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   1.1.       INTRODUCTION 

 The theory of electromechanical energy conversion allows us to establish expressions 
for torque in terms of machine electrical variables, generally the currents, and the dis-
placement of the mechanical system. This theory, as well as the derivation of equivalent 
circuit representations of magnetically coupled circuits, is established in this chapter. 
In Chapter  2 , we will discover that some of the inductances of the electric machine are 
functions of the rotor position. This establishes an awareness of the complexity of these 
voltage equations and sets the stage for the change of variables (Chapter  3 ) that reduces 
the complexity of the voltage equations by eliminating the rotor position dependent 
inductances and provides a more direct approach to establishing the expression for 
torque when we consider the individual electric machines.  

  1.2.       MAGNETICALLY COUPLED CIRCUITS 

 Magnetically coupled electric circuits are central to the operation of transformers 
and electric machines. In the case of transformers, stationary circuits are magnetically 
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2 THEORY OF ELECTROMECHANICAL ENERGY CONVERSION

coupled for the purpose of changing the voltage and current levels. In the case of electric 
machines, circuits in relative motion are magnetically coupled for the purpose of trans-
ferring energy between mechanical and electrical systems. Since magnetically coupled 
circuits play such an important role in power transmission and conversion, it is impor-
tant to establish the equations that describe their behavior and to express these equations 
in a form convenient for analysis. These goals may be achieved by starting with two 
stationary electric circuits that are magnetically coupled as shown in Figure  1.2-1 . The 
two coils consist of turns  N  1  and  N  2 , respectively, and they are wound on a common 
core that is generally a ferromagnetic material with permeability large relative to that 
of air. The permeability of free space,   μ   0 , is 4  π    ×  10  − 7  H/m. The permeability of other 
materials is expressed as   μ    =    μ  r  μ   0 , where   μ  r   is the relative permeability. In the case of 
transformer steel, the relative permeability may be as high as 2000–4000. 

  In general, the fl ux produced by each coil can be separated into two components. 
A leakage component is denoted with an  l  subscript and a magnetizing component is 
denoted by an  m  subscript. Each of these components is depicted by a single streamline 
with the positive direction determined by applying the right-hand rule to the direction 
of current fl ow in the coil. Often, in transformer analysis,  i  2  is selected positive out of 
the top of coil 2 and a dot placed at that terminal. 

 The fl ux linking each coil may be expressed

    Φ Φ Φ Φ1 1 1 2= + +l m m     (1.2-1)  

    Φ Φ Φ Φ2 2 2 1= + +l m m     (1.2-2)   

 The leakage fl ux  Φ   l   1  is produced by current fl owing in coil 1, and it links only the turns 
of coil 1. Likewise, the leakage fl ux  Φ   l   2  is produced by current fl owing in coil 2, and 
it links only the turns of coil 2. The magnetizing fl ux  Φ   m   1  is produced by current fl owing 
in coil 1, and it links all turns of coils 1 and 2. Similarly, the magnetizing fl ux  Φ   m   2  is 
produced by current fl owing in coil 2, and it also links all turns of coils 1 and 2. With 
the selected positive direction of current fl ow and the manner in that the coils are wound 
(Fig.  1.2-1 ), magnetizing fl ux produced by positive current in one coil adds to the 

  Figure 1.2-1.         Magnetically coupled circuits. 
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magnetizing fl ux produced by positive current in the other coil. In other words, if both 
currents are fl owing in the same direction, the magnetizing fl uxes produced by each 
coil are in the same direction, making the total magnetizing fl ux or the total core fl ux 
the sum of the instantaneous magnitudes of the individual magnetizing fl uxes. If the 
currents are in opposite directions, the magnetizing fl uxes are in opposite directions. 
In this case, one coil is said to be magnetizing the core, the other demagnetizing. 

 Before proceeding, it is appropriate to point out that this is an idealization of the 
actual magnetic system. Clearly, all of the leakage fl ux may not link all the turns of the 
coil producing it. Likewise, all of the magnetizing fl ux of one coil may not link all of 
the turns of the other coil. To acknowledge this practical aspect of the magnetic system, 
the number of turns is considered to be an equivalent number rather than the actual 
number. This fact should cause us little concern since the inductances of the electric 
circuit resulting from the magnetic coupling are generally determined from tests. 

 The voltage equations may be expressed in matrix form as

    v ri= + d

dt

l
    (1.2-3)  

where  r   =  diag[ r  1   r  2 ], is a diagonal matrix and

    ( ) [ ]f T f f= 1 2      (1.2-4)  

where  f  represents voltage, current, or fl ux linkage. The resistances  r  1  and  r  2  and the 
fl ux linkages   λ   1  and   λ   2  are related to coils 1 and 2, respectively. Since it is assumed 
that  Φ  1  links the equivalent turns of coil 1 and  Φ  2  links the equivalent turns of coil 2, 
the fl ux linkages may be written

    λ1 = N1 1Φ     (1.2-5)  

    λ2 2 2N= Φ     (1.2-6)  

where  Φ  1  and  Φ  2  are given by  (1.2-1)  and  (1.2-2) , respectively. 

  Linear Magnetic System 

 If saturation is neglected, the system is linear and the fl uxes may be expressed as

    Φl
l

N i
1

1 1

1

=
R

    (1.2-7)  

    Φm
m

N i
1

1 1=
R

    (1.2-8)  

    Φl
l

N i
2

2 2

2

=
R

    (1.2-9)  
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    Φm
m

N i
2

2 2=
R

    (1.2-10)  

where   Rl1 and   Rl2 are the reluctances of the leakage paths and   Rm is the reluctance of 
the path of the magnetizing fl uxes. The product of  N  times  i  (ampere-turns) is the 
 magnetomotive force  ( MMF ), which is determined by the application of Ampere ’ s law. 
The reluctance of the leakage paths is diffi cult to express and measure. A unique deter-
mination of the inductances associated with the leakage fl ux is typically either calcu-
lated or approximated from design considerations. The reluctance of the magnetizing 
path of the core shown in Figure  1.2-1  may be computed with suffi cient accuracy from 
the well-known relationship

    R =
l

Aμ
    (1.2-11)  

where  l  is the mean or equivalent length of the magnetic path,  A  the cross-section area, 
and   μ   the permeability. 

 Substituting  (1.2-7)–(1.2-10)  into  (1.2-1)  and  (1.2-2)  yields

    Φ1
1 1

1

1 1 2 2= + +
N i N i N i

l m mR R R
    (1.2-12)  

    Φ2
2 2

2

2 2 1 1= + +
N i N i N i

l m mR R R
    (1.2-13)   

 Substituting  (1.2-12)  and  (1.2-13)  into  (1.2-5)  and  (1.2-6)  yields

    λ1
1
2

1
1

1
2

1
1 2

2= + +
N

i
N

i
N N

i
l m mR R R

    (1.2-14)  

    λ2
2
2

2
2

2
2

2
2 1

1= + +
N

i
N

i
N N

i
l m mR R R

    (1.2-15)   

 When the magnetic system is linear, the fl ux linkages are generally expressed in terms 
of inductances and currents. We see that the coeffi cients of the fi rst two terms on the 
right-hand side of  (1.2-14)  depend upon the turns of coil 1 and the reluctance of the 
magnetic system, independent of the existence of coil 2. An analogous statement may 
be made regarding  (1.2-15) . Hence, the self-inductances are defi ned as

    

L
N N

L L
l m

l m

11
1
2

1

1
2

1 1

= +

= +
R R

    (1.2-16)  
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L
N N

L L
l m

l m

22
2
2

2

2
2

2 2

= +

= +
R R

    (1.2-17)  

where  L l   1  and  L l   2  are the leakage inductances and  L m   1  and  L m   2  the magnetizing induc-
tances of coils 1 and 2, respectively. From  (1.2-16)  and  (1.2-17) , it follows that the 
magnetizing inductances may be related as

    
L

N

L

N
m m2

2
2

1

1
2

=     (1.2-18)   

 The mutual inductances are defi ned as the coeffi cient of the third term of  (1.2-14)  and 
 (1.2-15) .

    L
N N

m
12

1 2=
R

    (1.2-19)  

    L
N N

m
21

2 1=
R

    (1.2-20)   

 Obviously,  L  12   =   L  21 . The mutual inductances may be related to the magnetizing induc-
tances. In particular,

    

L
N

N
L

N

N
L

m

m

12
2

1
1

1

2
2

=

=     (1.2-21)   

 The fl ux linkages may now be written as

    l = Li,     (1.2-22)  

where

    L = ⎡
⎣⎢

⎤
⎦⎥

=
+

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥L L

L L

L L
N

N
L

N

N
L L L

l m m
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⎥
⎥

    (1.2-23)   

 Although the voltage equations with the inductance matrix  L  incorporated may be used 
for purposes of analysis, it is customary to perform a change of variables that yields 
the well-known equivalent T circuit of two magnetically coupled coils. To set the stage 
for this derivation, let us express the fl ux linkages from  (1.2-22)  as
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    λ1 1 1 1 1
2

1
2= + +⎛

⎝⎜
⎞
⎠⎟L i L i

N

N
il m     (1.2-24)  

    λ2 2 2 2
1

2
1 2= + +⎛

⎝⎜
⎞
⎠⎟L i L

N

N
i il m     (1.2-25)   

 Now we have two choices. We can use a substitute variable for ( N  2 / N  1 ) i  2  or for ( N  1 / N  2 ) i  1 . 
Let us consider the fi rst of these choices

    N i N i1 2 2 2′ =     (1.2-26)  

whereupon we are using the substitute variable   ′i2 that, when fl owing through coil 1, 
produces the same MMF as the actual  i  2  fl owing through coil 2. This is said to be refer-
ring the current in coil 2 to coil 1, whereupon coil 1 becomes the reference coil. On 
the other hand, if we use the second choice, then

    N i N i2 1 1 1′ =     (1.2-27)   

 Here,   ′i1 is the substitute variable that produces the same MMF when fl owing through 
coil 2 as  i  1  does when fl owing in coil 1. This change of variables is said to refer the 
current of coil 1 to coil 2. 

