
 Part One

Computer
Engineering

CO
PYRIG

HTED
 M

ATERIA
L

 Chapter 1

Digital Logic and
Microprocessor Design

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

 T his chapter focuses on the fundamentals of digital logic and design, with numerous
examples from both computer hardware design and “ everyday life ” events to demonstrate
that digital logic is not confi ned to designing computers. My objective is to equip the engineer
or student with suffi cient knowledge of design principles to be able to design a digital com-
puter. In addition, I integrate the important role that software plays in modern computer
systems with the hardware design principles. Numerous design examples and solved problems
are provided to support learning objectives.

 MICROPROCESSOR DESIGN

 Functions

 Using its arithmetic logic unit (ALU), a microprocessor can perform mathematical
and logic operations like addition, subtraction, multiplication, division, and com-
parison. Modern microprocessors contain complete fl oating - point processors that
can perform extremely sophisticated operations on large variable - length numbers.
In addition, a microprocessor can perform the following functions:

 Move data from one memory location to another.

 Make decisions and jump to a new set of computer program instructions based
on those decisions.

 Use an RD (read) and WR (write) line to tell the memory whether it wants to
read from or write to the addressed location.

 Use a clock line to transmit clock pulses (CPs) to sequence the microprocessor.
For example, when numbers are added by the microprocessor, which you

3

4 Computer, Network, Software, and Hardware Engineering with Applications

will see later, addition takes place bit by bit, and the clock triggers each
binary bit addition to ultimately form a decimal result.

 Uses a reset line to reset the program counter to zero and restart execution.

 Components

 Microprocessor components are the building blocks of modern computers. These
components are the following:

 • ALU . Consists of accumulators, registers, and control unit.

 • The ALU executes instructions and manipulates data.

 • An 8 - bit ALU can add, subtract, multiply, and divide two 8 - bit numbers,
while a 32 - bit ALU can manipulate 8 - bit, 16 - bit, and 32 - bit numbers.

 • An 8 - bit ALU would have to execute four instructions to add two 32 - bit
numbers (four add instructions, each of which adds 8 - bit numbers), whereas
a 32 - bit ALU can do it in one instruction.

 • Accumulator . Holds data and instructions for processing by the ALU.

 • Register . Temporary storage of instructions and data.

 • Program Counter (PC). Contains the address of next instruction to be
executed

 • Instruction Register (IR). Holds address of current instruction being
executed

 • General Registers . Holds operator (e.g., code for add instruction), operands
(e.g., numbers to be added), and data while an instruction is executed

 • Stack . Temporary storage of instructions and data, usually on a last in, fi rst
out (LIFO) basis. Also called push - down stack.

 • Control Unit . Fetches and decodes instructions, generates signals for the ALU
to execute instructions

 • Busses

 • Address Bus . Path over which addresses fl ow for directing memory and
 input/output (I/O) data transfers. An address bus may be 8, 16, or 32 bits
wide that sends an address to memory or I/O for accessing memory or I/O.

 • Data Bus . Transfers data. A data bus may be 8, 16, or 32 bits wide that can
send data to memory or I/O and receive data from memory or I/O. The
number of address bus lines determine the amount of addressable memory
(n lines = 2 n addressable words).

 • Control Bus . Communicates control and status information.

 • Chip . A chip is also called an integrated circuit. Generally it is a small, thin
piece of silicon onto which the transistors making up the microprocessor have
been etched. A chip might be as large as an inch on a side and can contain
tens of millions of transistors. Simpler processors might consist of a few

Digital Logic and Microprocessor Design 5

thousand transistors etched onto a chip just a few millimeters square. Microns
are the width of the smallest wire on the chip. For comparison, a human hair
is 100 μ m thick. As the feature size on the chip goes down, the number of
transistors rises.

 Characteristics

 Microprocessor characteristics govern the speed and functionality of computer oper-
ations. Important characteristics include the following presented in the succeeding
paragraphs.

 Smaller microprocessors can be combined into a larger one (four 4 - bit micro-
processors combined into one 16 - bit microprocessor).

 A crystal - controlled clock sequences the operations of a microprocessor (e.g.,
the sequence of computer program instruction execution) by generating CPs. Clock
speed is specifi ed in cycles per second, where 1 MHz is equal to 1 million cycles
per second. Clock speed is the maximum speed of the chip.

 Instructions require one or more clock cycles to execute the following, depend-
ing on its complexity: fetch instruction from memory, decode the operation code,
fetch operands from memory, execute the instruction, and store the result in memory.
In addition to clock speed, an important performance metric is the number of
fl oating - point operations per second or fl ops.

 Complex instruction set computing (CISC). A single instruction can perform
several operations. This design simplifi es programming because, for example,
a single instruction can fetch instruction from memory, decode the operation
code, fetch operands from memory, execute the instruction, and store the
result in memory. However, the downside is the relatively slow speed of the
computer [RAF05] .

 Reduced instruction set computing (RISC). Several operations are required to
execute a single instruction. This design provides high speed, for example,
well suited to real - time applications that must meet deadlines, but at the
expense of relatively complex programming.

 Performance

 One measure of the computing power of a microprocessor is its clock speed, mea-
sured in millions of cycles per second (MHz). It usually takes from one to seven
cycles of a microprocessor ’ s internal clock to fully process an instruction. The faster
the internal clock, the more instructions can be processed per unit of time. For the
microprocessors in laptop and desktop computers, clock speeds are usually greater
than 100 MHz. The fastest microprocessors can run at a speed of 2 GHz. From a
user standpoint, the most important performance metric is program execution time,
defi ned as [HAR07] :

6 Computer, Network, Software, and Hardware Engineering with Applications

Program execution time Number of instructions in program= ()

∗∗ ∗() ().Clock cycles per instruction Time per clock cycle

 Another measure of performance is the number of instructions that can be processed
per second, referred to as MIPS, for million instructions per second. The MIPS rating
of a microprocessor depends on both the clock speed and the number of instructions
that can be executed per clock cycle. Simple microprocessors can execute a maximum
of one instruction per clock cycle. Advanced microprocessors can execute up to six
or eight instructions per clock cycle. The relationship between clock speed and MIPS
is not straightforward, however, because some instructions may take more than one
clock cycle to execute, depending on the program. The product of clock speed and
the number of instructions that can be executed per cycle may be greater than MIPS.
The maximum clock speed is a function of the manufacturing process and delays
within the chip. MIPS is proportional to the clock speed and inversely proportional
to the number of clock cycles per instruction.

 Another indication of microprocessor speed is the word length, as measured by
the number of bits of information that can be transferred simultaneously. Long words
allow the microprocessor to handle data and perform complex tasks more effi ciently.
The number of bits per word has been steadily increasing with the growth of circuit
technology. Thus 4 - , 8 - , 16 - , 32 - , and 64 - bit microprocessors are now common.
Some personal computers use 32 - bit microprocessors. More powerful computers use
64 - bit microprocessors. The 4 - , 8 - , or 16 - bit devices are usually employed in simple
embedded applications, such as microwave ovens, electric shavers, and televisions.
Figure 1.1 shows the microprocessor architecture.

 Pipeline Systems

 An important aid to performance is the pipeline system. The purpose of a pipeline
system is to reduce delay caused by the computer processor having to wait for
instructions to complete. With a pipeline design, the processor begins the execution
of the next instruction while the current instruction is executing. Thus, various
phases of instruction execution are overlapped. The concept is to keep the pipeline
full, with as many execution sequences as possible. For example, due to overlapped
instruction execution, each instruction overlaps during (n − 1) clock cycles, and each
of m = 4 instructions requires one clock cycle, yielding (n − 1) + m = 7 clock
cycles, total, as shown in Figure 1.2 .

 Problem: How is the increase in speed , obtained by a pipelined system over a
conventional system, computed?

