56)

The spherical coordinates of a three-dimensional vector B = (a, b, c) in Carte-
sian coordinates are defined as B = (r, 𝜃, 𝜙) where r is the magnitude of B, 𝜃 is the
angle of the vector on the r–z plane relative to the positive z-axis and 𝜙 is the angle
of the projection of the vector on the x–y plane relative to the positive x-axis. Angles
are measured in the counterclockwise direction from the positive x-axis.

The unit vectors of the spherical coordinate system are r̂, �̂�, and �̂�, but unlike
the Cartesian unit vectors, they are not on fixed axes, but are located at the endpoint
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of a vector whose starting point is the origin. Thus their location changes with radius
r, angle 𝜃, and angle 𝜙. The radial unit vector r̂ is always radially pointing away
from the origin and normal to the sphere S. The angular unit vector �̂� is normal to the
cone C, generated by sweeping the vector B around the vertical z-axis, and pointing
away from the vertical z-axis. The angular unit vector �̂� is normal to the vector B.
The angular unit vector �̂� is identical to the same vector in the cylindrical coordinate
system, normal to the plane A, defined by the vector B and the vertical z-axis. The
angular unit vector �̂� is tangential to the sphere S, in the direction of increasing angle,
and normal to the other two unit vectors. The spherical coordinate system is shown
in Figure 1.11. The spherical unit vectors can be expressed in terms of the Cartesian
unit vectors:

r̂ = sin 𝜃 cos𝜙i + sin 𝜃 sin𝜙j + cos 𝜃k̂ (1.57)

�̂� = cos 𝜃 cos𝜙i + cos 𝜃 sin𝜙j − sin 𝜃k̂ (1.58)

�̂� = − sin𝜙i + cos𝜙j (1.59)

The components of the vector (a, b, c) converted to spherical coordinates (r, 𝜃, 𝜙)
are

r =
√
a2 + b2 + c2 (1.60)

𝜃 = cos−1
c
r

(1.61)

𝜙 = tan−1
b
a

(1.62)

The cylindrical coordinates of the example vector of B = (4, 5, 6) shown in
Figure 1.11 are

r =
√
42 + 52 + 62 = 8.775

𝜃 = cos−1
6

8.775
= 46.86∘

𝜙 = tan−1
5
4
= 51.34∘

The Cartesian unit vectors are expressed in spherical form as

î = sin 𝜃 cos𝜙r̂ + cos 𝜃 cos𝜙�̂� − sin𝜙�̂� (1.63)

ĵ = sin 𝜃 sin𝜙r̂ + cos 𝜃 sin𝜙�̂� + cos𝜙�̂� (1.64)

k̂ = cos 𝜃i − sin 𝜃j (1.65)

The components of the vector (r, 𝜃, 𝜙) converted to rectangular coordinates
(a, b, c) are

a = r sin 𝜃 cos𝜙 (1.66)

b = r sin 𝜃 sin𝜙 (1.67)

c = r cos 𝜃 (1.68)

In the three-dimensional spherical coordinate system, a differential vector dl
may be defined from the differential lengths dr, d𝜃, and d𝜙 as

dl = dr r̂ + rd𝜃�̂� + r sin 𝜃d𝜙�̂� (1.69)
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Figure 1.11 Three-dimensional vectors in spherical form.

In the three-dimensional spherical coordinate system, three differential area
vectors dSr, dS𝜃 , and dS𝜙, may be defined from the differential lengths dr, d𝜃, and
d𝜙 as

dSr = r2 sin 𝜃d𝜃d𝜙

dS𝜃 = r sin 𝜃drd𝜙

dS𝜙 = rdrd𝜃

⎫⎪⎬⎪⎭ (1.70)
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Each surface vector will point in the subscripted dimension, exactly as the dif-
ferential surface vectors in a plane. A differential volume dV may be defined as

dV = r2 sin 𝜃drd𝜃d𝜙 (1.71)