 We will derive the equivalent T circuit by referring the current of coil 2 to coil 1; 
thus from  (1.2-26) 

    ′ =i
N

N
i2

2

1
2     (1.2-28)   

 Power is to be unchanged by this substitution of variables. Therefore,

    ′ =v
N

N
v2

1

2
2     (1.2-29)  

whereupon   v i v i2 2 2 2= ′ ′. Flux linkages, which have the units of volt-second, are related 
to the substitute fl ux linkages in the same way as voltages. In particular,

    ′ =λ λ2
1

2
2

N

N
    (1.2-30)   

 Substituting  (1.2-28)  into  (1.2-24)  and  (1.2-25)  and then multiplying  (1.2-25)  by  N  1 / N  2  
to obtain   ′λ2, and if we further substitute   ( / )N N Lm2

2
1
2

1 for  L m   2  into  (1.2-25) , then

    λ1 1 1 1 1 2= + + ′L i L i il m ( )     (1.2-31)  

    ′ = ′ ′ + + ′λ2 2 2 1 1 2L i L i il m ( )     (1.2-32)  
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where

    ′ = ⎛
⎝⎜

⎞
⎠⎟L

N

N
Ll l2

1

2

2

2     (1.2-33)   

 The voltage equations become

    v r i
d

dt
1 1 1

1= +
λ

    (1.2-34)  

    ′ = ′ ′ + ′
v r i

d

dt
2 2 2

2λ
    (1.2-35)  

where

    ′ = ⎛
⎝⎜

⎞
⎠⎟r

N

N
r2

1

2

2

2     (1.2-36)   

 The above voltage equations suggest the T equivalent circuit shown in Figure  1.2-2 . It 
is apparent that this method may be extended to include any number of coils wound 
on the same core.  

  Figure 1.2-2.         Equivalent circuit with coil 1 selected as reference coil. 
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   EXAMPLE 1A       It is instructive to illustrate the method of deriving an equivalent T 
circuit from open- and short-circuit measurements. For this purpose, let us assume that 
when coil 2 of the transformer shown in Figure  1.2-1  is open-circuited, the power input 
to coil 2 is 12 W when the applied voltage is 110 V (rms) at 60 Hz and the current is 
1 A (rms). When coil 2 is short-circuited, the current fl owing in coil 1 is 1 A when the 
applied voltage is 30 V at 60 Hz. The power during this test is 22 W. If we assume 
  L Ll l1 2= ′ , an approximate equivalent T circuit can be determined from these measure-
ments with coil 1 selected as the reference coil. 

 The power may be expressed as

    P V I1 1 1= � � cosφ     (1A-1)  

where   �V  and   �I  are phasors, and   ϕ   is the phase angle between   �V1 and   �I1 (power factor 
angle). Solving for   ϕ   during the open-circuit test, we have
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φ =

=
×

= °

−

−

cos

cos

.

1 1

1 1

1

83 7

P

V I� �

12

110 1
    (1A-2)   

 With   �V1 as the reference phasor and assuming an inductive circuit where   �I1 lags   �V1,

    

Z
V

I

j

=

=
°

− °
= +

�
�
1

1

110 0

1 83 7

12 109 3

/

/ .

. Ω     (1A-3)   

 If we neglect hysteresis (core) losses, then  r  1   =  12  Ω . We also know from the above 
calculation that  X l   1   +   X m   1   =  109.3  Ω . 

 For the short-circuit test, we will assume that   i i1 2= − ′, since transformers are 
designed so that   X r jXm l1 2 2>> ′ + ′ . Hence, using  (1A-1)  again

    

φ =
×

= °

−cos

.

1 22

30 1
42 8     (1A-4)   

 In this case, the input impedance is   ( ) ( )r r j X Xl l1 2 1 2+ ′ + + ′ . This may be determined as 
follows:

    

Z

j

=
°

− °
= +

30 0

1 42 8

22 20 4

/

/ .

. Ω     (1A-5)   

 Hence,   ′ =r2 10 Ω and, since it is assumed that   X Xl l1 2= ′ , both are 10.2  Ω . Therefore, 
 X m   1   =  109.3  −  10.2  =  99.1  Ω . In summary

    
r L r

L L
m

l l

1 1 2

1 2

12 262 9 10

27 1 27 1

= = ′ =
= ′ =

Ω Ω.

. .

mH

mH mH
   

    Nonlinear Magnetic System 

 Although the analysis of transformers and electric machines is generally performed 
assuming a linear magnetic system, economics dictate that in the practical design of 
many of these devices, some saturation occurs and that heating of the magnetic material 
exists due to hysteresis loss. The magnetization characteristics of transformer or 
machine materials are given in the form of the magnitude of fl ux density versus 
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magnitude of fi eld strength ( B – H  curve) as shown in Figure  1.2-3 . If it is assumed that 
the magnetic fl ux is uniform through most of the core, then  B  is proportional to  Φ  and 
 H  is proportional to MMF. Hence, a plot of fl ux versus current is of the same shape as 
the  B – H  curve. A transformer is generally designed so that some saturation occurs 
during normal operation. Electric machines are also designed similarly in that a machine 
generally operates slightly in the saturated region during normal, rated operating condi-
tions. Since saturation causes coeffi cients of the differential equations describing the 
behavior of an electromagnetic device to be functions of the coil currents, a transient 
analysis is diffi cult without the aid of a computer. Our purpose here is not to set forth 
methods of analyzing nonlinear magnetic systems. A method of incorporating the 
effects of saturation into a computer representation is of interest. 

  Formulating the voltage equations of stationary coupled coils appropriate for com-
puter simulation is straightforward, and yet this technique is fundamental to the com-
puter simulation of ac machines. Therefore, it is to our advantage to consider this 
method here. For this purpose, let us fi rst write  (1.2-31)  and  (1.2-32)  as

    λ λ1 1 1= +L il m     (1.2-37)  

    ′ = ′ ′ +λ λ2 2 2L il m     (1.2-38)  

where

    λm mL i i= + ′1 1 2( )     (1.2-39)   

  Figure 1.2-3.          B – H  curve for typical silicon steel used in transformers. 
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 Solving  (1.2-37)  and  (1.2-38)  for the currents yields

    i
Ll

m1
1

1
1

= −( )λ λ     (1.2-40)  

    ′ =
′

′ −i
Ll

m2
2

2
1

( )λ λ     (1.2-41)   

 If  (1.2-40)  and  (1.2-41)  are substituted into the voltage equations  (1.2-34)  and  (1.2-35) , 
and if we solve the resulting equations for fl ux linkages, the following equations are 
obtained:

    λ λ λ1 1
1

1
1= + −⎡

⎣⎢
⎤
⎦⎥∫ v

r

L
dt

l
m( )     (1.2-42)  

    ′ = ′ + ′
′

− ′⎡
⎣⎢

⎤
⎦⎥∫λ λ λ2 2

2

2
2v

r

L
dt

l
m( )     (1.2-43)   

 Substituting  (1.2-40)  and  (1.2-41)  into  (1.2-39)  yields

    λ
λ λ

m a
l l

L
L L

= + ′
′

⎛
⎝⎜

⎞
⎠⎟

1

1

2

2

    (1.2-44)  

where

    L
L L L

a
m l l

= + +
′

⎛
⎝⎜

⎞
⎠⎟

−
1 1 1

1 1 2

1

    (1.2-45)   

 We now have the equations expressed with   λ   1  and   ′λ2 as state variables. In the computer 
simulation,  (1.2-42)  and  (1.2-43)  are used to solve for   λ   1  and   ′λ2, and  (1.2-44)  is used 
to solve for   λ  m  . The currents can then be obtained from  (1.2-40)  and  (1.2-41) . It is clear 
that  (1.2-44)  could be substituted into  (1.2-40)–(1.2-43)  and   λ  m   eliminated from the 
equations, whereupon it would not appear in the computer simulation. However, we 
will fi nd   λ  m   (the magnetizing fl ux linkage) an important variable when we include the 
effects of saturation. 

 If the magnetization characteristics (magnetization curve) of the coupled coil are 
known, the effects of saturation of the mutual fl ux path may be incorporated into the 
computer simulation. Generally, the magnetization curve can be adequately determined 
from a test wherein one of the coils is open-circuited (coil 2, for example) and the input 
impedance of coil 1 is determined from measurements as the applied voltage is increased 
in magnitude from 0 to say 150% of the rated value. With information obtained from 
this type of test, we can plot   λ  m   versus   ′ + ′( )i i1 2  as shown in Figure  1.2-4 , wherein the 
slope of the linear portion of the curve is  L m   1 . From Figure  1.2-4 , it is clear that in the 
region of saturation, we have

    λ λm m mL i i f= + ′ −1 1 2( ) ( )     (1.2-46)  
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  Figure 1.2-4.         Magnetization curve. 
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  Figure 1.2-5.          f (  λ  m  ) versus   λ  m   from Figure  1.2-4 . 
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where  f (  λ  m  ) may be determined from the magnetization curve for each value of   λ  m  . In 
particular,  f (  λ  m  ) is a function of   λ  m   as shown in Figure  1.2-5 . Therefore, the effects of 
saturation of the mutual fl ux path may be taken into account by replacing  (1.2-39)  with 
 (1.2-46)  for   λ  m  . Substituting  (1.2-40)  and  (1.2-41)  for  i  1  and   ′i2 , respectively, into  (1.2-
46)  yields the following equation for   λ  m  
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    λ
λ λ λm a

l l

a

m
mL

L L

L

L
f= + ′

′
⎛
⎝⎜

⎞
⎠⎟

−1

1

2

2 1

( )     (1.2-47)   

   Hence, the computer simulation for including saturation involves replacing   λ  m   given 
by  (1.2-44)  with  (1.2-47) , where  f (  λ  m  ) is a generated function of   λ  m   determined from 
the plot shown in Figure  1.2-5 .   

  1.3.       ELECTROMECHANICAL ENERGY CONVERSION 

 Although electromechanical devices are used in some manner in a wide variety of 
systems, electric machines are by far the most common. It is desirable, however, to 
establish methods of analysis that may be applied to all electromechanical devices. 
Prior to proceeding, it is helpful to clarify that throughout the book, the words “winding” 
and “coil” are used to describe conductor arrangements. To distinguish, a winding 
consists of one or more coils connected in series or parallel. 

  Energy Relationships 

 Electromechanical systems are comprised of an electrical system, a mechanical system, 
and a means whereby the electrical and mechanical systems can interact. Interaction 
can take place through any and all electromagnetic and electrostatic fi elds that are 
common to both systems, and energy is transferred from one system to the other as a 
result of this interaction. Both electrostatic and electromagnetic coupling fi elds may 
exist simultaneously and the electromechanical system may have any number of electri-
cal and mechanical systems. However, before considering an involved system, it is 
helpful to analyze the electromechanical system in a simplifi ed form. An electrome-
chanical system with one electrical system, one mechanical system, and with one 
coupling fi eld is depicted in Figure  1.3-1 . Electromagnetic radiation is neglected, and 
it is assumed that the electrical system operates at a frequency suffi ciently low so that 
the electrical system may be considered as a lumped parameter system. 

