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FORMULATION OF PHYSICOCHEMICAL PROBLEMS

1.1 INTRODUCTION

Modern science and engineering require high levels of qual-
itative logic before the act of precise problem formulation
can occur. Thus, much is known about a physicochemical
problem beforehand, derived from experience or experiment
(i.e., empiricism). Most often, a theory evolves only after
detailed observation of an event. This first step usually
involves drawing a picture of the system to be studied.

The second step is the bringing together of all applicable
physical and chemical information, conservation laws, and
rate expressions. At this point, the engineer must make a
series of critical decisions about the conversion of mental
images to symbols, and at the same time, how detailed
the model of a system must be. Here, one must classify the
real purposes of the modeling effort. Is the model to be
used only for explaining trends in the operation of an exist-
ing piece of equipment? Is the model to be used for predic-
tive or design purposes? Do we want steady-state or
transient response? The scope and depth of these early deci-
sions will determine the ultimate complexity of the final
mathematical description.

The third step requires the setting down of finite or dif-
ferential volume elements, followed by writing the conser-
vation laws. In the limit, as the differential elements shrink,
then differential equations arise naturally. Next, the prob-
lem of boundary conditions must be addressed, and this
aspect must be treated with considerable circumspection.

When the problem is fully posed in quantitative terms,
an appropriate mathematical solution method is sought out,
which finally relates dependent (responding) variables to

one or more independent (changing) variables. The final
result may be an elementary mathematical formula or a
numerical solution portrayed as an array of numbers.

1.2 ILLUSTRATION OF THE FORMULATION
PROCESS (COOLING OF FLUIDS)

We illustrate the principles outlined above and the hierar-
chy of model building by way of a concrete example: the
cooling of a fluid flowing in a circular pipe. We start with
the simplest possible model, adding complexity as the
demands for precision increase. Often, the simple model
will suffice for rough, qualitative purposes. However, cer-
tain economic constraints weigh heavily against overdesign,
so predictions and designs based on the model may need be
more precise. This section also illustrates the “need to
know” principle, which acts as a catalyst to stimulate the
garnering together of mathematical techniques. The prob-
lem posed in this section will appear repeatedly throughout
the book, as more sophisticated techniques are applied to its
complete solution.

1.2.1 Model I: Plug Flow

As suggested in the beginning, we first formulate a mental
picture and then draw a sketch of the system. We bring
together our thoughts for a simple plug flow model in
Fig. 1.1a. One of the key assumptions here is plug flow,
which means that the fluid velocity profile is plug shaped,
in other words, uniform at all radial positions. This almost
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always implies turbulent fluid flow conditions, so that fluid
elements are well mixed in the radial direction, hence the
fluid temperature is fairly uniform in a plane normal to the
flow field (i.e., the radial direction).

If the tube is not too long or the temperature difference
is not too severe, then the physical properties of the fluid
will not change much, so our second step is to express this
and other assumptions as a list:

1. A steady-state solution is desired.

2. The physical properties (r, density; Cp, specific heat;
k, thermal conductivity, etc.) of the fluid remain
constant.

3. The wall temperature is constant and uniform (i.e.,
does not change in the z or r direction) at a value
Tw.

4. The inlet temperature is constant and uniform (does
not vary in r direction) at a value T0, where T0 Tw.

5. The velocity profile is plug shaped or flat, hence it is
uniform with respect to z or r.

6. The fluid is well mixed (highly turbulent), so the tem-
perature is uniform in the radial direction.

7. Thermal conduction of heat along the axis is small
relative to convection.

The third step is to sketch, and act upon, a differential vol-
ume element of the system (in this case, the flowing fluid)
to be modeled. We illustrate this elemental volume in
Fig. 1.1b, which is sometimes called the “control volume.”

We act upon this elemental volume, which spans the
whole of the tube cross section, by writing the general con-
servation law

Rate in rate out rate of generation
rate of accumulation 1 1

Since steady state is stipulated, the accumulation of heat is
zero. Moreover, there are no chemical, nuclear, or electrical
sources specified within the volume element, so heat gener-
ation is absent. The only way heat can be exchanged is

FIGURE 1.1 (a) Sketch of plug flow model formulation. (b) Elemental or control volume for
plug flow model. (c) Control volume for Model II.
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through the perimeter of the element by way of the temper-
ature difference between wall and fluid. The incremental
rate of heat removal can be expressed as a positive quantity
using Newton’s law of cooling, that is,

ΔQ 2pRΔ z h T z Tw 1 2

As a convention, we shall express all such rate laws as pos-
itive quantities, invoking positive or negative signs as
required when such expressions are introduced into the
conservation law (Eq. 1.1). The contact area in this simple
model is simply the perimeter of the element times its
length.

The constant heat transfer coefficient is denoted by h.
We have placed a bar over T to represent the average
between T(z) and T(z Δ z)

T z
T z T z Δ z

2
1 3

In the limit, as Δ z 0, we see

lim
Δz 0

T z T z 1 4

Now, along the axis, heat can enter and leave the element
only by convection (flow), so we can write the elemental
form of Eq. 1.1 as

0ArCpT z

Rate heat flow in

0ArCpT z Δz
Rate heat flow out

2pRΔz h T Tw

Rate heat loss through wall

0

1 5

The first two terms are simply mass flow rate times local
enthalpy, where the reference temperature for enthalpy is
taken as zero. Had we used Cp(T Tref) for enthalpy, the
term Tref would be cancelled in the elemental balance.
The last step is to invoke the fundamental lemma of calcu-
lus, which defines the act of differentiation

lim
Δz 0

T z Δ z T z

Δ z

dT

dz
1 6

We rearrange the conservation law into the form required
for taking limits, and then divide by Δ z

0ArCp
T z Δ z T z

Δ z
2pRh T Tw 0 1 7

Taking limits, one at a time, then yields the sought-after
differential equation

0ArCp
dT

dz
2pRh T z Tw 0 1 8

where we have cancelled the negative signs.
Before solving this equation, it is good practice to group

parameters into a single term (lumping parameters). For
such elementary problems, it is convenient to lump parame-
ters with the lowest order term as follows:

dT z

dz
l T z Tw 0 1 9

where

l 2pRh 0ArCp

It is clear that l must take units of reciprocal length.
As it stands, the above equation is classified as a linear,

inhomogeneous equation of first order, which in general
must be solved using the so-called integrating factor
method, as we discuss later in Section 2.3.

Nonetheless, a little common sense will allow us to
obtain a final solution without any new techniques. To do
this, we remind ourselves that Tw is everywhere constant
and that differentiation of a constant is always zero, so we
can write

d T z Tw

dz

dT z

dz
1 10

This suggests we define a new dependent variable, namely,

u T z Tw 1 11

hence Eq. 1.9 now reads simply

du z

dz
lu z 0 1 12

This can be integrated directly by separation of variables,
so we rearrange to get

du

u
ldz 0 1 13

Integrating term by term yields

ln u lz ln K 1 14

where ln K is any (arbitrary) constant of integration. Using
logarithm properties, we can solve directly for u

u K exp lz 1 15
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It now becomes clear why we selected the form ln K as the
arbitrary constant in Eq. 1.14.

All that remains is to find a suitable value for K. To
do this, we recall the boundary condition denoted as T0 in
Fig. 1.1a, which in mathematical terms has the meaning

T 0 T0 or u 0 T 0 Tw T0 Tw 1 16

Thus, when z 0, u(0) must take a value T0 Tw, so K
must also take this value.

Our final result for computational purposes is

T z Tw

T0 Tw
exp

2pRhz

0ArCp
1 17

We note that all arguments of mathematical functions must
be dimensionless, so the above result yields a dimension-
less temperature

T z Tw

T0 Tw
c 1 18

and a dimensionless length scale

2pRhz

0ArCp
z 1 19

Thus, a problem with six parameters, two external con-
ditions (T0, Tw) and one each dependent and independent
variable has been reduced to only two elementary (dimen-
sionless) variables, connected as follows:

c exp z 1 20

1.2.2 Model II: Parabolic Velocity

In the development of Model I (plug flow), we took careful
note that the assumptions used in this first model building
exercise implied “turbulent flow” conditions, such a state
being defined by the magnitude of the Reynolds number
( 0 d/v), which must always exceed 2100 for this model to
be applicable. For slower flows, the velocity is no longer
plug shaped, and in fact when Re 2100, the shape is
parabolic

z 2 0 1 r R 2 1 21

where 0 now denotes the average velocity and z denotes
the locally varying value (Bird et al. 1960). Under such
conditions, our earlier assumptions must be carefully

reassessed; specifically, we will need to modify items 5–7
in the previous list:

5. The z-directed velocity profile is parabolic shaped
and depends on the position r.

6. The fluid is not well mixed in the radial direction, so
account must be taken of radial heat conduction.

7. Because convection is smaller, axial heat conduction
may also be important.

These new physical characteristics cause us to redraw the
elemental volume as shown in Fig. 1.1c. The control vol-
ume now takes the shape of a ring of thickness Δr and
length Δz. Heat now crosses two surfaces, the annular area
normal to fluid flow, and the area along the perimeter of the
ring. We shall need to designate additional (vector) quanti-
ties to represent heat flux (rate per unit normal area) by
molecular conduction:

qr r z molecular heat flux in radial direction 1 22

qz r z molecular heat flux in axial direction 1 23

The net rate of heat gain (or loss) by conduction is simply the
flux times the appropriate area normal to the flux direction.
The conservation law (Eq. 1.1) can now be written for the ele-
ment shown in Fig. 1.1c.

z 2prΔr rCpT z r z 2prΔr rCpT z Δz r

2prΔrqz z 2prΔrqz z Δz

2prΔzqr r 2prΔzqr r Δr 0 1 24

The new notation is necessary, since we must deal with prod-
ucts of terms, either or both of which may be changing.

