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   T his chapter focuses on the fundamentals of digital logic and design, with numerous 
examples from both computer hardware design and  “ everyday life ”  events to demonstrate 
that digital logic is not confi ned to designing computers. My objective is to equip the engineer 
or student with suffi cient knowledge of design principles to be able to design a digital com-
puter. In addition, I integrate the important role that software plays in modern computer 
systems with the hardware design principles. Numerous design examples and solved problems 
are provided to support learning objectives.    

   MICROPROCESSOR DESIGN 

  Functions 

 Using its  arithmetic logic unit ( ALU ), a microprocessor can perform mathematical 
and logic operations like addition, subtraction, multiplication, division, and com-
parison. Modern microprocessors contain complete fl oating - point processors that 
can perform extremely sophisticated operations on large variable - length numbers. 
In addition, a microprocessor can perform the following functions:

   Move data from one memory location to another.  

  Make decisions and jump to a new set of computer program instructions based 
on those decisions.  

  Use an  RD  ( read ) and  WR  ( write ) line to tell the memory whether it wants to 
read from or write to the addressed location.  

  Use a clock line to transmit clock pulses (CPs) to sequence the microprocessor. 
For example, when numbers are added by the microprocessor, which you 

3



4  Computer, Network, Software, and Hardware Engineering with Applications

will see later, addition takes place bit by bit, and the clock triggers each 
binary bit addition to ultimately form a decimal result.  

  Uses a reset line to reset the program counter to zero and restart execution.     

  Components 

 Microprocessor components are the building blocks of modern computers. These 
components are the following:

    •       ALU  .  Consists of accumulators, registers, and control unit. 

    •      The ALU executes instructions and manipulates data.  

   •      An 8 - bit ALU can add, subtract, multiply, and divide two 8 - bit numbers, 
while a 32 - bit ALU can manipulate 8 - bit, 16 - bit, and 32 - bit numbers.  

   •      An 8 - bit ALU would have to execute four instructions to add two 32 - bit 
numbers (four add instructions, each of which adds 8 - bit numbers), whereas 
a 32 - bit ALU can do it in one instruction.    

   •       Accumulator  .  Holds data and instructions for processing by the ALU.  

   •       Register  .  Temporary storage of instructions and data. 

    •        Program Counter    (   PC   ).  Contains the address of next instruction to be 
executed  

   •        Instruction Register    (   IR   ).  Holds address of current instruction being 
executed  

   •       General Registers  .  Holds operator (e.g., code for add instruction), operands 
(e.g., numbers to be added), and data while an instruction is executed    

   •       Stack  .  Temporary storage of instructions and data, usually on a last in, fi rst 
out (LIFO) basis. Also called push - down stack.  

   •       Control Unit  .  Fetches and decodes instructions, generates signals for the ALU 
to execute instructions  

   •       Busses  

    •       Address Bus  .  Path over which addresses fl ow for directing memory and 
 input/output  ( I/O ) data transfers. An address bus may be 8, 16, or 32   bits 
wide that sends an address to memory or I/O for accessing memory or I/O.  

   •       Data Bus  .  Transfers data. A data bus may be 8, 16, or 32   bits wide that can 
send data to memory or I/O and receive data from memory or I/O. The 
number of address bus lines determine the amount of addressable memory 
(n lines    =    2 n  addressable words).  

   •       Control Bus  .  Communicates control and status information.    

   •       Chip  .  A chip is also called an integrated circuit. Generally it is a small, thin 
piece of silicon onto which the transistors making up the microprocessor have 
been etched. A chip might be as large as an inch on a side and can contain 
tens of millions of transistors. Simpler processors might consist of a few 
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thousand transistors etched onto a chip just a few millimeters square. Microns 
are the width of the smallest wire on the chip. For comparison, a human hair 
is 100    μ m thick. As the feature size on the chip goes down, the number of 
transistors rises.     

  Characteristics 

 Microprocessor characteristics govern the speed and functionality of computer oper-
ations. Important characteristics include the following presented in the succeeding 
paragraphs. 

 Smaller microprocessors can be combined into a larger one (four 4 - bit micro-
processors combined into one 16 - bit microprocessor). 

 A crystal - controlled clock sequences the operations of a microprocessor (e.g., 
the sequence of computer program instruction execution) by generating CPs. Clock 
speed is specifi ed in cycles per second, where 1   MHz is equal to 1 million cycles 
per second. Clock speed is the maximum speed of the chip. 

 Instructions require one or more clock cycles to execute the following, depend-
ing on its complexity: fetch instruction from memory, decode the operation code, 
fetch operands from memory, execute the instruction, and store the result in memory. 
In addition to clock speed, an important performance metric is the number of 
fl oating - point operations per second or fl ops.

     Complex instruction set computing    (   CISC   ).  A single instruction can perform 
several operations. This design simplifi es programming because, for example, 
a single instruction can fetch instruction from memory, decode the operation 
code, fetch operands from memory, execute the instruction, and store the 
result in memory. However, the downside is the relatively slow speed of the 
computer  [RAF05] .  

    Reduced instruction set computing    (   RISC   ).  Several operations are required to 
execute a single instruction. This design provides high speed, for example, 
well suited to real - time applications that must meet deadlines, but at the 
expense of relatively complex programming.     

  Performance 

 One measure of the computing power of a microprocessor is its clock speed, mea-
sured in millions of cycles per second (MHz). It usually takes from one to seven 
cycles of a microprocessor ’ s internal clock to fully process an instruction. The faster 
the internal clock, the more instructions can be processed per unit of time. For the 
microprocessors in laptop and desktop computers, clock speeds are usually greater 
than 100   MHz. The fastest microprocessors can run at a speed of 2   GHz. From a 
user standpoint, the most important performance metric is program execution time, 
defi ned as  [HAR07] :
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Program execution time Number of instructions in program= ( )

∗∗ ∗( ) ( ).Clock cycles per instruction Time per clock cycle
  

 Another measure of performance is the number of instructions that can be processed 
per second, referred to as MIPS, for million instructions per second. The MIPS rating 
of a microprocessor depends on both the clock speed and the number of instructions 
that can be executed per clock cycle. Simple microprocessors can execute a maximum 
of one instruction per clock cycle. Advanced microprocessors can execute up to six 
or eight instructions per clock cycle. The relationship between clock speed and MIPS 
is not straightforward, however, because some instructions may take more than one 
clock cycle to execute, depending on the program. The product of clock speed and 
the number of instructions that can be executed per cycle may be greater than MIPS. 
The maximum clock speed is a function of the manufacturing process and delays 
within the chip. MIPS is proportional to the clock speed and inversely proportional 
to the number of clock cycles per instruction. 

 Another indication of microprocessor speed is the word length, as measured by 
the number of bits of information that can be transferred simultaneously. Long words 
allow the microprocessor to handle data and perform complex tasks more effi ciently. 
The number of bits per word has been steadily increasing with the growth of circuit 
technology. Thus 4 - , 8 - , 16 - , 32 - , and 64 - bit microprocessors are now common. 
Some personal computers use 32 - bit microprocessors. More powerful computers use 
64 - bit microprocessors. The 4 - , 8 - , or 16 - bit devices are usually employed in simple 
embedded applications, such as microwave ovens, electric shavers, and televisions. 
Figure  1.1  shows the microprocessor architecture.   

  Pipeline Systems 

 An important aid to performance is the pipeline system. The purpose of a pipeline 
system is to reduce delay caused by the computer processor having to wait for 
instructions to complete. With a pipeline design, the processor begins the execution 
of the next instruction while the current instruction is executing. Thus, various 
phases of instruction execution are overlapped. The concept is to keep the pipeline 
full, with as many execution sequences as possible. For example, due to overlapped 
instruction execution, each instruction overlaps during (n    −    1) clock cycles, and each 
of m    =    4 instructions requires one clock cycle, yielding (n    −    1)    +    m    =    7 clock 
cycles, total, as shown in Figure  1.2 .

    Problem:  How is the  increase in speed , obtained by a pipelined system over a 
conventional system, computed?    

   Answer:  Using Figure  1.2  as an example, the increase is computed as follows:    

 The number of clock cycles required in conventional system is mn    =    4    *    4    =    16 in 
the example of Figure  1.2 . Thus, the decrease in number of clock cycles for a pipe-
lined system is:

    mn n m− − + = − =(( ) ) ,1 16 7 9   
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     Figure 1.1     Microprocessor architecture.   
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  and the  increase in speed  (number of clock cycles required in conventional system/
number of clock cycles required in a pipelined system) is:

    ( ) / (( ) ) / ((( ) / ) ) / . .mn n m n n m− + = − + = =1 1 1 16 7 2 286    

 If m is large, the increase in speed approaches n clock cycles per instruction —
 maximum speed increase. 

 The pipeline  throughput  is defi ned as the  number of instructions , m, per  total 
clock cycle time  required to process m instructions:
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m instructions

Number of clock cycles per instruction Time ∗ pper clock cycle

m

m n 1 T
=

+ −( )
,  

  where T is clock cycle time per instruction.

    Problem:  Compute the throughput of the pipeline microprocessor in Figure  1.2 .  

   Answer:  For a clock speed of 10   Mhz (10 7  clock cycles per second), T    =    1/10 7  
seconds, the throughput is: 

     m m n T MIPS/ (( ) ) / (( )( / )) ( )( ) / . .+ − = = =1 4 7 1 107 4 107 7 5 71       

  Pipeline effi ciency  is computed as: speed increase/maximum speed increase (n    =    4 
clock cycles per instruction)    =    2.286/4    =    0.5715.  

  Pipeline System Delay 

 When a pipeline instruction is unable to complete on the scheduled clock cycle, then 

   •      Finish the earlier instructions on schedule and  

   •      Delay the later instructions  

   •      This is called stalling the pipeline    

  Structural hazard s are pipeline hardware delays.

    Example:  Memory does not respond to a request as fast as it is expected.    

  Data hazards  arise when data are not ready in a pipeline at the time they are needed.

     Figure 1.2     Pipelined system. n, clock cycle per instruction; m, instructions, each requiring one 
clock cycle; (n    −    1)    +    m    =    7 clock cycles (each instruction overlaps for [n    −    1] clock cycles).  
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    Example:  An instruction needs data in a register that a previous instruction is 
still modifying.    

  Control hazards  arise when the central processing unit (CPU) needs to manage a 
pipeline but instead must increment the program counter.

    Example:  Nonpipelined conditional branch instruction jumps to a pipelined 
instruction.  

   Problem:  Delay in a pipelined operation is illustrated in this problem that 
compares the clock cycle delay for nonjump instructions with that of jump 
instructions.    

 If a jump instruction is executed in the pipelined CPU in Figure  1.2 , what is the 
clock cycle delay?

    Answer:  Since the target of the jump instruction (another instruction) cannot 
be decoded (i.e., program counter updated) until the jump instruction is 
executed, there is a delay of three clock cycles.  

   Problem:  What cam be done in a pipeline system to maintain performance 
when a  structural hazard  occurs?  

   Answer:  More resources can be employed, if available, or the pipeline can be 
stalled (i.e., no instructions executed until needed hardware is available).  

   Problem:  Is the microprocessor architecture in Figure  1.1  a pipeline computer?  

   Answer:  No, it is not because only one instruction can be executed at a time.  

   Problem:  What determines the clock cycle frequency of a pipeline system?  