A matrix is an extension of the concept of a vector, where the elements can be
arranged in rows and columns in two or more dimensions. Matrices are used to sim-
plify the notation when a calculation is made with several nearly identical equations,
such as one for each dimension in a system. Matrices are also a type of number in
their own right. The 3× 3 matrixM is written as

M =
⎡⎢⎢⎣
m11 m12 m13
m21 m22 m23
m31 m32 m33

⎤⎥⎥⎦ (1.72)

The magnitude of a matrix is the determinant. For a 3× 3 matrix,

|M| = ||||||
m11 m12 m13
m21 m22 m23
m31 m32 m33

||||||
= m11(m22m33 − m23m32) + m12(m21m33 − m23m31) + m13(m21m32 − m22m31)

(1.73)

1.3 MATHEMATICAL OPERATIONS WITH VECTORS

Vector addition and subtraction are carried out term by term in the rectangular coor-
dinate system. For vectors A = (a, b, c) and B = (d, e, f ):

A + B = (a + d, b + e, c + f ) (1.74)

A − B = (a − d, b − e, c − f ) (1.75)

The product of a vectorA and a scalar 𝛼 is the product of the scalar and each element
of the vector:

𝛼A = (𝛼a, 𝛼b, 𝛼c) (1.76)

The scalar may be positive or negative. If the scalar is negative, the direction of the
vector will be reversed. Note that while the magnitude of a vector is always positive,
the vector may have any direction.

The dot product or inner product of two vectors A = (a, b, c) and B = (d, e, f )
separated by angle 𝛼 is a scalar quantity defined as

A ⋅ B = ad + be + cf (1.77)
or

A ⋅ B = AB cos 𝛼 (1.78)

A two-dimensional example of a dot product is shown in Figure 1.12. The dot product
is commutative:

A ⋅ B = B ⋅ A (1.79)

The cross product or outer product of two vectors A and B separated by angle 𝛼 is a
vector defined as

A × B = înAB sin 𝛼 (1.80)
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B = (2.4, 2.4, 0)
= 3.4 ∠ 45°

α = 30° A = (3.7, 1.0, 0)
= 3.83 ∠ 15°

A cos(α)

A•B = AB cos(α) = 3.4 × 3.83 × 0.866 = 11.28
= 2.4 × 3.7 + 2.4 × 1.0 = 11.28 Figure 1.12 Dot product of two vectors.

12

6

39

A

B

CCW

A × B B × A

Figure 1.13 Right-hand rule for the cross
product of two vectors.

The unit vector în is normal (perpendicular) to the two vectorsA andB in the direction
indicated by the “right-hand rule.” The right-hand rule can be visualized as a clock
face with two hands A and B, Figure 1.13, where A is to the right of B. A vector
emerging perpendicular to the face of the clock toward the observer represents the
direction of the cross product. An example of a cross product is shown in Figure 1.14.
Because of the right-hand rule, the cross product is not commutative:

B × A = −A × B (1.81)

The vector B × A is also shown in the figures, in the direction opposite toA × B. The
cross product, like the dot product, may also be calculated using the elements of each
vector:

A × B =
|||||||
î ĵ k̂
a b c
d e f

||||||| = î(bf − ce) + ĵ(af − cd) + k̂(ae − bd) (1.82)

1.4 CALCULUS WITH VECTORS—THE GRADIENT

A scalar field is a function which assigns a scalar to each point within a region
of a space. A scalar field may be written as f (x, y, z) in a three-dimensional space.
Examples of a scalar field are gravitational fields and electric fields.
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B = (2.4, 2.4, 0)
= 3.4 ∠ 45°

A = (3.7, 1.0, 0)
  = 3.83 ∠ 15°

A sin(α)

A × B

B × A

A × B = în AB sin(α) = k 3.4 x 3.83 x 0.5
                     = î(1.0 x 0 – 2.4 x 0) + j(3.7 x 0 – 1.0 x 0)

+ k(3.7 x 2.4 – 1.0 x 2.4)
î

B × A = în AB sin(–α) = k 3.4 x 3.83 x (–0.5)
               = î(2.4 x 0 – 1.0 x 0) + j(2.4 x 0 – 3.7 x 0)

+ k(2.4 x 1.0 – 3.7 x 2.4)

î

= (0, 0, 6.5)

= (0, 0, –6.5)

α = 30°

Figure 1.14 Cross product of two vectors.