We rearrange this to a form appropriate for the funda-
mental lemma of calculus. However, since two position
coordinates are now allowed to change, we must define the
process of partial differentiation, for example,

lim
Δz 0

T z Δz r T z r

Δz
T

z r

1 25

which, of course, implies holding r constant as denoted by
subscript (we shall delete this notation henceforth). Thus,
we divide Eq. 1.24 by 2pΔzΔr and rearrange to get

zrCpr
T z Δz r T z r

Δz
rqz z Δz rqz z

Δz
rqr r Δr rqr r

Δr
0 1 26
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Taking limits, one at a time, then yields

zrCpr
T

z

rqz
z

rqr
r

0 1 27

The derivative with respect to (wrt) z implies holding r con-
stant, so r can be placed outside this term; thus, dividing by
r and rearranging shows

qz
z r r

rqr zrCp
T

z
1 28

At this point, the equation is insoluble since we have one
equation and three unknowns (T, qz, qr). We need to know
some additional rate law to connect fluxes q to temperature
T. Therefore, it is now necessary to introduce the famous
Fourier’s law of heat conduction, the vector form of which
states that heat flux is proportional to the gradient in tem-
perature

q k T 1 29

and the two components of interest here are

qr k
T

r
qz k

T

z
1 30

Inserting these two new equations into Eq. 1.28, along with
the definition of z, yields finally a single equation, with
one unknown T(r,z)

k
2T

z2
k
1
r r

r
T

r
2 0rCp 1

r

R

2 T

z
1 31

The complexity of Model II has now exceeded our poor
powers of solution, since we have much we need to know
before attempting such second-order partial differential
equations. We shall return to this problem occasionally as
we learn new methods to effect a solution, and as new
approximations become evident.

1.3 COMBINING RATE AND EQUILIBRIUM
CONCEPTS (PACKED BED ADSORBER)

The occurrence of a rate process and a thermodynamic
equilibrium state is common in chemical engineering mod-
els. Thus, certain parts of a whole system may respond so
quickly that, for practical purposes, local equilibrium may
be assumed. Such an assumption is an integral (but often
unstated) part of the qualitative modeling exercise.

To illustrate the combination of rate and equilibrium
principles, we next consider a widely used separation
method, which is inherently unsteady, packed bed

adsorption. We imagine a packed bed of finely granulated
(porous) solid (e.g., charcoal) contacting a binary mixture,
one component of which selectively adsorbs (physis-
orption) onto and within the solid material. The physical
process of adsorption is so fast, relative to other slow steps
(diffusion within the solid particle), that in and near the
solid particles local equilibrium exists

q KC 1 32

where q denotes the average composition of the solid
phase, expressed as moles solute adsorbed per unit volume
solid particle, and C denotes the solute composition (moles
solute per unit volume fluid), which would exist at equili-
brium. We suppose that a single film mass transport
coefficient controls the transfer rate between flowing and
immobile (solid) phase.

It is also possible to use the same model even when
intraparticle diffusion is important (Rice 1982) by simply
replacing the film coefficient with an “effective” coefficient.
Thus, the model we derive can be made to have wide
generality.

We illustrate a sketch of the physical system in Fig. 1.2.
It is clear in the sketch that we shall again use the plug flow
concept, so the fluid velocity profile is flat. If the stream to
be processed is dilute in the adsorbable species (adsorbate),
then heat effects are usually ignorable, so isothermal condi-
tions will be taken. Finally, if the particles of solid are
small, the axial diffusion effects, which are Fickian-like,
can be ignored and the main mode of transport in the
mobile fluid phase is by convection.

Interphase transport from the flowing fluid to immobile
particles obeys a rate law, which is based on departure
from the thermodynamic equilibrium state. Because the
total interfacial area is not known precisely, it is common
practice to define a volumetric transfer coefficient, which is
the product kca, where a is the total interfacial area per unit

FIGURE 1.2 Packed bed adsorber.
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volume of packed column. The incremental rate expres-
sion (moles/time) is then obtained by multiplying the
volumetric transfer coefficient (kca) by the composition
linear driving force and this times the incremental volume
of the column (AΔz)

ΔR kca C C AΔz 1 33

We apply the conservation law (Eq. 1.1) to the adsorbable
solute contained in both phases as follows:

0AC z t 0AC z Δz t εAΔz
C

t
1 ε AΔz

q

t
1 34

where 0 denotes superficial fluid velocity (velocity that
would exist in an empty tube), ε denotes the fraction void
(open) volume, hence (1 ε) denotes the fractional
volume taken up by the solid phase. Thus, ε is volume
fraction between particles and is often called interstitial
void volume; it is the volume fraction through which fluid
is convected. The rate of accumulation has two possible
sinks: accumulation in the fluid phase (C ) and in the solid
phase (q).

By dividing by AΔz, taking limits as before, we deduce
that the overall balance for solute obeys

0
C

z
ε

C

t
1 ε

q

t
1 35

Similarly, we may make a solute balance on the immobile
phase alone, using the rate law, Eq. 1.33, noting adsorption
removes material from the flowing phase and adds it to the
solid phase. Now, since the solid phase loses no material
and generates none (assuming chemical reaction is absent),
then the solid phase balance is

A 1 ε Δz
q

t
kca C C AΔz 1 36

which simply states that rate of accumulation equals rate of
transfer to the solid. Dividing the elementary volume, AΔz,
yields

1 ε
q

t
kca C C 1 37

We note that as equilibrium is approached (as C C )

q

t
0

Such conditions correspond to “saturation,” hence no fur-
ther molar exchange occurs. When this happens to the
whole bed, the bed must be “regenerated,” for example, by

passing a hot, inert fluid through the bed, thereby desorbing
solute.

The model of the system is now composed of Eqs. 1.32,
1.35, and 1.37: There are three equations and three
unknowns (C, C , q).

To make the system model more compact, we attempt to
eliminate q, since q KC ; hence we have

0
C

z
ε

C

t
1 ε K

C

t
0 1 38

1 ε K
C

t
kca C C 1 39

The solution to this set of partial differential equations
(PDEs) can be effected by suitable transform methods (e.g.,
the Laplace transform) for certain types of boundary and
initial conditions (BC and IC). For the adsorption step,
these are

q z 0 0 initially clean solid 1 40

C 0 t C0 constant composition at bed entrance

1 41

The condition on q implies (cf. Eq. 1.32)

C z 0 0 1 42

Finally, if the bed was indeed initially clean, as stated
above, then it must also be true

C z 0 0 initially clean interstitial fluid 1 43

We thus have three independent conditions (note, we could
use either Eq. 1.40 or Eq. 1.42, since they are linearly
dependent) corresponding to three derivatives:

C

t

C

t

C

z

As we demonstrate later, in Chapter 10, linear systems of
equations can be solved exactly only when there exists one
BC or IC for each order of a derivative. The above system
is now properly posed, and will be solved as an example in
Chapter 10 using Laplace transform.

1.4 BOUNDARY CONDITIONS AND
SIGN CONVENTIONS

As we have seen in the previous sections, when time is an
independent variable, the boundary condition is usually an
initial condition, meaning we must specialize the state of
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the dependent variable at some time t0 (usually t0 0). For
the steady state, we have seen that integrations of the appli-
cable equations always produce arbitrary constants of
integration. These integration constants must be evaluated,
using stipulated boundary conditions to complete the
model’s solution.

For the physicochemical problems occurring in chemical
engineering, most boundary or initial conditions are (or can
be made to be) of the homogeneous type; a condition or
equation is taken to be homogeneous if, for example, it
is satisfied by y(x), and is also satisfied by ly(x), where l

is an arbitrary constant. The three classical types for such
homogeneous boundary conditions at a point, say x0, are
the following:

i y x 0 @ x x0

ii
dy

dx
0 @ x x0

iii by
dy

dx
0 @ x x0

Most often, the boundary values for a derived model are
not homogeneous, but can be made to be so. For example,
Model II in Section 1.2 portrays cooling of a flowing fluid
in a tube. Something must be said about the fluid tempera-
ture at the solid wall boundary, which was specified to take
a constant value Tw. This means all along the tube length,
we can require

T r z Tw @ r R for all z

As it stands, this does not match the condition for homoge-
neity. However, if we define a new variable u

u T r z Tw 1 44

then it is clear that the wall condition will become homoge-
neous, of type (i)

u r z 0 @ r R for all z 1 45

When redefining variables in this way, one must be sure
that the original defining equation is unchanged. Thus,
since the derivative of a constant (Tw) is always zero, then
Eq. 1.31 for the new dependent variable u is easily seen to
be unchanged

k
2u

z2
k

2u

r2
1
r

u

r
2 0rCp 1 r R 2 u

z

1 46

It often occurs that the heat (or mass) flux at a boundary is
controlled by a heat (or mass) transfer coefficient, so for a

circular tube the conduction flux is proportional to a
temperature difference

qr k
T

r
U T Tc @ r R for all z

Tc constant
1 47

Care must be taken to ensure that sign conventions are
obeyed. In our cooling problem (Model II, Section 1.2), it
is clear that

qr 0
T

r
0

so that U(T Tc) must be positive, which it is, since the
coolant temperature Tc T(R, z).

This boundary condition also does not identify exactly
with the type (iii) homogeneous condition given earlier.
However, if we redefine the dependent variable to be
u T Tc, then we have

U

k
u

u

r
0 @ r R for all z 1 48

which is identical in form with the type (iii) homogeneous
boundary condition when we note the equivalence: u y,
U k b, r x, and R x0. It is also easy to see that the
original convective diffusion Eq. 1.31 is unchanged when
we replace T with u. This is a useful property of linear
equations.

Finally, we consider the type (ii) homogeneous bound-
ary condition in physical terms. For the pipe flow problem,
if we had stipulated that the tube wall was well insulated,
then the heat flux at the wall is nil, so

qr k
T

r
0 @ r R for all z 1 49

This condition is of the homogeneous type (ii) without
further modification.

Thus, we see that models for a fluid flowing in a circular
pipe can sustain any one of the three possible homogeneous
boundary conditions.

Sign conventions can be troublesome to students, espe-
cially when they encounter type (iii) boundary conditions.
It is always wise to double-check to ensure that the sign
of the left-hand side is the same as that of the right-hand
side. Otherwise, negative transport coefficients will be
produced, which is thermodynamically impossible. To
guard against such inadvertent errors, it is useful to pro-
duce a sketch showing the qualitative shape of the
expected profiles.