   Answer:  The clock cycle frequency of a  pipeline system  is governed by the 
 pipeline  with the slowest processing time. For example, whichever pipeline 
queue in Figure  1.2  experiences the slowest processing determines clock 
cycle frequency.      

  Operating System 

 The operating system contains the software necessary to manage the resources of a 
computer system. An example is a signal called an interrupt that is used to indicate 
to the microprocessor that an I/O device needs attention (i.e., data input or data 
output) or that there is an error condition (e.g., attempted divide by zero). The inter-
rupt service routine is shown in Figure  1.1 . In addition to managing resources, the 
operating system is responsible for allocating resources, for example, allocating 
memory to the application program, as depicted in Figure  1.1 .  

  Memory 

 Because computer performance depends on the characteristics of memory systems 
in addition to the microprocessor architecture, it is important to consider the former 
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 [HAR07] . Two important types of memory systems are main memory (random 
access memory, RAM) and secondary memory (hard disk, USB fl ash). Main memory 
can be divided between a relatively slow RAM for program and data access and a 
fast cache memory for accessing recently used instructions and data. In addition, 
secondary memory can be classifi ed as virtual, meaning that pages on a hard disk 
can be mapped to main memory locations under the control of a memory manage-
ment unit. A microprocessor may be equipped with special hardware, called  direct 
memory access  ( DMA ), which allows I/O devices to communicate directly with 
memory rather than using intermediate devices (such as data buffers in Fig.  1.1 ). 

   RAM  

 RAM contains bytes of information that the microprocessor can read or write, 
depending on whether the RD or WR line is activated. One problem with RAM 
chips is that they are volatile; the RAM contents are lost once the power goes off. 
That is why the microprocessor needs read - only memory (ROM).  

   ROM  

 All microprocessors contain ROM. A ROM chip is programmed with a permanent 
collection of preset bytes. The address bus tells the ROM chip which byte to read and 
place on the data bus. The RD line signal causes the ROM chip to transfer the selected 
byte to the data bus. On a personal computer, the program in the ROM is called the 
 BIOS  ( basic input/output system ). When the microprocessor starts, it begins execut-
ing instructions it fi nds in the BIOS. The BIOS instructions test the hardware, and 
then control is transferred to the hard disk to fetch the boot sector. The boot sector is 
another small program that the BIOS stores in RAM after reading it from the disk. 
The microprocessor then begins executing the boot sector ’ s instructions from RAM. 
The boot sector program will tell the microprocessor to fetch more instructions from 
the hard disk into RAM, which the microprocessor then executes, and so on. This is 
how the microprocessor loads and executes the entire operating system.  

  Read/Write ( R / W ) Control Line 

 This single wire is driven by the microprocessor to control memory functions. If the 
R/W control line is asserted as a logical 1 (i.e., true), then the microprocessor per-
forms a read operation. If it is asserted as a logic 0 (i.e., false), then the microprocessor 
performs a write operation. The relationship between logic level and voltage level 
can vary, depending on the implementation. For example, a logical 0 corresponds to 
a voltage of 0   V, and a logical 1 corresponds to a voltage of 5   V. Figure  1.3  is a block 
diagram of the microprocessor and memory, showing the R/W control line.    

  Address Bus 

 These wires are controlled by the microprocessor to select a particular location in 
memory for reading or writing. The microprocessor in Figure  1.3  uses a memory 
chip that has 15 address wires.
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    Problem:  How many locations can be addressed in Figure  1.3 ?  

   Answer:  Since each wire has two states (it can be a digital 1 or a 0), 2 15     =    32,768 
locations are possible. Thus, the system is said to have 32K of memory 
(1K    =    1024   bytes).     

  Data Bus 

 These wires are used to pass data between the microprocessor and the memory. 
When data are written to the memory, the microprocessor drives the data bus; when 
data are read from the memory, memory drives the bus. In the example, in Figure 
 1.3 , there are eight data wires (or bits). These wires can transfer one of 2 8  or 256 
different binary values per transfer. The data size of 8   bits is commonly referred to 
as a byte. A data size of 4   bits is frequently referred to as a nibble.  

  Memory Enable Control Line 

 This wire, called the Enable line, connects to the enable circuitry of the memory in 
Figure  1.3 . When the memory is enabled, it performs either a read or write operation 
as determined by the status of the R/W line.  

  Memory System Performance 

 Memory system performance is computed by considering hit and miss rates and the 
order of accessing memory components: cache memory, main memory, and hard 
disk. These rates are related to whether the instructions or data that are required by 
a program are available, fi rst, in the cache memory, or second, in the main memory. 
If the instructions or data are in the cache, the access is scored as a cache hit; 
otherwise, the access is scored as a cache miss. Similarly, if the instructions or data 

     Figure 1.3     Diagram of microprocessor and memory.  
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are not in the cache but are in main memory, the access is scored as a main memory 
hit; otherwise, the access is scored as a main memory miss because the instructions 
or data are only available on the hard disk  [HAR07] . Thus, hit and miss rates are 
computed as follows:

    Cache hit rate (CHR)
Number of cache hits

Total number of m
=

eemory accesses
,   

    Cache miss rate (CMR)
Number of cache misses

Total number o
=

ff memory accesses
,   

    Main memory hit rate (MMHR)
Number of main memory hits

Tota
=

ll number of memory accesses
,   

    Main memory miss rate (MMMR)
Number of main memory misses

T
=

ootal number of memory accesses
,   

    

Number of hard disk accesses (HAD) Total number of memory = aaccesses

Number of cache memory hits Number of main memo− +( rry hits

Number of main memory misses).+
   

 Note that when there is a cache memory miss, the main memory access is attem-
pted. Thus, it is not necessary to count cache memory misses in the foregoing 
computation:

    Hard disk access rate HDAR HAD Total number of memory ac( ) /= ccesses.   

    Problem:  For example, consider the following case: 

   4000 total number of memory accesses  

  1200 cache accesses are hits and 800 are misses  

  Of the 800 cache misses that require access to the main memory, 200 are hits 
and 600 are misses  

  Compute CHR, CMR, MMHR, MMMR, HAD, and HDAR.    

   Answer:  CHR    =    1200/4000    =    30% 

   CMR    =    800/4000    =    20%  

  MMHR    =    200/4000    =    5%  

  MMMR    =    600/4000    =    1%  

  HAD    =    4000    −    (1200    +    200    +    600)    =    2000  

  HDAR    =    1200/4000    =    50%      

 Another memory performance metric is  average access time  ( AAT ), which is com-
puted as follows:

    
AAT CHR cache access time

MMHR main memory access time

= ∗
+ ∗

( )

( ) ++ ∗HDAR hard disk access time( ).
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  Problem:    For the following typical access times: cache    =    2   ns, main memory    =    
60   ns, and hard disk    =    35   ms, and using the above hit and miss access rates, 
compute the AAT.  

   Answer:  AAT    =    (0.30)(2)    +    (0.04)(60)    +    (0.50)(35    *    10 6 ) ns    =    20.50    *    10 6    ns 
(of course, hard disk access time dominates).      

  Multiplexing Data and Address Signals 

 On the Motorola 68HC11 microprocessor, in Figure  1.4 , the 8 - bit address/data bus 
takes turns acting as an address bus and a data bus. When a memory location is 
accessed (for reading or writing), the bus fi rst acts as an address bus, transmitting 
the 8 lower - order bits of the address. Then the bus functions as a data bus, either 
transmitting a data byte (for a write cycle) or receiving a data byte (for a read cycle).
This kind of split - personality bus is referred to as a multiplexed address and data 
bus. The support needed by the memory is provided by an 8 - bit latch (a device that 
can store an address), using a multiplexed address/data bus. This chip (HC373) 
performs the function of latching the lower 8 address bits, when combined with the 
upper 7 address bits from the microprocessor, will provide the full 15 - bit address 
for reading or writing data.   

 Figure  1.4  shows how the latch is wired. The upper 7 address bits run directly 
from the microprocessor to the memory. The lower 8  address bits  are multiplexed 
with 8  data bits . When an  address  appears on the wires AD: 07, the latch connects 
the address bits of the microprocessor to the memory. On the other hand, when 
 data  appears on the wires AD0:7, the latch connects the data bits of the micropro-
cessor to the memory. An additional signal, the address strobe (AS) output of the 

     Figure 1.4     Block diagram of microprocessor and memory with latch.  
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microprocessor, tells the latch when to obtain the address bits from the address/data 
bus. When the full 15 - bit address is available to the memory (upper 7   bits direct 
from the microprocessor (wires A8: 14) and lower 8   bits from the latch (wires AD: 
07), the read or write access can occur. Because the address/data bus is also wired 
directly to the memory, data can fl ow in either direction between the memory and 
the microprocessor. The entire process is managed by the microprocessor. The 
Enable (E) clock, the R/W line, and the AS line perform in tight synchronization to 
make sure these operations happen in the correct sequence and within the timing 
capacities of the microprocessor hardware.  

  Memory Mapping the  RAM  

 Memory mapping refers to allocating blocks of memory to different functions, such 
as the operating system and the application program. If a microprocessor has 15 
address bits, it has 32,728 (32K bytes) of addressable locations that can be mapped. 
This address space would be used by the 32K memory chip in Figure  1.5 . The 
technique used to map the memory is fairly simple. Whenever the microprocessor ’ s 
A15 (the highest order address bit) is logic 1, the high - order address bit is selected. 
The other 15 address bits (A0 through A14) determine the address within that 32K 
block. If A15 is logic 0, the 32K block is not selected.   

 A NAND gate (actually a portion of a programmable logic device called a PAL) 
is used to enable the memory when A15 and the E Clock equal 1 in Figure  1.5 . (See 
the  “ Digital Logic ”  section below for the explanation of NAND and other gates). 

 The E Clock controls the timing of the chip enable line. Some memory chips 
use an active low (sometimes called  “ active false ” ) signal to enable inputs, meaning 
that they are enabled when the enable input is 0. The method for denoting an input 
that is active low (i.e., 0) is shown in Figure  1.5 , where the chip enable input con-
nects to a circle; this circle indicates an active low input. Also, the name for the 
signal, CE, is prefi xed with a  ∼  symbol.  

  Interrupt Handling 

 The microprocessor has a bank of interrupt vectors, as shown in Figure  1.5 , which 
are hardware - defi ned locations in the memory address space where the microproces-

     Figure 1.5     Enabling the memory.  
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sor expects to fi nd pointers to interrupt handling routines, for processing input and 
output data, arithmetic overfl ow, and so on. Also, when the microprocessor is reset, 
it fi nds the reset vector to determine where it should begin running a program. These 
vectors are located in the address space of the memory.   

  DIGITAL LOGIC 

 The fundamental logic operations of a microprocessor are performed by the follow-
ing circuits. The results of those operations are represented in truth tables, where 
the binary value 0 is considered  “ low ”  (e.g., low voltage) and the binary value 1 is 
considered  “ high ”  (e.g., high voltage). While digital logic is used in the design of 
microprocessors,  “ everyday ”  examples are provided to show that the logic opera-
tions are not restricted to microprocessors. 

  NOT : represented in Table  1.1  and implemented with an inverter in Figure  1.6 .

    Application:  The application is to complement the input A, producing the 
output   A.      

   Microprocessor example:  the binary bit input was caused by an arithmetic 
overfl ow condition, so it is ignored and  not  used in the computation.  