 Answer: Using Figure 1.2 as an example, the increase is computed as follows:

 The number of clock cycles required in conventional system is mn = 4 * 4 = 16 in
the example of Figure 1.2 . Thus, the decrease in number of clock cycles for a pipe-
lined system is:

 mn n m− − + = − =(()) ,1 16 7 9

Digital Logic and Microprocessor Design 7

 Figure 1.1 Microprocessor architecture.

Instruction
Register

Instruction
Cache

Control
Unit

Data Buffers

ALU

Program
Counter

Instruction
Register

General
Registers

Accumulators

Stacks

Memory

Data Bus

Input
Devices

Data Bus

Clock

Control Bus

Operator and
Operand Bus

Output
Devices

Data Bus

Interrupt
Service
Routine

Operating
System

Application
Program

Resource
Allocation

 and the increase in speed (number of clock cycles required in conventional system/
number of clock cycles required in a pipelined system) is:

 () / (()) / ((() /)) / . .mn n m n n m− + = − + = =1 1 1 16 7 2 286

 If m is large, the increase in speed approaches n clock cycles per instruction —
 maximum speed increase.

 The pipeline throughput is defi ned as the number of instructions , m, per total
clock cycle time required to process m instructions:

8 Computer, Network, Software, and Hardware Engineering with Applications

m instructions

Number of clock cycles per instruction Time ∗ pper clock cycle

m

m n 1 T
=

+ −()
,

 where T is clock cycle time per instruction.

 Problem: Compute the throughput of the pipeline microprocessor in Figure 1.2 .

 Answer: For a clock speed of 10 Mhz (10 7 clock cycles per second), T = 1/10 7
seconds, the throughput is:

 m m n T MIPS/ (()) / (()(/)) ()() / . .+ − = = =1 4 7 1 107 4 107 7 5 71

 Pipeline effi ciency is computed as: speed increase/maximum speed increase (n = 4
clock cycles per instruction) = 2.286/4 = 0.5715.

 Pipeline System Delay

 When a pipeline instruction is unable to complete on the scheduled clock cycle, then

 • Finish the earlier instructions on schedule and

 • Delay the later instructions

 • This is called stalling the pipeline

 Structural hazard s are pipeline hardware delays.

 Example: Memory does not respond to a request as fast as it is expected.

 Data hazards arise when data are not ready in a pipeline at the time they are needed.

 Figure 1.2 Pipelined system. n, clock cycle per instruction; m, instructions, each requiring one
clock cycle; (n − 1) + m = 7 clock cycles (each instruction overlaps for [n − 1] clock cycles).

Memory
1

Memory
2

Memory
3

Memory
4

Latch 1 Latch 2 Latch 3

Instruction Input

Bus

T1 T2 T3 T4 T5 T6 T7Clock Cycle

I1 I1 Done

I2 Done

Instructions I1 I1

I2 I2 I2

I3 I3 I3 I3 Done

Instruction Queues

Hold
Instruction

I4 I4 I4 I4 Done

Digital Logic and Microprocessor Design 9

 Example: An instruction needs data in a register that a previous instruction is
still modifying.

 Control hazards arise when the central processing unit (CPU) needs to manage a
pipeline but instead must increment the program counter.

 Example: Nonpipelined conditional branch instruction jumps to a pipelined
instruction.

 Problem: Delay in a pipelined operation is illustrated in this problem that
compares the clock cycle delay for nonjump instructions with that of jump
instructions.

 If a jump instruction is executed in the pipelined CPU in Figure 1.2 , what is the
clock cycle delay?

 Answer: Since the target of the jump instruction (another instruction) cannot
be decoded (i.e., program counter updated) until the jump instruction is
executed, there is a delay of three clock cycles.

 Problem: What cam be done in a pipeline system to maintain performance
when a structural hazard occurs?

 Answer: More resources can be employed, if available, or the pipeline can be
stalled (i.e., no instructions executed until needed hardware is available).

 Problem: Is the microprocessor architecture in Figure 1.1 a pipeline computer?

 Answer: No, it is not because only one instruction can be executed at a time.

 Problem: What determines the clock cycle frequency of a pipeline system?

 Answer: The clock cycle frequency of a pipeline system is governed by the
 pipeline with the slowest processing time. For example, whichever pipeline
queue in Figure 1.2 experiences the slowest processing determines clock
cycle frequency.

 Operating System

 The operating system contains the software necessary to manage the resources of a
computer system. An example is a signal called an interrupt that is used to indicate
to the microprocessor that an I/O device needs attention (i.e., data input or data
output) or that there is an error condition (e.g., attempted divide by zero). The inter-
rupt service routine is shown in Figure 1.1 . In addition to managing resources, the
operating system is responsible for allocating resources, for example, allocating
memory to the application program, as depicted in Figure 1.1 .

 Memory

 Because computer performance depends on the characteristics of memory systems
in addition to the microprocessor architecture, it is important to consider the former

10 Computer, Network, Software, and Hardware Engineering with Applications

 [HAR07] . Two important types of memory systems are main memory (random
access memory, RAM) and secondary memory (hard disk, USB fl ash). Main memory
can be divided between a relatively slow RAM for program and data access and a
fast cache memory for accessing recently used instructions and data. In addition,
secondary memory can be classifi ed as virtual, meaning that pages on a hard disk
can be mapped to main memory locations under the control of a memory manage-
ment unit. A microprocessor may be equipped with special hardware, called direct
memory access (DMA), which allows I/O devices to communicate directly with
memory rather than using intermediate devices (such as data buffers in Fig. 1.1).

 RAM

 RAM contains bytes of information that the microprocessor can read or write,
depending on whether the RD or WR line is activated. One problem with RAM
chips is that they are volatile; the RAM contents are lost once the power goes off.
That is why the microprocessor needs read - only memory (ROM).

 ROM

 All microprocessors contain ROM. A ROM chip is programmed with a permanent
collection of preset bytes. The address bus tells the ROM chip which byte to read and
place on the data bus. The RD line signal causes the ROM chip to transfer the selected
byte to the data bus. On a personal computer, the program in the ROM is called the
 BIOS (basic input/output system). When the microprocessor starts, it begins execut-
ing instructions it fi nds in the BIOS. The BIOS instructions test the hardware, and
then control is transferred to the hard disk to fetch the boot sector. The boot sector is
another small program that the BIOS stores in RAM after reading it from the disk.
The microprocessor then begins executing the boot sector ’ s instructions from RAM.
The boot sector program will tell the microprocessor to fetch more instructions from
the hard disk into RAM, which the microprocessor then executes, and so on. This is
how the microprocessor loads and executes the entire operating system.

 Read/Write (R / W) Control Line

 This single wire is driven by the microprocessor to control memory functions. If the
R/W control line is asserted as a logical 1 (i.e., true), then the microprocessor per-
forms a read operation. If it is asserted as a logic 0 (i.e., false), then the microprocessor
performs a write operation. The relationship between logic level and voltage level
can vary, depending on the implementation. For example, a logical 0 corresponds to
a voltage of 0 V, and a logical 1 corresponds to a voltage of 5 V. Figure 1.3 is a block
diagram of the microprocessor and memory, showing the R/W control line.

 Address Bus

 These wires are controlled by the microprocessor to select a particular location in
memory for reading or writing. The microprocessor in Figure 1.3 uses a memory
chip that has 15 address wires.

Digital Logic and Microprocessor Design 11

 Problem: How many locations can be addressed in Figure 1.3 ?

 Answer: Since each wire has two states (it can be a digital 1 or a 0), 2 15 = 32,768
locations are possible. Thus, the system is said to have 32K of memory
(1K = 1024 bytes).

 Data Bus

 These wires are used to pass data between the microprocessor and the memory.
When data are written to the memory, the microprocessor drives the data bus; when
data are read from the memory, memory drives the bus. In the example, in Figure
 1.3 , there are eight data wires (or bits). These wires can transfer one of 2 8 or 256
different binary values per transfer. The data size of 8 bits is commonly referred to
as a byte. A data size of 4 bits is frequently referred to as a nibble.