1.4 BOUNDARY CONDITIONS AND SIGN CONVENTIONS 9



In Fig. 1.3 we sketch the expected shape of temperature
profile for a fluid being cooled in a pipe. The slope of tem-
perature profile is such that T r 0 If we exclude the
centerline (r 0), where exactly T r 0 (the symme-
try condition), then always T r 0 Now, since fluxes
(which are vector quantities) are always positive when
they move in the positive direction of the coordinate sys-
tem, then it is clear why the negative sign appears in Four-
ier’s law

qr k
T

r
1 50

Thus, since T r 0 then the product k T r 0 so
that flux qr 0. This convention thus ensures that heat
moves down a temperature gradient, so transfer is always
from hot to cold regions. For a heated tube, flux is always
in the anti-r direction, hence it must be a negative quantity.
Similar arguments hold for mass transfer where Fick’s law
is applicable, so that the radial component of flux in cylin-
drical coordinates would be

Jr D
C

r
1 51

1.5 MODELS WITH MANY VARIABLES:
VECTORS AND MATRICES

Large-scale industrial processes must deal with multicom-
ponents and several phases in unit operations such as distil-
lation, absorption, and catalytic cracking. The number of
equations and variables needed to describe such processes
are extensive and tedious to handle using traditional scalar
mathematics. It is useful to introduce a body of mathemat-
ics that simplifies the representation of the many equations
and variables in engineering processes; hence, we turn to

vectors and matrices. This will allow the presentation of
linear equations in a compact manner.

We will start with the definition of a matrix, with a vec-
tor being a special case of a matrix. Then we present a
number of operations that may be used on matrices. Finally,
we describe several methods for effecting the solution of
linear equations.

1.6 MATRIX DEFINITION

A set of N linear algebraic equations with N unknowns, x1,
x2, . . . , xN, may always be written in the form

a11x1 a12x2 a13x3 a1NxN b1

a21x1 a22x2 a23x3 a2NxN b2

aN1x1 aN2x2 aN3x3 aNNxN bN

1 52

where xi (i 1, 2, . . . , N) are unknown variables and bi
(i 1, 2, . . . , N) are the constants representing the non-
homogeneous terms. The coefficients aij (i, j 1, 2, . . . ,
N) are constant coefficients, with the index i representing
the ith equation and the index j to correspond to the varia-
ble xj.

N is the number of equations, and it can be any integer
number, ranging from 1 to infinity. If N is a large number,
it is time consuming to write those linear equations in the
manner of Eq. 1.52. To facilitate the handling of large
numbers of equations, the notation of matrices and vec-
tors will become extremely useful. This will allow us to
write sets of linear equations in a very compact form.
Matrix algebra is then introduced that allows manipula-
tion of these matrices, such as addition, subtraction, mul-
tiplication, and taking the inverse (similar to division for
scalar numbers).

1.6.1 The Matrix

A matrix is a rectangular array of elements arranged in an
orderly fashion with rows and columns. Each element is
distinct and separate. The element of a matrix is denoted
as aij, with the index i to represent the ith row and the
index j to represent the jth column. The size of a matrix
is denoted as N M, where N is the number of rows and
M is the number of columns. We usually represent a
matrix with a boldface capital letter, for example, A, and
the corresponding lowercase letter is used to represent its
elements, for example, aij. The following equation shows
the definition of a matrix A having N rows and M col-
umns:

FIGURE 1.3 Expected temperature profile for cooling fluids in
a pipe at an arbitrary position z1.
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A aij i 1 2 N j 1 2 M

a11 a12 a13 a1M

a21 a22 a23 a2M

aN1 aN2 aN3 aNM

1 53

where the bracket expression is the shorthand notation to
describe both the element and the size of the matrix. The
transpose of matrix A is denoted as AT. It arises from the
complete interchange of rows and columns of matrix A.

1.6.2 The Vector

A vector is a special case of a matrix. A vector can be put
as a column vector or it can be put as a row vector. A col-
umn vector is a matrix having a size of N 1. For example,
the following vector b is a column vector with size N 1:

b bi i 1 2 N

b1
b2
b3

bN

1 54

where bi is the element associated with the row i.
The row vector is a matrix having a size of 1 N. For

example, a row vector d is represented as

d di i 1 2 N d1 d2 d3 dN 1 55

The transpose of this, dT, is a column vector.

1.7 TYPES OF MATRICES

1.7.1 Square Matrix

A square matrix is a matrix that has the same number of
rows and columns, that is, aij i j 1 2 N . The ele-
ments aii, with i 1, 2, . . . , N, are called the major diago-
nal elements of the square matrix. The elements aN1,
aN 1,2, to a1N are called the minor diagonal elements.

1.7.2 Diagonal Matrix

A diagonal matrix is a square matrix having zero elements
everywhere except on the major diagonal line. An identity
matrix, denoted as I, is a diagonal matrix having unity
major diagonal elements.

1.7.3 Triangular Matrix

A triangular matrix is a matrix having all elements on
one side of the major diagonal line to be zero. An upper
tridiagonal matrix U has all zero elements below the
major diagonal line, and a lower tridiagonal matrix L has
all zero elements above the diagonal line. The following
equation shows upper and lower tridiagonal matrices
having a size 3 3:

U

a11 a12 a13
0 a22 a23
0 0 a33

L

a11 0 0

a21 a22 0

a31 a32 a33

1 56

1.7.4 Tridiagonal Matrix

A tridiagonal matrix is a matrix in which all elements that
are not on the major diagonal line and two diagonals sur-
rounding the major diagonal line are zero. The following
equation shows a typical tridiagonal matrix of size 4 4

T

a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34
0 0 a43 a44

1 57

The tridiagonal matrix is encountered quite regularly when
solving differential equations using the finite difference
method (see Chapter 12).

1.7.5 Symmetric Matrix

The transpose of a N M matrix A is a matrix AT having a
size of M N, with the element aTij defined as

aTij aji 1 58

that is, the position of a row and a column is interchanged.
A symmetric square matrix has identical elements on

either side of the major diagonal line, that is, aji aij. This
means AT A.

1.7.6 Sparse Matrix

A sparse matrix is a matrix in which most elements are
zero. Many matrices encountered in solving engineering
systems are sparse matrices.

1.7.7 Diagonally Dominant Matrix

A diagonally dominant matrix is a matrix such that the abso-
lute value of the diagonal term is larger than the sum of

1.7 TYPES OF MATRICES 11



the absolute values of other elements in the same row, with
the diagonal term larger than the corresponding sum for at
least one row; that is,

aii
N

j 1
j i

aij for i 1 2 N 1 59

with

aii
N

j 1
j i

aij 1 60

for at least one row.
This condition of diagonal dominant matrix is required

in the solution of a set of linear equations using iterative
methods, details of which are given in Section 1.11.

1.8 MATRIX ALGEBRA

Just as in scalar operations, where we have addition, sub-
traction, multiplication, and division, we also have addition,
subtraction, multiplication, and inverse (playing the role of
division) on matrices, but there are a few restrictions in
matrix algebra before these operations can be carried out.

1.8.1 Addition and Subtraction

These two operations can be carried out only when the
sizes of the two matrices are the same. The operations are
shown as follows.

A B aij bij cij aij bij C 1 61

A B aij bij cij aij bij C 1 62

Operations cannot be carried out on unequal size matrices.
Addition of equal size matrices is associative and

commutative; that is,

A B C A B C 1 63

A B B A 1 64

1.8.2 Multiplication

This operation involves the multiplication of the row ele-
ments of the first matrix to the column elements of the sec-
ond matrix and the summation of the resulting products.
Because of this procedure of multiplication, the number of
columns of the first matrix, A, must be the same as the

number of rows of the second matrix, B. Two matrices that
satisfy this criterion are called conformable in the order
of A B. If the matrix A has a size N R and B has a size
R M, the resulting product C A B will have a size of
N M, and the elements cij are defined as

cij
R

r 1

airbrj i 1 2 N j 1 2 M 1 65

Matrices not conformable cannot be multiplied, and it is
obvious that square matrices are conformable in any order.

Conformable matrices are associative on multiplication;
that is,

A BC AB C 1 66

but square matrices are generally not commutative on mul-
tiplication, that is,

AB BA 1 67

Matrices A, B, and C are distributive if B and C have the
same size and if A is conformable to B and C, then we
have

A B C AB AC 1 68

Multiplication of a matrix A with a scalar b is a new
matrix B with the element bij baij.

1.8.3 Inverse

The inverse in matrix algebra plays a similar role to divi-
sion in scalar division. The inverse is defined as follows:

AA 1 I 1 69

where A 1 is called the inverse of A, and I is the identity
matrix. Matrix inverses commute on multiplication, that is,

AA 1 I A 1A 1 70

If we have the equation,

AB C 1 71

where A, B, and C are square matrices, multiply the LHS
and RHS of Eq. 1.71 by A 1 and we will get

A 1 AB A 1C 1 72

But since the multiplication is associative, the above equa-
tion will become

A 1A B B A 1C 1 73

as A 1A I and IB B.
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The analytical technique according to the Gauss–Jordan
procedure for obtaining the inverse will be dealt with later.

1.8.4 Matrix Decomposition or Factorization

A given matrix A can be represented as a product of two
conformable matrices B and C. This representation is not
unique, as there are infinite combinations of B and C that
can yield the same matrix A. Of particular usefulness is the
decomposition of a square matrix A into lower and upper
triangular matrices, shown as follows.

A LU 1 74

This is usually called the LU decomposition and is useful in
solving a set of linear algebraic equations.

1.9 USEFUL ROWOPERATIONS

A set of linear algebraic equations of the type in Eq. 1.52
can be readily put into vector–matrix format as

Ax b 1 75

where

A

a11 a12 a13 a1N

a21 a22 a23 a2N

aN1 aN2 aN3 aNN

x

x1

x2

xN

b

b1

b2

bN

Equation 1.76 can also be written in the component form as

N

j 1

aijxj bi for i 1 2 N 1 77

which is basically the equation of the row i.
There are a number of row operations that can be carried

out and they do not affect the values of the final solutions x.

1.9.1 Scaling

Any row can be multiplied by a scalar, the process of which
is called scaling. For example, the row i of Eq. 1.77 can be

multiplied by a constant a as

N

j 1

aaijxj abi 1 78

1.9.2 Pivoting

Any row can be interchanged with another row. This pro-
cess is called pivoting. The main purpose of this operation
is to create a new matrix that has dominant diagonal
terms, which is important in solving linear equations.