  Losses occur in all components of the electromechanical system. Heat loss will 
occur in the mechanical system due to friction and the electrical system will dissipate 
heat due to the resistance of the current-carrying conductors. Eddy current and hyster-
esis losses occur in the ferromagnetic material of all magnetic fi elds while dielectric 
losses occur in all electric fi elds. If  W E   is the total energy supplied by the electrical 
source and  W M   the total energy supplied by the mechanical source, then the energy 
distribution could be expressed as

    W W W WE e eL eS= + +     (1.3-1)  

    W W W WM m mL mS= + +     (1.3-2)   

  Figure 1.3-1.         Block diagram of elementary electromechanical system. 
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 In  (1.3-1) ,  W eS   is the energy stored in the electric or magnetic fi elds that are not coupled 
with the mechanical system. The energy  W eL   is the heat losses associated with the 
electrical system. These losses occur due to the resistance of the current-carrying con-
ductors, as well as the energy dissipated from these fi elds in the form of heat due to 
hysteresis, eddy currents, and dielectric losses. The energy  W e   is the energy transferred 
to the coupling fi eld by the electrical system. The energies common to the mechanical 
system may be defi ned in a similar manner. In  (1.3-2) ,  W mS   is the energy stored in the 
moving member and compliances of the mechanical system,  W mL   is the energy losses 
of the mechanical system in the form of heat, and  W m   is the energy transferred to the 
coupling fi eld. It is important to note that with the convention adopted, the energy sup-
plied by either source is considered positive. Therefore,  W E   ( W M  ) is negative when 
energy is supplied to the electrical source (mechanical source). 

 If  W F   is defi ned as the total energy transferred to the coupling fi eld, then

    W W WF f fL= +     (1.3-3)  

where  W f   is energy stored in the coupling fi eld and  W fL   is the energy dissipated in the 
form of heat due to losses within the coupling fi eld (eddy current, hysteresis, or dielec-
tric losses). The electromechanical system must obey the law of conservation of energy, 
thus

    W W W W W W W Wf fL E eL eS M mL mS+ = − − + − −( ) ( )     (1.3-4)  

which may be written as

    W W W Wf fL e m+ = +     (1.3-5)   

 This energy relationship is shown schematically in Figure  1.3-2 . 
  The actual process of converting electrical energy to mechanical energy (or vice 

versa) is independent of (1) the loss of energy in either the electrical or the mechanical 
systems ( W eL   and  W mL  ), (2) the energies stored in the electric or magnetic fi elds that are 
not common to both systems ( W eS  ), or (3) the energies stored in the mechanical system 
( W mS  ). If the losses of the coupling fi eld are neglected, then the fi eld is conservative 
and  (1.3-5)  becomes  [1] 

    W W Wf e m= +     (1.3-6)   

  Figure 1.3-2.         Energy balance. 
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 Examples of elementary electromechanical systems are shown in Figure  1.3-3  and 
Figure  1.3-4 . The system shown in Figure  1.3-3  has a magnetic coupling fi eld, while 
the electromechanical system shown in Figure  1.3-4  employs an electric fi eld as a 
means of transferring energy between the electrical and mechanical systems. In these 
systems,  v  is the voltage of the electric source and  f  is the external mechanical force 
applied to the mechanical system. The electromagnetic or electrostatic force is denoted 
by  f e  . The resistance of the current-carrying conductors is denoted by  r , and  l  denotes 
the inductance of a linear (conservative) electromagnetic system that does not couple 
the mechanical system. In the mechanical system,  M  is the mass of the movable 
member, while the linear compliance and damper are represented by a spring constant 
 K  and a damping coeffi cient  D , respectively. The displacement  x  0  is the zero force or 
equilibrium position of the mechanical system that is the steady-state position of the 
mass with  f e   and  f  equal to zero. A series or shunt capacitance may be included in the 
electrical system wherein energy would also be stored in an electric fi eld external to 
the electromechanical process. 

  Figure 1.3-3.         Electromechanical system with magnetic fi eld. 
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   The voltage equation that describes both electrical systems may be written as

    v ri l
di

dt
ef= + +     (1.3-7)  

where  e f   is the voltage drop across the coupling fi eld. The dynamic behavior of the 
translational mechanical systems may be expressed by employing Newton ’ s law of 
motion. Thus,

    f M
d x

dt
D

dx

dt
K x x fe= + + − −

2

2 0( )     (1.3-8)   

 The total energy supplied by the electric source is

    W vidtE = ∫     (1.3-9)   

 The total energy supplied by the mechanical source is

    W fdxM = ∫     (1.3-10)  

which may also be expressed as

    W f
dx

dt
dtM = ∫     (1.3-11)   

 Substituting  (1.3-7)  into  (1.3-9)  yields

    W r i dt l idi e idtE f= + +∫ ∫ ∫2     (1.3-12)   

 The fi rst term on the right-hand side of  (1.3-12)  represents the energy loss due to the 
resistance of the conductors ( W eL  ). The second term represents the energy stored in the 
linear electromagnetic fi eld external to the coupling fi eld ( W eS  ). Therefore, the total 
energy transferred to the coupling fi eld from the electrical system is

    W e idte f= ∫     (1.3-13)   

 Similarly, for the mechanical system, we have

    W M
d x

dt
dx D

dx

dt
dt K x x dx f dxM e= + ⎛

⎝⎜
⎞
⎠⎟ + − −∫ ∫ ∫ ∫

2

2

2

0( )     (1.3-14)   

 Here, the fi rst and third terms on the right-hand side of  (1.3-14)  represent the energy 
stored in the mass and spring, respectively ( W mS  ). The second term is the heat loss due 
to friction ( W mL  ). Thus, the total energy transferred to the coupling fi eld from the 
mechanical system with one mechanical input is
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    W f dxm e= −∫     (1.3-15)   

 It is important to note that a positive force,  f e  , is assumed to be in the same direction 
as a positive displacement,  x . Substituting  (1.3-13)  and  (1.3-15)  into the energy balance 
relation,  (1.3-6) , yields

    W e idt f dxf f e= −∫ ∫     (1.3-16)   

 The equations set forth may be readily extended to include an electromechanical system 
with any number of electrical inputs. Thus,

    W W Wf ej

j

J

m= +
=

∑
1

    (1.3-17)  

wherein  J  electrical inputs exist. The  J  here should not be confused with that used later 
for the inertia of rotational systems. The total energy supplied to the coupling fi eld from 
the electrical inputs is

    W e i dtej

j

J

fj j

j

J

= =
∑ ∑∫=

1 1

    (1.3-18)   

 The total energy supplied to the coupling fi eld from the mechanical input is

    W f dxm e= −∫     (1.3-19)   

 The energy balance equation becomes

    W e i dt f dxf fj j

j

J

e= −
=

∑∫ ∫
1

    (1.3-20)   

 In differential form

    dW e i dt f dxf fj j

j

J

e= −
=

∑
1

    (1.3-21)    

  Energy in Coupling Fields 

 Before using  (1.3-21)  to obtain an expression for the electromagnetic force  f e  , it is 
necessary to derive an expression for the energy stored in the coupling fi elds. Once we 
have an expression for  W f  , we can take the total derivative to obtain  dW f   that can then 
be substituted into  (1.3-21) . When expressing the energy in the coupling fi elds, it is 
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convenient to neglect all losses associated with the electric and magnetic fi elds, where-
upon the fi elds are assumed to be conservative and the energy stored therein is a func-
tion of the state of the electrical and mechanical variables. Although the effects of the 
fi eld losses may be functionally taken into account by appropriately introducing a 
resistance in the electric circuit, this refi nement is generally not necessary since the 
ferromagnetic material is selected and arranged in laminations so as to minimize 
the hysteresis and eddy current losses. Moreover, nearly all of the energy stored in the 
coupling fi elds is stored in the air gaps of the electromechanical device. Since air is a 
conservative medium, all of the energy stored therein can be returned to the electrical 
or mechanical systems. Therefore, the assumption of lossless coupling fi elds is not as 
restrictive as it might fi rst appear. 

 The energy stored in a conservative fi eld is a function of the state of the system 
variables and not the manner in which the variables reached that state. It is convenient 
to take advantage of this feature when developing a mathematical expression for the 
fi eld energy. In particular, it is convenient to fi x mathematically the position of the 
mechanical systems associated with the coupling fi elds and then excite the electrical 
systems with the displacements of the mechanical systems held fi xed. During the excita-
tion of the electrical systems,  W m   is zero, since  dx  is zero, even though electromagnetic 
or electrostatic forces occur. Therefore, with the displacements held fi xed, the energy 
stored in the coupling fi elds during the excitation of the electrical systems is equal to 
the energy supplied to the coupling fi elds by the electrical systems. Thus, with  W m    =  0, 
the energy supplied from the electrical system may be expressed from  (1.3-20)  as

    W e i dtf fj j

j

J

=
=

∑∫
1

    (1.3-22)   

 It is instructive to consider a single-excited electromagnetic system similar to that 
shown in Figure  1.3-3 . In this case,  e f    =   d λ  / dt  and  (1.3-22)  becomes

    W idf = ∫ λ     (1.3-23)   

 Here  J   =  1, however, the subscript is omitted for the sake of brevity. The area to the 
left of the   λ   −  i  relationship, shown in Figure  1.3-5 , for a singly excited electromagnetic 
device is the area described by  (1.3-23) . In Figure  1.3-5 , this area represents the energy 
stored in the fi eld at the instant when   λ    =    λ  a   and  i   =   i a  . The   λ   −  i  relationship need not 
be linear, it need only be single valued, a property that is characteristic to a conservative 
or lossless fi eld. Moreover, since the coupling fi eld is conservative, the energy stored 
in the fi eld with   λ    =    λ  a   and  i   =   i a   is independent of the excursion of the electrical and 
mechanical variables before reaching this state. 

  The area to the right of the   λ   −  i  curve is called the  coenergy , and it is defi ned as

    W dic = ∫ λ     (1.3-24)  

which may also be written as
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    W i Wc f= −λ     (1.3-25)   

 For multiple electrical inputs,   λ i  in  (1.3-25)  becomes   λ j j

j

J

i
=

∑
1

. Although the coenergy 

has little or no physical signifi cance, we will fi nd it a convenient quantity for expressing 
the electromagnetic force. It should be clear that  W f    =   W c   for a linear magnetic system 
where the   λ   −  i  plots are straight-line relationships. 