The differential of a scalar field is

df (x, y, z) =
𝜕f

𝜕x
dx +

𝜕f

𝜕y
dy +

𝜕f

𝜕z
dz (1.83)

The del operator (𝛁) is used to denote the taking of partial derivatives in each
direction:

∇ = î
𝜕

𝜕x
+ ĵ

𝜕

𝜕y
+ k̂

𝜕

𝜕z
(1.84)

The del operator is the three-dimensional equivalent to the symbol for taking
the derivative with no function specified, d

dx
. The del operator applied to a

three-dimensional scalar field is called the gradient (grad) of the field:

grad f (x, y, z) = 𝛁 f (x, y, z) =
𝜕f

𝜕x
î +

𝜕f

𝜕y
ĵ +

𝜕f

𝜕z
k̂ (1.85)

The gradient in cylindrical coordinates is

𝛁 f (r, 𝜙, z) =
𝜕f

𝜕r
r̂ + 1

r

𝜕f

𝜕𝜙
�̂� +

𝜕f

𝜕z
ẑ (1.86)

The gradient in spherical coordinate is

𝛁 f (r, 𝜃, 𝜙) =
𝜕f

𝜕r
r̂ + 1

r

𝜕f

𝜕𝜃
�̂� + 1

r sin 𝜃
𝜕f

𝜕𝜙
�̂� (1.87)

The scalar field of a set of points on the r-axis may be written as f (r). An
example of a scalar field is the electric potential V(r) of a point charge q:

V(r) =
q

4𝜋𝜀0r
V (1.88)
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where,

V(r) = is the potential in volts (V) at a point r meters (m) from the point
charge,

q= is the charge in coulombs (C), and

𝜀0 =
1

4𝜋×10−7 = is the permittivity of free space in farad per meter (F/m).

Work is required to move a charge in an electric field. If a charge of 1C is
moved across a potential difference of 1V, 1 J (joule) of work will be expended. If
there are two charges of opposite signs which are naturally attracted to each other,
work is required to separate them. If the two charges are of the same polarity, the force
will be required to move them toward each other. The force in newtons (N) exerted
by the charge q on the charge q′ (and by the charge q′ on the charge q) at a distance
x along the direction of the vector î is given by Coulomb’s law:

F =
qq′

4𝜋𝜀0r2
îN (1.89)

A vector field differs from the scalar field in that a vector exists at each point
in the Euclidean space. An example of this is the electric field (V/m). The electric
field established by a charge q is defined where the charge q′ (at distance x from the
charge q) becomes infinitely small, so that only the charge q is being considered.

E = F
q′

=
q

4𝜋𝜀0r2
î
V
m

(1.90)

The electric field vector is the gradient of the scalar electric field.

E = −𝛁V (1.91)

The electric field of a point charge calculated by the gradient definition:

E = −𝛁V = −𝜕V
𝜕r

r̂ = − 𝜕

𝜕r

q

4𝜋𝜀0r
r̂ =

q

4𝜋𝜀0r2
r̂ (1.92)

Figure 1.15 shows the field produced by a charge of 1 nanocoulomb (nC or
10−9 C) over the range of 2–5m. At point a, 2m, the field is 4.5V, and at point b,
5m, the field is 1.8V. Thus, if the 1 nC charge q at the origin is positive, and the
charge q′at point a is −1 nC, then it will take 2.7 nJ to move this charge to point b.
This can be calculated more formally is we consider the differential distance dl along
the path a to b, where

dl = drr̂ (1.93)

and
dV = 𝛁V ⋅ dl (1.94)

If we integrate from a to b,

∫
b

a
dV = ∫

b

a
𝛁V ⋅ dl = V(b) − V(a) =

q

4𝜋𝜀0

(1
a
− 1

b

)
(1.95)