 Memory Enable Control Line

 This wire, called the Enable line, connects to the enable circuitry of the memory in
Figure 1.3 . When the memory is enabled, it performs either a read or write operation
as determined by the status of the R/W line.

 Memory System Performance

 Memory system performance is computed by considering hit and miss rates and the
order of accessing memory components: cache memory, main memory, and hard
disk. These rates are related to whether the instructions or data that are required by
a program are available, fi rst, in the cache memory, or second, in the main memory.
If the instructions or data are in the cache, the access is scored as a cache hit;
otherwise, the access is scored as a cache miss. Similarly, if the instructions or data

 Figure 1.3 Diagram of microprocessor and memory.

A0:14 A0:14

D0:7 D0:7

E

Microprocessor

R/~W

Enable

Memory

R/~W

Address Bus (15 bits)

Data Bus (8 bits)

Enable

Read/Write Control Line

12 Computer, Network, Software, and Hardware Engineering with Applications

are not in the cache but are in main memory, the access is scored as a main memory
hit; otherwise, the access is scored as a main memory miss because the instructions
or data are only available on the hard disk [HAR07] . Thus, hit and miss rates are
computed as follows:

 Cache hit rate (CHR)
Number of cache hits

Total number of m
=

eemory accesses
,

 Cache miss rate (CMR)
Number of cache misses

Total number o
=

ff memory accesses
,

 Main memory hit rate (MMHR)
Number of main memory hits

Tota
=

ll number of memory accesses
,

 Main memory miss rate (MMMR)
Number of main memory misses

T
=

ootal number of memory accesses
,

Number of hard disk accesses (HAD) Total number of memory = aaccesses

Number of cache memory hits Number of main memo− +(rry hits

Number of main memory misses).+

 Note that when there is a cache memory miss, the main memory access is attem-
pted. Thus, it is not necessary to count cache memory misses in the foregoing
computation:

 Hard disk access rate HDAR HAD Total number of memory ac() /= ccesses.

 Problem: For example, consider the following case:

 4000 total number of memory accesses

 1200 cache accesses are hits and 800 are misses

 Of the 800 cache misses that require access to the main memory, 200 are hits
and 600 are misses

 Compute CHR, CMR, MMHR, MMMR, HAD, and HDAR.

 Answer: CHR = 1200/4000 = 30%

 CMR = 800/4000 = 20%

 MMHR = 200/4000 = 5%

 MMMR = 600/4000 = 1%

 HAD = 4000 − (1200 + 200 + 600) = 2000

 HDAR = 1200/4000 = 50%

 Another memory performance metric is average access time (AAT), which is com-
puted as follows:

AAT CHR cache access time

MMHR main memory access time

= ∗
+ ∗

()

() ++ ∗HDAR hard disk access time().

Digital Logic and Microprocessor Design 13

 Problem: For the following typical access times: cache = 2 ns, main memory =
60 ns, and hard disk = 35 ms, and using the above hit and miss access rates,
compute the AAT.

 Answer: AAT = (0.30)(2) + (0.04)(60) + (0.50)(35 * 10 6) ns = 20.50 * 10 6 ns
(of course, hard disk access time dominates).

 Multiplexing Data and Address Signals

 On the Motorola 68HC11 microprocessor, in Figure 1.4 , the 8 - bit address/data bus
takes turns acting as an address bus and a data bus. When a memory location is
accessed (for reading or writing), the bus fi rst acts as an address bus, transmitting
the 8 lower - order bits of the address. Then the bus functions as a data bus, either
transmitting a data byte (for a write cycle) or receiving a data byte (for a read cycle).
This kind of split - personality bus is referred to as a multiplexed address and data
bus. The support needed by the memory is provided by an 8 - bit latch (a device that
can store an address), using a multiplexed address/data bus. This chip (HC373)
performs the function of latching the lower 8 address bits, when combined with the
upper 7 address bits from the microprocessor, will provide the full 15 - bit address
for reading or writing data.

 Figure 1.4 shows how the latch is wired. The upper 7 address bits run directly
from the microprocessor to the memory. The lower 8 address bits are multiplexed
with 8 data bits . When an address appears on the wires AD: 07, the latch connects
the address bits of the microprocessor to the memory. On the other hand, when
 data appears on the wires AD0:7, the latch connects the data bits of the micropro-
cessor to the memory. An additional signal, the address strobe (AS) output of the

 Figure 1.4 Block diagram of microprocessor and memory with latch.

A8:14 A8:14

AD0:7

A0:7

D0:7

Microprocessor

(Motorola 6811)

R/~WE AS

AS

Enable

Memory

R/~W

Address Bus (upper 7 bits)

Multiplexed
Address/Data Bus

(8 bits)

Read/Write Control Line

(32K static RAM)

Address Bus (lower 8 bits)

Latch
(’HC373)

“Address Strobe” Signal

Enable

14 Computer, Network, Software, and Hardware Engineering with Applications

microprocessor, tells the latch when to obtain the address bits from the address/data
bus. When the full 15 - bit address is available to the memory (upper 7 bits direct
from the microprocessor (wires A8: 14) and lower 8 bits from the latch (wires AD:
07), the read or write access can occur. Because the address/data bus is also wired
directly to the memory, data can fl ow in either direction between the memory and
the microprocessor. The entire process is managed by the microprocessor. The
Enable (E) clock, the R/W line, and the AS line perform in tight synchronization to
make sure these operations happen in the correct sequence and within the timing
capacities of the microprocessor hardware.

 Memory Mapping the RAM

 Memory mapping refers to allocating blocks of memory to different functions, such
as the operating system and the application program. If a microprocessor has 15
address bits, it has 32,728 (32K bytes) of addressable locations that can be mapped.
This address space would be used by the 32K memory chip in Figure 1.5 . The
technique used to map the memory is fairly simple. Whenever the microprocessor ’ s
A15 (the highest order address bit) is logic 1, the high - order address bit is selected.
The other 15 address bits (A0 through A14) determine the address within that 32K
block. If A15 is logic 0, the 32K block is not selected.

 A NAND gate (actually a portion of a programmable logic device called a PAL)
is used to enable the memory when A15 and the E Clock equal 1 in Figure 1.5 . (See
the “ Digital Logic ” section below for the explanation of NAND and other gates).

 The E Clock controls the timing of the chip enable line. Some memory chips
use an active low (sometimes called “ active false ”) signal to enable inputs, meaning
that they are enabled when the enable input is 0. The method for denoting an input
that is active low (i.e., 0) is shown in Figure 1.5 , where the chip enable input con-
nects to a circle; this circle indicates an active low input. Also, the name for the
signal, CE, is prefi xed with a ∼ symbol.

 Interrupt Handling

 The microprocessor has a bank of interrupt vectors, as shown in Figure 1.5 , which
are hardware - defi ned locations in the memory address space where the microproces-

 Figure 1.5 Enabling the memory.

Interrupt vectors

Microprocessor R/~W

A15
E clock

PAL 16L8
Functions as NAND gate

32K memory chip

R/~W read/write line

O~CE chip enable line

Digital Logic and Microprocessor Design 15

sor expects to fi nd pointers to interrupt handling routines, for processing input and
output data, arithmetic overfl ow, and so on. Also, when the microprocessor is reset,
it fi nds the reset vector to determine where it should begin running a program. These
vectors are located in the address space of the memory.

 DIGITAL LOGIC

 The fundamental logic operations of a microprocessor are performed by the follow-
ing circuits. The results of those operations are represented in truth tables, where
the binary value 0 is considered “ low ” (e.g., low voltage) and the binary value 1 is
considered “ high ” (e.g., high voltage). While digital logic is used in the design of
microprocessors, “ everyday ” examples are provided to show that the logic opera-
tions are not restricted to microprocessors.