 The displacement  x  defi nes completely the infl uence of the mechanical system upon 
the coupling fi eld; however, since   λ   and  i  are related, only one is needed in addition to 
 x  in order to describe the state of the electromechanical system. Therefore, either   λ   and 
 x  or  i  and  x  may be selected as independent variables. If  i  and  x  are selected as indepen-
dent variables, it is convenient to express the fi eld energy and the fl ux linkages as

    W W i xf f= ( , )     (1.3-26)  

    λ λ= ( , )i x     (1.3-27)   

 With  i  and  x  as independent variables, we must express  d λ   in terms of  di  before sub-
stituting into  (1.3-23) . Thus, from  (1.3-27) 

    d i x
i x

i
di

i x

x
dxλ λ λ

( , )
( , ) ( , )

=
∂

∂
+

∂
∂

    (1.3-28)   

  Figure 1.3-5.         Stored energy and coenergy in a magnetic fi eld of a singly excited electromag-

netic device. 
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 In the derivation of an expression for the energy stored in the fi eld,  dx  is set equal to 
zero. Hence, in the evaluation of fi eld energy,  d λ   is equal to the fi rst term on the right-
hand side of  (1.3-28) . Substituting into  (1.3-23)  yields

    W i x i
i x

i
di

x
df

i

( , )
( , ) ( , )

=
∂

∂
=

∂
∂∫ ∫λ ξ λ ξ

ξ
ξ

0
    (1.3-29)  

where   ξ   is the dummy variable of integration. Evaluation of  (1.3-29)  gives the energy 
stored in the fi eld of a singly excited system. The coenergy in terms of  i  and  x  may be 
evaluated from  (1.3-24)  as

    W i x i x di x dc

i

( , ) ( , ) ( , )= =∫ ∫λ λ ξ ξ
0

    (1.3-30)   

 With   λ   and  x  as independent variables

    W W xf f= ( , )λ     (1.3-31)  

    i i x= ( , ).λ     (1.3-32)   

 The fi eld energy may be evaluated from  (1.3-23)  as

    W x i x d i x df ( , ) ( , ) ( , )λ λ λ ξ ξ
λ

= =∫ ∫0
    (1.3-33)   

 In order to evaluate the coenergy with   λ   and  x  as independent variables, we need to 
express  di  in terms of  d λ  ; thus, from  (1.3-32) , we obtain

    di x( , )
( , ) ( , )λ λ

λ
λ λ

=
∂

∂
+

∂
∂

i x
d

i x

x
dx     (1.3-34)   

 Since  dx   =  0 in this evaluation,  (1.3-24)  becomes

    W x
i x

d
i x

dc ( , )
( , ) ( , )λ λ λ

λ
λ ξ ξ

ξ
ξ

λ
=

∂
∂

=
∂

∂∫ ∫0
    (1.3-35)   

 For a linear electromagnetic system, the   λ   −  i  plots are straight-line relationships; thus, 
for the singly excited system, we have

    λ( , ) ( )i x L x i=     (1.3-36)  

or

    i x
L x

( , )
( )

λ λ
=     (1.3-37)   

 Let us evaluate  W f   ( i , x ). From  (1.3-28) , with  dx   =  0
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    d i x L x diλ( , ) ( )=     (1.3-38)   

 Hence, from  (1.3-29) 

    W i x L x d L x if

i

( , ) ( ) ( )= =∫ ξ ξ
0

21

2
    (1.3-39)   

 It is left to the reader to show that  W f   (  λ  , x ),  W c  ( i , x ), and  W c  (  λ  , x ) are equal to  (1.3-39)  
for this magnetically linear system. 

 The fi eld energy is a state function, and the expression describing the fi eld energy 
in terms of system variables is valid regardless of the variations in the system variables. 
For example,  (1.3-39)  expresses the fi eld energy regardless of the variations in  L ( x ) and 
 i . The fi xing of the mechanical system so as to obtain an expression for the fi eld energy 
is a mathematical convenience and not a restriction upon the result. 

 In the case of a multiexcited, electromagnetic system, an expression for the fi eld 
energy may be obtained by evaluating the following relation with  dx   =  0:

    W i df j j

j

J

=
=

∑∫ λ
1

    (1.3-40)   

 Because the coupling fi elds are considered conservative,  (1.3-40)  may be evaluated 
independent of the order in which the fl ux linkages or currents are brought to their fi nal 
values. To illustrate the evaluation of  (1.3-40)  for a multiexcited system, we will allow 
the currents to establish their fi nal states one at a time while all other currents are 
mathematically fi xed either in their fi nal or unexcited state. This procedure may be 
illustrated by considering a doubly excited electric system. An electromechanical 
system of this type could be constructed by placing a second coil, supplied from a 
second electrical system, on either the stationary or movable member of the system 
shown in Figure  1.3-3 . In this evaluation, it is convenient to use currents and displace-
ment as the independent variables. Hence, for a doubly excited electric system

    W i i x i d i i x i d i i xf ( , , ) ( , , ) ( , , )1 2 1 1 1 2 2 2 1 2= +[ ]∫ λ λ     (1.3-41)   

 In this determination of an expression for  W f  , the mechanical displacement is held 
constant ( dx   =  0); thus  (1.3-41)  becomes

    

W i i x i
i i x

i
di

i i x

i
dif ( , , )

( , , ) ( , , )
1 2 1

1 1 2

1
1

1 1 2

2
2=

∂
∂

+
∂

∂
⎡
⎣⎢

⎤
⎦⎥∫ λ λ

++
∂

∂
+

∂
∂

⎡
⎣⎢

⎤
⎦⎥

i
i i x

i
di

i i x

i
di2

2 1 2

1
1

2 1 2

2
2

λ λ( , , ) ( , , )
    (1.3-42)   

 We will evaluate the energy stored in the fi eld by employing  (1.3-42)  twice. First, we 
will mathematically bring the current  i  1  to the desired value while holding  i  2  at zero. 
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Thus,  i  1  is the variable of integration and  di  2   =  0. Energy is supplied to the coupling 
fi eld from the source connected to coil 1. As the second evaluation of  (1.3-42) ,  i  2  is 
brought to its desired current while holding  i  1  at its desired value. Hence,  i  2  is the vari-
able of integration and  di  1   =  0. During this time, energy is supplied from both sources 
to the coupling fi eld since  i  1  d λ   1  is nonzero. The total energy stored in the coupling fi eld 
is the sum of the two evaluations. Following this two-step procedure, the evaluation of 
 (1.3-42)  for the total fi eld energy becomes

   W i i x i
i i x

i
di i

i i x

i
di if ( , , )

( , , ) ( , , )
1 2 1

1 1 2

1
1 1

1 1 2

2
2 2=

∂
∂

+
∂

∂
+

∂∫ λ λ λλ2 1 2

2
2

( , , )i i x

i
di

∂
⎡
⎣⎢

⎤
⎦⎥∫     (1.3-43)  

which should be written as

   W i i x
i x

d i
i x

d
i

f

i

( , , )
( , , ) ( , , ) (

1 2
1 2

0
1

1 1 2 11

=
∂

∂
+

∂
∂

+
∂∫ ξ λ ξ

ξ
ξ λ ξ

ξ
ξ ξ λ ,, , )ξ

ξ
ξx

d
i

∂
⎡
⎣⎢

⎤
⎦⎥∫0

2

    (1.3-44)   

 The fi rst integral on the right-hand side of  (1.3-43)  or  (1.3-44)  results from the fi rst 
step of the evaluation, with  i  1  as the variable of integration and with  i  2   =  0 and  di  2   =  0. 
The second integral comes from the second step of the evaluation with  i  1   =   i  1 ,  di  1   =  0, 
and  i  2  as the variable of integration. It is clear that the order of allowing the currents 
to reach their fi nal state is irrelevant; that is, as our fi rst step, we could have made  i  2  
the variable of integration while holding  i  1  at zero ( di  1   =  0) and then let  i  1  become the 
variable of integration while holding  i  2  at its fi nal value. The result would be the same. 
It is also clear that for three electrical inputs, the evaluation procedure would require 
three steps, one for each current to be brought mathematically to its fi nal state. 

 Let us now evaluate the energy stored in a magnetically linear electromechanical 
system with two electric inputs. For this, let

    λ1 1 2 11 1 12 2( , , ) ( ) ( )i i x L x i L x i= +     (1.3-45)  

    λ2 1 2 21 1 22 2( , , ) ( ) ( )i i x L x i L x i= +     (1.3-46)   

 With that mechanical displacement held constant ( dx   =  0),

    d i i x L x di L x diλ1 1 2 11 1 12 2( , , ) ( ) ( )= +     (1.3-47)  

    d i i x L x di L x diλ2 1 2 12 1 22 2( , , ) ( ) ( ) .= +     (1.3-48)   

 It is clear that the coeffi cients on the right-hand side of  (1.3-47)  and  (1.3-48)  are the 
partial derivatives. For example,  L  11 ( x ) is the partial derivative of   λ   1 ( i  1 , i  2 , x ) with respect 
to  i  1 . Appropriate substitution into  (1.3-44)  gives

    W i i x L x d i L x L x df

i i

( , , ) ( ) ( ) ( )1 2 11
0

1 12 22
0

1 2

= + +[ ]∫ ∫ξ ξ ξ ξ     (1.3-49)  

which yields
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    W i i x L x i L x i i L x if ( , , ) ( ) ( ) ( )1 2 11 1
2

12 1 2 22 2
21

2

1

2
= + +     (1.3-50)   

 The extension to a linear electromagnetic system with  J  electrical inputs is straightfor-
ward, whereupon the following expression for the total fi eld energy is obtained as

    W i i x L i if J pq p q

q

J

p

J

( , , , )1

11

1

2
… =

==
∑∑     (1.3-51)   

 It is left to the reader to show that the equivalent of  (1.3-22)  for a multiexcited elec-
trostatic system is

    W e dqf fj j

j

J

=
=

∑∫
1

    (1.3-52)    

  Graphical Interpretation of Energy Conversion 

 Before proceeding to the derivation of expressions for the electromagnetic force, it is 
instructive to consider briefl y a graphical interpretation of the energy conversion 
process. For this purpose, let us again refer to the elementary system shown in Figure 
 1.3-3 , and let us assume that as the movable member moves from  x   =   x a   to  x   =   x b  , where 
 x b    <   x a  , the   λ   −  i  characteristics are given by Figure  1.3-6 . Let us further assume that as 
the member moves from  x a   to  x b  , the   λ   −  i  trajectory moves from point A to point B. It 
is clear that the exact trajectory from  A  to  B  is determined by the combined dynamics 
of the electrical and mechanical systems. Now, the area  OACO  represents the original 
energy stored in fi eld; area  OBDO  represents the fi nal energy stored in the fi eld. There-
fore, the change in fi eld energy is