1.9.3 Elimination

Any row can be replaced by a weighted linear combination
of that row with any other row. This process is carried out
on the row i with the purpose of eliminating one or more
variables from that equation. For example, if we have the
following two linear equations:

x1 x2 2

3x1 2x2 5
1 79

Let us now modify the row 2; that is, equation number 2.
We multiply the first row by (3) and then subtract the sec-
ond row from this to create a new second row; hence we
have

x1 x2 2

0x1 x2 1
1 80

We see that x1 has been eliminated from the new second
row, from which it is seen that x2 1 and hence from
the first row x1 1. This process is called elimination.
This is exactly the process used in the Gauss elimination
scheme to search for the solution of a given set of linear
algebraic equations, which will be dealt with in the next
section.

There are a number of methods available to solve for
the solution of a given set of linear algebraic equations.
One class is the direct method (i.e., requires no iteration)
and the other is the iterative method, which requires iter-
ation as the name indicates. For the second class of
method, an initial guess must be provided. We will first
discuss the direct methods in Section 1.10 and the itera-
tive methods will be dealt with in Section 1.11. The iter-
ative methods are preferable when the number of
equations to be solved is large, the coefficient matrix is
sparse, and the matrix is diagonally dominant (Eqs. 1.59
and 1.60).
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1.10 DIRECT ELIMINATION METHODS

1.10.1 Basic Procedure

The elimination method basically involves the elimination
of variables in such a way that the final equation will
involve only one variable. The procedure for a set of N
equations is as follows. First, from one equation solve for
x1 as a function of other variables, x2, x3, . . . , xN.
Substitute this x1 into the remaining N 1 equations to
obtain a new set of N 1 equations with N 1 unknowns,
x2, x3, . . . , xN. Next, using one of the equations in the
new set, solve for x2 as a function of other variables, x3,
x4, . . . , xN, and then substitute this x2 into the remaining
N 2 equations to obtain a new set of N 2 equations in
terms of N 2 unknown variables. Repeat the procedure
until you end up with only one equation with one
unknown, xN, from which we can readily solve for xN.
Knowing xN, we can use it in the last equation in which
xN 1 was written in terms of xN. Repeat the same proce-
dure to find x1. The process of going backward to find
solutions is called back substitution.

Let us demonstrate this elimination method with the fol-
lowing set of three linear equations:

a11x1 a12x2 a13x3 b1 1 81

a21x1 a22x2 a23x3 b2 1 82

a31x1 a32x2 a33x3 b3 1 83

Assuming a11 is not zero, we solve Eq. 1.81 for x1 in terms
of x2 and x3 and we have

x1
b1 a12x2 a13x3

a11
1 84

Substitute this x1 into Eqs. 1.82 and 1.83 to eliminate x1
from the remaining two equations, and we have

a22x2 a23x3 b2 1 85

a32x2 a33x3 b3 1 86

where

aij aij
ai1
a11

a1j bi bi
ai1
a11

b1 for i j 2 3

1 87

Next, we solve Eq. 1.85 for x2 in terms of x3 provided
a22 0; that is,

x2
b2 a23x3

a22
1 88

then substitute this x2 into the last equation (Eq. 1.86) to
obtain

a33x3 b3 1 89

where

a33 a33
a32
a22

a23 b3 b3
a32
a22

b2 1 90

We see that the patterns of Eqs. 1.87 and 1.90 are exactly
the same and this pattern is independent of the number of
equations. This serial feature can be exploited in computer
programming.

Thus, the elimination process finally yields one equation
in terms of the variable x3, from which it can be solved as

x3
b3
a33

1 91

By knowing x3, x2 can be obtained from Eq. 1.88, and
finally x1 from Eq. 1.84. This procedure is called back
substitution.

1.10.2 Augmented Matrix

The elimination procedure described in the last section
involves the manipulation of equations. No matter how we
manipulate the equations, the final solution vector x is still
the same. One way to simplify the elimination process is to
set up an augmented matrix as

A b

a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

1 92

and then perform the row operations described in Section
1.9 to effect the elimination process.

EXAMPLE 1.1

Let us demonstrate this concept of an augmented matrix to the
following example:

x1 2x2 3x3 14

x1 x2 x3 0

2x1 x2 x3 1

1 93

For this set of three linear equations, we form an augmented
matrix by putting the coefficient matrix first and then the RHS
vector, shown as follows:
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1 2 3 14

1 1 1 0

2 1 1 1

1 94

Now, we start carrying out row operations on the augmented
matrix. First, we take the second row and subtract it from the first
row to form a new second row, the result of which is shown as
follows:

1 2 3 14

0 1 4 14

2 1 1 1

1 95

The purpose of the last step is to eliminate x1 from the second
equation; that is, the new coefficient for x1 in the new second
equation is 0. This is the basic step of elimination. Now, we do
exactly the same to the third row. We multiply the first row by 2
and subtract the third row to form a new third row and get the
result

1 2 3 14

0 1 4 14

0 3 7 27

1 96

Thus, we have eliminated the variable x1 from the second and the
third equations. Now, we move to the next step of the elimination
procedure, that is, to remove the variable x2 from the third equa-
tion. This is done by multiplying the second row by 3 and sub-
tracting the third row to form a new third row; that is,

1 2 3 14

0 1 4 14

0 0 5 15

1 97

The last row will give a solution of x3 3. Put this into the second
equation to give x2 2, and hence finally into the first equation to
give x1 1. This is the back substitution procedure. All the steps
carried out are part of the Gauss elimination scheme. More details
on this method will be presented in Section 1.10.5.

Let us now come back to our present example and continue
with the row operations, but this time we eliminate the variables
above the major diagonal line. To do this, we multiply the third
row by ( 4

5) and add the result to the second row to form a new
second row, shown as follows:

1 2 3 14

0 1 0 2

0 0 5 15

1 98

The last step is to remove the variable x3 from the second equa-
tion. Finally, multiply the second row by ( 2) and the third row

by ( 3
5) and add the results to the first row to obtain a new first

row as

1 0 0 1

0 1 0 2

0 0 5 15

1 99

from which one can see immediately x1 1, x2 2 and x3 3.
The last few extra steps are part of the Gauss–Jordan elimination
scheme, the main purpose of which is to obtain the inverse as we
shall see in Section 1.10.6.

This procedure of augmented matrix can handle more than one
vector b at the same time; for example, if we are to solve the fol-
lowing equations with the same coefficient matrix A: Ax1 b1,
Ax2 b2, we can set the augmented matrix as

A b1 b2 1 100

and carry out the row operations as we did in the last example to
obtain simultaneously the solution vectors x1 and x2.

1.10.3 Pivoting

The elimination procedure we described in Section 1.10.1
requires that a11 is nonzero. Thus, if the diagonal
coefficient a11 is zero, then we shall need to rearrange
the equations, that is, we interchange the rows such that
the new diagonal term a11 is nonzero. We also carry
out this pivoting process in such a way that the element
of largest magnitude is on the major diagonal line. If
rows are interchanged only, the process is called partial
pivoting, while if both rows and columns are inter-
changed it is called full pivoting. Full pivoting is not nor-
mally carried out because it changes the order of
the components of the vector x. Therefore, only partial
pivoting is dealt with here.

EXAMPLE 1.2

Partial pivoting not only eliminates the problem of zero on the
diagonal line, it also reduces the round-off error since the pivot
element (i.e., the diagonal element) is the divisor in the elimina-
tion process. To demonstrate the pivoting procedure, we use an
example of three linear equations.

0x1 x2 x3 5

4x1 x2 x3 3

x1 x2 x3 2

1 101

Putting this set of equations into the augmented matrix form, we
have
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0 1 1 5

4 1 1 3

1 1 1 2

1 102

We note that the coefficient a11 is zero; therefore, there is a need
to carry out the pivoting procedure. The largest element of the first
column is 4. Therefore, upon interchanging the first and the sec-
ond rows, we will get

4 1 1 3

0 1 1 5

1 1 1 2

1 103

Next, multiplying the third row by 4 and subtracting the first row
to get the new third row will yield

4 1 1 3

0 1 1 5

0 5 5 5

1 104

Although the pivot element in the second row is 1 ( 0), it is not
the largest element in that column (second column). Hence, we
carry out pivoting again, and this process is done with rows under-
neath the pivot element, not with rows above it. This is because
the rows above the pivot element have already gone through the
elimination process. Using them will destroy the elimination com-
pleted so far.

Interchange the second and the third row so that the pivot ele-
ment will have the largest magnitude, we then have

4 1 1 3

0 5 5 5

0 1 1 5

1 105

Next, multiply the third row by 5 and add with the second row to
form a new third row, we get

4 1 1 3

0 5 5 5

0 0 10 30

1 106

Finally, using the back substitution, we find that x3 3, x2 2,
and x1 1.

1.10.4 Scaling

When the magnitude of elements in one or more equa-
tions are greater than the elements of the other equations,

it is essential to carry out scaling. This is done by divid-
ing the elements of each row, including the b vector, by
the largest element of that row (excluding the b element).
After scaling, pivoting is then carried out to yield the
largest pivot element.

1.10.5 Gauss Elimination

The elimination procedure described in the last sections
forms a process, commonly called Gauss elimination. It is
the backbone of the direct methods, and is the most useful
in solving linear equations. Scaling and pivoting are essen-
tial in the Gauss elimination process.

The Gauss elimination algorithm is summarized as
follows:

Step 1: Augment the matrix A(N N) and the vector b
(N 1) to form an augmented matrix A of size
N (N 1).

Step 2: Scale the rows of the augmented matrix.
Step 3: Search for the largest element in magnitude in the

first column and pivot that coefficient into the a11
position.

Step 4: Apply the elimination procedure to rows 2 to N to
create zeros in the first column below the pivot element.
The modified elements in row 2 to row N and column 2
to column N 1 of the augmented matrix must be com-
puted and inserted in place of the original elements
using the following formula:

aij aij
ai1
a11

a1j for i 2 3 N and

j 2 3 N 1 1 107

Step 5: Repeat steps 3 and 4 for rows 3 to N. After this is
completely done, the resulting augmented matrix will be
an upper triangular matrix.

Step 6: Solve for x using back substitution with the follow-
ing equations:

xN
aN N 1

aN N

1 108

xi
ai N 1

N
j i 1 aijxj

aii
for

i N 1 N 2 1

1 109

where aij is an element of the augmented matrix obtained at
the end of step 5.
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1.10.6 Gauss–Jordan Elimination:
Solving Linear Equations

Gauss–Jordan elimination is a variation of the Gauss elimi-
nation scheme. Instead of obtaining the triangular matrix at
the end of the elimination, the Gauss–Jordan has one extra
step to reduce the matrix A to an identity matrix. In this
way, the augmented vector b is simply the solution vec-
tor x.