 NOT : represented in Table 1.1 and implemented with an inverter in Figure 1.6 .

 Application: The application is to complement the input A, producing the
output A.

 Microprocessor example: the binary bit input was caused by an arithmetic
overfl ow condition, so it is ignored and not used in the computation.

 Everyday example: if we are to leave on an automobile trip, where A = 1
represents leaving at 1000, A = 0 represents all times not equal to 1000.

 OR : represented in Table 1.2 and implemented with OR gate in Figure 1.6 .

 Application: The application is to produce a 1 output if any or both of the inputs
are 1.

 Microprocessor example: the inputs are binary bits from memory stick or hard
disk, so the microprocessor can accept either or both to perform a computa-
tion, depending on the current computer program instruction.

 Everyday example: if A = 1 represents the decision to purchase a house and
B = 1 represents the decision to purchase an automobile, Z = 1 represents
the decision to purchase a house or an automobile or both.

 AND : represented n Table 1.3 and implemented with an AND gate in Figure 1.6 .

 Application: The application is to produce a 1 output if all inputs are 1.

 Table 1.1 NOT Truth Table

 Input Output

 A A

 0 1
 1 0

16 Computer, Network, Software, and Hardware Engineering with Applications

 Table 1.2 OR Truth Table

 Input Input Output

 A B Z = A + B
 0 0 0
 0 1 1
 1 0 1
 1 1 1

 Figure 1.6 Logic operations.

A –
A

B

A
Z = A + B

Inverter

OR Gate

AND Gate
A

B

Z = AB

o

A

B

NOR Gate

Z =

A + B

o

A

B

Z =

AB

A

B

XOR Gate

NAND Gate

Z = AB + AB
_ _

A
__
B

__
A
B

_
AB

Implementation of XOR Gate

o

Z =
_ _

AB + AB

XNOR Gate

A

B
Z = AB + AB

_

_ _

AB

Digital Logic and Microprocessor Design 17

 Table 1.3 AND Truth Table

 Input Input Output

 A B Z = AB
 0 0 0
 0 1 0
 1 0 0
 1 1 1

 Table 1.4 NOR Truth Table

 Input Input Output

 A B Z A B= +

 0 0 1
 0 1 0
 1 0 0
 1 1 0

 Microprocessor example: the microprocessor uses a signal Z = 1 to tell it that
an interrupt has occurred on input line A and signifying that data input occurs
on B, which the microprocessor will transfer to its memory.

 Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has both a gas
station and a restaurant.

 NOR : represented in Table 1.4 and implemented with NOR gate in Figure 1.6 .

 Application: The application is to produce a 1 output if all inputs are 0.

 Microprocessor example: the microprocessor Z = 1 output is recognized as
interrupt code AB = 00.

 Everyday example: if A = 0 represents the decision to not purchase a home
and B = 0 represents the decision not to purchase an automobile, then Z = 1
represents the decision to neither purchase a home nor purchase an
automobile.

 NAND : represented in Table 1.5 and implemented with NAND gate in Figure 1.6 .

 Table 1.5 NAND Truth Table

 Input Input Output

 A B Z AB=

 0 0 1
 0 1 1
 1 0 1
 1 1 0

18 Computer, Network, Software, and Hardware Engineering with Applications

 Application: The application is to produce a 1 output if all inputs are not 1.

 Microprocessor example: the microprocessor program produces the comple-
ment of the product of binary bits. This would be the case, for example, when
Z = 1 signals that 0s occur on either or both of two input channels.

 Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has only a gas
station, or has only a restaurant, or has neither (i.e., rest stop).

 Exclusive OR (XOR) : represented in Table 1.6 and implemented with EXCLUSIVE
OR gate in Figure 1.6 . The fi gure also shows how the gate can be implemented,
using AND and OR gates.

 Application: The application is to produce a 1 output if any of the inputs is 1,
but not all inputs are 1, and not all inputs are 0.

 Microprocessor example: the main microprocessor receives a signal Z = 1
from the output of the I/O microprocessor that a binary bit A = 1 from a
memory stick or B = 1 from a hard disk, and is ready for input, but these
inputs are not concurrent .

 Everyday example: if A = 1 represents the decision to purchase a house and
B = 1 represents the decision to purchase an automobile, Z = 1 represents
the decision to purchase a house or an automobile, but not both at the same
time .

 Exclusive NOR (XNOR) : represented in Table 1.7 and implemented with XNOR gate
in Figure 1.6 . The NOR gate is the negation of the XOR gate from Table 1.6 , as
indicated in Table 1.7 .

 Table 1.6 EXCLUSIVE OR Truth Table

 Input Input Output

 A B Z AB AB= +

 0 0 0
 0 1 1
 1 0 1
 1 1 0

 Table 1.7 EXCLUSIVE NOR (XNOR) Truth Table

 Input Input Output

 A B Z AB AB AB AB A B A B AA AB AB BB AB AB= + = = + + = + + + = +()() ()()

 0 0 1
 0 1 0
 1 0 0
 1 1 1

Digital Logic and Microprocessor Design 19

 Application: The application is to produce a 1 output if all inputs are 0 or all
inputs are 1.

 Microprocessor example: Two hard drives are identifi ed as A = 0 and A = 1;
two fl ash memories are identifi ed as B = 0, and B = 1. The microprocessor
is programmed to input data from a hard drive and a fl ash memory concur-
rently . Therefore, it reads A = 0 and B = 0 or A = 1 and B = 1.

 Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has neither a
gas station nor a restaurant (i.e., rest stop) or has both a gas station and
restaurant (i.e., get gas and eat).

 De Morgan ’ s theorem [GRE80] is used to simplify complex logic equations and the
resultant digital logic. The theorem is used to simplify relatively simple expressions,
as contrasted with Karnaugh maps (K - maps), described in the next section. The
application of this theorem is shown in the following example:

 Theorem: A B AB and AB A B.+ = = +

 Suppose it is required to simplify F AB AB= (()()).
 Applying the theorem:

AB A B AB AB A B A B

A A A B A B B B A A B B A A

= + = + +

= + + + = + + = + +

,()() ()()

()1 BB A B

F A B A B A B A B AB AB B.

= +

= + + = + + + = + =()(() ()

 Then, use Table 1.8 to demonstrate the equivalence between (()())AB AB and AB.

 K - MAPS

 A K - map in Table 1.9 is used to minimize a complex Boolean expression [RAF05] .
Each square of a K - map represents a minterm (i.e., product terms). The process
proceeds by listing the binary equivalents of the terms A and BC on the axes of
Table 1.9 , ordering them so that there is only a 1 - bit difference between adjacent
cells. Then, the minimum number of cells is enclosed. Next, minterms are identifi ed

 Table 1.8 Truth Table to Demonstrate Equivalence between F and AB

 A B AB ABAB F AB AB= (()()) AB

 0 0 1 1 0 0
 0 1 1 1 0 0
 1 0 1 1 0 0
 1 1 0 0 1 1

20 Computer, Network, Software, and Hardware Engineering with Applications

 In the K - map, B is common to the enclosed minterms. Therefore, F B= . Table 1.10
demonstrates this result. The considerable reduction from the original function
would result in signifi cant savings in circuitry to implement the function.

 Prime Implicant

 A prime implicant is the product term obtained by enclosing the maximum number
of adjacent cells in a K - map. For example, in the K - map of Table 1.9 , F B= is a
prime implicant. The prime implicant is only useful for providing a name for the
maximum enclosure in a K - map.

