
C01 08/11/2011 11:29:16 Page 1

1 A Self-Assessment
Test

S ince this book was first published over 30 years ago, software testing

has become more difficult and easier than ever.

Software testing is more difficult because of the vast array of program-

ming languages, operating systems, and hardware platforms that have

evolved in the intervening decades. And while relatively few people used

computers in the 1970s, today virtually no one can complete a day’s work

without using a computer. Not only do computers exist on your desk, but

a ‘‘computer,’’ and consequently software, is present in almost every device

we use. Just try to think of the devices today that society relies on that are

not software driven. Sure there are some—hammers and wheelbarrows

come to mind—but the vast majority use some form of software to operate.

Software is pervasive, which raises the value of testing it. The machines

themselves are hundreds of times more powerful, and smaller, than those

early devices, and today’s concept of ‘‘computer’’ is much broader and

more difficult to define. Televisions, telephones, gaming systems, and auto-

mobiles all contain computers and computer software, and in some cases

can even be considered computers themselves.

Therefore, the software we write today potentially touches millions of

people, either enabling them to do their jobs effectively and efficiently, or

causing them untold frustration and costing them in the form of lost work

or lost business. This is not to say that software is more important today

than it was when the first edition of this book was published, but it is safe

to say that computers—and the software that drives them—certainly affect

more people and more businesses now than ever before.

1

CO
PYRIG

HTED
 M

ATERIA
L



C01 08/11/2011 11:29:16 Page 2

Software testing is easier, too, in some ways, because the array of soft-

ware and operating systems is much more sophisticated than in the past,

providing intrinsic, well-tested routines that can be incorporated into

applications without the need for a programmer to develop them from

scratch. Graphical User Interfaces (GUIs), for example, can be built from a

development language’s libraries, and since they are preprogrammed ob-

jects that have been debugged and tested previously, the need for testing

them as part of a custom application is much reduced.

And, despite the plethora of software testing tomes available on the

market today, many developers seem to have an attitude that is counter

to extensive testing. Better development tools, pretested GUIs, and the

pressure of tight deadlines in an ever more complex development envi-

ronment can lead to avoidance of all but the most obvious testing

protocols. Whereas low-level impacts of bugs may only inconvenience

the end user, the worst impacts can result in large financial loses, or even

cause harm to people. The procedures in this book can help designers,

developers, and project managers better understand the value of compre-

hensive testing, and provide guidelines to help them achieve required

testing goals.

Software testing is a process, or a series of processes, designed to make

sure computer code does what it was designed to do and, conversely, that it

does not do anything unintended. Software should be predictable and con-

sistent, presenting no surprises to users. In this book, we will look at many

approaches to achieving this goal.

Now, before we start the book, we’d like you to take a short exam. We

want you to write a set of test cases—specific sets of data—to test properly

a relatively simple program. Create a set of test data for the program—data

the program must handle correctly to be considered a successful program.

Here’s a description of the program:

The program reads three integer values from an input dialog. The

three values represent the lengths of the sides of a triangle. The pro-

gram displays a message that states whether the triangle is scalene,

isosceles, or equilateral.

Remember that a scalene triangle is one where no two sides are equal,

whereas an isosceles triangle has two equal sides, and an equilateral

triangle has three sides of equal length. Moreover, the angles opposite the

2 The Art of Software Testing



C01 08/11/2011 11:29:16 Page 3

equal sides in an isosceles triangle also are equal (it also follows that the

sides opposite equal angles in a triangle are equal), and all angles in an

equilateral triangle are equal.

Evaluate your set of test cases by using it to answer the following

questions. Give yourself one point for each yes answer.

1. Do you have a test case that represents a valid scalene triangle?

(Note that test cases such as 1, 2, 3 and 2, 5, 10 do not warrant a yes

answer because a triangle having these dimensions is not valid.)

2. Do you have a test case that represents a valid equilateral triangle?

3. Do you have a test case that represents a valid isosceles triangle?

(Note that a test case representing 2, 2, 4 would not count because it

is not a valid triangle.)

4. Do you have at least three test cases that represent valid isosceles

triangles such that you have tried all three permutations of two equal

sides (such as, 3, 3, 4; 3, 4, 3; and 4, 3, 3)?

5. Do you have a test case in which one side has a zero value?

6. Do you have a test case in which one side has a negative value?

7. Do you have a test case with three integers greater than zero such that

the sum of two of the numbers is equal to the third? (That is, if the

program said that 1, 2, 3 represents a scalene triangle, it would contain

a bug.)

8. Do you have at least three test cases in category 7 such that you have

tried all three permutations where the length of one side is equal to

the sum of the lengths of the other two sides (e.g., 1, 2, 3; 1, 3, 2; and

3, 1, 2)?

9. Do you have a test case with three integers greater than zero such that

the sum of two of the numbers is less than the third (such as 1, 2, 4 or

12, 15, 30)?

10. Do you have at least three test cases in category 9 such that you have

tried all three permutations (e.g., 1, 2, 4; 1, 4, 2; and 4, 1, 2)?

11. Do you have a test case in which all sides are zero (0, 0, 0)?

12. Do you have at least one test case specifying noninteger values

(such as 2.5, 3.5, 5.5)?

13. Do you have at least one test case specifying the wrong number of

values (two rather than three integers, for example)?

14. For each test case did you specify the expected output from the

program in addition to the input values?

A Self-Assessment Test 3



C01 08/11/2011 11:29:16 Page 4

Of course, a set of test cases that satisfies these conditions does not guar-

antee that you will find all possible errors, but since questions 1 through

13 represent errors that actually have occurred in different versions of this

program, an adequate test of this program should expose at least these

errors.

Now, before you become concerned about your score, consider this: In

our experience, highly qualified professional programmers score, on the

average, only 7.8 out of a possible 14. If you’ve done better, congratula-

tions; if not, we’re here to help.

The point of the exercise is to illustrate that the testing of even a trivial

program such as this is not an easy task. Given this is true, consider the diffi-

culty of testing a 100,000-statement air traffic control system, a compiler, or

even a mundane payroll program. Testing also becomes more difficult with

the object-oriented languages, such as Java and Cþþ. For example, your test

cases for applications built with these languages must expose errors associ-

ated with object instantiation and memory management.

It might seem from working with this example that thoroughly testing a

complex, real-world program would be impossible. Not so! Although the

task can be daunting, adequate program testing is a very necessary—and

achievable—part of software development, as you will learn in this book.

4 The Art of Software Testing