    ΔW OBDO OACOf = −area area     (1.3-53)   

  The change in  W e  , denoted as  Δ  W e  , is

    ΔW id CABDCe
A

B

= =∫ λ
λ

λ
area     (1.3-54)   

 We know that

    Δ Δ ΔW W Wm f e= −     (1.3-55)   

 Hence,

    ΔW OBDO OACO CABDC OABOm = − − = − area  area  area area     (1.3-56)   

 Here,  Δ  W m   is negative; energy has been supplied to the mechanical system from the 
coupling fi eld, part of which came from the energy stored in the fi eld and part from the 
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electrical system. If the member is now moved back to  x a  , the   λ   −  i  trajectory may be as 
shown in Figure  1.3-7 . Hence  Δ  W m   is still area  OABO , but it is now positive, which 
means that energy was supplied from the mechanical system to the coupling fi eld, part 
of which is stored in the fi eld and part of which is transferred to the electrical system. 
The net  Δ  W m   for the cycle from  A  to  B  back to  A  is the shaded area shown in Figure 
 1.3-8 . Since  Δ  W f   is zero for this cycle

    Δ ΔW Wm e= −     (1.3-57)   

   For the cycle shown, the net  Δ  W e   is negative, thus  Δ  W m   is positive; we have generator 
action. If the trajectory had been in the counterclockwise direction, the net  Δ  W e   would 
have been positive and the net  Δ  W m   negative, which would represent motor action.  

  Electromagnetic and Electrostatic Forces 

 The energy balance relationships given by  (1.3-21)  may be arranged as

    f dx e i dt dWe fj j

j

J

f= −
=

∑
1

    (1.3-58)   

 In order to obtain an expression for  f e  , it is necessary to fi rst express  W f   and then take 
its total derivative. One is tempted to substitute the integrand of  (1.3-22)  into  (1.3-58)  

  Figure 1.3-6.         Graphical representation of electromechanical energy conversion for   λ   −  i  path 
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  Figure 1.3-7.         Graphical representation of electromechanical energy conversion for   λ   −  i  path 
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  Figure 1.3-8.         Graphical representation of electromechanical energy conversion for   λ   −  i  path 
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for the infi nitesimal change of fi eld energy. This procedure is, of course, incorrect, since 
the integrand of  (1.3-22)  was obtained with the mechanical displacement held fi xed 
( dx   =  0), where the total differential of the fi eld energy is required in  (1.3-58) . In the 
following derivation, we will consider multiple electrical inputs; however, we will 
consider only one mechanical input, as we noted earlier in  (1.3-15) . Electromechnical 
systems with more than one mechanical input are not common; therefore, the additional 
notation necessary to include multiple mechanical inputs is not warranted. Moreover, 
the fi nal results of the following derivation may be readily extended to include multiple 
mechanical inputs. 

 The force or torque in any electromechanical system may be evaluated by employ-
ing  (1.3-58) . In many respects, one gains a much better understanding of the energy 
conversion process of a particular system by starting the derivation of the force or 
torque expression with  (1.3-58)  rather than selecting a relationship from a table. 
However, for the sake of completeness, derivation of the force equations will be set 
forth and tabulated for electromechanical systems with one mechanical input and  J  
electrical inputs. 

 For an electromagnetic system,  (1.3-58)  may be written as

    f dx i d dWe j j

j

J

f= −
=

∑ λ
1

    (1.3-59)   

 Although we will use  (1.3-59) , it is helpful to express it in an alternative form. For this 
purpose, let us fi rst write  (1.3-25)  for multiple electrical inputs

    λ j j

j

J

c fi W W
=

∑ = +
1

    (1.3-60)   

 If we take the total derivative of  (1.3-60) , we obtain

    λ λj j

j

J

j j

j

J

c fdi i d dW dW
= =

∑ ∑+ = +
1 1

    (1.3-61)   

 We realize that when we evaluate the force  f e   we must select the independent variables; 
that is, either the fl ux linkages or the currents and the mechanical displacement  x . The 
fl ux linkages and the currents cannot simultaneously be considered independent vari-
ables when evaluating the  f e  . Nevertheless,  (1.3-61) , wherein both  d λ  j   and  di j   appear, 
is valid in general, before a selection of independent variables is made to evaluate  f e  . 
If we solve  (1.3-61)  for the total derivative of fi eld energy,  dW f  , and substitute the result 
into  (1.3-59) , we obtain

    f dx di dWe j j

j

J

c= − +
=

∑λ
1

    (1.3-62)   



26 THEORY OF ELECTROMECHANICAL ENERGY CONVERSION

 Either  (1.3-59)  or  (1.3-62)  can be used to evaluate the electromagnetic force  f e  . If fl ux 
linkages and  x  are selected as independent variables,  (1.3-59)  is the most direct, while 
 (1.3-62)  is the most direct if currents and  x  are selected. 

 With fl ux linkages and  x  as the independent variables, the currents are expressed 
functionally as

    i xj j( , , , )λ λ1 …     (1.3-63)   

 For the purpose of compactness, we will denote (  λ   1 ,  . . .  ,  λ  j  , x ) as (  λ  , x ), where   λ   is an 
abbreviation for the complete set of fl ux linkages associated with the  J  windings. Let 
us write  (1.3-59)  with fl ux linkages and  x  as independent variables

    f x dx i x d dW xe j j

j

J

f( , ) ( , ) ( , )l l l= −
=

∑ λ
1

    (1.3-64)   

 If we take the total derivative of the fi eld energy with respect to   λ   and  x , and substitute 
that result into  (1.3-64) , we obtain
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 Equating the coeffi cients of  dx  gives

    f x
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x
e

f( , )
( , )

l
l

= −
∂
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    (1.3-66)   

 A second expression for  f e  (  λ  , x ) may be obtained by expressing  (1.3-59)  with fl ux link-
ages and  x  as independent variables, solving for  W f   (  λ  , x ) and then taking the partial 
derivative with respect to  x . Thus,

    f x
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    (1.3-67)   

 If we now select  i  and  x  as independent variables, where  i  is the abbreviated notation 
for ( i  1 ,  . . .  , i J  , x ), then  (1.3-62)  can be written

    f x dx x di dW xe j j

j

J

c( , ) ( , ) ( , )i i i= − +
=
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1

    (1.3-68)   

 If we take the total derivative of  W c  ( i , x ) and substitute the result into  (1.3-68) , we 
obtain



ELECTROMECHANICAL ENERGY CONVERSION 27

    f x dx x di
W x

i
di

W x

x
de j j

j

J
c

j
j

j

J
c( , ) ( , )

( , ) ( , )
i i

i i
= − +

∂
∂

+
∂

∂= =
∑ ∑λ

1 1

xx     (1.3-69)   

 Equating coeffi cients of  dx  yields
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 We will make extensive use of this expression. If we now solve  (1.3-60)  for  W c  ( i , x ) 
and then take the partial derivative with respect to  x , we can obtain a second expression 
for  f e  ( i , x ). That is
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    (1.3-71)   

 We have derived four expressions for the electromagnetic force, which are summarized 
in Table  1.3-1 . Since we will generally use currents and  x  as independent variables, the 
two expressions for  f e  ( i , x ) are listed fi rst in Table  1.3-1 . 

  Before proceeding to the next section, it is important to take a moment to look 
back. In order to obtain  f e  (  λ  , x ), we equated the coeffi cients of  dx  in  (1.3-65) . If, however, 
we equate the coeffi cients of  d λ  j   in  (1.3-65) , we obtain
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    (1.3-72)   

 Similarly, if we equate the coeffi cients of  di j   in  (1.3-69) , we obtain

    
∂

∂
=

= =
∑ ∑W x

i
xc

jj

J

j

j

J( , )
( , )

i
i

1 1

λ     (1.3-73)   

 TABLE 1.3-1.       Electromagnetic Force at Mechanical Input 
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  Note: For rotational systems, replace   f e    with   T e    and   x   with    θ   .  
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 Equations  (1.3-72)  and  (1.3-73)  are readily verifi ed by recalling the defi nitions of  W f   
and  W c   that were obtained by holding  x  fi xed ( dx   =  0). 

 In Table  1.3-1 , the independent variables to be used are designated in each equation 
by the abbreviated functional notation. Although only translational mechanical systems 
have been considered, all force relationships developed herein may be modifi ed for the 
purpose of evaluating the torque in rotational systems. In particular, when considering 
a rotational system,  f e   is replaced with the electromagnetic torque  T e   and  x  with the 
angular displacement   θ  . These substitutions are justifi ed since the change of mechanical 
energy in a rotational system is expressed as

    dW T dm e= − θ     (1.3-74)   

 The force equation for an electromechanical system with electric coupling fi elds may 
be derived by following a procedure similar to that used in the case of magnetic cou-
pling fi elds. These relationships are given in Table  1.3-2  without explanation or proof. 

  It is instructive to derive the expression for the electromagnetic force of a singly 
excited electric system as shown in Figure  1.3-3 . It is clear that the expressions given 
in Table  1.3-1  are valid for magnetically linear or nonlinear systems. If we assume the 
magnetic system is linear, then   λ  ( i , x ) is expressed by  (1.3-36)  and  W f   ( i , x ) by  (1.3-39) , 
which is also equal to the coenergy. Hence, either the fi rst or second entry of Table 
 1.3-1  can be used to express  f e  . In particular
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2     (1.3-75)   

 With the convention established, a positive electromagnetic force is assumed to act in 
the direction of increasing  x . Thus, with  (1.3-15)  expressed in differential form as

    dW f dxm e= −     (1.3-76)  

we see that energy is supplied to the coupling fi eld from the mechanical system when 
 f e   and  dx  are opposite in sign, and energy is supplied to the mechanical system from 
the coupling fi eld when  f e   and  dx  are the same in sign. 

 TABLE 1.3-2.       Electrostatic Force at Mechanical Input 
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  Note: For rotational systems, replace   f e    with   T e    and   x   with    θ   .  
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 From  (1.3-75)  it is apparent that when the change of  L ( x ) with respect to  x  is nega-
tive,  f e   is negative. In the electromechanical system shown in Figure  1.3-3 , the change 
 L ( x ) with respect to  x  is always negative, therefore, the electromagnetic force is in the 
direction so as to pull the movable member to the stationary member. In other words, 
an electromagnetic force is set up so as to maximize the inductance of the coupling 
system, or, since reluctance is inversely proportional to the inductance, the force tends 
to minimize the reluctance. Since  f e   is always negative in the system shown in Figure 
 1.3-3 , energy is supplied to the coupling fi eld from the mechanical system (generator 
action) when  dx  is positive and from the coupling fi eld to the mechanical system (motor 
action) when  dx  is negative.  