The primary use of the Gauss–Jordan method is to
obtain an inverse of a matrix. This is done by augmenting
the matrix A with an identity matrix I. After the elimina-
tion process in converting the matrix A to an identity
matrix, the right-hand side identity matrix will become
the inverse A 1. To show this, we use the following
example:

1 1 1 1 0 0

2 1 1 0 1 0

1 2 2 0 0 1

1 110

Interchange the first and the second row to make the pivot
element having the largest magnitude; hence, we have

2 1 1 0 1 0

1 1 1 1 0 0

1 2 2 0 0 1

1 111

Now, scale the pivot element to unity (this step is not in
the Gauss elimination scheme) to give

1 1
2

1
2 0 1

2 0

1 1 1 1 0 0

1 2 2 0 0 1

1 112

By following the same procedure of Gauss elimination
with the extra step of normalizing the pivot element before
each elimination, we finally obtain

1 1
2

1
2 0 1

2 0

0 1 1
3

2
3

1
3 0

0 0 1 1
2

1
2

1
2

1 113

Now, we perform the elimination for rows above the pivot
elements, and after this step the original A matrix becomes
an identity matrix, and the original identity matrix I in

the RHS of the augmented matrix becomes the matrix
inverse A 1; that is,

1 0 0 0 2
3

1
3

0 1 0 1
2

1
6

1
6

0 0 1 1
2

1
2

1
2

1 114

Obtaining the matrix inverse using the Gauss–Jordan
method provides a compact way of solving linear equa-
tions. For a given problem,

Ax b 1 115

we multiply the equation by A 1, and obtain

A 1 Ax A 1b 1 116

Noting that the multiplication is associative; hence, we
have

A 1A x A 1b i e x A 1b 1 117

Thus, this inverse method provides a compact way of pre-
senting the solution of the set of linear equations.

1.10.7 LU Decomposition

In the LU decomposition method, the idea is to decompose
a given matrix A to a product LU. If we specify the diago-
nal elements of either the upper or the lower triangular
matrix, the decomposition will be unique. If the elements
of the major diagonal of the L matrix are unity, the decom-
position method is called the Doolittle method. It is called
the Crout method if the elements of the major diagonal of
the U matrix are unity.

In the Doolittle method, the upper triangular matrix U is
determined by the Gauss elimination process, while the
matrix L is the lower triangular matrix containing the mul-
tipliers employed in the Gauss process as the elements
below the unity diagonal line. More details on the Doolittle
and Crout methods can be found in Hoffman (1992).

The use of the LU decomposition method is to find solu-
tion to the linear equation Ax b. Let the coefficient matrix
A be decomposed to LU, that is, A LU. Hence, the linear
equation will become

LUx b 1 118

Multiplying the above equation by L 1, we have

L 1 LU x L 1b 1 119
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Since the multiplication is associative and L 1L I, the
previous equation will become

Ux b 1 120

where the vector b is obtained from the equation

Lb b 1 121

Equations 1.120 and 1.121 will form basic set of equations
for solving for x. This is done as follows. For a given b
vector, the vector b is obtained from Eq. 1.121 by for-
ward substitution since L is the lower triangular matrix.
Once b is found, the desired vector x is found from Eq.
1.120 by backward substitution because U is the upper tri-
angular matrix.

1.11 ITERATIVE METHODS

When dealing with large sets of equations, especially if
the coefficient matrix is sparse, the iterative methods pro-
vide an attractive option in getting the solution. In the
iterative methods, an initial solution vector x(0) is
assumed, and the process is iterated to reduce the error
between the iterated solution x(k) and the exact solution x,
where k is the iteration number. Since the exact solution
is not known, the iteration process is stopped by using the
difference Δxi x k 1

i x k
i as the measure. The itera-

tion is stopped when one of the following criteria has
been achieved.

Δxi max

xi
ε

N

i 1

Δxi
xi

ε
N

i 1

Δxi
xi

2 1 2

ε

1 122

The disadvantage of the iterative methods is that they may
not provide a convergent solution. Diagonal dominance
(Eqs. 1.59 and 1.60) is the sufficient condition for conver-
gence. The stronger the diagonal dominance the fewer
number of iterations required for the convergence.

There are three commonly used iterative methods that
we will briefly present here. They are Jacobi, Gauss–Seidel,
and the successive overrelaxation methods.

1.11.1 Jacobi Method

The set of linear equations written in the component form is

bi
N

j 1

aijxj 0 for i 1 2 N 1 123

Divide the equation by aii and add xi to the LHS and RHS
to yield the equation

xi xi
1
aii

bi
N

j 1

aijxj 0 for i 1 2 N

1 124

The iteration process starts with an initial guessing
vector x(0), and the iteration equation used to generate the
next iterated vector is

x k 1
i x k

i
1
aii

bi
N

j 1

aijx
k
j 0 for

i 1 2 N

1 125

The iteration process will proceed until one of the criteria in
Eq. 1.122 has been achieved.

The second term in the RHS of Eq. 1.125 is called the
residual, and the iteration process will converge when the
residual is approaching zero for all values of i.

1.11.2 Gauss–Seidel Iteration Method

In the Jacobi method, the iterated vector of the (k l)th
iteration is obtained based entirely on the vector of the
previous iteration, that is, x(k). The Gauss–Seidel
iteration method is similar to the Jacobi method, except
that the component x k 1

j for j 1 2 i 1 are
used immediately in the calculation of the component
x k 1
i . The iteration equation for the Gauss–Seidel
method is

x k 1
i x k

i
1
aii

bi
i 1

j 1

aijx
k 1
j

N

j i

aijx
k
j 0

for i 1 2 N

1 126

Like the Jacobi method, the Gauss–Seidel method
requires diagonal dominance for the convergence of iter-
ated solutions.

1.11.3 Successive Overrelaxation Method

In many problems, the iterated solutions approach the
exact solutions in a monotonic fashion. Therefore, it is
useful in this case to speed up the convergence process
by overrelaxing the iterated solutions. The equation
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for the overrelaxation scheme is modified from the
Gauss–Seidel equation

x k 1
i x k

i

w

aii

bi
i 1

j 1

aijx
k 1
j

N

j i

aijx
k
j 0

for i 1 2 N 1 127

where w is the overrelaxation factor. When w 1, we
recover the Gauss–Seidel method. When 1 w 2, we
have an overrelaxation situation. When w 1, the system
is underrelaxed. The latter is applicable when the iteration
provides oscillatory behavior. When w 2, the method
diverges.

There is no fast rule on how to choose the optimum w
for a given problem. It must be found from numerical
experiments.

1.12 SUMMARY OF THE MODEL BUILDING
PROCESS

These introductory examples are meant to illustrate the
essential qualitative nature of the early part of the model
building stage, which is followed by more precise quantita-
tive detail as the final image of the desired model is made
clearer. It is a property of the human condition that minds
change as new information becomes available. Experience
is an important factor in model formulation, and there have
been recent attempts to simulate the thinking of experi-
enced engineers through a format called Expert Systems.
The following step-by-step procedure may be useful for
beginners:

1. Draw a sketch of the system to be modeled and
label/define the various geometric, physical, and
chemical quantities.

2. Carefully select the important dependent (response)
variables.

3. Select the possible independent variables (e.g., z,t),
changes in which must necessarily affect the depen-
dent variables.

4. List the parameters (physical constants, physical
size, and shape) that are expected to be important;
also note the possibility of nonconstant parame-
ters (e.g., viscosity changing with temperature,
m(T)).

5. Draw a sketch of the expected behavior of the
dependent variable(s), such as the “expected” tem-
perature profile we used for illustrative purposes in
Fig. 1.3.

6. Establish a “control volume” for a differential or
finite element (e.g., CSTR) of the system to be
modeled; sketch the element and indicate all
inflow–outflow paths.

7. Write the “conservation law” for the volume ele-
ment: Write flux and reaction rate terms using gen-
eral symbols, which are taken as positive quantities,
so that signs are introduced only as terms are
inserted according to the rules of the conservation
law, Eq. 1.1.

8. After rearrangement into the proper differential for-
mat, invoke the fundamental lemma of calculus to
produce a differential equation.

9. Introduce specific forms of flux (e.g., Jr D C
r) and rate (RA kCA); note the opposite of genera-

tion is depletion, so when a species is depleted, its
loss rate must be entered with the appropriate sign
in the conservation law (i.e., replace “ generation”
with “ depletion” in Eq. 1.1).

10. Write down all possibilities for boundary values of
the dependent variables; the choice among these
will be made in conjunction with the solution
method selected for the defining (differential)
equation.

11. Search out solution methods, and consider possible
approximations for (i) the defining equation, (ii) the
boundary conditions, and (iii) an acceptable final
solution.

12. Introduce a vector–matrix format for coupled linear
equations.

It is clear that the modeling and solution effort should go
hand in hand, tempered of course by available experimental
and operational evidence.

1.13 MODEL HIERARCHY AND ITS
IMPORTANCE IN ANALYSIS

As pointed out in Section 1.1 regarding the real purposes
of the modeling effort, the scope and depth of these deci-
sions will determine the complexity of the mathematical
description of a process. If we take the scope and depth
as the barometer for generating models, we will obtain a
hierarchy of models where the lowest level may be
regarded as a black box and the highest is where all pos-
sible transport processes known to man in addition to all
other concepts (such as thermodynamics) are taken into
account. Models, therefore, do not appear in isolation, but
rather they belong to a family where the hierarchy is dic-
tated by the number of rules (transport principles, thermo-
dynamics). It is this family that provides engineers with
capabilities to predict and understand the phenomena
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around us. The example of cooling of a fluid flowing in a
tube (Models I and II) in Section 1.2 illustrated two mem-
bers of this family. As the level of sophistication
increased, the mathematical complexity increased. If one
is interested in exactly how heat is conducted through the
metal casing and is disposed of to the atmosphere, then
the complexity of the problem must be increased by writ-
ing down a heat balance relation for the metal casing
(taking it to be constant at a value Tw is, of course, a
model, albeit the simplest one). Furthermore, if one is
interested in how the heat is transported near the entrance
section, one must write down heat balance equations
before the start of the tube, in addition to Eq. 1.31 for the
active, cooling part of the tube. In addition, the nature of
the boundary conditions must be carefully scrutinized
before and after the entrance zone in order to properly
describe the boundary conditions.