 Quine – McCluskey Method

 This method is an alternative to the K - map for minimizing a Boolean func-
tion. The method is illustrated in Table 1.11 by minimizing the function
 F A B C A B C A B C A B C= + + + , where these minterms are placed in Table

 Table 1.10 F Function Truth Table

 A B C F A B C A B C A B C A B C= + + + F B=

 0 0 0 1 1
 0 0 1 1 1
 0 1 0 0 0
 0 1 1 0 0
 1 0 0 1 1
 1 0 1 1 1
 1 1 0 0 0
 1 1 1 0 0

 Table 1.9 K - Map for F ABC ABC ABC ABC= + + +

B— C— B—C BC BC—

00 01 11 10

A— 0 1 1

A 1 1 1

In minterm form, F = A— B— C— + A B— C— + A— B— C + A B— C = B—

according to terms that are common to all cells in the enclosure. Last, the product
terms are summed. Notice what a clever method this is. Minimization is achieved
by noting the combination of terms that yields the minimum difference!

 Example: Simplify F A B C A B C A B C+A B C= + + .

Digital Logic and Microprocessor Design 21

 1.11 . This method is used to represent a difference of 1 between two adjacent minterms,
such as A B C and A B C, yielding A B- -= 00 . The symbol - is placed where there
is a difference in minterm bit values, such as between 00 - and 10 - in Table 1.11 ,
yielding - 0 - . This process continues until the four minterms 0, 1, 4, and 5 show a
difference of 1 (00 - compared with 10 -), yielding prime implicant B - -()0 . The same
result is obtained as was the case using the K - map in Table 1.9 . Of the two methods,
the K - map is easier to apply.

 COMBINATIONAL CIRCUITS

 These are circuits that use logic gates to produce outputs at any time that are only
dependent on the current values of the inputs, meaning that it is not necessary to
use a CP to trigger outputs [HAR07] . A typical combinational circuit is the adder.

 One - Bit Adder with Carry Out

 A and B are added, producing Q output and CO (carry out). Q and CO are imple-
mented according to the truth table shown in Table 1.12 .

 Two - bit Adder with Carry In and CO

 What if you want to add two 8 - bit bytes? This becomes slightly harder. In this case,
you need to create a full binary adder. The difference between a full adder and the

 Table 1.11 Quine – McCluskey Method for F A B C A B C A B C A B C B= + + + =

 Minterm ABC

 Difference of 1 Difference of 1
 Prime

implicant Minterms Minterms Minterms

 0 A B C 000 0,1 00 - 0,1,4,5 - 0 - B
 1 A B C 001
 4 A B C 100 4,5 10 -
 5 A B C 101

 Table 1.12 One - Bit Adder Truth Table

 A B Q CO

 0 0 0 0
 0 1 1 0
 1 0 1 0
 1 1 0 1

22 Computer, Network, Software, and Hardware Engineering with Applications

1 - bit adder is that a full adder accepts A and B inputs plus a carry - in (CI) input.
Once you have a full adder, you can string eight of them together to create a byte -
 wide adder and cascade the carry bit from one adder to the next. The truth table for
a full adder is slightly more complicated than the previous truth table because now
there are 3 input bits.

 A combinational circuit minterm is represented by a product in a row of the
truth table as shown in Table 1.13 , corresponding to a 1 in the Q or CO output
columns; for example, the fourth row for CO and the second row for Q in Table
 1.13 [GIB80] . The values of Q and CO product terms are obtained by ORing the
products in each row of Table 1.13 where Q = 1 or CO = 1, and then summing these
terms, followed by simplifying the expressions, as demonstrated in Table 1.13 .
Further simplifi cation may be possible by using a K - map.

 As can be seen in Table 1.14 , the adder output Q cannot be simplifi ed by using
a K - map because there are no adjacent cells. However, simplifi cation is achieved

 Table 1.13 Two - Bit Adder Truth Table

 Q = 1 CO = 1

 CI A B Q CO Minterms Minterms

 0 0 0 0 0
 0 0 1 1 0 CI A B

 0 1 0 1 0 CI A B

 0 1 1 0 1 CI A B
 1 0 0 1 0 CI A B

 1 0 1 0 1 CI A B
 1 1 0 0 1 CI A B
 1 1 1 1 1 CI A B CI A B

 Q Product Terms: CI A B CI A B CI A B CIAB+ + +

 Q CI A B A B CI (A B AB)= + + +()
 CO Product Terms: CIA B CI A B CI A B CI A B AB (CI CI) CI(A B A B)+ + + = + + +
 CO AB CI A B A B= + +()

 Table 1.14 K - Map for Q CI A B CI A B CI A B= + + +

AB

CI 00 01 11 10

0 1 1

0 1 1

CIA— B— C—IA— B CIAB C—IAA B—

CIAB CI A B A B CI A B AB= + + +() ()

Digital Logic and Microprocessor Design 23

for CO, as shown in Table 1.15 , producing CO AB CI AB AB= + +() . The relevant
minterm cells in Table 1.15 that comprise the minimized function are outlined in
red. Minterm logic is called sum of products . The full adder logic that corresponds
to the minterms in Table 1.13 is shown in Figure 1.7 , showing the adder output Q
and the CO.

 MULTIPLE OUTPUT COMBINATIONAL CIRCUITS

 Combinational circuits can have multiple outputs [RAF05] . Each output is expressed
as a function of the inputs, as shown in Table 1.16 , where the inputs are binary - coded
decimal (BCD) bits W, X, Y, and Z, corresponding to the decimal digits 0, … , 9. A

 Figure 1.7 Adder circuit.

A B
XOR Gate

XNOR Gate

A

B

_ _
AB + AB

CI (Carry In)

__
CI

__

__ _ _ __
CI (AB + AB)

_ _

AND Gate

CI

__
AB + AB

CI (AB + AB)

Q = CI (AB + AB) + CI (AB + AB)

_ OR Gate

Inverter

AND Gate

AB

XNOR Gate

CI

A

B

A

B
CI

AND Gate

CO = AB +CI (AB + AB)

OR Gate

Adder Output

Carry Out

Inputs

_ _

CI (AB + AB)
_(AB + AB)

_ _
_

 Table 1.15 K - Map for Carry Out ()CO CIAB CIAB CIAB= + + +

AB

CI 00 01 11 10

0 1

1 1 1 1

CI A— B C—IAAB CIAB AB CIA B—

CIAB AB CI(AB AB)= + +

24 Computer, Network, Software, and Hardware Engineering with Applications

binary coded decimal converter is an example shown in Figure 1.8 , showing how
the number 9 can be displayed. The outputs are computer display segment bits a, … ,
g that represent the 1s necessary to generate the display decimal numbers. The code
converter transforms the BCD numbers 0000, … , 1001 to display segments. The
converter does not represent decimal numbers greater than 9. The K - maps use “ don ’ t
cares ” = Xs in order to simplify the logic; the “ don ’ t cares ” should not be confused
with the BCD bit = X in Table 1.16 . The “ don ’ t cares ” are used to advantage in
forming minterms, as, for example, in Tables 1.17 – 1.23 .

 In order to generate the K - maps, place a 1 in the K - map cells corresponding to
the 1s that appear in Table 1.16 . For example, for segment a in Table 1.17 , a 1 is
recorded in the cell WXYZ = 0000, corresponding to the 1 (bolded) in the segment
a column in Table 1.16 .

 The K - maps will lead to simplifying the equations for the seven - segment com-
puter display (Fig. 1.8). The equations will then be used to design the digital logic
circuit in Figures 1.9 and 1.10 .

 Figure 1.8 BCD to seven - segment code converter.