  Steady-State and Dynamic Performance of an 
Electromechanical System 

 It is instructive to consider the steady-state and dynamic performance of the elementary 
electromagnetic system shown in Figure  1.3-3 . The differential equations that describe 
this system are given by  (1.3-7)  for the electrical system and  (1.3-8)  for the mechanical 
system. The electromagnetic force  f e   is expressed by  (1.3-75) . If the applied voltage,  v , 
and the applied mechanical force,  f , are constant, all derivatives with respect to time 
are zero during steady-state operation, and the behavior can be predicted by

    v ri=     (1.3-77)  

    f K x x fe= − −( )0     (1.3-78)   

 Equation  (1.3-78)  may be written as

    − = − −f f K x xe ( )0     (1.3-79)   

 The magnetic core of the system in Figure  1.3-3  is generally constructed of ferromag-
netic material with a relative permeability in the order of 2000–4000. In this case, the 
inductance  L ( x ) can be adequately approximated by

    L x
k

x
( ) =     (1.3-80)   

 In the actual system, the inductance will be a large fi nite value rather than infi nity, as 
predicted by  (1.3-80) , when  x   =  0. Nevertheless,  (1.3-80)  is quite suffi cient to illustrate 
the action of the system for  x   >  0. Substituting  (1.3-80)  into  (1.3-75)  yields

    f i x
ki

x
e ( , ) = −

2

22
    (1.3-81)   

 A plot of  (1.3-79) , with  f e   replaced by  (1.3-81) , is shown in Figure  1.3-9  for the fol-
lowing system parameters  [1] :
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 In Figure  1.3-9 , the plot of the negative of the electromagnetic force is for an applied 
voltage of 5 V whereupon the steady-state current is 0.5 A. The straight lines represent 
the right-hand side of  (1.3-79)  with  f   =  0 (lower straight line) and  f   =  4 N (upper straight 
line). Both lines intersect the  −  f e   curve at two points. In particular, the upper line inter-
sects the  −  f e   curve at 1 and 1 ′ ; the lower line intersects at 2 and 2 ′ . Stable operation 
occurs at only points 1 and 2. The system will not operate stably at points 1 ′  and 2 ′ . 
This can be explained by assuming the system is operating at one of these points (1 ′  
and 2 ′ ) and then show that any system disturbance whatsoever will cause the system 
to move away from these points. If, for example,  x  increases slightly from its value 
corresponding to point 1 ′ , the restraining force  f   −   K ( x   −   x  0 ) is larger in magnitude than 
 −  f e  , and  x  will continue to increase until the system reaches operating point 1. If  x  
increases beyond its value corresponding to operating point 1, the restraining force is 
less than the electromagnetic force. Therefore, the system will establish steady-state 
operation at 1. If, on the other hand,  x  decreases from point 1 ′ , the electromagnetic 

  Figure 1.3-9.         Steady state operation of electromechanical system shown in Figure  1.3-3 . 
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force is larger than the restraining force. Therefore, the movable member will move 
until it comes in contact with the stationary member ( x   =  0). It is clear that the restrain-
ing force that yields a straight line below the  −  f e   curve will not permit stable operation 
with  x   >  0. 

  The dynamic behavior of the system during step changes in the source voltage  v  
is shown in Figure  1.3-10 , and in Figure  1.3-11  and Figure  1.3-12  for step changes in 
the applied force  f . The following system parameters were used in addition to those 
given previously:

    l M D= = = ⋅0 0 055 4. kg N s/m   

    The computer traces shown in Figure  1.3-10  depict the dynamic performance of the 
example system when the applied voltage is stepped from 0 to 5 V and then back to 0 
with the applied mechanical force held equal to 0. The following system variables:  e f  ,   λ  ,  i , 
 f e  ,  x ,  W e  ,  W f  , and  W m   are shown. The energies are plotted in  millijoules  ( mJ ). Initially, the 

  Figure 1.3-10.         Dynamic performance of the electromechanical system shown in Figure  1.3-3  

during step changes in the source voltage. 
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mechanical system is at rest with  x   =   x  0  (3 mm). When the source voltage is applied, 
 x  decreases, and when steady-state operation is reestablished,  x  is approximately 
2.5 mm. Energy enters the coupling fi eld via  W e  . The bulk of this energy is stored in 
the fi eld ( W f  ), with a smaller amount transferred to the mechanical system, some of 
which is dissipated in the damper during the transient period while the remainder is 
stored in the spring. When the applied voltage is removed, the electrical and mechanical 
systems return to their original states. The change in  W m   is small, increasing only 
slightly. Hence, during the transient period, there is an interchange of energy between 
the spring and mass that is fi nally dissipated in the damper. The net change in  W f   during 
the application and removal of the applied voltage is zero, hence the net change in  W e   
is positive and equal to the negative of the net change in  W m  . The energy transferred 
to the mechanical system during this cycle is dissipated in the damper, since  f  is fi xed 
at zero, and the mechanical system returns to its initial rest position with zero energy 
stored in the spring. 

  Figure 1.3-11.         Dynamic performance of the electromechanical system shown in Figure  1.3-3  

during step changes in the applied force. 
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 In Figure  1.3-11 , the initial state is that shown in Figure  1.3-10 , with 5 V applied 
to the electrical system. The mechanical force  f  is increased from zero to 4 N, where-
upon energy enters the coupling fi eld from the mechanical system. Energy is transferred 
from the coupling fi eld to the electrical system, some coming from the mechanical 
system and some from the energy originally stored in the magnetic fi eld. Next, the force 
is stepped back to zero from 4 N. The electrical and mechanical systems return to their 
original states. During the cycle, a net energy has been transferred from the mechanical 
system to the electrical system that is dissipated in the resistance. This cycle is depicted 
on the   λ   −  i  plot shown in Figure  1.3-12 . 

  Figure 1.3-12.         System response shown in Figure  1.3-3 . 
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   EXAMPLE 1B       It is helpful to formulate an expression for the electromagnetic torque 
of the elementary rotational device shown in Figure  1B-1 . This device consists of two 
conductors. Conductor 1 is placed on the stationary member (stator); conductor 2 is 
fi xed on the rotating member (rotor). The crossed lines inside a circle indicate that the 
assumed direction of positive current fl ow is into the paper (we are seeing the tail of 
the arrow), while a dot inside a circle indicates positive current fl ow is out of the paper 
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(the point of the arrow). The length of the air gap between the stator and rotor is shown 
exaggerated relative to the inside diameter of the stator. 

  The voltage equations may be written as

    v i r
d

dt
1 1 1

1= +
λ

    (1B-1)  

    v i r
d

dt
2 2 2

2= +
λ

    (1B-2)  

where  r  1  and  r  2  are the resistances of conductor 1 and 2, respectively. The magnetic 
system is assumed linear; therefore the fl ux linkages may be expressed

    λ1 11 1 12 2= +L i L i     (1B-3)  

    λ2 21 1 22 2= +L i L i     (1B-4)   

 The self-inductances  L  11  and  L  22  are constant. Let us assume that the mutual inductance 
may be approximated by

    L L M r12 21= = cosθ     (1B-5)  

where   θ  r   is defi ned in Figure  1B-1 . The reader should be able to justify the form of 
 (1B-5)  by considering the mutual coupling between the two conductors as   θ  r   varies 
from 0 to 2  π   rad.

    T i i
W i i

e r
c r

r

( , , )
( , , )

1 2
1 2θ θ
θ

=
∂

∂
    (1B-6)   

 Because the magnetic system is assumed to be linear, we have

  Figure 1B-1.         Elementary rotational electromechanical device. (a) End view; (b) cross-sectional 

view. 
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     1.4.       ELEMENTARY  AC  MACHINES 

 In Chapter  2 , winding distributions, rotating air-gap magnetomotive force (MMF), and 
winding inductances common to several classes of electric machinery are derived in 
analytical detail. However, Example 1B has set the stage for us to take a preliminary look 
at what is coming in Chapter  2  from an elementary standpoint. For this purpose, let us 
consider a two-phase induction machine by adding two windings to Figure  1B-1 ; one 
on the stator and one on the rotor as shown in Figure  1.4-1 . This device has two identi-
cal windings (same resistance and same number of turns) on the stator and two identical 

    W i i L i L i i L ic r( , , )1 2 11 1
2

12 1 2 22 2
21

2

1

2
θ = + +     (1B-7)   

 Substituting into  (1B-6)  yields

    T i i Me r= − 1 2 sinθ     (1B-8)   

 Consider for a moment the form of the torque if  i  1  and  i  2  are both constant. For the 
positive direction of current shown, the torque is of the form

    T Ke r= − sin ,θ     (1B-9)  

where  K  is a positive constant. We can visualize the production of torque by considering 
the interaction of the magnetic poles produced by the current fl owing in the conductors. 
If both  i  1  and  i  2  are positive, the poles produced are as shown in Figure  1B-2 . One 
should recall that by defi nition fl ux issues from a north pole. Also, the stator and rotor 
each must be considered as separate electromagnetic systems. Thus, fl ux produced by 
the 1 − 1 ′  winding issues from the north pole of the stator into the air gap. Similarly, the 
fl ux produced by the 2 − 2 ′  winding enters the air gap from the north pole of the rotor. 
It is left to the reader to justify the fact that the range of   θ  r   over which stable operation 
can occur for the expression of electromagnetic torque given by  (1B-9)  is  −   π  /2  ≤    θ  r    ≤    π  /2.   

  Figure 1B-2.         Stator and rotor poles for constant currents. 
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windings on the rotor. It is referred to as a symmetrical two-phase induction machine. 
We can write the fl ux linkage equations for the  as  and  ar  windings from our work in 
Example 1B. Following a similar procedure, we can write the fl ux linkage equations 
for all of the windings (assuming a linear magnetic system) as
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    (1.4-1)   

  Figure 1.4-1.         A two-pole, two-phase induction machine. 
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  Because the stator (rotor) windings are identical and the air gap is uniform, the self-
inductances  L asas   and  L bsbs   ( L arar   and  L brbr  ) are equal. It is clear that  L asar    =   L aras  ,  L asbr    =   L bras  , 
and so on. The self-inductances are constant, consisting of a leakage and a magnetiz-
ing inductance. The mutual inductances between stator and rotor phases are constant 
amplitude sinusoidal variations that are rotor position dependent. Thus,  (1.4-1)  can be 
written as
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    (1.4-2)   

 The stator self-inductances,  L asas   and  L asar    =   L bsbs  , are generally expressed as  L ss   
or  L ls    +   L ms  , and the rotor self-inductance,  L arar   and  L brbr  , as  L rr   or  L lr    +   L mr  . The induc-
tance  L sr   is the amplitude of the mutual inductances between the stator and rotor 
windings. 