To further demonstrate the concept of model hierarchy
and its importance in analysis, let us consider a problem of
heat removal from a bath of hot solvent by immersing
steel rods into the bath and allowing the heat to dissipate
from the hot solvent bath through the rod and thence to the
atmosphere (Fig. 1.4).

For this elementary problem, it is wise to start with the
simplest model first to get some feel about the system
response.

Level 1

In this level, let us assume that

(a) the rod temperature is uniform, that is, from the bath
to the atmosphere;

(b) ignore heat transfer at the two flat ends of the rod;

(c) overall heat transfer coefficients are known and
constant;

(d) no solvent evaporates from the solvent air interface.

The many assumptions listed above are necessary to
simplify the analysis (i.e., to make the model tractable).

Let T0 and T1 be the atmosphere and solvent tempera-
tures, respectively. The steady-state heat balance (i.e., no
accumulation of heat by the rod) shows a balance between
heat collected in the bath and that dissipated by the upper
part of the rod to atmosphere

hL 2pRL1 T1 T hG 2pRL2 T T0 1 128

where T is the temperature of the rod, and L1 and L2 are
lengths of rod exposed to solvent and to atmosphere, re-
spectively. Obviously, the volume elements are finite (not
differential), being composed of the volume above the liq-
uid of length L2 and the volume below of length L1.

Solving for T from Eq. 1.126 yields

T
T0 aT1

1 a
1 129

where

a
hLL1
hGL2

1 130

Equation 1.129 gives us a very quick estimate of the rod
temperature and how it varies with exposure length. For
example, if a is much greater than unity (i.e., long L1 sec-
tion and high liquid heat transfer coefficient compared to
gas coefficient), the rod temperature is then very near T1.
Taking the rod temperature to be represented by Eq. 1.129,
the rate of heat transfer is readily calculated from Eq. 1.128
by replacing T:

Q
hL2pRL1
1 a

T1 T0

hLL1
1 hLL1 hGL2

2pR T1 T0 1 131a

Q
1

1 hLL1 1 hGL2
2pR T1 T0 1 131b

When a hLL1 hGL2 is very large, the rate of heat transfer
becomes simply

Q 2pRhGL2 T1 T0 1 131c

Thus, the heat transfer is controlled by the segment of the
rod exposed to the atmosphere. It is interesting to note that

FIGURE 1.4 Schematic diagram of heat removal from a solvent
bath.
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when the heat transfer coefficient contacting the solvent is
very high (i.e., a 1), it does not really matter how much
of the rod is immersed in the solvent.

Thus for a given temperature difference and a constant
rod diameter, the rate of heat transfer can be enhanced by
either increasing the exposure length L2 or by increasing
the heat transfer rate by blowing air over the exposed rod.
However, these conclusions are tied to the assumption of
constant rod temperature, which becomes tenuous as atmo-
spheric exposure is increased.

To account for effects of temperature gradients in the
rod, we must move to the next level in the model hierar-
chy, which is to say that a differential volume must be
considered.

Level 2

Let us relax part of the assumption (a) of the first model by
assuming only that the rod temperament below the solvent
liquid surface is uniform at a value T1. This is a reasonable
proposition, since the liquid has a much higher thermal
conductivity than air. The remaining three assumptions of
the level 1 model are retained.

Next, choose an upward pointing coordinate x with the
origin at the solvent–air surface. Figure 1.5 shows the coor-
dinate system and the elementary control volume.

Applying a heat balance around a thin shell segment
with thickness Δx gives

pR2q x pR2q x Δx 2pRΔxhG T T0 0

1 132

where the first and the second terms represent heat con-
ducted into and out of the element and the last term repre-
sents heat loss to atmosphere. We have concluded, by
writing this, that temperature gradients are likely to exist in

the part of the rod exposed to air, but are unlikely to exist
in the submerged part.

Dividing Eq. 1.132 by pR2Δx and taking the limit as
Δx 0 yields the following first-order differential equation
for the heat flux, q:

dq

dx

2
R
hG T T0 0 1 133

Assuming the rod is homogeneous, that is, the thermal con-
ductivity is uniform, the heat flux along the axis is related
to the temperature according to Fourier’s law of heat con-
duction (Eq. 1.29). Substitution of Eq. 1.29 into Eq. 1.133
yields

k
d2T

dx2
2hG
R

T T0 a 1 134

Equation 1.134 is a second-order ordinary differential equa-
tion, and to solve this, two conditions must be imposed.
One condition was stipulated earlier:

x 0 T T1 1 135a

The second condition (heat flux) can also be specified at
x 0 or at the other end of the rod, that is, x L2. Heat
flux is the sought-after quantity, so it cannot be specified a
priori. One must then provide a condition at x L2. At the
end of the rod, one can assume Newton’s law of cooling
prevails, but since the rod length is usually longer than the
diameter, most of the heat loss occurs at the rod’s lateral
surface, and the flux from the top surface is small, so write
approximately:

x L2
dT

dx
0 1 135b

Equation 1.134 is subjected to the two boundary conditions
(Eq. 1.135) to yield the solution

T T0 T1 T0
cosh m L2 x

cosh mL2
1 136

where

m
2hG
Rk

1 137

We will discuss the method of solution of such second-
order equations in Chapter 2.

Once we know the temperature distribution of the rod
above the solvent–air interface, then the rate of heat loss
can be calculated either of two ways. In the first, we knowFIGURE 1.5 Shell element and the system coordinate.
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that the heat flow through area pR2 at x 0 must be equal
to the heat released into the atmosphere, that is,

Q pR2k
T

x x 0

1 138

Applying Eq. 1.136 to Eq. 1.138 gives

Q 2pRhGL2h T1 T0 1 139a

where

h
tanh mL2

mL2

This dimensionless group (called effectiveness factor) rep-
resents the ratio of actual heat loss to the (maximum) loss
rate when gradients are absent.

Figure 1.6 shows the log–log plot of h versus the dimen-
sionless group mL2. We note that the effectiveness factor
approaches unity when mL2 is much less than unity and it
behaves like 1 mL2 as mL2 is very large.

In the limit for small mL2, we can write

h
tanh mL2

mL2
1 1 139b

which is the most effective heat transfer condition. This is
physically achieved when

(a) Rod thermal conductivity is large.
(b) Segment exposed to atmosphere (L2) is short.

For such a case, we can write the elementary result

Q 2pRhGL2 T1 T0 1 140

which is identical to the first model (Eq. 1.131c). Thus, we
have learned that the first model is valid only when
mL2 1. Another way of calculating the heat transfer rate
is carrying out the integration of local heat transfer
rate along the rod

Q
L2

0
dq

L2

0
hG T T0 2pRdx 1 141

where T is given in Eq. 1.136 and the differential transfer
area is 2pRdx. Substituting T of Eq. 1.136 into Eq. 1.141
yields the same solution for Q as given in Eq 1.139a.

Levels 1 and 2 solutions have one assumption in com-
mon: The rod temperature below the solvent surface was
taken to be uniform. The validity of this modeling assump-
tion will not be known until we move up one more level in
the model hierarchy.

Level 3

In this level of modeling, we relax the assumption (a) of the
first level by allowing for temperature gradients in the rod
for segments above and below the solvent–air interface.

Let the temperature below the solvent–air interface be TI

and that above the interface be T II. Carrying out the one-
dimensional heat balances for the two segments of the rod,
we obtain

d2T I

dx2
2hL
Rk

T I T1 1 142

and

d2T II

dx2
2hG
Rk

T II T0 1 143

We shall still maintain the condition of zero flux at the flat
ends of the rod. This means of course that

x L1
dT I

dx
0 1 144

x L2
dT II

dx
0 1 145

Equations 1.144 and 1.145 provide two of the four necessary
boundary conditions. The other two arise from the continuity
of temperature and flux at the x 0 position, that is,

x 0 T I T II 1 146a

x 0
dT I

dx

dT II

dx
1 146b

FIGURE 1.6 A plot of the effectiveness factor versus mL2.
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Solutions of Eqs. 1.142 and 1.143 subject to conditions
1.144 and 1.145 are easily obtained by methods illustrated in
the next chapter (Example 2.25)

T I T1 A cosh n x L1 1 147

and

T II T0 B cosh m L2 x 1 148

where m is defined in Eq. 1.137 and a new ratio is

n
2hL
Rk

1 149

The constants of integration, A and B, can be found by
substituting Eqs. 1.147 and 1.148 into the continuity condi-
tions (1.146a, b) to finally get

B
T1 T0

cosh mL2 m n sinh mL2 sinh nL1 cosh nL1

1 150

A
T1 T0

cosh nL1 n m sinh nL1 sinh mL2 cosh mL2

1 151

The rate of heat transfer can be obtained by using either of
the two ways mentioned earlier, that is, using flux at x 0,
or by integrating around the lateral surface. In either case,
we obtain

Q pR2k
dT I 0
dx

1 152

Q 2pRhGL2h
T1 T0

1 m tanh mL2 n tanh nL1
1 153

where the effectiveness factor h is defined in Eq. 1.139.
You may note the difference between the solution

obtained by the level 2 model and that obtained in the third
level. Because of the allowance for temperature gradients
(which represents the rod’s resistance to heat flow) in the
segment underneath the solvent surface, the rate of heat
transfer calculated at this new level is less than that calcu-
lated by the level 2 model where the rod temperature was
taken to be uniform at T1 below the liquid surface.

This implies from Eq. 1.153 that the heat resistance in
the submerged region is negligible compared to that above
the surface only when

m tanh mL2
n tanh nL1

1 1 154

When the criterion (1.154) is satisfied, the rate of heat
transfer given by Model II is valid. This is controlled
mainly by the ratio m n hG hL

1 2, which is always
less than unity.

What we have seen in this exercise is simply that
higher levels of modeling yield more information about
the system and hence provide needed criteria to validate
the model one level lower. In our example, the level 3
model provides the criterion (1.154) to indicate when
the resistance to heat flow underneath the solvent bath
can be ignored compared to that above the surface, and
the level 2 model provides the criterion (1.139b) to indi-
cate when there is negligible conduction resistance in the
steel rod.

The next level of modeling is by now obvious: At what
point and under what conditions do radial gradients become
significant? This moves the modeling exercise into the
domain of partial differential equations.