BCD to Seven
Segment Code

Converter

W

X

Y

Z

a

b

c

d

e

f

g

a

b

c

g

de

f

Example: Number 9

BCD Input Bits
Computer Display

Segment Bits

 Table 1.16 Truth Table for Binary - Coded Decimal (BCD) Converter

 Decimal
digit

 BCD input bits Computer display segment output bits

 W X Y Z a b c d e f g

 0 0 0 0 0 1 1 1 1 1 1 0
 1 0 0 0 1 0 1 1 0 0 0 0
 2 0 0 1 0 1 1 0 1 1 0 1
 3 0 0 1 1 1 1 1 1 0 0 1
 4 0 1 0 0 0 1 1 0 0 1 1
 5 0 1 0 1 1 0 1 1 0 1 1
 6 0 1 1 0 0 0 1 1 1 1 1
 7 0 1 1 1 1 1 0 1 0 0 0
 8 1 0 0 0 1 1 1 1 1 1 1
 9 1 0 0 1 1 1 1 0 0 1 1

Digital Logic and Microprocessor Design 25

 Table 1.17 K - Map for Segment a

YZ

WX 00 01 11 10

00 1 1 1

01 1 1

11 X X X X

10 1 1 X X

W W
—

X
—

Z
—

XZ YZ
 a W W X Z Z X Y= + + +().

 Table 1.18 K - Map for Segment b

YZ

WX 00 01 11 10

00 1 1 1 1

01 1 1

11 X X X X

10 1 1 X X

Y
—

Z
—

W W
—

X
—

YZ
 b W W X YZ Y Z= + + + .

 Table 1.19 K - Map for Segment c

YZ

WX 00 01 11 10

00 1 1 1

01 1 1 1

11 X X X X

10 1 1 X X

W Y
—

X
—

YZ XY Z
—

 c W Y X YZ XY Z W Y Y XZ XZ= + + + = + + +().

26 Computer, Network, Software, and Hardware Engineering with Applications

 Table 1.20 K - Map for Segment d

YZ

WX 00 01 11 10

00 1 1 1

01 1 1 1

11 X X X X

10 1 X X

X
—

Y
—

Z
—

X Y
—

Z Y

 d XYZ XYZ Y Y XZ XZ Y= + + = + +() .

 Table 1.21 K - Map for Segment e

YZ

WX 00 01 11 10

00 1 1

01 1

11 X X X X

10 1 X X

X
—

Y
—

Z
—

YZ
—

 e Z XY Y= +().

 Table 1.22 K - Map for Segment f

 f Z Y XY W XY= + + +() .

YZ

WX 00 01 11 10

00 1

01 1 1 1

11 X X X X

10 1 1 X X

Y
—

Z
—

XY
—

XY Z
—

W

Digital Logic and Microprocessor Design 27

 Figure 1.9 Two - bit comparator block diagram.

>

=

<

a1a0 > b1 b0

a1a0 = b1b0

a1a0 < b1b0

Output comparisons

a1

a0

b1

b0

Input bits

(G)

(E)

(L)

 Table 1.23 K - Map for Segment g

YZ

WX 00 01 11 10

00 1 1

01 1 1 1

11 X X X X

10 1 1 X X

W W
—

X Y
—

W
—

X
—

Y YZ
—

 g W XY XY W YZ= + + +() .

 Comparators

 A comparator is another type of combinational circuit. Its block diagram is shown
in Figure 1.9 and the corresponding logic diagram is shown in Figure 1.10 . For
example, as Figure 1.10 shows, a comparator can be designed to compare two 2 - bit
quantities for greater - than (G), equal - to (E), and less - than (L) conditions. By mini-
mizing the logic in Table 1.24 , as accomplished by the K - maps in Tables 1.25 – 1.27 ,
the logic circuit is designed in Figure 1.9 . The K - maps are generated by recording
a 1 in cells corresponding to 1s in Table 1.24 ; for example, placing a 1 in the cells
a 1 , a 0 , b 1 , and b 0 = 0100 for G in Table 1.24 . Notice, as opposed to previous exam-
ples, there are no “ don ’ t care ” conditions because all four comparator bits are
relevant.

 Decoders

 A decoder is a combinational circuit that, when enabled, selects one of 2 n inputs and
produces a 1 output, where n is the number of input bits, as shown in Figure 1.11 .
After this block diagram is displayed, the truth table (Table 1.28), is formulated,
showing the relationship between inputs and outputs, where an output term 1 is

28 Computer, Network, Software, and Hardware Engineering with Applications

 Figure 1.10 Two - bit comparator logic diagram.

b1

b0

a1

a0 a0

__

1b

0b

a1

__

1b
__

1b

__

0b

a1a0

__

0b

__ __ __ __

G = a1b1 + a0b1b0 + a1a0b0

a1b1

__

1a __

1a
__

1b

__ __

1 1 1 1a b + a b

a0b0

0a __ __

0 0a b

__ __

0 0 0 0a b + a b

__ __ __ __

1 1 1 1 0 0 0 0(a b a b)(a b +a b)+E =

__ __

1 0 0a a b

__

0 1 0a b b

L = 1 0 0a a b +

0 1 0a b b +
__

11a b

generated according to the appearance of 0s and 1s in the inputs columns; for
example, d E x x for E x x3 1 0 1 0= = =1 100.

 Finally, Table 1.28 is used to design the logic diagram in Figure 1.11 . Applying
K - maps to minimize the logic of the truth table is not necessary because there is
only a single 1 output for each combination of inputs in Table 1.28 . However, the
truth table is used to generate the output equations, which will lead to the design of
the logic diagram in Figure 1.11 . An application of the decoder is to select an operand
(i.e., 4 - bit output d 0 d 1 d 2 d 3) in a computer instruction, based on the operation code
(i.e., 2 - bit input x 1 x 0) in the instruction, when the instruction execution enable is
high (E = 1).

 Encoders

 Encoders produce n output bits in accordance with the value of 2 n input bits, as
shown in the block diagram of Figure 1.12 . Like the decoder, it is not necessary to
develop K - maps of the outputs as a function of the inputs because of the inherent
simplicity of the circuit logic in Figure 1.12 . Equations that emerge from the

 Table 1.24 Truth Table for Two - Bit Comparator

 Inputs Outputs

 a 1 a 0 b 1 b 0 G: a 1 a 0 > b 1 b 0 E: a 1 a 0 = b 1 b 0 L: a 1 a 0 < b 1 b 0

 0 0 0 0 0 1 0
 0 0 0 1 0 0 1
 0 0 1 0 0 0 1
 0 0 1 1 0 0 1
 0 1 0 0 1 0 0
 0 1 0 1 0 1 0
 0 1 1 0 0 0 1
 0 1 1 1 0 0 1
 1 0 0 0 1 0 0
 1 0 0 1 1 0 0
 1 0 1 0 0 1 0
 1 0 1 1 0 0 1
 1 1 0 0 1 0 0
 1 1 0 1 1 0 0
 1 1 1 0 1 0 0
 1 1 1 1 0 1 0

 Table 1.25 K - Map for Output G:a 1 a 0 > b 1 b 0

 G a b b a b a a b0 1 0 1 1 1 0 0= + + .

Inputs Inputs b1b0

00 01 11 10

a1a0 00

01 1

11 1 1 1

10 1 1

a0
—
b1

—
b0 a1

—
b1 a1 a0

—
b0

 Table 1.26 K - Map for Output E:a 1 a 0 = b 1 b 0

E a a b b a a b b a a b b a a b b

a b a b a b a b

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 0 0 1 1

= + + +

= + +() (() ()()a b a b a b a b a b a b0 0 0 0 1 1 1 1 0 0 0 0+ = + + .

Inputs Inputs b1b0

00 01 11 10

a1a0 00 1

01 1

11 1

10 1

—
a1

—
a0

—
b1

—
b0

—
a1 a0

—
b1 b0 a1a0b1b0 a1

—
a0 b1

—
b0

29

30 Computer, Network, Software, and Hardware Engineering with Applications

 Figure 1.11 Two inputs and four outputs decoder block and logic diagrams.

x1

x0

E

Inputs

Enable

d3

d2

d1

d0

Outputs

Two Inputs and Four Outputs
Decoder Block Diagram

x1

x0

1x ___

0x

E

d3 =
___ ___

1 0E x x

E

1x
x0

d2 =

1 0E x x

E

0x
x1

d1 =

1 0E x x

E

x1

x0

d0 = E x1 x0

Two Inputs and Four Outputs
Decoder Logic Diagram

 Table 1.27 K - Map for Output L:a 1 a 0 < b 1 b 0

 L a a b a b b a b1 0 0 0 1 0 1 1= + + .