   Everyday example:  if we are to leave on an automobile trip, where A    =    1 
represents leaving at 1000,   A = 0 represents all times  not  equal to 1000.    

  OR : represented in Table  1.2  and implemented with OR gate in Figure  1.6 .

    Application:  The application is to produce a 1 output if  any  or  both  of the inputs 
are 1.    

   Microprocessor example:  the inputs are binary bits from memory stick or hard 
disk, so the microprocessor can accept  either  or  both  to perform a computa-
tion, depending on the current computer program instruction.  

   Everyday example:  if A    =    1 represents the decision to purchase a house and 
B    =    1 represents the decision to purchase an automobile, Z    =    1 represents 
the decision to purchase a house  or  an automobile  or  both.    

  AND : represented n Table  1.3  and implemented with an AND gate in Figure  1.6 .

    Application:  The application is to produce a 1 output if  all  inputs are 1.    

  Table 1.1    NOT Truth Table 

   Input     Output  

  A      A   

  0    1  
  1    0  
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  Table 1.2    OR Truth Table 

   Input     Input     Output  

  A    B    Z    =    A    +    B  
  0    0    0  
  0    1    1  
  1    0    1  
  1    1    1  

     Figure 1.6     Logic operations.  
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  Table 1.3    AND Truth Table 

   Input     Input     Output  

  A    B    Z    =    AB  
  0    0    0  
  0    1    0  
  1    0    0  
  1    1    1  

  Table 1.4    NOR Truth Table 

   Input     Input     Output  

  A    B      Z A B= +   

  0    0    1  
  0    1    0  
  1    0    0  
  1    1    0  

   Microprocessor example:  the microprocessor uses a signal Z    =    1 to tell it that 
an interrupt has occurred on input line A  and  signifying that data input occurs 
on B, which the microprocessor will transfer to its memory.  

   Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has  both  a gas 
station  and  a restaurant.    

  NOR : represented in Table  1.4  and implemented with NOR gate in Figure  1.6 .

    Application:  The application is to produce a 1 output if all inputs are 0.    

   Microprocessor example:  the microprocessor Z    =    1 output is recognized as 
interrupt code AB    =    00.  

   Everyday example:  if A    =    0 represents the decision to  not  purchase a home 
and B    =    0 represents the decision  not  to purchase an automobile, then Z    =    1 
represents the decision to  neither  purchase a home  nor  purchase an 
automobile.    

  NAND : represented in Table  1.5  and implemented with NAND gate in Figure  1.6 .

  Table 1.5    NAND Truth Table 

   Input     Input     Output  

  A    B      Z AB=   

  0    0    1  
  0    1    1  
  1    0    1  
  1    1    0  
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    Application:  The application is to produce a 1 output if all inputs are  not  1.    

   Microprocessor example:  the microprocessor program produces the comple-
ment of the product of binary bits. This would be the case, for example, when 
Z    =    1 signals that 0s occur on  either or both  of two input channels.  

   Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has only a gas 
station, or has only a restaurant, or has neither (i.e., rest stop).    

  Exclusive OR (XOR) : represented in Table  1.6  and implemented with EXCLUSIVE 
OR gate in Figure  1.6 . The fi gure also shows how the gate can be implemented, 
using AND and OR gates.

    Application:  The application is to produce a 1 output if  any  of the inputs is 1, 
but  not all  inputs are 1, and  not all  inputs are 0.    

   Microprocessor example:  the main microprocessor receives a signal Z    =    1 
from the output of the I/O microprocessor that a binary bit A    =    1 from a 
memory stick  or  B    =    1 from a hard disk, and is ready for input, but these 
inputs are  not concurrent .  

   Everyday example:  if A    =    1 represents the decision to purchase a house and 
B    =    1 represents the decision to purchase an automobile, Z    =    1 represents 
the decision to purchase a house  or  an automobile, but  not both at the same 
time .    

  Exclusive NOR (XNOR) : represented in Table  1.7  and implemented with XNOR gate 
in Figure  1.6 . The  NOR  gate is the negation of the  XOR  gate from Table  1.6 , as 
indicated in Table  1.7 .

  Table 1.6    EXCLUSIVE OR Truth Table 

   Input     Input     Output  

  A    B      Z AB AB= +   

  0    0    0  
  0    1    1  
  1    0    1  
  1    1    0  

  Table 1.7    EXCLUSIVE NOR (XNOR) Truth Table 

   Input     Input     Output  

  A    B      Z AB AB AB AB A B A B AA AB AB BB AB AB= + = = + + = + + + = +( )( ) ( )( )   

  0    0    1  
  0    1    0  
  1    0    0  
  1    1    1  
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    Application:  The application is to produce a 1 output if all inputs are 0  or  all 
inputs are 1.    

   Microprocessor example:  Two hard drives are identifi ed as A    =    0 and A    =    1; 
two fl ash memories are identifi ed as B    =    0, and B    =    1. The microprocessor 
is programmed to input data from a hard drive and a fl ash memory  concur-
rently . Therefore, it reads A    =    0  and  B    =    0  or  A    =    1  and  B    =    1.  

   Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has  neither  a 
gas station  nor  a restaurant (i.e., rest stop)  or  has  both  a gas station and 
restaurant (i.e., get gas and eat).    

  De Morgan ’ s theorem   [GRE80]  is used to simplify complex logic equations and the 
resultant digital logic. The theorem is used to simplify relatively simple expressions, 
as contrasted with Karnaugh maps (K - maps), described in the next section. The 
application of this theorem is shown in the following example:

    Theorem: A B AB and AB A B.+ = = +    

 Suppose it is required to simplify   F AB AB= (( )( )). 
 Applying the theorem:

    

AB A B AB AB A B A B

A A A B A B B B A A B B A A

= + = + +

= + + + = + + = + +

,( )( ) ( )( )

( )1 BB A B

F A B A B A B A B AB AB B.

= +

= + + = + + + = + =( )( ( ) ( )

   

 Then, use Table  1.8  to demonstrate the equivalence between   (( )( ))AB AB  and AB.    

  K - MAPS 

 A K - map in Table  1.9  is used to minimize a complex Boolean expression  [RAF05] . 
Each square of a K - map represents a minterm (i.e., product terms). The process 
proceeds by listing the binary equivalents of the terms A and BC on the axes of 
Table  1.9 , ordering them so that there is only a 1 - bit difference between adjacent 
cells. Then, the minimum number of cells is enclosed. Next, minterms are identifi ed 

  Table 1.8    Truth Table to Demonstrate Equivalence between F and AB 

   A     B       AB        ABAB        F AB AB= (( )( ))      AB  

  0    0    1    1    0    0  
  0    1    1    1    0    0  
  1    0    1    1    0    0  
  1    1    0    0    1    1  
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 In the K - map,   B is common to the enclosed minterms. Therefore,   F B= . Table  1.10  
demonstrates this result. The considerable reduction from the original function 
would result in signifi cant savings in circuitry to implement the function.   

  Prime Implicant 

 A prime implicant is the  product term  obtained by enclosing the  maximum  number 
of adjacent cells in a K - map. For example, in the K - map of Table  1.9 ,   F B=  is a 
prime implicant. The prime implicant is only useful for providing a name for the 
maximum enclosure in a K - map.  

  Quine – McCluskey Method 

 This method is an alternative to the K - map for minimizing a Boolean func-
tion. The method is illustrated in Table  1.11  by minimizing the function 
  F A B C A B C A B C A B C= + + + , where these minterms are placed in Table 

  Table 1.10    F Function Truth Table 

   A     B     C       F A B C A B C A B C A B C= + + +        F B=   

  0    0    0    1    1  
  0    0    1    1    1  
  0    1    0    0    0  
  0    1    1    0    0  
  1    0    0    1    1  
  1    0    1    1    1  
  1    1    0    0    0  
  1    1    1    0    0  

  Table 1.9    K - Map for   F ABC ABC ABC ABC= + + +  

B— C— B—C BC BC—

00 01 11 10

A— 0 1 1

A 1 1 1

In minterm form, F = A— B— C— + A B— C— + A— B— C + A B— C = B—

according to terms that are common to all cells in the enclosure. Last, the product 
terms are summed. Notice what a clever method this is. Minimization is achieved 
by noting the combination of terms that yields the minimum difference! 

   Example:  Simplify   F A B C A B C A B C+A B C= + + .      
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 1.11 . This method is used to represent a difference of 1 between two adjacent minterms, 
such as   A B C and   A B C, yielding   A B- -= 00 . The symbol  -  is placed where there 
is a difference in minterm bit values, such as between 00 -  and 10 -  in Table  1.11 , 
yielding  - 0 - . This process continues until the four minterms 0, 1, 4, and 5 show a 
difference of 1 (00 -  compared with 10 - ), yielding prime implicant   B - -( )0 . The same 
result is obtained as was the case using the K - map in Table  1.9 . Of the two methods, 
the K - map is easier to apply.     

  COMBINATIONAL CIRCUITS 

 These are circuits that use logic gates to produce outputs at any time that are only 
dependent on the  current  values of the inputs, meaning that it is not necessary to 
use a CP to trigger outputs  [HAR07] . A typical combinational circuit is the adder. 

  One - Bit Adder with Carry Out 

 A and B are added, producing Q output and CO (carry out). Q and CO are imple-
mented according to the truth table shown in Table  1.12 .    

  Two - bit Adder with Carry In and  CO  

 What if you want to add two 8 - bit bytes? This becomes slightly harder. In this case, 
you need to create a full binary adder. The difference between a full adder and the 

  Table 1.11    Quine – McCluskey Method for   F A B C A B C A B C A B C B= + + + =  

   Minterm     ABC  

   Difference of 1     Difference of 1  
   Prime 

implicant      Minterms     Minterms     Minterms  

  0      A B C     000    0,1    00 -     0,1,4,5     - 0 -       B   
  1      A B C     001  
  4      A B C     100    4,5    10 -   
  5      A B C     101  

  Table 1.12    One - Bit Adder Truth Table 

   A     B     Q     CO  

  0    0    0    0  
  0    1    1    0  
  1    0    1    0  
  1    1    0    1  
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1 - bit adder is that a full adder accepts A and B inputs plus a  carry - in  ( CI ) input. 
Once you have a full adder, you can string eight of them together to create a byte -
 wide adder and cascade the carry bit from one adder to the next. The truth table for 
a full adder is slightly more complicated than the previous truth table because now 
there are 3 input bits. 

 A combinational circuit minterm is represented by a product in a row of the 
truth table as shown in Table  1.13 , corresponding to a 1 in the Q or CO output 
columns; for example, the fourth row for CO and the second row for Q in Table 
 1.13   [GIB80] . The values of Q and CO product terms are obtained by ORing the 
products in each row of Table  1.13  where Q    =    1 or CO    =    1, and then summing these 
terms, followed by simplifying the expressions, as demonstrated in Table  1.13 . 
Further simplifi cation  may  be possible by using a K - map.   