Level 4

Let us investigate the fourth level of model where we
include radial heat conduction. This is important if the rod
diameter is large relative to length. Let us assume in this
model that there is no resistance to heat flow underneath
the solvent interface, so as before, take temperature T T1
when x 0. This then leaves only the portion above the
solvent surface to study.

Setting up the annular shell shown in Fig. 1.7 and carry-
ing a heat balance in the radial and axial directions, we
obtain the following heat conduction equation:

2prΔxqr r 2prΔxqr r Δr

2prΔrqx x 2prΔrqx x Δx 0

FIGURE 1.7 Schematic diagram of shell for heat balance.

1.13 MODEL HIERARCHY AND ITS IMPORTANCE IN ANALYSIS 23



Dividing this equation by 2pΔrΔx and taking limits, we
obtain

r
rqr r

qx
x

0

Next, insert the two forms of Fourier’s laws

qr k
T

r
qx k

T

x

and get finally,

k
1
r r

r
T

r

2T

x2
0 1 155

Here, we have assumed that the conductivity of the steel
rod is isotropic and constant, that is, the thermal conductiv-
ity k is uniform in both x and r directions, and does not
change with temperature.

Equation 1.155 is an elliptic partial differential equation.
The physical boundary conditions to give a suitable solu-
tion are the following:

r 0
T

r
0 1 156a

r R k
T

r
hG T T0 1 156b

x 0 T T1 1 156c

x L2
T

x
0 1 156d

Equation 1.156a implies symmetry at the center of the
rod, whereas at the curved outer surface of the rod
the usual Newton cooling condition is applicable
(Eq. 1.156b). Equation 1.156d states that there is no heat
flow across the flat end of the rod. This is tantamount to
saying that either the flat end is insulated or the flat end
area is so small compared to the curved surface of the rod
that heat loss there is negligible. Solutions for various
boundary conditions can be found in Carslaw and Jaeger
(1959).

When dealing with simple equations (as in the previous
three models), the dimensional equations are solved with-
out recourse to the process of nondimensionalization.
Now, we must deal with partial differential equations, and
both to simplify the notation during the analysis and to
deduce the proper dimensionless parameters, it is neces-
sary to reduce the equations to nondimensional form. To

achieve this, we introduce the following nondimensional
variables and parameters:

u
T T0

T1 T0
j

r

R
z

x

L2
1 157a

Δ
R

L2
Bi

hGR

k
Biot number 1 157b

where it is clear that only two dimensionless parameters
arise: Δ and Bi. The dimensionless heat transfer coefficient
(hGR k), called the Biot number, represents the ratio of
convective film transfer to conduction in the metal rod.

The nondimensional relations now become

1
j j

j
u

j
Δ2

2u

z2
0 1 158

j 0
u

j
0 1 159a

j 1
u

j
Bi u 1 159b

z 0 u 1 1 159c

z 1
u

z
0 1 159d

It is clear that these independent variables ( and ) are
defined relative to the maximum possible lengths for the
r and x variables, R and L2, respectively. However, the way
u (nondimensional temperature) is defined is certainly not
unique. One could easily define u as follows

or

u
T

T0
or u

T

T1

u
T T0

T0
or u

T T0

T1

1 160

and so on. There are good reasons for the selection made
here, as we discuss in Chapters 10 and 11. The solution of
Eq. 1.158 subject to boundary conditions (1.159) is given
in Chapter 11 and its expression is given here only to help
illustrate model hierarchy. The solution u is

u
T T0

T1 T0 n 1

1 Kn

Kn Kn
Kn j

cosh bn Δ 1 z

cosh bn Δ

1 161

where the functions are defined as

Kn j J0 bnj 1 162a
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and the many characteristic values (eigenvalues) are
obtained by trial and error from

bnJ1 bn Bi J0 bn 1 162b

The other functional groups are defined as

1 Kn
J1 bn

bn
1 162c

Kn Kn
J21 bn

2
1

bn

Bi

2

1 162d

where J0(b) and J1(b) are tabulated relations called Bessel
functions, which are discussed at length in Chapter 3. The
rate of heat transfer can be calculated using the heat flux
entering at position x 0, but we must also account for
radial variation of temperature so that the elemental area is
2prdr; thus, integrating over the whole base gives

Q
R

0
k

T

x x 0

2prdr 1 163

Putting this in nondimensional form, we have

Q
2pR2k

L2
T1 T0

1

0

u 0
j

j dj 1 164

By inserting dimensionless temperature from Eq. 1.161, we
obtain the following somewhat complicated result for heat
transfer rate:

Q
2pR2k T1 T0

L2Δ n 1

bn 1 Kn
2

Kn Kn
tanh

bn

Δ
1 165

This illustrates how complexity grows quickly as simplifi-
cations are relaxed.

For small Bi 1, it is not difficult to show from the
transcendental equation (1.162b) that the smallest eigen-
value is

b1 2Bi 1 2 1 166

By substituting this into Eq. 1.165, we will obtain
Eq. 1.139a. Thus, the fourth model shows that the radial
heat conduction inside the rod is unimportant when

Bi 1 1 167

In summary, we have illustrated how proper model hierar-
chy sets limits on the lower levels. In particular, one can
derive criteria (like Eq. 1.167) to show when the simpler

models are valid. Some solutions for the simpler models
can be found in Walas (1991).

The obvious question arises: When is a model of a process
good enough? This is not a trivial question, and it can be
answered fully only when the detailed economics of design
and practicality are taken into account. Here, we have simply
illustrated the hierarchy of one simple process, and how to
find the limits of validity of each more complicated model in
the hierarchy. In the final analysis, the user must decide when
tractability is more important than precision.

PROBLEMS

1.11. Length Required for Cooling Coil
A cooling coil made of copper tube is immersed in a
regulated constant temperature bath held at a tempera-
ture of 20 C. The liquid flowing through the tube
enters at 22 C, and the coil must be sufficiently long
to ensure the exit liquid sustains a temperature of
20.5 C. The bath is so well stirred that heat transfer
resistance at the tube–bath interface is minimal,
and the copper wall resistance can also be ignored.
Thus, the tube wall temperature can be taken equal to
the bath temperature. Use Eq. 1.17 to estimate the
required tube length (L) under the following condi-
tions for the flowing liquid:

Cp 1 kcal/kg C

R 0.01m

0 1m/s

r 103 kg/m3

m 0.001 kg/m s

k 1.43 10 4 kcal/(s m K)

Since the Reynolds number is in the turbulent range,
use the correlation of Sieder and Tate (Bird et al.
1960) to calculate h

Nu 0 026 Re0 8Pr1 3

where

Nu
hD

k
D 2R Nusselt number

Pr
Cpm

k
Prandtl number

Re
D 0r

m
Reynolds number

Answer: L D 353 5
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1.22. Cooling of Fluids in Tube Flow: Locally Varying h
Apply the conditions of Model I (plug flow) and
rederive the expression for temperature change when
the heat transfer coefficient is not constant but varies
according to the law

h g z

Answer: c exp 2b z b 2pRg 0ArCp

1.32. Dissolution of Benzoic Acid
Initially, pure water is passed through a tube con-
structed of solid benzoic acid. Since benzoic acid is
slightly soluble in water (denote solubility as C
moles acid/cm3 solution), the inner walls of the tube
will dissolve very slowly. By weighing the dried
tube before and after exposure, it is possible to calcu-
late the rate of mass transfer.

(a) Take a quasi-steady-state material balance for
plug velocity profiles and show that the ODE
obtained is

0
dC

dx
kC

4
D

C C 0

where D denotes the inner tube diameter (taken as
approximately invariant), 0 is liquid velocity, and
kC is the (constant) mass transfer coefficient.

(b) Define u (C C ) and show that the solution to
part (a) is

u K exp
4
D

kC

0
x

(c) If pure water enters the tube, evaluate K and
obtain the final result

C x

C
1 exp

4
D

kC

0
x

(d) If the tube is allowed to dissolve for a fixed time
Δt, show that the weight change can be calculated
from

ΔW MBC Δt 0
p

4
D2 1 exp

4
D

kC

0
L

where L is tube length and MB is molecular
weight acid.

(e) Rearrange the result in part (d) to solve directly
for kC, under condition when 4kCL D 0 1, and
show

kC
ΔW

MBC ΔtpDL

(f) Discuss the assumptions implied in the above
analysis and deduce a method of estimating the
maximum possible experimental error in calculat-
ing kC; note experimental quantities subject to sig-
nificant errors are ΔW, Δt, and D.

1.41. Lumped Thermal Model for Thermocouple
We wish to estimate the dynamics of a cold thermo-
couple probe suddenly placed in a hot flowing fluid
stream for the purpose of temperature measurement.
The probe consists of two dissimilar metal wires
joined by soldering at the tip, and the wires are then
encased in a metal sheath and the tip is finally coated
with a bead of plastic to protect it from corrosion.
Take the mass of the soldered tip plus plastic bead to
be m, with specific heat Cp. Denote the transfer
coefficient as h.

(a) If the effects of thermal conductivity can be
ignored, show that the temperature response of
the probe is described by

mCp
dT

dt
hA Tf T

where A denotes the exposed area of probe tip,
and T(t) is its temperature.

(b) Lump the explicit parameters to form the system
time constant, and for constant Tf, define a new
variable u Tf T and show that the compact
form results

t
du

dt
u

where the system time constant is defined as

t
mCp

hA
s

(c) Integrate the expression in (b), using the initial
condition T(0) T0 and show that

T Tf

T0 Tf
exp

t

t

(d) Rearrange the expression in (c) to obtain

T0 T

T0 Tf
1 exp

t

t

and thus show the temperature excess is 63% of
the final steady-state value after a time equivalent
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to one time constant has elapsed. This also repre-
sents a quick and easy way to deduce system time
constants based on an elementary experiment.

l.53. Distributed Thermal Model for Thermocouple
If the plastic bead covering the tip of the thermo-
couple described in Problem 1.4 is quite large, and
since plastic usually sustains a very low value of
thermal conductivity, then the simple lumped model
solution becomes quite inaccurate. To improve the
model, we need to account for thermal conductivity
in the (assumed) spherical shape of the plastic
bead.

(a) Assuming the bead is a perfect sphere, contacted
everywhere by external fluid of temperature Tf,
perform a shell balance on an element of volume
4pr2Δr and show that

rCp
T

t
k
1
r2 r

r2
T

r

(b) Perform an elemental heat balance at the surface
of the sphere and deduce

k
T

r
h T Tf at r R

where R is the radius of the plastic sphere.