Inputs Inputs b1b0

00 01 11 10

a1a0 00 1 1 1

01 1 1

11

10 1

—
a1

—
a0 b0

—
a0 b1 b0

—
a1 b1

Digital Logic and Microprocessor Design 31

 Table 1.28 Truth Table for Two Inputs and Four Outputs Decoder

 Inputs Outputs

 E (Enable) x 1 x 0 d 3 d 2 d 1 d 0

 1 0 0 1 0 0 0
 1 0 1 0 1 0 0
 1 1 0 0 0 1 0
 1 1 1 0 0 0 1

 d Ex x ; d Ex x ; d Ex x ;d Ex x1 0 2 1 0 1 1 0 0 1 03 = = = = .

 Figure 1.12 The 4 - bit to 2 - bit encoder block and logic diagrams.

d0

0d

d1

1d

d2

d3

3d

__ __ __

0 1 2 3d d d d

2d

__ __ __

0 1 2 3d d d d

__ __ __ __ __ __

1 0 1 2 3 0 1 2 3x = d d d d +d d d d

__ __ __

0 1 2 3d d d d

__ __ __ __ __ __

0 0 1 2 3 0 1 2 3x = d d d d + d d d d

4 Bit to 2 Bit
Encoder

d0

d1

d2

d3

x1

x0

Inputs Outputs

Block Diagram

Logic Diagram

relationships in the truth table (Table 1.29) are used to design the logic circuit in
Figure 1.12 . The outputs x 1 and x 0 are generated as the sum of the products of inputs
where there are 1 s in the x 1 and x 0 columns as signifi ed by the bolded quantities.

 An application of the encoder is data compression in which we could shrink
4 bits of input to 2 bits of output in a database application that deals with large
quantities of data. For example, representing d 0 d 1 d 2 d 3 = 0100 as x 1 x 0 = 01.

32 Computer, Network, Software, and Hardware Engineering with Applications

 Figure 1.13 The 4 - to - 1 multiplexer block and logic diagrams.

4-to-1
Multiplexer

d0

d1

d2

d3

Z

Inputs OutputBlock Diagram

S0 S1

Selectors

Logic Diagram

Z =
__ __ __ __

0 1 0 0 1 1 0 1 2 0 1 3S S d +S S d +S S d +S S d

S0

S1

__

0S

__

1S

d0

d1

d2

d3

__ __

0 1 0S S d

__

0 1 1S S d

__

0 1 2S S d

0 1 3S S d

 Table 1.29 Truth Table for 4 - Bit to 2 - Bit Decoder

 Inputs Outputs

 d 0 d 1 d 2 d 3 x 1 x 0
 1 0 0 0 0 0
 0 1 0 0 0 1
 0 0 1 0 1 0
 0 0 0 1 1 1

 x d d d d d d d d , x =d d d d d d d d1 0 1 2 3 0 1 2 3 0 0 1 2 3 0 1 2 3= + + .

 Multiplexers

 A multiplexer acts as a data selector, meaning that if the multiplexer has n select
lines, one of 2 n inputs can be selected as the output. For example, in Figure 1.13 ,
using selector lines S 0 and S 1 , one of four inputs, d 0 , d 1 , d 2 , d 3 , can be selected at the
output Z. The output equation for Z is derived from Table 1.30 , noting that a given
output is produced for given values of the selectors, for example, Z = d 0 when

Digital Logic and Microprocessor Design 33

 Table 1.30 Truth Table for 4 - to - 1 Multiplexer

 Selector Output

 S0 S1 Z
 0 0 d 0
 0 1 d 1
 1 0 d 2
 1 1 d 3

 Z S S d S S d S S d S S d0 1 0 0 1 1 0 1 2 0 1 3= + + + .

 S S0 1 11= . Multiplexers differ from decoders and encoders by virtue of select lines
that cause inputs to be produced at the output. An application is to combine data
received from the Internet on input lines d 0 , d 1 , d 2 , and d 3 onto a single microproces-
sor memory line Z, if an Internet interrupt has occurred, that has a code represented
by selector lines S 0 S 1 .

 Demultiplexers

 A demultiplexer causes an input x to be transferred to one of 2 n output lines, where
n is the number of select inputs in Figure 1.14 . Output equations for a demultiplexer
with two select inputs and four outputs are shown in the truth table, Table 1.31 . The
demultiplexer does the reverse of the multiplexer; for example, it distributes Internet
data, which have been multiplexed on input line x, to each of four microprocessor
output ports d 0 , d 1 , d 3 , and d 4 .For example, Internet data will be distributed to output

port d 0 when S S0 1 = 11 in Table 1.31 .

 SEQUENTIAL CIRCUITS

 A clocked synchronous sequential circuit uses fl ip - fl ops to store data, and its outputs
depend on both the previous and current values of inputs [HAR07] . These circuits
are called state machines, wherein states are stored in fl ip - fl ops, and state changes
are triggered by CPs. In an asynchronous sequential circuit , the completion of an
operation starts the next operation (i.e., a clock is not needed).

 Flip - Flops and Latches

 A fl ip - fl op is a clocked synchronous sequential circuit with a 1 - bit memory. The
output of the fl ip - fl op can be changed by the rising or falling edge of a CP. A clock
prevents the fl ip - fl op from changing state when spurious inputs occur. Instability can
arise if inputs change during the CP. This problem is avoided by holding data stable
for specifi ed periods of time before and after the CP. The former period is called
 setup time and the latter is called hold time .

34 Computer, Network, Software, and Hardware Engineering with Applications

 Table 1.31 Truth Table for 1 - to - 4 Demultiplexer

 Select
inputs

 Data
input Data output

 S 0 S 1 d 0 d 1 d 2 d 3
 0 0 x S S x0 1 0 0 0
 0 1 x 0 S S x0 1 0 0
 1 0 x 0 0 S S x0 1 0
 1 1 x 0 0 0 S 0 S 1 x

 d S S x; d S S x; d S S x; d S S x1 2 0 3 0 10 0 1 0 1 1= = = = .

 Figure 1.14 The 1 - to - 4 demultiplexer block and logic diagrams.

1-to-4
Demultiplexer
Block Diagram

x

Data Input

d0

d1

d2

d3

Outputs

S0 S1
Select Inputs

1-to-4
Demultiplexer
Logic Diagram

S0

S1

__

0S

__

1S

x

d0 =
__ __

0 1S S x

d1 =
__

0 1S S x

d2 =
__

0 1S S x

d3 = S0S1x

Digital Logic and Microprocessor Design 35

 Flip - fl ops use storage circuits called latches. The term “ latch ” refers to the
ability to receive and hold data (set) until the latch is reset. The most common latch
is the SR (set – reset). An application of a latch is to set and hold an interrupt fl ag
when an input device needs attention by the microprocessor. A fl ip - fl op is a latch
with clock input (CLK). Flip - fl ops implement changes in circuit states that are trig-
gered by a CP. For example, when the CP and the input line cause the fl ip - fl op to
assume the set state, a computer program would execute a branch operation; when
the CP and the input line cause the fl ip - fl op to assume the reset state, a computer
program would return to the main line of the program. An interesting question is
how a latch or fl ip - fl op manages to be in the initial state. The answer is that the latch
or fl ip - fl op will be in the initial state determined by the initial state settings wired
into the fl ip - fl op.