 As can be seen in Table  1.14 , the adder output Q cannot be simplifi ed by using 
a K - map because there are no adjacent cells. However, simplifi cation is achieved 

  Table 1.13    Two - Bit Adder Truth Table 

       Q    =    1    CO    =    1  

   CI     A     B     Q     CO     Minterms     Minterms  

  0    0    0    0    0          
  0    0    1    1    0      CI A B       

  0    1    0    1    0      CI A B       

  0    1    1    0    1          CI A B   
  1    0    0    1    0      CI A B       

  1    0    1    0    1          CI A B   
  1    1    0    0    1          CI A B   
  1    1    1    1    1    CI A B    CI A B  

 Q Product Terms:   CI A B CI A B CI A B CIAB+ + +   

    Q CI A B  A B CI (A B AB)= + + +( )   
  CO Product Terms:   CIA B CI A B  CI A B CI A B AB (CI CI) CI(A B A B)+ + + = + + +   
    CO AB CI A B  A B= + +( )    

  Table 1.14    K - Map for   Q CI A B CI A B CI A B= + + +  

       

AB

CI 00 01 11 10

0 1 1

0 1 1

CIA— B— C—IA— B CIAB C—IAA B—

CIAB CI A B A B CI A B AB= + + +( ) ( )
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for CO, as shown in Table  1.15 , producing   CO AB CI AB AB= + +( ) . The relevant 
minterm cells in Table  1.15  that comprise the minimized function are outlined in 
red. Minterm logic is called  sum of products . The full adder logic that corresponds 
to the minterms in Table  1.13  is shown in Figure  1.7 , showing the adder output Q 
and the CO.       

  MULTIPLE OUTPUT COMBINATIONAL CIRCUITS 

 Combinational circuits can have multiple outputs  [RAF05] . Each output is expressed 
as a function of the inputs, as shown in Table  1.16 , where the inputs are  binary - coded 
decimal  ( BCD ) bits W, X, Y, and Z, corresponding to the decimal digits 0, … , 9. A 

     Figure 1.7     Adder circuit.  
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  Table 1.15    K - Map for Carry Out   ( )CO CIAB CIAB CIAB= + + + 

AB

CI 00 01 11 10

0 1

1 1 1 1

CI A— B C—IAAB CIAB AB CIA B—

CIAB AB CI(AB AB)= + +
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binary coded decimal converter is an example shown in Figure  1.8 , showing how 
the number 9 can be displayed. The outputs are computer display segment bits a, … , 
g that represent the 1s necessary to generate the display decimal numbers. The code 
converter transforms the BCD numbers 0000, … , 1001 to display segments. The 
converter does not represent decimal numbers greater than 9. The K - maps use  “ don ’ t 
cares ”     =    Xs in order to simplify the logic; the  “ don ’ t cares ”  should not be confused 
with the BCD bit    =    X in Table  1.16 . The  “ don ’ t cares ”  are used to advantage in 
forming minterms, as, for example, in Tables  1.17 – 1.23 .     

 In order to generate the K - maps, place a 1 in the K - map cells corresponding to 
the 1s that appear in Table  1.16 . For example, for  segment a  in Table  1.17 , a 1 is 
recorded in the cell WXYZ    =    0000, corresponding to the  1  (bolded) in the  segment 
a  column in Table  1.16 . 

 The K - maps will lead to simplifying the equations for the seven - segment com-
puter display (Fig.  1.8 ). The equations will then be used to design the digital logic 
circuit in Figures  1.9  and  1.10 .   

     Figure 1.8     BCD to seven - segment code converter.  
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  Table 1.16    Truth Table for Binary - Coded Decimal (BCD) Converter 

   Decimal 
digit  

   BCD input bits     Computer display segment output bits  

   W     X     Y     Z     a     b     c     d     e     f     g  

  0    0    0    0    0    1    1    1    1    1    1    0  
  1    0    0    0    1    0    1    1    0    0    0    0  
  2    0    0    1    0    1    1    0    1    1    0    1  
  3    0    0    1    1    1    1    1    1    0    0    1  
  4    0    1    0    0    0    1    1    0    0    1    1  
  5    0    1    0    1    1    0    1    1    0    1    1  
  6    0    1    1    0    0    0    1    1    1    1    1  
  7    0    1    1    1    1    1    0    1    0    0    0  
  8    1    0    0    0    1    1    1    1    1    1    1  
  9    1    0    0    1    1    1    1    0    0    1    1  



Digital Logic and Microprocessor Design  25

  Table 1.17    K - Map for Segment a 

YZ

WX 00 01 11 10

00 1 1 1

01 1 1

11 X X X X

10 1 1 X X

W W
— 

X
— 

Z
—

XZ YZ
            a W W X Z Z X Y= + + +( ).   

  Table 1.18    K - Map for Segment b 

YZ

WX 00 01 11 10

00 1 1 1 1

01 1 1

11 X X X X

10 1 1 X X

Y
—

Z
—

W W
—

X
—

YZ
            b W W X YZ Y Z= + + + .   

  Table 1.19    K - Map for Segment c 

YZ

WX 00 01 11 10

00 1 1 1

01 1 1 1

11 X X X X

10 1 1 X X

W Y
—

X
—

YZ XY Z
—

            c W Y X YZ XY Z W Y Y XZ XZ= + + + = + + +( ).   
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  Table 1.20    K - Map for Segment d 

YZ

WX 00 01 11 10

00 1 1 1

01 1 1 1

11 X X X X

10 1 X X

X
—

Y
—

Z
—

X Y
—

Z Y

            d XYZ XYZ Y Y XZ XZ Y= + + = + +( ) .   

  Table 1.21    K - Map for Segment e 

YZ

WX 00 01 11 10

00 1 1

01 1

11 X X X X

10 1 X X

X
—

Y
—

Z
—

YZ
—

            e Z XY Y= +( ).   

  Table 1.22    K - Map for Segment f 

            f Z Y XY W XY= + + +( ) .   

YZ

WX 00 01 11 10

00 1

01 1 1 1

11 X X X X

10 1 1 X X

Y
—

Z
—

XY
—

XY Z
—

W
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     Figure 1.9     Two - bit comparator block diagram.  
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  Table 1.23    K - Map for Segment g 

YZ

WX 00 01 11 10

00 1 1

01 1 1 1

11 X X X X

10 1 1 X X

W W
—

X Y
—

W
— 

X
—

Y YZ
—

            g W XY XY W YZ= + + +( ) .   

  Comparators 

 A comparator is another type of combinational circuit. Its block diagram is shown 
in Figure  1.9  and the corresponding logic diagram is shown in Figure  1.10 . For 
example, as Figure  1.10  shows, a comparator can be designed to compare two 2 - bit 
quantities for greater - than (G), equal - to (E), and less - than (L) conditions. By mini-
mizing the logic in Table  1.24 , as accomplished by the K - maps in Tables  1.25 – 1.27 , 
the logic circuit is designed in Figure  1.9 . The K - maps are generated by recording 
a 1 in cells corresponding to 1s in Table  1.24 ; for example, placing a 1 in the cells 
a 1 , a 0 , b 1 , and b 0     =    0100 for G in Table  1.24 . Notice, as opposed to previous exam-
ples, there are no  “ don ’ t care ”  conditions because all four comparator bits are 
relevant.    

  Decoders 

 A decoder is a combinational circuit that, when enabled, selects one of 2 n  inputs and 
produces a 1 output, where n is the number of input bits, as shown in Figure  1.11 . 
After this block diagram is displayed, the truth table (Table  1.28 ), is formulated, 
showing the relationship between inputs and outputs, where an output term 1 is 
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     Figure 1.10     Two - bit comparator logic diagram.  
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generated according to the appearance of 0s and 1s in the inputs columns; for 
example,   d E x  x  for E x  x3 1 0 1 0= = =1 100.     

 Finally, Table  1.28  is used to design the logic diagram in Figure  1.11 . Applying 
K - maps to minimize the logic of the truth table is not necessary because there is 
only a single 1 output for each combination of inputs in Table  1.28 . However, the 
truth table is used to generate the output equations, which will lead to the design of 
the logic diagram in Figure  1.11 . An application of the decoder is to select an operand 
(i.e., 4 - bit output d 0 d 1 d 2 d 3 ) in a computer instruction, based on the operation code 
(i.e., 2 - bit input x 1 x 0 ) in the instruction, when the instruction execution enable is 
high (E    =    1).  

  Encoders 

 Encoders produce n output bits in accordance with the value of 2 n  input bits, as 
shown in the block diagram of Figure  1.12 . Like the decoder, it is not necessary to 
develop K - maps of the outputs as a function of the inputs because of the inherent 
simplicity of the circuit logic in Figure  1.12 . Equations that emerge from the 



  Table 1.24    Truth Table for Two - Bit Comparator 

   Inputs     Outputs  

   a 1      a 0      b 1      b 0      G: a 1 a 0     >    b 1 b 0      E: a 1 a 0     =    b 1 b 0      L: a 1 a 0     <    b 1 b 0   

  0    0    0    0    0    1    0  
  0    0    0    1    0    0    1  
  0    0    1    0    0    0    1  
  0    0    1    1    0    0    1  
  0    1    0    0    1    0    0  
  0    1    0    1    0    1    0  
  0    1    1    0    0    0    1  
  0    1    1    1    0    0    1  
  1    0    0    0    1    0    0  
  1    0    0    1    1    0    0  
  1    0    1    0    0    1    0  
  1    0    1    1    0    0    1  
  1    1    0    0    1    0    0  
  1    1    0    1    1    0    0  
  1    1    1    0    1    0    0  
  1    1    1    1    0    1    0  

  Table 1.25    K - Map for Output G:a 1 a 0     >    b 1 b 0  

            G a b b a b a a b0 1 0 1 1 1 0 0= + + .   

Inputs Inputs b1b0

00 01 11 10

a1a0 00

01 1

11 1 1 1

10 1 1

a0 
—
b1 

—
b0 a1 

—
b1 a1 a0 

—
b0

  Table 1.26    K - Map for Output E:a 1 a 0     =    b 1 b 0  

            
E a a b b a a b b a a b b a a b b

a b a b a b a b

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 0 0 1 1

= + + +

= + +( ) (( ) ( )( )a b a b a b a b a b a b0 0 0 0 1 1 1 1 0 0 0 0+ = + + .
   

Inputs Inputs b1b0

00 01 11 10

a1a0 00 1

01 1

11 1

10 1

—
a1 

—
a0 

—
b1 

—
b0

—
a1 a0 

—
b1 b0 a1a0b1b0 a1 

—
a0 b1 

—
b0

29
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     Figure 1.11     Two inputs and four outputs decoder block and logic diagrams.  
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  Table 1.27    K - Map for Output L:a 1 a 0     <    b 1 b 0  

            L a a b a b b a b1 0 0 0 1 0 1 1= + + .   

Inputs Inputs b1b0

00 01 11 10

a1a0 00 1 1 1

01 1 1

11

10 1

—
a1 

—
a0 b0

—
a0 b1 b0

—
a1 b1
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  Table 1.28    Truth Table for Two Inputs and Four Outputs Decoder 

   Inputs     Outputs  

   E (Enable)     x 1      x 0      d 3      d 2      d 1      d 0   

  1    0    0     1     0    0    0  
  1    0    1    0     1     0    0  
  1    1    0    0    0     1     0  
  1    1    1    0    0    0     1   

     d Ex x ; d Ex x ; d Ex x ;d Ex x1 0 2 1 0 1 1 0 0 1 03 = = = = .   

     Figure 1.12     The 4 - bit to 2 - bit encoder block and logic diagrams.  
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relationships in the truth table (Table  1.29 ) are used to design the logic circuit in 
Figure  1.12 . The outputs x 1  and x 0  are generated as the sum of the products of inputs 
where there are  1 s in the x 1  and x 0  columns as signifi ed by the bolded quantities.     