For example, the scalar field

f (x, y) = 0.2x2 + 0.5y
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Figure 1.15 Scalar field in one dimension.

represents a specific numerical value at each point in the x, y space. The differential
of the field is

df (x, y) = 0.4xdx + 0.5dy

and the gradient of the field is

𝛁 f = 0.4x̂i + 0.5̂j

The angles of the gradient are

𝜙g = tan−1
[ 0.5
0.4 x

]
= tan−1

[1.25
x

]
𝜃g = tan−1

[√
0.16 x2 + 0.25

0

]
= 𝜋

2

⎫⎪⎪⎬⎪⎪⎭
The gradient has a magnitude representing the slope of the field in the x- and
y-directions, pointing in the direction of the greatest change in slope from its origin
at a point (x, y). Recalling the distance vector dl, the differential of the scalar field
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may be expressed as

df (x, y, z) =
(
𝜕f

𝜕x
î +

𝜕f

𝜕y
ĵ +

𝜕f

𝜕z
k̂
)
⋅ (dx̂i + dŷj + dzk̂) =

𝜕f

𝜕x
dx +

𝜕f

𝜕y
dy +

𝜕f

𝜕z
dz

(1.96)
since î ⋅ î = ĵ ⋅ ĵ = k̂ ⋅ k̂ = 1. The angles of dl are

𝜙dl = tan−1
[
dy

dx

]

𝜃dl = tan−1
[√

dx2 + dy2

dz

]
⎫⎪⎪⎬⎪⎪⎭

(1.97)

Then
df = 𝛁 f ⋅ dl = |𝛁 f | |dl| cos 𝜃 = |𝛁 f |dl cos 𝜃df (1.98)

Where 𝜃df is the angle between 𝛁 f and dl. In the example, the angles of dl are (with
dz = 0)

𝜙dl = tan−1
[
dy

dx

]
= tan−1

[
2
df

dx
− 0.8x

]
= tan−10 = 0

𝜃dl = tan−1
[√

dx2 + dy2

0

]
= 𝜋

2

⎫⎪⎪⎬⎪⎪⎭
Since the example is in two dimensions, 𝜃g = 𝜃dl = 𝜋∕2. Because of the defi-

nition of the function f (x, y) = 0.2x2 + 0.5y, 𝜙dl = 0. Then 𝜃df = 𝜙g and df (x, y)may
be calculated as

df (x, y) =
√
0.16x2 + 0.25 dl cos

[
tan−1

(1.25
x

)]
It is apparent that this is equal to the same quantity calculated previously:

df (x, y) = (̂i0.4x)(dx î) + (̂j0.5)(dy ĵ) = 0.4xdx + 0.5dy

The gradient theorem may be defined for a line between two points A and B:

∫
B

A
df = ∫

B

A
𝛁 f ⋅ dl = f (B) − f (A) (1.99)

The line integral is dependent only on the end points and the function f , and does
not change if the length of the line is longer or shorter, or if the line takes different
routes from A to B. The gradient theorem is also called the fundamental theorem of
calculus for line integrals. In Figure 1.16, the starting point A = (5, 1) and the end
point B = (2, 3) making f (A) = 5.2 and f (B) = 2.3. Three different paths are shown
in the figure, all with the same line integral. Thus:

∫
B

A
df = f (B) − f (A) = 2.3 − 5.2 = −3.2

A closed line integral, where A = B, is symbolized with a circle over the integral
sign:

∮ df = f (A) − f (A) = 0 (1.100)
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Figure 1.16 Two-dimensional scalar field f(x,y)= 2x2 + 5y and its gradient grad f.

A corollary to the gradient theorem is that the line integral of a gradient around a
closed loop is always zero. In Figure 1.16, lines f (A) to f (A) have a line integral
of zero.

1.5 DIVERGENCE, CURL, AND STOKES’ THEOREM

When a boundary is established by a closed surface S in a three-dimensional space
which contains a vector field A, the net amount of flow through the space is called
the flux.