1.62. Modeling of Piston with Retaining Spring
The schematic figure shows a piston fitted snugly into
a cylinder. The piston is caused to move by increas-
ing or decreasing pressure P. As air is admitted by
way of valve V1, the increased pressure drives the
piston to the left, while the attached spring exerts a
force to restrain the piston. At the same time, a highly
viscous lubricant sealant at the juncture of piston and
cylinder exerts a resisting force to damp the piston
movement; the forces can be represented by

Fm am
dx

dt
m lubricant viscosity

Fx Kx K spring constant

(a) Perform a force balance on the piston and show
that

m
d2x

dt2
am

dx

dt
Kx AP t

(b) Arrange this equation to obtain the standard form
of the damped inertial equation:

t2
d2x

dt2
2zt

dx

dt
x f t

and hence, deduce an expression for damping
coefficient and time constant t. Such equations
are used to model pneumatic valves, shock
absorbers, manometers, and so on.

Answer: t m K z am 2 Km

1.73. Mass Transfer in Bubble Column
Bubble columns are used for liquid aeration and
gas–liquid reactions. Thus, finely suspended bubbles
produce large interfacial areas for effective mass
transfer, where the contact area per unit volume of
emulsion is calculated from the expression
a 6ε dB, where ε is the volume fraction of
injected gas. While simple to design and construct,
bubble columns sustain rather large eddy dispersion
coefficients, and this must be accounted for in the
modeling process. For concurrent operation, liquid
of superficial velocity u0L is injected in parallel with
gas superficial velocity u0G. The liquid velocity pro-
file can be taken as plug shaped, and the gas voi-
dage can be treated as uniform throughout the
column. We wish to model a column used to aerate
water, such that liquid enters with a composition C0.
Axial dispersion can be modeled using a Fickian-
like relationship

J De
dC

dx

moles
liquid area time

while the solubility of dissolved oxygen is denoted
as C . We shall denote distance from the bottom of
the column as x.

(a) Derive the steady-state oxygen mole balance for
an incremental volume of AΔx (A being the col-
umn cross-sectional area) and show that the liquid
phase balance is

1 ε De
d2C

dx2
u0L

dC

dx
kca C C 0
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(b) Lump parameters by defining a new dimension-
less length as

z
kcax

u0L

and define the excess concentration as y (C
C ), and so obtain the elementary, second-order,
ordinary differential equation

a
d2y

dz2
dy

dz
y 0

where

a
1 ε Dekca

u20L
dimensionless

Note the usual conditions in practice are such that
a 1.

(c) Perform a material balance at the entrance to the
column as follows. Far upstream, the transport of
solute is mainly by convection: Au0LC0. At the
column entrance (x 0), two modes of transport
are present; hence, show that one of the boundary
conditions should be

u0LC0 1 ε De
dC

dx x 0

u0LC 0

The second necessary boundary condition is usu-
ally taken to be

dC

dx
0 at x L

where L denotes the position of the liquid exit.
What is the physical meaning of this condition?
The two boundary conditions are often referred
as the Danckwerts type, in honor of P. V.
Danckwerts.

1.83. Dissolution and Reaction of Gas in Liquids
Oxygen dissolves into and reacts irreversibly with
aqueous sodium sulfite solutions. If the gas solubil-
ity is denoted as CA at the liquid–gas interface,
derive the elementary differential equation to
describe the steady-state composition profiles of
oxygen in the liquid phase when the rate of oxygen
reaction is represented by RA kCn

A and the
local oxygen diffusion flux is described by
JA DA dCA dz, where DA is diffusivity and z is
distance from the interface into the liquid.

Answer: DA
d2CA

dz2
kCn

A 0

1.93. Modeling of a Catalytic Chemical Reactor
Your task as a design engineer in a chemical com-
pany is to model a fixed bed reactor packed with the
company proprietary catalyst of spherical shape. The
catalyst is specific for the removal of a toxic gas at
very low concentration in air, and the information
provided from the catalytic division is that the
reaction is first order with respect to the toxic gas
concentration. The reaction rate has units of moles of
toxic gas removed per mass of catalyst per time.
The reaction is new and the rate constant is non-
standard, that is, its value does not fall into the range
of values known to your group of design engineers.
Your first attempt, therefore, is to model the reactor
in the simplest possible way so that you can develop
some intuition about the system before any further
modeling attempts are made to describe it exactly.

(a) For simplicity, assume that there is no appreciable
diffusion inside the catalyst and that diffusion
along the axial direction is negligible. An isother-
mal condition is also assumed (this assumption is
known to be invalid when the reaction is very fast
and the heat of reaction is high). The coordinate z
is measured from entrance of the packed bed.
Perform the mass balance around a thin shell at the
position z with the shell thickness of Δz and show
that in the limit of the shell thickness approaching
zero the following relation is obtained:

u0
dC

dz
1 ε rp kC

where u0 is the superficial velocity, C is the toxic
gas concentration, ε is the bed porosity, rp is the
catalyst density, and (kC) is the chemical reaction
rate per unit catalyst mass.

(b) Show that this lumped parameter model has the
solution

ln
C

C0

1 ε rpk

u0
z

where C0 denotes the entrance condition.

(c) The solution given in part (b) yields the distribu-
tion of the toxic gas concentration along the
length of the reactor. Note the exponential decline
of the concentration. Show that the toxic concen-
tration at the exit, which is required to calculate
the conversion, is

CL C0 exp
1 ε rpkL

u0
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(d) In reactor design, the information normally pro-
vided is throughput and mass of catalyst. So
if you multiply the denominator and numerator
of the bracketed term in the last part by the
cross-sectional area, A, show that the exit con-
centration is

CL C0 exp
Wk

F

where W is the mass of catalyst and F is the vol-
umetric gas flow rate.

(e) The dimensionless argument Wk/F is a key design
parameter. To achieve a 95% conversion, where
the conversion is defined as

X
C0 CL

C0

show that the nondimensional group Wk/F must
be equal to 3. This means that if the throughput is
provided and the rate constant is known the mass
of catalyst required is simply calculated as

W 3
F

k

(f) The elementary Model 1 is of the lumped parame-
ter type, and its validity is questionable because
of a number of assumptions posed. To check its
validity, you wish to relax one of the assumptions
and move one level up the hierarchy ladder.
Suppose, you relax the axial diffusion assump-
tion, and hence show that the mass balance, when
diffusion is important, becomes

Dε
d2C

dz2
u0

dC

dz
1 ε rpkC 0

Since this is a second-order ordinary differential
equation, two boundary conditions must be required.
The two possible conditions after Danckwerts are

z 0 u0C0 u0C z 0 Dε
dC

dz z 0

z L
dC

dz
0

(g) Define the following nondimensional variables
and parameters

y
C

C0
x

z

L
Pe

u0L

Dε
N

Wk

F

and show that the resulting modeling equations are

1
Pe

d2y

dx2
dy

dx
Ny 0

x 0 1 y x 0
1
Pe

dy

dx x 0

x 1
dy

dx
0

Compare this model (hereafter called Model 2) with
Model 1 and show that the axial diffusion may be
ignored when Pe 1 (this can be accomplished
several ways: by decreasing porosity ε or by reduc-
ing D, or by increasing velocity or length).

(h) To study the effect of the mass transfer inside
the catalyst particle, we need to remove the
assumption of no diffusion resistance inside the
particle. This means that the mass balance within
the particle must be linked with the external com-
position. To investigate this effect, we shall
ignore the axial diffusion (which is usually small
for packing made up of finely granulated solid)
and the external film resistance surrounding the
particle.
Set up a thin spherical shell (control volume)

inside the particle, and show that the mass balance
equation is

De
1
r2 r

r2
Cp

r
rpkCp 0

where Cp is the toxic gas concentration within the
particle, and De is the effective diffusivity and is
defined as Fickian-like

Jp De
Cp

r

moles transported by diffusion
cross-sectional area-time

and suitable boundary conditions for negligible
film resistance and particle symmetry are

Cp R C Cp r 0 at r 0

where R denotes particle radius.

(i) Next, set up the mass balance around the thin ele-
ment spanning the whole column cross section (as
in Model 1), but this time the control volume will
exclude the catalyst volume. This means that
material is lost to the various sinks made up by
the particles. Show that the mass balance equation
on this new control volume is

u0
dC

dz
1 ε

3
R
De

Cp

r r R
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1.102 Dimensional Analysis of a Correlation
As a follow up to Problem 1.7 on modeling bubble
columns, we wish to find an expression to represent
axial dispersion, sometimes called turbulent eddy
mixing. Baird and Rice (1975) proposed an expres-
sion to account for the input power per unit mass,
Pm, and the turbulent length scale or eddy size, d,
for the dispersion coefficient as follows:

De cPx
m d y

The arbitrary constant c is seen to be dimensionless.
We wish to find the dimensionally consistent values
for the unknown exponents x and y. We will use the
science of dimensional analysis to accomplish this
task. First, write the units of length L and time t
each term as follows:

L2

t

L2

t3

x

Ly

We require the exponents for length on both sides of
the equation to be the same, hence

L 2 2x y

Similarly for the exponents of time,

t 1 3x

(a) Solve the algebraic equations and show that

x 1 3 and y 4 3

Baird and Rice took the pressure drop in the power
calculation to be the hydrostatic head and the eddy
size to be the column diameter (d), with the value
of c fitted to a large array of experimental data.
This widely cited expression for dispersion
coefficient in terms of superficial gas velocity
(Uog) and column diameter (d) is given as

De 0 35 gUog
1 3 d 4 3

(b) The relations for the exponents x (call this x1) and
y (call this x2) could have been represented using
a vector–matrix format as follows:

b Ax x
x1
x2

b
2
1

A
2 1

3 0

If we premultiply b by A 1, we obtain the expression
for x:

A 1b x

Find the elements of A 1 and solve for the elements
of x.

Answer:
0 1 3

1 2 3
A 1

1.112 Transformations
Write the matrix form for the following linear
equations:

y1
1

2
x1

1

2
x3

y2 x2

y3
1

2
x1

1

2
x3

And show that

y Ax where A

1

2
0

1

2

0 1 0
1

2
0

1

2

(a) Compute the transpose of A 1 and compare it
with the original matrix A.

(b) What is the geometric relation of x to y ?
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