 In order to take a preliminary look at a rotating air-gap MMF (rotating poles), let 
the stator currents be a balanced two-phase set expressed as

    I I tas s e= 2 cosω     (1.4-3)  

    I I tbs s e= 2 sinω     (1.4-4)   

 At time zero, when  I as   is   2Is and  I bs   is zero, the electromagnet system established by 
these currents is centered about the  as -axis with the maximum air-gap MMF drop at 
the positive  as -axis (to the right), which is a stator south pole, while the stator north 
pole is at the negative  as -axis. As time progresses to where  I as   is zero,  I bs   is   2Is , the 
magnetic fi eld (poles) have rotated to where it is now centered about the  bs -axis. Thus, 
as the electrical system “moved” or “rotated” (  π  /2) rad, the poles or air-gap MMF has 
moved (  π  /2) rad. Currents induced in the rotor windings create a magnetic system as 
well (rotor poles), and these will also rotate about the air-gap of the machine. 

 A four-pole, two-phase symmetrical induction machine is shown in Figure  1.4-2 . 
In this case, the fl ux issuing along the  as 1-axis; one-half returns across the air-gap in 
the top half of the stator and one-half in the lower one-half. Similarly the fl ux issuing 
along the  as 2-axis; one-half returns across the air gap in the top one-half of the stator 
and one-half on the lower one-half. 

  It is interesting to note that when balanced two-phase currents fl ow in the stator 
windings, the air-gap MMF (poles) created by the stator currents rotate from the 
 as 1- and  as 2-axes to the  bs 1- and  bs 2-axes or (  π  /4) rad, while the electrical system 
has rotated (  π  /2) rad, as in the case of the two-pole system. In other words, the me -
chanical rotation of the air-gap MMF is determined by the number of poles created 
by the winding arrangement; however, the electrical system is unaware of the number 
of poles. 

 The fl ux linkage equations of the four-pole machine may be expressed as
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  Figure 1.4-2.         A four-pole, two-phase induction machine. 
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    (1.4-5)  

where   θ  rm   is the mechanical displacement of the rotor. We will distinguish it from   θ  r   
presently. 

 It is important to note the difference between  (1.4-2) , the fl ux linkage equations 
for a two-pole machine, and  (1.4-5)  for a four-pole machine. Clearly, the inductances 
will generally be different in magnitude; however, the notable difference is that   θ  r   
is the angular displacement for the two-pole while   θ  rm   is the displacement for the 
four-pole. In particular, we see from comparing  (1.4-2)  and  (1.4-5)  that if we substi-
tuted   θ  r   for 2  θ  rm  , then the two equations would be identical in form. In general, we can 
defi ne

    θ θr rm
P

=
2

    (1.4-6)   

 This relation allows us to assume that all machines are two-pole machines, whereupon 
 (1.4-2)  will be the form of the fl ux linkage equations regardless of the number of poles. 
This appears reasonable in light of the previous discussion of the rotation of the mag-
netic poles produced by two-pole and four-pole machines. The displacement   θ  r   is then 
referred to as the electrical angular displacement of the rotor. The actual angular rotor 
displacement can always be determined from  (1.4-6) . It follows that

    ω ωr rm
P

=
2

    (1.4-7)  

where   ω  r   is the electrical angular velocity of the rotor and   ω  rm   is the actual angular veloc-
ity. We will fi nd that we can consider all machines as two-pole devices and take the  P /2 
factor into account when evaluating the torque. 

 An elementary two-pole, three-phase symmetrical induction machine is shown in 
Figure  1.4-3 . Here, the fl ux linkage equations may be expressed as

    
l
l

abcs

abcr

s sr

sr
T

r

abcs

abcr

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

L L

L L

i

i( )
    (1.4-8)  

where

    ( )fabcs
T

as bs csf f f= [ ]          (1.4-9)  

    ( )fabcr
T

ar br crf f f= [ ]          (1.4-10)   
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  Figure 1.4-3.         A two-pole, three-phase induction machine. 

  As a fi rst approximation (a more detailed representation will be considered in Chapter  2 ),
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ELEMENTARY AC MACHINES 41

    Lr

lr mr mr mr

mr lr mr mr

mr mr lr

L L L L

L L L L

L L L L

=

+ − −

− + −

− − +

1

2

1

2
1

2

1

2
1

2

1

2
mmr

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

    (1.4-12)  

    Lsr sr

r r r

rL=

+⎛
⎝⎜

⎞
⎠⎟ −⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

cos cos cos

cos c

θ θ π θ π

θ π

2

3

2

3

2

3
oos cos

cos cos cos

θ θ π

θ π θ π θ

r r

r r r

+⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟ −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢

2

3

2

3

2

3

⎢⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

    (1.4-13)   

 We see that the three-phase stator (rotor) windings are coupled, unlike the two-phase 
machine (Fig.  1.4-1 ). The difference in coupling is also true for the four-pole, two-phase 
machine (Fig.  1.4-2 ). Why? 

 Although the above inductance matrices are rigorously derived in Chapter  2 , we 
can get a “fi rst look” from a simplistic consideration. We have previously defi ned the 
leakage, magnetizing, and mutual inductances; it is now the off-diagonal terms of  L   s   
and  L   r   that are of concern. To explain these terms, let us fi rst consider the coupling 
between the  as  and  bs  windings. They are displaced   ( )2 3/ π  from each other. Let us 
assume that we can take the  bs -winding and turn (twist) it clockwise through the stator 
iron for (2/3)  π   rad, whereupon it would be “on top” of the  as -winding. In this case, the 
mutual inductance between the  as  and  bs  windings would be  L ms  , neglecting any cou-
pling of the leakage fl uxes. Now let us turn the  bs -winding counterclockwise back 
through the stator iron. The mutual inductance would vary as  L ms  cos  α  , where   α   is the 
angle measured counterclockwise from the  as -axes; when we reach   α    =  (  π  /2), there is 
no coupling between the two windings, just as in the case of the two-phase machine. 
When we have twisted the  bs -winding back to its original position, the mutual induc-
tance is  L ms  cos(2  π  /3) or  − (1/2) L ms  . Following this type of simplistic reasoning, we can 
justify all of the off-diagonal terms of  L   s   and  L   r  . 

 In Chapter  2 , we will derive the expressions for all inductances as functions of 
machine dimensions and the type of winding distribution; however, the resulting form of 
the inductance matrices are nearly the same as given in  (1.4-11)–(1.4-13) . 

 An elementary two-pole, two-phase synchronous machine is shown in Figure  1.4-
4 . The fl ux linkage equations may be expressed as
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    (1.4-14)   

  The stator windings are identical in that they have the same resistance and the same 
number of turns. 
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 Due to the saliency of the rotor, the stator windings experience a change in self-
inductance as the rotor rotates, which is here approximated as a double-angle variation 
about an average value. Moreover, the saliency of the rotor also causes a mutual cou-
pling between the orthogonal stator windings. It is interesting that the  L B   associated 
with the self-inductances is also the coeffi cient of the double-angle mutual inductance 
between stator phases. This is shown in Chapter  2 . It is left to the reader to show that 
the mutual inductance between the stator phases is a negative with the direction of 
rotation and the current directions given in Figure  1.4-4 . 

  Figure 1.4-4.         A two-pole, two-phase, salient-pole synchronous machine. 
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 An elementary two-pole, three-phase synchronous machine is shown in Figure 
 1.4-5 . The fl ux linkage equations may be written as
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    (1.4-15)  

where

  Figure 1.4-5.         A two-pole, three-phase, salient-pole synchronous machine. 
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where
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  It is left to the reader to verify the stator mutual inductances. A practical synchronous 
machine is equipped with damper windings on the rotor that by induction motor action, 
damp low-frequency oscillations about a steady-state operating point. The inductances 
associated with these windings are incorporated in the performance analysis of syn-
chronous machines in Chapter  5 .   
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 PROBLEMS 

   1.   A two-winding, iron-core transformer is shown in Figure  1P-1 .  N  1   =  50 turns, 
 N  2   =  100 turns, and   μ  R    =  4000. Calculate  L m   1  and  L m   2 . 

      2.   Repeat Problem 1 if the iron core has an air gap of 0.2 cm in length and is cut 
through the complete cross section. Assume that fringing (a curvature of the fl ux 
lines around the air gap) does not occur; that is, the fl ux lines follow a straight path 
through the air gap in which the effective cross-sectional area is 25 cm 2 .   

   3.   Two coupled coils have the following parameters:
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 Develop an equivalent T circuit with coil 1 as the reference coil. Repeat with coil 
2 as the reference coil.   
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  Figure 1P-1.         Two-winding, iron-core transformer. 
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   4.   A system with two windings has a fl ux linkage versus current profi le of
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 The resistance of the coils is  r  1   =  1  Ω  and  r  2   =  0.3  Ω , respectively. The winding 
voltage equations can be expressed in a form (where  p  =  d/dt ):

    
v r i p

v r i p
1 1 1 1

2 2 2 2

= +
= +

λ
λ

  

   (a)     Derive the equivalent T circuit model for this system, assuming coil 1 as the reference. 
Show all component values. Label directions of all currents and voltages.  

  (b)     For this system, describe two conditions where you cannot make the common approxi-
mation that   � �I I1 2≈ ′ .     

   5.   A constant 10 V is suddenly applied to coil 1 of the coupled circuits given in 
Problem 3. Coil 2 is short-circuited. Calculate the transient and steady-state current 
fl owing in each coil.   

   6.   Determine the input impedance of the coupled circuits given in Problem 3 if the 
applied frequency to coil 1 is 60 Hz with coil 2 (a) open-circuited and (b) short-
circuited. Repeat (b) with the current fl owing in the magnetizing reactance 
neglected.   

   7.   A third coil is wound on the ferromagnetic core shown in Figure  1.2-1 . The resis-
tance is  r  3  and the leakage and magnetizing inductances are  L l   3  and  L m   3 , respectively. 
The coil is wound so that positive current ( i  3 ) produces  Φ   m   3  in the same direction 
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  Figure 1P-2.         EE iron-core transformer. 
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  Figure 1P-3.          R–L  circuit. 

i

RL

as  Φ   m   1  and  Φ   m   2 . Derive the equivalent T circuit for this three-winding transformer. 
Actually, one should be able to develop the equivalent circuit without derivation.   