𝚽 = ∮S
A ⋅ dS (1.101)

Because the flux will also be different at each point in space, the derivative of the flux
at any point in space is defined as a quantity called the divergence:

∇ ⋅ A =
(̂
i
𝜕

𝜕x
+ ĵ

𝜕

𝜕y
+ k̂

𝜕

𝜕z

)
⋅ (âi + b̂j + ck̂) = 𝜕a

𝜕x
+ 𝜕b

𝜕y
+ 𝜕c

𝜕z
(1.102)
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Figure 1.17 Closed path L of circulation C with normal vector n defining the direction of
A⋅dl in accordance with the right-hand rule.

The divergence theorem relates the flux within a volume V composed of many
infinitesimal differential volumes dV with the surface S composed of many infinites-
imal differential areas dS.

𝚽 = ∮S
A ⋅ dS = ∫V

∇ ⋅ A dV (1.103)

The circulation C of a fluid in a closed path L against a vector field A is shown
in Figure 1.17. The normal vector n, established by the right-hand rule, establishes
the direction of A⋅dl. The circulation is expressed by

C = ∮L
A ⋅ dl (1.104)

The curl is a vector operation defined as

curl A = 𝛁×A =
|||||||
î ĵ k̂
a b c
d e f

||||||| = î
(
𝜕c
𝜕y

− 𝜕b
𝜕z

)
+ ĵ

(
𝜕a
𝜕z

− 𝜕c
𝜕x

)
+ k̂

(
𝜕b
𝜕x

− 𝜕a
𝜕y

)
(1.105)

The circulation for an infinitesimally small loop L, shown in Figure 1.17 as an
eddy in flowing water, in differential form is:

C = (𝛁×A) ⋅ dS (1.106)

Stokes’ theorem links together these results for a finite-sized open surface S
enclosed by a line L:

∮L
A ⋅ dl = ∫S

(𝛁×A) ⋅ dS (1.107)

Recalling the gradient theorem, it is clear that the line integral around a closed
loop must be zero, then using Stokes’ theorem:

∮L
𝛁 f ⋅ dl = ∫S

(𝛁×𝛁 f ) ⋅ dS = 0 (1.108)
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Using the definitions of divergence and curl, a useful identity for vector analysis is

𝛁 ⋅(𝛁×A) = 0 (1.109)

1.6 MAXWELL’S EQUATIONS

The Scottish physicist James Clerk Maxwell (1831–1879) codified the empirically
derived physical laws discovered by Faraday, Ampère, and Gauss along with some
necessary corrections into a set of 20 equations which define electromagnetic field
theory. The original versions of these equations have been updated by Oliver Heav-
iside (1850–1925) using the concepts of vector calculus outlined above into four
equations, which are today generally known as “Maxwell’s Equations.”

Faraday’s law, states that a changing magnetic field induces a corresponding
electric field:

𝛁×E = −𝜕B
𝜕t

(1.110)

This can be thought of as an electric circuit composed of a loop of wire in combination
with a time-varying magnetic field produced by a spinning magnet, the combination
being an electric generator, Figure 1.18. In integral form, the moving magnetic field
provides the work to move an electric charge along a specific path.

∮L
E ⋅ dl = − d

dt ∫S
D ⋅ dS (1.111)

L

Curl of
electric field

∇∇ × E

Circulation
of electric charges

Opposing induced
magnetic field

–∂B/∂t
(Out of the page)

Increasing
magnetic field

∂B/∂t
(Into the page)

S

N

∇∇ × E

Figure 1.18 Faraday’s law: the moving magnetic field induces an electric field which
produces a current that induces a magnetic field opposing that which caused it.
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Figure 1.19 Illustration of Ampère’s law for a resistor and capacitor.