 An application of the encoder is data compression in which we could shrink 
4   bits of input to 2   bits of output in a database application that deals with large 
quantities of data. For example, representing d 0 d 1 d 2 d 3     =    0100 as x 1 x 0     =    01.  
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     Figure 1.13     The 4 - to - 1 multiplexer block and logic diagrams.  
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  Table 1.29    Truth Table for 4 - Bit to 2 - Bit Decoder 

    Inputs      Outputs  

  d 0     d 1     d 2     d 3     x 1     x 0   
  1    0    0    0    0    0  
  0    1    0    0    0     1   
  0    0    1    0     1     0  
  0    0    0    1     1      1   

     x d d d d d d d d , x =d d d d d d d d1 0 1 2 3 0 1 2 3 0 0 1 2 3 0 1 2 3= + + .   

  Multiplexers 

 A multiplexer acts as a data selector, meaning that if the multiplexer has n select 
lines, one of 2 n  inputs can be selected as the output. For example, in Figure  1.13 , 
using selector lines S 0  and S 1 , one of four inputs, d 0 , d 1 , d 2 , d 3 , can be selected at the 
output Z. The output equation for Z is derived from Table  1.30 , noting that a given 
output is produced for given values of the selectors, for example, Z    =    d 0  when 
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  Table 1.30    Truth Table for 4 - to - 1 Multiplexer 

    Selector     Output  

  S0    S1    Z  
  0    0    d 0   
  0    1    d 1   
  1    0    d 2   
  1    1    d 3   

     Z S S d S S d S S d S S d0 1 0 0 1 1 0 1 2 0 1 3= + + + .   

  S S0 1 11= . Multiplexers differ from decoders and encoders by virtue of select lines 
that cause inputs to be produced at the output. An application is to combine data 
received from the Internet on input lines d 0 , d 1 , d 2 , and d 3  onto a single microproces-
sor memory line Z, if an Internet interrupt has occurred, that has a code represented 
by selector lines S 0 S 1 .      

  Demultiplexers 

 A demultiplexer causes an input x to be transferred to one of 2 n  output lines, where 
n is the number of select inputs in Figure  1.14 . Output equations for a demultiplexer 
with two select inputs and four outputs are shown in the truth table, Table  1.31 . The 
demultiplexer does the reverse of the multiplexer; for example, it distributes Internet 
data, which have been multiplexed on input line x, to each of four microprocessor 
output ports d 0 , d 1 , d 3 , and d 4 .For example, Internet data will be distributed to output 

port d 0  when   S  S0 1 = 11 in Table  1.31 .       

  SEQUENTIAL CIRCUITS 

 A  clocked synchronous sequential circuit  uses fl ip - fl ops to store data, and its outputs 
depend on both the  previous  and  current  values of inputs  [HAR07] . These circuits 
are called state machines, wherein states are stored in fl ip - fl ops, and state changes 
are triggered by CPs. In an  asynchronous sequential circuit , the completion of an 
operation starts the next operation (i.e., a clock is not needed). 

  Flip - Flops and Latches 

 A fl ip - fl op is a  clocked synchronous sequential circuit  with a 1 - bit memory. The 
output of the fl ip - fl op can be changed by the rising or falling edge of a CP. A clock 
prevents the fl ip - fl op from changing state when spurious inputs occur. Instability can 
arise if inputs change during the CP. This problem is avoided by holding data stable 
for specifi ed periods of time before and after the CP. The former period is called 
 setup time  and the latter is called  hold time . 
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  Table 1.31    Truth Table for 1 - to - 4 Demultiplexer 

    Select 
inputs  

   Data 
input      Data output  

  S 0     S 1         d 0     d 1     d 2     d 3   
  0    0    x      S S x0 1     0    0    0  
  0    1    x    0      S S x0 1     0    0  
  1    0    x    0    0      S S x0 1     0  
  1    1    x    0    0    0    S 0 S 1 x  

      d S S x; d S S x; d S S x; d S S x1 2 0 3 0 10 0 1 0 1 1= = = = .   

     Figure 1.14     The 1 - to - 4 demultiplexer block and logic diagrams.  
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 Flip - fl ops use storage circuits called latches. The term  “ latch ”  refers to the 
ability to receive and hold data (set) until the latch is reset. The most common latch 
is the  SR  ( set – reset ). An application of a latch is to set and hold an interrupt fl ag 
when an input device needs attention by the microprocessor. A fl ip - fl op is a latch 
with clock input (CLK). Flip - fl ops implement changes in circuit states that are trig-
gered by a CP. For example, when the CP and the input line cause the fl ip - fl op to 
assume the set state, a computer program would execute a branch operation; when 
the CP and the input line cause the fl ip - fl op to assume the reset state, a computer 
program would return to the main line of the program. An interesting question is 
how a latch or fl ip - fl op manages to be in the initial state. The answer is that the latch 
or fl ip - fl op will be in the initial state determined by the initial state settings wired 
into the fl ip - fl op. 

   SR  Latch 

 The logic rules of the SR latch are the following: 
 NOR Gate output    =    1, if  all  inputs    =    0; output    =    0, if  any  input    =    1. 
 These rules are applied in the truth table shown in Table  1.32  and the logic 

diagram in Figure  1.15 . Notice in Table  1.32  and Figure  1.15  that there are illegal 
next states in the case of S    =    1 and R    =    1 because it is not possible to simultaneously 
set and reset the latch.      

  Reset – Set ( RS ) Flip - Flop 

 The RS fl ip - fl op is a clocked SR latch. This fl ip - fl op is important because all other 
fl ip - fl ops are derived from it. Figure  1.16  shows the implementation of this fl ip - fl op 
using NAND gates and the truth table, Table  1.33 , shows the gate relationships for 
present state at time t and next state at time (t    +    1), including simultaneous set and 
reset that should be avoided. In Figure  1.16 , notice that there is feedback from Gate 
3 to Gate 4 of Q(t    +    1) and from Gate 4 to Gate 3 of   Q t 1( )+ .     

 The design in Figure  1.16  is obtained by employing the equations below, which 
in turn are obtained from Table  1.33  and the K - map in Table  1.34 . The components 
of the equations are annotated on Figure  1.16 . The K - map is constructed by noting 
whether the next state output Q(t    +    1) is a 1. If it is, the corresponding present state 

  Table 1.32    SR Latch Truth Table Using NOR Gates 

   S  
   Q(t) (present 

state)     R  
     Q t( )  

(present state)  
   Q(t    +    1) (Gate #1) 

(next state)  
     Q t( )+ 1  (next 

state)  

  0    0    0    1    0 (no change)    1(no change)  
  1    0    1    1    0 (illegal)    0 (illegal)  
  0    1    1 (reset)    0    0 (change state)    1(change state)  
  1 (set)    0    0    1    1(change state)    0(change state)  
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output Q(t) is inserted into the K - map. The corresponding next state and present 
state outputs are bolded in Table  1.33 . You can see that Table  1.33  contains eight 
entries, corresponding to whether the Present State Q(t) (Gate #3) is  0  or  1 ; however, 
Figure  1.16  shows fi ve cases, suffi cient to demonstrate the logic of the RS 
fl ip - fl op.   

 Based on Table  1.33 , the K - map is constructed in Table  1.34 . Then the K - map 
is used to formulate the equations for the fl ip - fl op: 

     Figure 1.15     SR latch logic diagram.  
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     Figure 1.16     RS fl ip - fl op.  
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  Table 1.33    RS Flip - Flop Truth Table 

   S (Gate #1)     R (Gate #2)  
   Present state 

Q(t) (Gate #3)  

   Next state 
Q(t    +    1) 

(Gate #3)  

   Present 
state   Q t( )  
(Gate #4)  

   Next state 
  Q t( )+ 1  
(Gate #4)  

  0    0    0    0 (hold)     1      1   
  0    0     1      1  (hold)    0    0  
  0    1 (reset)    0    0     1      1   
  0    1 (reset)    1    0     0      1   
  1 (set)    0     0      1     1    0  
  1 (set)    0     1      1     0    0  
  1(illegal)    1(illegal)     0      1     1    0  
  1(illegal)    1(illegal)     1      1     0    0  
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 Table  1.34a : (Gate #3):   Q t 1 S R Q t( ) ( )+ = +  

 Table  1.34b : (Gate #4):   Q t 1 S R Q t( ) ( ( ))+ = +
    Problem:  What are the illegal states of the RS fl ip - fl op?  

   Answer:  The states S    =    1 (set) and R    =    1 (reset) are not allowed in an RS fl ip -
 fl op because set and reset cannot exist simultaneously (indeterminate state).     

  Delay ( D ) Flip - Flop 

 The D or delay fl ip - fl op, shown in Figure  1.17 , uses NAND gates. It is widely used 
in computers for transferring data. Several of these fl ip - fl ops can be used to design 
a CPU register, where each fl ip - fl op is used to store 1   bit  [RAF05] . This fl ip - fl op 
delays the input appearing at the output by one CP. The D input goes directly into 
the S input and the complement of the D input goes to the R input. The D input is 
sampled during the occurrence of the CP. If D is 1, the fl ip - fl op is switched to the 
set state (unless it was already set). If D is 0, the fl ip - fl op switches to the clear state. 
If CP    =    1, the output Q(t    +    1) of the upper fl ip - fl op is fed to the input of the lower 
fl ip - fl op in Figure  1.17 . On the other hand, if CP    =    0, Q(t) of the upper fl ip - fl op is 
fed to the input of the lower fl ip - fl op.

  Table 1.34a    K - Map 

       

S R Present State Q(t)
(Gate #3)

0 1

0 0 1

0 1

1 1 1 1

1 0 1 1

S R— Q(t)

  Table 1.34b    K - Map 

       

S R Present State Q
—

(t) 
(Gate #4)

0 1

0 0 1

0 1 1 1

1 1

1 0

S
— 

R S
— 

Q
—

(t)
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    Problem:  Given the above rules for the behavior of the D fl ip - fl op, develop its 
truth table.    

   Solution:  These relationships are embodied in Table  1.35 .      

 A D fl ip - fl op circuit can also be triggered by the negative - going edge of the CP, as 
opposed to being activated by pulse duration. The timing diagram for such a circuit 

     Figure 1.17     D fl ip - fl op.  
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is shown in Figure  1.17 . As the timing diagram shows, the D input is refl ected in 
the Q(t    +    1) (next state) output on the negative edge of the CP. Q(t    +    1) follows the 
D input regardless of the present state Q(t),  if CP     =     1 . If CP    =    0, there is no change 
in the output. This property can be applied, for example, to transferring data from 
an input device (D) to microprocessor memory port Q(t    +    1), according to the data 
transfer rules of Figure  1.17 .  

   JK  Flip - fl op 

 A JK fl ip - fl op is a refi nement of the RS fl ip - fl op by defi ning and allowing the illegal 
state of the RS fl ip - fl op. In Figure  1.16 , inputs J and K behave like inputs S and R 
to set and clear the fl ip - fl op (note that in a JK fl ip - fl op, the letter J is for set and the 
letter K is for clear). When logic 1 inputs are applied to both J and K simultaneously, 
the fl ip - fl op switches to its complement state (e.g., if Q    =    0, it switches to Q    =    1 in 
Figure  1.18 ).   