   8.   Consider the magnetic device shown in Figure  1P-2 , which is commonly referred 
to as an E-core. The permeability of the cores is infi nite,  g   =    π   mm,  w   =  2.5 cm, and 
the depth into the page is 10 cm. Coil 1 has  I  1   =  10cos100 t  A, 100 turns, and positive 
current causes the positive fl ux direction to be upward. Coil 2 has  I  2   =  40cos100 t  A, 
100 turns, and positive current causes positive fl ux to travel to the left through the 
coil. The resistance of both coils, fringing around the gaps, and leakage fl uxes are 
all negligible. Determine the voltage across coil 2 as a function of time. 

      9.   Use  Σ  and 1/ p  to denote summation and integration, respectively. Draw a time-
domain block diagram for two coupled windings with saturation and (a) with 
leakage inductance and (b) without leakage inductance.   

   10.   A resistor and an inductor are connected as shown in Figure  1P-3  with  R   =  15  Ω  
and  L   =  250 mH. Determine the energy stored in the inductor  W eS   and the energy 
dissipated by the resistor  W eL   for  i   >  0 if  i (0)  =  10 A. 
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  Figure 1P-4.         Spring–mass–damper system. 

D

M

K

x

  Figure 1P-5.         C-core inductor. 

+

_

v

i

gap = 4p mm

core cross-sectional area
=0.01 m2

1 Ω

10 turns

      11.   Consider the spring-mass-damper system shown in Figure  1P-4 . At  t   =  0,  x (0)  =   x  0  
(rest position) and  dx / dt   =  1.5 m/s.  M   =  0.8 kg,  D   =  10 N·s/m and  K   =  120 N·m. 
For  t   >  0, determine the energy stored in the spring  W mS   1 , the kinetic energy of the 
mass  W mS   2 , and the energy dissipated by the damper  W mL  . 

      12.   True/false: Magnetic hysteresis leads to a fi eld that is nonconservative. Explain.   

   13.   For the system shown in Figure  1P-5 , which is often referred to as a “C-core,” 
determine the winding inductance if the leakage inductance is 1/10 the magnetizing 
inductance. If 10 V is applied to the winding at  t   =  0 second, determine  W f   and the 
force of attraction that acts to attempt to reduce the gap at  t   =  1 second. Where is 
the energy of the coupling fi eld stored in this system? 

      14.   Given the UU-core transformer shown in Figure  1P-6 . Assume leakage inductances 
and the MMF drop across the core is negligible. The cross-sectional area of the 
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  Figure 1P-6.         UU-core transformer for Problem 14. 

10 turnsv1

+

_

1 Ω

+

_

gap = 1 mm

1 Ω

i2

v2

i1

gap = 1 mm

10 turns

core is 15.9154 m 2 . At  t   =  0 second, an input voltage of  v  1   =  10 V is applied. The 
secondary is open-circuited. At  t   =  1 second, the primary is open circuited and  i  1  
goes from 6.32 A to 0 instantaneously. At the same instant, the secondary is short-
circuited  i  2  goes from 0 to 6.32 A instantaneously. Determine  W E  ,  W f  ,  W eL  , and  W m   
for  t   ≥  0 second. 

      15.   Express  W f   ( i , x ) and  W c  ( i , x ) for (a)   λ  ( i , x )  =   i  2/3  x  2 ; (b)   λ  ( i , x )  =   ki  sin( x / a )  π    −   xi .   

   16.   The energy stored in the coupling fi eld of a magnetically linear system with two 
electrical inputs may be expressed as

    W x B B Bf ( , , )λ λ λ λ λ λ1 2 11 1
2

12 1 2 22 2
21

2

1

2
= + +   

 Express  B  11 ,  B  12 , and  B  22  in terms of inductances  L  11 ,  L  12 , and  L  22 .   

   17.   An electromechanical system has two electrical inputs. The fl ux linkages may be 
expressed as

    λ1 1 2
2

1
2

2( , , )i i x x i xi= +  

    λ2 1 2
2

2
2

1( , , )i i x x i xi= +   

 Express  W f   ( i  1 , i  2 , x ) and  W c  ( i  1 , i  2 , x ).   

   18.   Express  f e  ( i , x ) for the electromechanical systems described by the relations given 
in Problem 15.   

   19.   Express  f e  ( i  1 , i  2 , x ) for the electromechanical system given in Problem 17.   

   20.   The fl ux-linkage equations for a two-phase electromagnetic device are expressed as:
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  Figure 1P-7.         UU-core transformer for Problem 21. 
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 where   θ  rm   is the mechanical rotor position. Determine an expression for torque 
in terms of  i as  ,  i bs  , and   θ  rm  . Assume that both currents are greater than or equal 
to zero.   

   21.   Consider the UU-core transformer shown in Figure  1P-7 . Each coil is wound in a 
direction such that positive current will cause positive fl ux to fl ow in a clockwise 
direction. Neglecting leakage and fringing fl ux, derive an expression for the elec-
tromagnetic force of attraction between the cores in terms of the coil currents  i  1  
and  i  2 , turns  N  1  and  N  2 ,   μ   0 ,   μ  r  , and the dimensions given in the fi gure. 

      22.   Consider an electromechanical system whose fl ux-linkage equations given by
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   where i i i i im1 2 1 20 0 2≥ ≥ = +, ,  and where   θ  r   is the mechanical rotor position. Derive 
expressions for the coenergy and torque in terms of  i  1 ,  i  2 , and   θ  r  .   

   23.   Derive an expression for the forces  f e   1 ( i , x  1 , x  2 ) and  f e   2 ( i , x  1 , x  2 ) in an electromechanical 
system with two degrees of mechanical motion.   

   24.   For the multicore system shown in Figure  1P-8 , assume the components are fi xed 
with  x  1   =   x  2   =  1 mm. The core cross-sectional area is 0.05 m 2 ,  I  1   =  10 cos 377 t  A, 
 I  2   =   − 20 cos 377 t  A. Determine the force acting on all components and  W c   of the 
system at  t   =  1 second. Neglect leakage fl ux. 

      25.   Refer to Figure  1.3-6 . As the system moves from  x a   to  x b  , the   λ   −  i  trajectory moves 
from  A  to  B  where both  A  and  B  are steady-state operating conditions. Does the 
voltage  v  increase or decrease? Does the applied force  f  increase or decrease? 
Explain.   
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  Figure 1P-8.         Multicore system. 
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   26.   Refer to Figure  1.3-10 . Following the system transients due to the application of 
the source voltage ( v   =  5 V), the system assumes steady-state operation. For this 
steady-state operation, calculate  W eS  ,  W f  , and  W mS  .   

   27.   Refer to Figure  1.3-11 . Repeat Problem 26 for steady-state operation following the 
application of  f   =  4 N .   

   28.   Refer to Figure  1.3-12 . Identify the area corresponding to  Δ  W m   when (a)  x  moves 
from 2.5 mm to 4.3 mm, and when (b)  x  moves from 4.3 to 2.5 mm.   

   29.   Assume the steady-state currents fl owing in the conductors of the device shown in 
Figure  1B-1  are

    I I ts1 1 1= cosω  

    I I ts2 2 2 2= +cos( )ω ϕ   

 Assume also that during steady-state operation the rotor speed is constant, thus

    θ ω θr r rt= + ( )0   

 where   θ  r  (0) is the rotor displacement at time zero. Determine the rotor speeds at 
which the device produces a nonzero average torque during steady-state operation 
if ( a )   ω   1   =    ω   2   =  0; ( b )   ω   1   =    ω   2   ≠  0; ( c )   ω   2   =  0.   

   30.   An elementary two-pole, two-phase, salient-pole synchronous machine is shown 
in Figure  1.4-4 . The winding inductances may be expressed as

    L L L Lasas ls A B r= + − cos2θ  

    L L L Lbsbs ls A B r= + + cos2θ  
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  Figure 1P-9.         Elementary four-pole, two-phase, salient-pole synchronous machine. 
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    L Lasbs B r= − sin2θ  

    L L Lfdfd lfd mfd= +  

    L Lasfd sfd r= sinθ  

    L Lbsfd sfd r= − cosθ   

 Modify these inductance relationships so that they will describe a two-phase, 
uniform air-gap synchronous machine.   

   31.   Write the voltage equations for the elementary two-pole, two-phase, salient-pole 
synchronous machine shown in Figure  1.4-4  and derive the expression for 
 T e  ( i as  , i bs  , i fd  ,  θ  r  ).   

   32.   An elementary four-pole, two-phase, salient-pole synchronous machine is shown 
in Figure  1P-9 . Use this machine as a guide to derive expressions for the winding 
inductances of a  P -pole synchronous machine. Show that these inductances are of 
the same form as those given in Problem 30 if ( P /2)  θ  rm   is replaced by   θ  r  . 

      33.   Derive an expression for the electromagnetic  T e  ( i as  , i bs  , i fd  ,  θ  r  ), for a  P -pole, two-
phase, salient-pole synchronous machine. This expression should be identical in 
form to that obtained in Problem 31 multiplied by  P /2.   

   34.   A reluctance machine has no fi eld winding on the rotor. Modify the inductance 
relationships given in Problem 30 so as to describe the winding inductances of a 
two-pole, two-phase, reluctance machine. Write the voltage equations and derive 
an expression for  T e  ( i as  , i bs  ,  θ  r  ).   

   35.   An elementary two-pole, two-phase, symmetrical induction machine is shown in 
Figure  1.4-1 . If  L asas    =   L ls    +   L ms  ,  L arar    =   L lr    +   L mr  , and  L asar    =   L sr   cos  θ  r   ,  express the 
remaining self- and mutual inductances of all stator and rotor windings. Following 
the transformer derivation, refer the rotor quantities to the stator quantities. Express 
the stator and rotor fl ux linkages in terms of the referred variables.   

   36.   Write the voltage equations for the induction machine shown in Figure  1.4-1  and 
derive an expression for the electromagnetic torque  T e  ( i as  , i bs  ,  ′iar,  ′ibr,  θ  r  ) using the 
results obtained in Problem 35.   

   37.   An elementary four-pole, two-phase, symmetrical induction machine is shown in 
Figure  1.4-2 . Use this machine as a guide to derive expressions for the winding 
inductances of a  P -pole induction machine. Show that these inductances are of the 
same form as those given in Problem 35 if ( P /2)  θ  rm   is replaced by   θ  r  .   
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