Ampère’s law with Maxwell’s displacement current correction states that a
changing electric field produces a corresponding magnetic field, as in Figure 1.19,

𝛁×H = Jf +
𝜕D
𝜕t

(1.112)

In point form, you imagine a moving electric charge producing a magnetic field
according to the right-hand rule. In integral form, the work required for a magnet to
move along a path L is provided by electric charges moving across the boundaries of
a volume.

∮L
H ⋅ dl = ∫S

Jf ⋅ dS + d
dt ∫S

D ⋅ dS (1.113)

Gauss’s law for electric fields in volume form is, “The electric flux through any
closed surface is proportional to the enclosed electric charge.” A “Gaussian surface”
is an arbitrary closed three-dimensional surface (such as a sphere) which is chosen to
ease the computation of volume integrals. This is illustrated in Figure 1.20, where the
electric field diverges from the positive point charge and converges on the negative
point charge.

𝛁 ⋅D = 𝜌f (1.114)

If Gauss’s law for electric fields is expressed in integral form, it becomes

∮S
D ⋅ dS = ∫V

𝜌f dV (1.115)

Where the surface encloses some electrical charges as in the figure, and if you make
the surface such that all field lines cross it perpendicularly, then the dot product
becomes multiplication and the math is easier.
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Figure 1.20 Illustration of Gauss’s law for the field around a point charge.

Gauss’s law for magnetic fields implies that there is no magnetic current point
charge:

∇ ⋅ B = 0 (1.116)

All magnetic sources are dipoles, having both a north and a south pole. Unlike electric
fields, this, while they may have dipoles, may also have both independent positive and
independent negative charges as sources. This can be seen in Figure 1.21, where no
surface can enclose a net divergence or convergence of lines of flux. The integral
form is

∮S
B ⋅ dS = 0 (1.117)

This means that whatever three-dimensional enclosure you construct, it will have as
many magnetic field lines entering as leaving, as can be seen in the figure.

Maxwell’s equations are written in both derivative and integral forms, with
many variations based on the physical situation which they are being used to evaluate.
The derivative forms have more simplicity and compactness, but the integral form
may be easier to visualize as a three-dimensional object is involved, even though
it is only a fictitious Gaussian surface. Whether visualizing points or surfaces, the
three-dimensional characteristics of invisible, and usually moving, force fields are



28 CHAPTER 1 MATHEMATICS USED IN ELECTROMAGNETISM

S

N

Gaussian
surface +x

−x
(Positive direction is away

from center of sphere)

∂B/∂x = 0
Divergence of
magnetic field

∇.B = 0

Figure 1.21 Illustration of
Gauss’s law for magnetic fields.

more difficult to picture in mathematical than in physical terms. The terms used here
are listed for reference:

E= electric field intensity (volts per meter)

B= magnetic field density (tesla or webers per square meter)

H= magnetic field intensity (amperes per meter)

Jf = free current density ( in a conductor) (amperes per square meter)

D= electricdisplacement field (coulombs per square meter)

Additionally, Maxwell’s equations include the conservation of charge, which states
that charge can neither be created nor destroyed:

𝛁 ⋅Jf +
𝜕𝜌f

𝜕t
= 0 (1.118)

The additional variable is

𝜌f = free charge density (in a conductor) (coulombs per cubic meter) (not to be
confused with electrical resistivity also designated by 𝜌)

Maxwell’s equations are supplemented by the constitutive laws, which are nec-
essary for their application to physical materials:

D = 𝜀E + P (1.119)

B = 𝜇H (1.120)

The additional variables are

𝜀 = permittivity (farad per meter)

𝜇 = permeability (henry per meter)

P = portion of the electric field due to polarization in matter

These equations define howmuch electric field strength it requires to impose a charge
on a material, and how much magnetizing intensity it takes to magnetize a material.
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Ohm’s law for fixed and moving conductors is also a necessary part of
Maxwell’s equations:

Jf = 𝜎(E + v × B) (1.121)

The additional variables are

𝜎 = conductivity (siemens)

v = velocity (meters per second)

The current density in a material includes both current imposed by an electric field
dependent on the conductivity of the material and current induced by movement of
the material in a magnetic field.