 Note that because of the feedback connection in the JK fl ip - fl op, a CP signal 
that remains a 1 (while J    =    K    =    1) after the outputs have been complemented once 
will cause repeated and continuous transitions of the outputs. To avoid this, the CPs 
must have a time duration less than the propagation delay through the fl ip - fl op. 

 Table  1.36  shows how the state of output Q at t    +    1 changes as a function of 
the original state of Q(t) and the set input J and the clear input K. The K - map for 

  Table 1.35    D Flip - Flop Truth Table 

   D     CP  
   Present 

state Q(t)  
   Next state Q(t    +    1)    =    D 

when CP    =    1  
   Present 

state   Q t( )   
   Next state   Q t D( )+ =1  

when CP    =    1  

  0    0    0    0 (no change)    1    1 (no change)  
  0    1    1    0 (clear)    0    1  
  1    0    1    1 (no change)    0    0 (no change)  
  1    1    0    1 (set)    1    0  

     Figure 1.18     JK fl ip - fl op circuit.  
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JK fl ip - fl op in Table  1.37  is derived from the truth table in Table  1.36  by plugging 
 1 s in the map wherever there is a Q(t    +    1)    =    1 in the Table  1.36  (bolded). For 
example, when J    =    0, K    =    0, Q(t)    =    1, and Q t    +    1)    =    1 in Table  1.36 , a 1 is placed 
in the Q(t)    =    1 column in Table  1.37 .

    Problem:  Based on the K - map, what are the next state equations for Q(t    +    1) 
and   Q t 1( )+ ?    

   Answer:  Referring to Table  1.37 , the next state Q(t    +    1) is governed by the 
following equation: 

     Q t 1 J Q t K Q t .( ) ( ) ( )+ = +       

 Using this equation for Q(t    +    1), the equation for   Q t 1( )+  can be computed as 
follows:

    Q t J Q t K Q t J Q t K Q t J(K Q t K Q t .( ) ( ) ( ) ( ( ))( ( )) ( ( )) ( )+ = + = + + = + +1    

 These equations are annotated on Figure  1.18 .  

  Table 1.36    JK Flip - Flop Truth Table 

   J     K     CP  
   Q(t) present 

state  
   Q(t    +    1) 

next state  
     Q t( )  

present state  
     Q t 1( )+  
next state  

  0    0    1    0    0    1    1  
  0    1 (clear)    1    0    0    1    1  
  1(set)    0    1    0     1     1    0  
  1    1    1    0     1     1    0  
  0    0    1    1     1     0    0  
  0    1(clear)    1    1    0    0    1  
  1(set)    0    1    1     1     0    0  
  1    1    1    1    0    0    1  

  Table 1.37    K - Map for JK Flip - Flop 

       

J K Q(t) Present 
State

Q(t) Present 
State

0 1

0 0 1

0 1

1 1 1

1 0 1 1

J Q
— 

(t) K
— 

Q(t)
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   T  Flip - Flop 

 The T fl ip - fl op is a single input version of the JK fl ip - fl op  [RAF05] . It is typically 
used in the design of binary counters (covered later in the section  “ Design of Binary 
Counters, ”  where complementation of the output is required. For example, in Table 
 1.38  when T    =    1, the input Q(t) is toggled, producing its complement in output 
Q(t    +    1). By examining the gate operations in Figure  1.19 , at the Q output, we see that:

   Q t TQ t T Q t TQ t T Q t T Q t T Q t T Q t( ) ( ) ( ) ( ( ))( ( )) ( ( ))( ( )) (+ = + = = + + =1 )) ( ).+ T Q t       

 Furthermore, the equation for   Q t( )+1  is derived as follows:

    
Q t T Q t T Q t T Q t T Q t

T Q t T Q t T Q

( ) ( ) ( ) ( ( ))( ( ))

( ( ))( ( ))

+ = + =

= + + =

1

(( ) ( ).t T Q t+
   

 Note that in Figure  1.19  feedback from the fl ip - fl op outputs to the inputs is used to 
obtain the desired outputs at time t    +    1. 

     Problem:  Based on the above equations, develop the T fl ip - fl op truth table.  

   Solution:  The truth table is shown in Table  1.38 .     

  Triggering of Flip - Flops 

 There are situations where it is useful to have the output change only at the rising 
or falling edge of the CP, rather than  during  the CP. This stabilizes the circuit because 

     Figure 1.19     T fl ip - fl op circuit diagram.  
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  Table 1.38    T Flip - Flop Truth Table 

   T     CP     Q(t)       Q t 1 T Q(t) T Q(t)( )+ = +        Q t( )        Q t T Q t T Q t( ) ( ) ( )+ = +1   

  0    1    0    0 (no change)    1    1 (no change)  
  1    1    0    1 (toggle)    1    0 (toggle)  
  0    1    1    1 (no change)    0    0 (no change)  
  1    1    1    0 (toggle)    0    1(toggle)  
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all changes are synchronized to the rising or falling edge of the CP. For example, 
when an input interrupt occurs, it should be held by the microprocessor until it can 
be serviced  during  the CP and only released on the  falling edge  of the CP. An edge -
 triggered fl ip - fl op achieves this by combining a pair of latches in series. Figure  1.20  
shows an edge - triggered D fl ip - fl op where two D latches are connected in series, 
one directly, and one through an inverter. The fi rst latch is called the master latch. 
When CLK is a 1 at Step 1, with a positive edge trigger, the master latch is enabled 
but the second latch, called the slave latch, is disabled with a negative edge trigger, 
so that a 1 is produced at the Q output of the master latch and a 0 is produced at the 
output of the slave latch. A 1 is produced at the master latch output because when 
CLK    =    1, the Q output follows the D input. Contrariwise, when CLK is a 0 at Step 
2, with a negative edge trigger, the master latch is disabled but the slave latch is 
enabled with a positive edge trigger (a negative edge is made positive with an 
inverter) so that a 1 is produced at the Q output of the slave latch by the Q output 
at the slave latch following the D input. In Step 2 it is assumed that Q still equals 
1 in the master latch from Step 1. The Q output of the master latch does not change 
when CLK    =    0, so that a 1 is transferred from the master latch to the slave latch.     

  Analysis of Asynchronous Sequential Circuits 

 As you have seen, edge - triggered fl ip - fl ops change state at the edge of a synchro-
nizing CP. Many circuits require the initialization of fl ip - fl ops to a known state 

     Figure 1.20     Edge - triggered fl ip - fl op.  
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     Figure 1.21     Analysis of asynchronous sequential circuit.  
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independent of the clock signal. Sequential circuits that change states whenever a 
change in input values occurs, independent of the clock, are referred to as  asynchro-
nous sequential circuits . Synchronous sequential circuits, latches, and fl ip - fl ops, on 
the other hand, change state only at the edge of the CP. For asynchronous sequential 
circuits, inputs are used to either set or clear the circuit  without  using the clock. 
Figure  1.21  is an example of an asynchronous sequential circuit. The next state 
equations for Z 1  and Z 2  — as a function of present states a, z 1 , and z 2  — provide the 
logic for the outputs of the circuit in Figure  1.21 . Feedback from outputs to inputs 
in Figure  1.21  produces the desired next states. The output equation

    Z a z a z ) a a a z a z z  z a z a z z  z1 1 2 1 2 1 2 1 2= + + = + + + = + +( )( 1 2   

  can be reduced because the term   a a = 0, and the last term   z  z1 2  does not change the 
value of the equation, as demonstrated by the K - map in Table  1.40  that is used to 
minimize this equation, producing   Z a z a z1 1 2= + . Thus, the resultant terms   a z1  
and   a z2  are identifi ed in the K - map. The validity of this transformation is shown 
in the truth table for Z 1 , Table  1.39 . The K - map in Table  1.40  is produced by record-
ing 1s in the map corresponding to  1 s (bolded) that appear for Z 1  in the truth table. 
This example demonstrates the fact that K - maps can accomplish Boolean expression 
reduction that is not possible with algebraic manipulation.

    Problem:  Reduce output equation   Z2 by developing the truth table and corre-
sponding K - map.    

   Solution:  The output equation   Z a z a z ) a a a z a z z  z2 1 2 1 2= + + = + + + =( )( 1 2  
can be reduced, as shown above, because the fi rst term   a a = 0  

and the last term does not change the value of the equation, as demonstrated 
by the K - map in Table  1.41  that is used to minimize this equation, producing 
  Z a z a z2 1 2= + ,where it is shown that the term z 1 z 2  is redundant. Thus, the 
resultant terms   a z1 and a z 2  are identifi ed in the K - map. The validity of this 

a z a z1 + 2
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  Table 1.39    Truth Table for   Z a z a z a z a z1 1 2 1 2= + + +( )( )  

   a     z 1      z 2   
   Decimal 

code    =    az 1 z 2      (a    +    z 1 )       ( )a z2+        Z a z a z1 1 2= + +( )( )        a z1        a z2        Z a z a z1 1 2= +   

  0    0    0    0    0    1    0    0    0    0  
  0    0    1    1    0    1    0    0    0    0  
  0    1    0     2     1    1     1     1    0     1   
  0    1    1     3     1    1     1     1    0     1   
  1    0    0     4     1    1     1     0    1     1   
  1    0    1    5    1    0    0    0    0    0  
  1    1    0     6     1    1     1     0    1     1   
  1    1    1    7    1    0    0    0    0    0  

  Table 1.40    K - Map for   Z a z a z a z +a z1 1 2 1 2= + + =( )( )  

       

z1 z2 a

0 1

0 0 0 1

0 1 0 0

1 1 1 0

1 0 1 1

a— z1 z1 
—z2 a —z2

redundant

  Table 1.41    K - Map for   Z a z a z a z +a z2 1 2 1 2= + + =( )( )  

       

z1 z2 a

0 1

0 0 0 0

0 1 0 1

1 1 1 1

1 0 1 1

a— z1 z1z2 az2

redundant

transformation is shown in the truth table for Z 2  (Table  1.42 ). The K - map is 
produced by recording 1s in the map corresponding to  1 s (bolded) that appear 
for Z 2  in the truth table.      

 The state transition table, depicting the state changes in transitioning from input 
variables a, z 1 , and z 2  to output variables Z 1  and Z 2 , is shown in Table  1.43 . This 
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table is constructed by noting the values of Z 1  corresponding to a    =    0 and a    =    1 and 
values of Z 2  corresponding to a    =    0 and a    =    1 in Tables  1.39  and  1.42 , respectively, 
and recording the relationships in Table  1.43 . Table  1.43  is used to indicate transi-
tions from microprocessor state Z 1     =    1 to state Z 2     =    1 and vice versa. Consider the 
following application: when a    =    1, z 1     =    0, and z 2     =    0 (decimal code 4), Z 1  is in the 
next state    =    1 processing transactions. However, when a    =    1, z 1     =    0, and z 2     =    1 
(decimal code 5), the microprocessor transitions to the next state Z 2     =    1 to receive 
additional transaction input.   

 Another application of the asynchronous sequential circuit is the occurrence of 
asynchronous inputs to a microprocessor that arrive from the Internet, not on sched-
ule (not governed by CP), but unscheduled (i.e., asynchronously). For example, let 
a, z 1 , and z 2  be the binary bits of a decimal transaction code, arriving from the 
Internet, in a database application, where one type of transaction is processed by a 
microprocessor at its input Z 1  and the second type at its input Z 2 . Suppose the allow-
able decimal codes at Z 1  are  2 ,  3 ,  4 , and  6  in Table  1.39  (bolded), and the allowable 
codes at Z 2  are  2 ,  3 ,  5 , and  7  in Table  1.42  (bolded). Then, Tables  1.39  and  1.42  
provide the required transaction processing logic for Z 1  and Z 2 , respectively.  

  Table 1.42    Truth Table for   Z a z a z )2 1 2= + +( )(  

   a     z 1      z 2   
   Decimal 

code    =    az 1 z 2      (a    +    z 1 )       (a z )2+        Z Z a z a z2 2 1 2= = + +( )( )        a z1      az 2        Z a z a z1 22 = +   

  0    0    0    0    0    1    0    0    0    0  
  0    0    1    1    0    1    0    0    0    0  
  0    1    0     2     1    1     1     1    0     1   
  0    1    1     3     1    1     1     1    0     1   
  1    0    0    4    1    0    0    0    0    0  
  1    0    1     5     1    1     1     0    1     1   
  1    1    0    6    1    0    0    0    0    0  
  1    1    1    7    1    1     1     0    1     1   

  Table 1.43    State Transition Table for Asynchronous Sequential Circuit 

   Present 
state  

   Next state  

   a    =    0     a    =    1  

   z 1      z 2        Z a z a z1 21 = +        Z a z a z1 22 = +        Z a z a z1 21 = +        Z a z a z1 22 = +   

  0    0    0    0    1    0  
  0    1    0    0    0    1  
  1    0    1    1    1    0  
  1    1    1    1    0    1  
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  Relationship among Inputs, Flip - Flops, 
and Output States 

 Figure  1.22  shows an example of analyzing the inputs, D fl ip - fl ops, and output states 
of an asynchronous sequential circuit. The diagram shows the equations for the next 
states Q x  and Q y , as a function of the present states D x  and D y , recalling that for D 
fl ip - fl ops, output Q follows input D.   

 The equations below produce the values shown in the state transition table, 
Table  1.44 , which shows the relationships among components.

    Q X Y A D ,x x= + =( )     

    Q X Y A,x = +( )   

    Q A X D ,y y= + =   

    Q A X AX,y = + =   

    B AY AY.= +    

 An application is the processing of transaction code bits occurring at microprocessor 
input ports X, Y, and A. An output B    =    1 is produced by setting a fl ag B in a micro-
processor register when correct transaction codes are received. For example, if 
decimal interrupt code 1, 3, 4, 6, or 7, corresponding to X, Y, A    =    001, 011, 100, 

     Figure 1.22     D fl ip - fl ops in asynchronous sequential circuit.  
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110, or 111 in Table  1.44 , respectively, is received, the fl ag would be set. The micro-
processor queries this fl ag to determine when to process transactions. The bolded 
terms in Table  1.44  indicate when the fl ag B is set.   

  TYPES OF SYNCHRONOUS SEQUENTIAL CIRCUITS 

  Mealy and Moore Machines 

 In the Mealy machine, the output states depend on the inputs and the present states 
of the fl ip - fl ops  [RAF05] . In the Moore machine, output states depend only on the 
present states of the fl ip - fl ops. For example, a Mealy machine would be used to 
control the execution sequence of a microprocessor that uses  both  data inputs and 
the current state of the program (i.e., program address) to decide which instruction 
to execute next (e.g., doing database management using input data from the Internet). 
On the other hand, the Moore machine would be used to control microprocessor 
program execution when  only  the current state of the program is relevant (e.g., doing 
a matrix multiplication on data stored in memory). Thus, the Mealy machine is the 
more versatile of the two.  

  Minimization of States 

 Figure  1.23  shows a state diagram for a synchronous sequential circuit, which is 
classifi ed as a Mealy machine because outputs depend on  both  present states and 
inputs, where two of the paths are highlighted in red and green. It may be possible 
to minimize the number of states in these circuits by developing the state sequence 
diagram, based on Figure  1.23 , to see whether there are any redundant states. If there 
are, the reduction in states is refl ected in the revised state sequence table. Using 
Figure  1.23  and the original state sequence table, Table  1.45 , state Z is identifi ed as 
being redundant because the next state for both states V and Z is W, and the state 
changes have the same inputs and outputs (1, 1). Therefore, state Z is noted as 

X Y A+( ) A X= +

  Table 1.44    State Transition Table for the Analysis of Asynchronous Sequential Circuit 

   Inputs     Next state     Flip - fl op inputs    Output  

   X       X      Y       Y      A       A   
   Qx    =   
 Dx       Qx      Qy    =    Dy       Qy   

     D Qx x= =       D Qy y=   
     B AY AY= +   

  0    1    0    1    0    1    1    0    1    0    1    1    0  
   0     1     0     1     1     0    1    0    1    0    1    1     1   
  0    1    1    0    0    1    1    0    1    0    1    1    0  
   0     1     1     0     1     0    0    1    1    0    0    1     1   
   1     0    0    1     0     1    1    0    0    1    1    0     1   
  1    0    0    1    1    0    0    1    1    0    0    1    0  
   1     0     1     0     0     1    1    0    0    1    1    0     1   
   1     0     1     0     1     0    0    1    1    0    0    1     1   
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redundant in Figure  1.23  and Table  1.45 . Another state indicated as redundant in 
Figure  1.23  and Table  1.45  is Y because both Y and W have the next state V, with 
same state change inputs and outputs (1, 0). State Y is also noted as redundant in 
Figure  1.23  and Table  1.45 . Therefore, states Z and Y do not appear in the revised 
state sequence table, Table  1.46 .     

 Figure  1.24  shows the result of eliminating redundant states in the state diagram. 
It is important to note that it may not be possible to eliminate  “ redundant states ”  

     Figure 1.23     State diagram for minimization of states.  
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  Table 1.45    Original State Sequence Table 

  Originating state    V    V    W    X     Y     W    V    W     Z   
   States Y and Z 
are redundant     Branch     1     2     3     4      6      12     10     5      12   

  Input    0    1    0    1     1     1    1    0     0       

  Next state    V    W    X    V     V     V    W    Y     V       

  Output    0    1    1    0     0     0    1    0     0       

  Table 1.46    Revised State Sequence Table (Eliminating Redundant States) 

       Next state     Output  

   Present state     Input    =    0     Input    =    1     Input    =    0     Input    =    1  

  V    V    W    0    1  
  W    X    V    1    0  
  X        V        0  
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because these states could be associated with important functions. For example, 
redundant states could be associated with two microprocessors — one the primary, 
currently executing, and the other, a backup, redundant microprocessor, designed to 
take over if the primary fails. However, in general, digital circuitry can be simplifi ed 
by eliminating redundant states.    

  Design of Synchronous Sequential Circuits 

 To design synchronous sequential circuits, or any circuit for that matter, start with 
your objective. For example, suppose you want a microprocessor to produce an 
output Z dependent on input A (e.g., input data A has arrived from the Internet, and 
the microprocessor produces output Z); the present state of your computer program 
is represented by X (e.g., ready to read input data A) and the present state of the 
input buffer A is represented by Y (e.g., input buffer A empty). You need to identify 
the transition to the next computer program state, X + , (e.g., fi ll buffer with input A 
data) and Y +  (e.g., input A buffer full). Thus, referring to the state diagram in Figure 
 1.25 , if an input occurs on microprocessor line A    =    1, and the present program state 
are X    =    1, Y    =    1, representing instruction ready to execute and input buffer A empty, 
respectively, output is produced on microprocessor line Z    =    1, and the program 
transitions to next state X +     =    0 (fi ll buffer) and Y +     =    0, (input buffer A full). The 
state diagram in Figure  1.25  is an example of a Mealy machine circuit specifi cation 
because outputs depend on both inputs and states of the circuit.   

 To design your circuit, identify the states, inputs that cause state transitions, and 
outputs produced by inputs and state transitions, as in the above example. Then, note 

     Figure 1.24     Reduced state diagram.  
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in Figure  1.25  and in Table  1.47  the present states X and Y and input A that generate 
next state output X  +      =    1. For example X    =    0, Y    =    1, and A    =    1 (or   XYA) produce 
X  +      =    1. Next, for example, use the D fl ip - fl op, noting that the output corresponding 
to next state X  +   is designated as D x  and its formulation is the following:

    D XYA XYA XYA XY A A XY XYA.x = + + = + = +( )      

 Similarly, produce the next state Y  +   formulation in terms of a D fl ip - fl op output, as 
follows:

     Figure 1.25     State diagram for design of sequential circuit.  
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  Table 1.47    State Table for Sequential Circuit 

   Present 
states    Input  

   Next 
states     Flip - fl op inputs    Output  

   X     Y     A     X  +       Y  +         D X XY XYAx = = ++        D Y YA YAy = = ++        Z YA X= +   

  0    0    0    0    0    0    0     1   
  0    0    1    0    1    0     1     0  
  0    1    0    1    1     1      1     0  
  0    1    1    1    0     1     0    0  
  1    0    0    0    0    0    0     1   
  1    0    1    1    1     1      1      1   
  1    1    0    0    1    0     1      1   
  1    1    1    0    0    0    0     1   
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    D XYA XYA XYA XYA YA X X YA X X YA YA .y = + + + = + + + = +( ) ( ) ( )    

 Also, develop the equation for output Z by noting in Figure  1.25  the present states 
X and Y and input A that generate Z    =    1 output, producing the following equation:

    Z XYA XYA XYA XYA YA X X XY A A YA XY .= + + + = + + + = +( ) ( ) ( )    

 Then, using these equations, develop the state table in Table  1.47 . Next, formulate 
the K - maps in Tables  1.48 – 1.50 . Note that to construct the K - maps, 1s are placed 
in the cells of the maps wherever 1s appear for D x , D y , and Z in the state table. Recall 
that for D fl ip - fl ops, inputs are equal to the next states of the circuit. Last, based on 
the fl ip - fl op and output equations, design the circuit in Figure  1.26 .      

  Message Processing Design 

 Synchronous sequential circuits are highly adaptable to message processing systems, 
as shown in Figure  1.27 . As shown in the fi gure, a message processing system 

  Table 1.48    K - Map for   D XYA XYA XYA XY A A XY XYAx = + + = + = +( )  

       

YA

X 00 01 11 10

0 1 1

1 1

X Y
— 

A X
— 

Y

  Table 1.49    K - Map for Dy = X
— 

Y
—

A + X Y
—

A + X
— 

Y A— + XY A— = 
Y
—

A(X
—

 + X) + Y A—(X
—

 + X) = (Y
—

A + Y A—)   

       

YA

X 00 01 11 10

0 1 1

1 1 1

Y
— 

A Y A—

  Table 1.50    K - Map for   Z XYA XYA XYA XYA= + + +  

       

YA

X 00 01 11 10

0 1

1 1 1 1

Y
— 

A
—

XY

YA X X XY A A YA XY= + + + = +( ) ( ) ( )
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     Figure 1.26     Logic diagram for synchronous digital circuit.  
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involves a sequence of inputs X with the objective of the circuit detecting a bit 
pattern, such as 101. The circuit accomplishes this objective by changing state 
according to the bit pattern received. When the desired bit pattern is recognized, the 
sequence 101 is generated at the output. An application is the detection of computer 
program operation codes by a microprocessor. For example, if the operation code 
for the add instruction is the decimal 5 (binary 101), the output 101 would be gener-
ated in Figure  1.27  designating that the add instruction should be executed.   

     Figure 1.27     Message processing state diagram.  
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     Figure 1.28     Message processing circuit.  
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  Table 1.51    State Transition Table 

   Present 
state  

   Present T fl ip - fl op 
binary state Q  

  Input X    =    1    Input X    =    1    Input X    =    1  

   Next T fl ip - fl op 
state Q  

   Next T fl ip - fl op 
binary state Q     Output Z  

  A    0    B    1    1  
  B    0    C    1    0  
  C    0    A    1    1  

 The fi rst step in the design process is to specify the state transitions, as shown 
in Figure  1.27 , where the desired detected bit pattern is shown. State transitions are 
identifi ed that will serial process the incoming bit stream, looking for the desired 
pattern in Figure  1.27 . Additional steps involve designing the state transition table 
in Table  1.51  to represent the logic of Figure  1.27  in a tabular form and selecting a 
fl ip - fl op type to implement state transitions. In this case, the T fl ip - fl op is selected 
because its output toggles with each CP. If T    =    1, the fl ip - fl op causes complementa-
tion of the present state. This is the logic required to detect the input sequence 101 
in Figure  1.28 .      
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     Figure 1.29     Binary counter state transition diagram and circuit.  
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  Design of Binary Counters 

  Two - Bit Counter 

 The binary counter is an example of a synchronous sequential circuit designed to 
count a sequence of binary digits. For example, if the counter can count two binary 
digits at a time, it would be able to process the following sequence of digits: 00, 01, 
10, and 11. Thus, the counter can count 2 n  binary numbers, using fl ip - fl ops (e.g., T 
fl ip - fl ops), where n is the number of binary bits in the count. Figure  1.29  shows the 
state transition diagram for a 2 - bit binary counter that implements the binary 
sequence count rules (e.g., if the sequence is 00, it is recognized by the next state 
01). After Figure  1.29  has been constructed, the state table (Table  1.52 ) for fl ip - 
fl ops 1 and 2 is developed followed by the state table (Table  1.53 ) for fl ip - fl ops 3 
and 4. The outputs b 0  and b 1  follow the logic rule:   TQ(t) TQ(t)+  in Figure  1.29 . Note 
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that an inverter is inserted between the fl ip - fl ops in Figure  1.29  in order to achieve 
the correct state transitions.      

  Three - Bit Counter 

 A 3 - bit counter design proceeds by fi rst constructing the state diagram in Figure 
 1.30 , with present and next states annotated. Next, using JK fl ip - fl ops, show the 3 - bit 
counter excitation table (Table  1.54 ), noting fl ip - fl op states and fl ip - fl op inputs. The 
salient state conditions can be summarized as follows: when Q    =    0 and J    =    0, no 
change in state; when J    =    1, set the fl ip - fl op; when K    =    1, clear the fl ip - fl op; and 
when Q    =    1 and K    =    0, no state change. The reader may wonder how the present 
states are obtained in Figure  1.30 . The answer is that present states correspond to 
the present states of the fl ip - fl ops that, in turn, correspond to the condition where 
there is no CP (e.g., a 2 a 1 a 0     =    000).     

 To demonstrate the validity of the JK fl ip - fl op transformations in Figure  1.30 , 

recall the fundamental property of the JK fl ip - fl op:   Q next state) J Q(t) K Q(t)+ = +( . 
For example, in the state transition   a a a a a a2 1 0 2 1 0000 001= =+ + + , applying Q  +  (next 
state) yields:

    a J Q t K Q t a a a a a a .2
+

2 2 1 0 2= + = +( ) ( )2 2 1 0 2    

 Thus,

    a a a a a a a 001 000 0,2
+

1 0 2 1 0 2= + = + =   

    a J Q (t) K Q (t) a a a a .1
+

1 1 1 1 0 1 0 1= + = +    

  Table 1.52    Binary Sequence Counter State Table 

   Present state    Next state fl ip - fl op 1    Next state fl ip - fl op 2    Output  

   a 1        a1
+        Q T Q 1 a1 1

+ = = ( )( )        Q T Q a+ += =2 1 1( )( )        b a1 1= +   

  0    0    0    1    1  
  0    1    0    0    0  
  1    1    1    0    0  
  1    0    1    1    1  

  Table 1.53    Binary Sequence Counter State Table 

   Present state    Next state fl ip - fl op 3    Next state fl ip - fl op 4    Output  

   a 0        a0
+        Q T Q 1 a3 0

+ = = ( )( )        Q T Q a+ += =4 0 1( )( )        b a0 0= +   

  0    0    0    0    0  
  0    1    0    1    1  
  1    1    1    0    0  
  1    0    1    1    1  



Digital Logic and Microprocessor Design  57

     Figure 1.30     Three - bit counter state diagram and logic diagram.  
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 Thus,

    a a a a a ,1
+

0 1 0 1= + = + =01 10 0   

    a J Q (t) K Q (t) a a .0
+

0 0 0 0 0 0= + = + = + =1 0 11 00 1    

 Thus, the state transition   a a a a a a2 1 0 2 1 0000 001= =+ + +  is demonstrated. 
 Next, using Figure  1.30 , formulate the truth table (Table  1.54 ), incorporating 

the state transitions from Figure  1.30  and the fl ip - fl op inputs that generate these 
transitions. Next, the K - maps in Tables  1.55 – 1.60 , by noting the fl ip - fl op inputs that 
are bolded in Table  1.54 , and resultant equations, are developed for the fl ip - fl op 
inputs.     

  Table 1.54    Three - Bit Counter Truth Table 

   Present 
State     Next state     Flip - fl op inputs  

   a 2      a 1      a 0        a2
+        a1

+        a0
+      J 2     =    a 1 a 0      K 2     =    a1 1 a 0      J 1     =    a 0      K 1     =    a 0      J 0     =    1     K 0     =    1  

  0    0    0    0    0    1    0    0    0    0    1    1  
  0    0    1    0    1    0    0    0    1    1    1    1  
  0    1    0    0    1    1    0    0    0    0    1    1  
  0    1    1    1    0    0    1     1     1    1    1    1  
  1    0    0    1    0    1    0    0    0    0    1    1  
  1    0    1    1    1    0    0    0    1    1    1    1  
  1    1    0    1    1    1    0    0    0    0    1    1  
  1    1    1    0    0    0    1     1     1    1    1    1  

  Table 1.55    K - Map for J 2  

       

a1a0

00 01 11 10

a2 0 1

1 1

J2 = a1a0

  Table 1.56    K - Map for K 2  

       

a1a0

00 01 11 10

a2 0 1

1 1

K2 = a1a0
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  Table 1.57    K - Map for J 1  

       

a1a0

00 01 11 10

a2 0 1 1

1 1 1

J1 = a0

  Table 1.58    K - Map for K 1  

       

a1a0

00 01 11 10

a2 0 X 1 1

1 X 1 1

K1 = a0

  Table 1.59    K - Map for J 0  

       

a1a0

00 01 11 10

a2 0 1 1 1 1

1 1 1 1 1

J0 = 1

  Table 1.60    K - Map for K 0  

       

a1a0

00 01 11 10

a2 0 1 1 1 1

1 1 1 1 1

K0 = 1

  Shift Register Design 

 The design process starts by documenting the elements of the basic building block 
of the shift register — called the basic cell in Figure  1.31  — comprised of the multi-
plexer and the D fl ip - fl op. The D fl ip - fl op is used because the fl ip - fl op Q output 
follows the multiplexer basic cell D input, thus enabling the shift operation. The 
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     Figure 1.31     Basic cell and logic design of shift register.  
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basic cell is replicated in the shift register logic design, also shown in Figure  1.31 . 
The shift register operates in Figure  1.31  by shifting the least signifi cant bit, x 0 , for 
a left shift, one fl ip - fl op output to the left on each CP. For a right shift, the most 
signifi cant bit, x 3 , is shifted one fl ip - fl op output to the right on each CP. These shifts 
are referred to as  “ end around ”  because for a right shift, the least signifi cant bit, 
represented by Q 3  in Table  1.61 , is shifted to the most signifi cant bit position. More-
over, in a left shift, the most signifi cant bit, represented by Q 0  in Table  1.61 , is shifted 
to the least signifi cant bit position. The type of shift is based on the values of the 
operation selectors in Table  1.61 .       

  RAM DESIGN 

 There are two types of RAM: static and dynamic. Static RAM stores data in fl ip -
 fl ops. Dynamic RAM stores data in capacitors. Because capacitors gradually lose 
their charge, dynamic RAM must be refreshed periodically. A RAM circuit is shown 
in Figure  1.32  where 1   bit, 0 or 1, can either be read or written depending on whether 
a read or write operation is selected and whether a 1 or 0 appears at the input.    
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     Figure 1.32     Random access memory (RAM) circuit.  
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  Table 1.61    Truth Table for Shift Register 

       

Operation 
selectors

Clock Clear 
input CLR

Operation Input Output

s0 s1

0 0 1 Clear Q0 Q1 Q2 Q3 0000

0 1 0 No 
operation

Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3

1 0 0 Shift 
right “end 
around”

Q0 Q1 Q2 Q3 Q3 Q0 Q1 Q2

1 1 0 Shift left 
“end 
around”

Q0 Q1 Q2 Q3 Q1 Q2 Q3 Q0

input CLK

  HARDWARE DESCRIPTION LANGUAGE ( HDL ) 

 Given the complexity of some digital circuits, implementing them can be error 
prone. Therefore, as a design aid, aimed to increase design productivity and reduce 
errors, HDLs have been developed. In electronics, an HDL is any language from a 
class of computer languages for formal description of electronic circuits, and more 
specifi cally, digital logic. It can describe the circuit ’ s operation, its design and orga-
nization, and tests to verify its operation by means of simulation. 

 Using the proper subset of virtually any HDL, a software program called a 
synthesizer can infer hardware logic operations from the language statements and 
produce equivalent hardware functions to implement the specifi ed logic. Synthesiz-
ers use clock edges as the way to time a circuit. 
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 HDLs are text - based expressions of the logical and timing characteristics of 
electronic systems. Like concurrent programming languages, HDL syntax and 
semantics includes notations for expressing concurrency. Languages whose only 
purpose is to express circuit connectivity between blocks are classifi ed as computer -
 aided design languages. 

 The  automated  steps in using an HDL are the following:

   Develop the logic diagram, using truth tables.  

  Generate the logic equations corresponding to the truth table relationships.  

  Minimize the logic equations, if necessary, using K - maps.  

  Use the simulator component of the HDL to verify the correct operation of the 
circuit logic, in particular, test timing constraints.    

 More details on HDL can be found in Salcic and Smailagic  [SAL08] .  

  SUMMARY 

 This chapter has provided the reader with numerous microprocessor design fundamentals and 
practical examples that lay the groundwork for the practicing engineer or student to design a 
complete microprocessor. In addition to elucidating principles, the chapter explained why 
circuits operate the way they do. Furthermore, there was a focus on design process to provide 
the reader with a road map to successful design. Last, many examples of digital logic were 
drawn from everyday experience to show the reader that the application of digital logic is not 
limited to designing microprocessors.  
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