 SR Latch

 The logic rules of the SR latch are the following:
 NOR Gate output = 1, if all inputs = 0; output = 0, if any input = 1.
 These rules are applied in the truth table shown in Table 1.32 and the logic

diagram in Figure 1.15 . Notice in Table 1.32 and Figure 1.15 that there are illegal
next states in the case of S = 1 and R = 1 because it is not possible to simultaneously
set and reset the latch.

 Reset – Set (RS) Flip - Flop

 The RS fl ip - fl op is a clocked SR latch. This fl ip - fl op is important because all other
fl ip - fl ops are derived from it. Figure 1.16 shows the implementation of this fl ip - fl op
using NAND gates and the truth table, Table 1.33 , shows the gate relationships for
present state at time t and next state at time (t + 1), including simultaneous set and
reset that should be avoided. In Figure 1.16 , notice that there is feedback from Gate
3 to Gate 4 of Q(t + 1) and from Gate 4 to Gate 3 of Q t 1()+ .

 The design in Figure 1.16 is obtained by employing the equations below, which
in turn are obtained from Table 1.33 and the K - map in Table 1.34 . The components
of the equations are annotated on Figure 1.16 . The K - map is constructed by noting
whether the next state output Q(t + 1) is a 1. If it is, the corresponding present state

 Table 1.32 SR Latch Truth Table Using NOR Gates

 S
 Q(t) (present

state) R
 Q t()

(present state)
 Q(t + 1) (Gate #1)

(next state)
 Q t()+ 1 (next

state)

 0 0 0 1 0 (no change) 1(no change)
 1 0 1 1 0 (illegal) 0 (illegal)
 0 1 1 (reset) 0 0 (change state) 1(change state)
 1 (set) 0 0 1 1(change state) 0(change state)

36 Computer, Network, Software, and Hardware Engineering with Applications

output Q(t) is inserted into the K - map. The corresponding next state and present
state outputs are bolded in Table 1.33 . You can see that Table 1.33 contains eight
entries, corresponding to whether the Present State Q(t) (Gate #3) is 0 or 1 ; however,
Figure 1.16 shows fi ve cases, suffi cient to demonstrate the logic of the RS
fl ip - fl op.

 Based on Table 1.33 , the K - map is constructed in Table 1.34 . Then the K - map
is used to formulate the equations for the fl ip - fl op:

 Figure 1.15 SR latch logic diagram.

R = 0
Q(t) = 0

Q(t) = 1

Q(t) = 1

Q(t) = 0

Q(t) = 0

S = 0

Q(t + 1) = 1

No Change in Output

R = 1
Q(t) = 1

Q(t) = 0

S = 0

Q(t + 1) = 0

Reset: Change Output

R = 0

S = 1

Q(t) = 0

Set: Change Output

R = 1

S = 1

Q(t) = 0

Q(t) = 1

Q(t) = 0

Q(t) = 1

Q(t) = 1

Q(t) = 0

Q(t + 1) = 0

Q(t + 1) = 0

Q(t + 1) = 0

Q(t + 1) = 1

Q(t + 1) = 0

Q(t + 1) = 1

Q(t + 1) = 0

Q(t + 1) = 0

Illegal States

Digital Logic and Microprocessor Design 37

 Figure 1.16 RS fl ip - fl op.

CLK

S

R

1

2

3

4

Q(t)

Q (t)

0

0

1

1

1

0

1

1

CLK

S

R

Q(t) Q(t + 1)

1

1

1

0

Q(t)0

0

0

1

Q(t + 1)
S

CLK

R

Q(t) Q(t + 1)

Q(t)
1

1
1

0

0

1

1

0

0

1 # 3

1 # 3 # 1 # 3

2 # 4

2 # 4 # 2 # 4

Q (t + 1)

0

Q (t + 1)

1

1

0

Q(t + 1)

1

CLK

S

R 0

1

1

0
Q(t)

Q (t)

1 1

0

Q(t + 1)
1

Q (t+1)
0

Reset

Set

S 1

R 1

CLK
1

0

0

Q(t)

Q (t)

0

1

1 Illegal state

1 # 3

2 # 4

1
0

1 0

1

Q(t + 1)
1

Q (t+1)
1

S

R

R Q(t)

S+RQ(t)

___ ___

S (R+ Q (t))

1

Hold Hold

 Table 1.33 RS Flip - Flop Truth Table

 S (Gate #1) R (Gate #2)
 Present state

Q(t) (Gate #3)

 Next state
Q(t + 1)

(Gate #3)

 Present
state Q t()
(Gate #4)

 Next state
 Q t()+ 1
(Gate #4)

 0 0 0 0 (hold) 1 1
 0 0 1 1 (hold) 0 0
 0 1 (reset) 0 0 1 1
 0 1 (reset) 1 0 0 1
 1 (set) 0 0 1 1 0
 1 (set) 0 1 1 0 0
 1(illegal) 1(illegal) 0 1 1 0
 1(illegal) 1(illegal) 1 1 0 0

38 Computer, Network, Software, and Hardware Engineering with Applications

 Table 1.34a : (Gate #3): Q t 1 S R Q t() ()+ = +

 Table 1.34b : (Gate #4): Q t 1 S R Q t() (())+ = +
 Problem: What are the illegal states of the RS fl ip - fl op?

 Answer: The states S = 1 (set) and R = 1 (reset) are not allowed in an RS fl ip -
 fl op because set and reset cannot exist simultaneously (indeterminate state).

 Delay (D) Flip - Flop

 The D or delay fl ip - fl op, shown in Figure 1.17 , uses NAND gates. It is widely used
in computers for transferring data. Several of these fl ip - fl ops can be used to design
a CPU register, where each fl ip - fl op is used to store 1 bit [RAF05] . This fl ip - fl op
delays the input appearing at the output by one CP. The D input goes directly into
the S input and the complement of the D input goes to the R input. The D input is
sampled during the occurrence of the CP. If D is 1, the fl ip - fl op is switched to the
set state (unless it was already set). If D is 0, the fl ip - fl op switches to the clear state.
If CP = 1, the output Q(t + 1) of the upper fl ip - fl op is fed to the input of the lower
fl ip - fl op in Figure 1.17 . On the other hand, if CP = 0, Q(t) of the upper fl ip - fl op is
fed to the input of the lower fl ip - fl op.

 Table 1.34a K - Map

S R Present State Q(t)
(Gate #3)

0 1

0 0 1

0 1

1 1 1 1

1 0 1 1

S R— Q(t)

 Table 1.34b K - Map

S R Present State Q
—

(t)
(Gate #4)

0 1

0 0 1

0 1 1 1

1 1

1 0

S
—

R S
—

Q
—

(t)

Digital Logic and Microprocessor Design 39

 Problem: Given the above rules for the behavior of the D fl ip - fl op, develop its
truth table.

 Solution: These relationships are embodied in Table 1.35 .

 A D fl ip - fl op circuit can also be triggered by the negative - going edge of the CP, as
opposed to being activated by pulse duration. The timing diagram for such a circuit

 Figure 1.17 D fl ip - fl op.

1

No change

No change

Set state

CP

D

Q(t + 1)

Timing diagram

Q(t + 1)
0

1

Q(t + 1)

Q(t + 1) = D

1

0

1

D0

CP

S
Q(t)

0

1
R

1

1

0

0

1

Q (t+1)

Q (t)

0

0

1

D0 S

1

1
R

0

1

1

0

1

CP

Q(t + 1) = D

Q (t+1)

Q (t + 1)

Q (t + 1)

Q(t)

Q (t)

D

CP
R

S Q(t)

Q (t)

1

0
1

0

1

0

1

0 1

D
S

R

Q(t)

Q (t)

1

1 0

1

CP

0

0

0
1

1
0

Clear state

0

0

1

1

0

0

1

0

1

1

1

40 Computer, Network, Software, and Hardware Engineering with Applications

is shown in Figure 1.17 . As the timing diagram shows, the D input is refl ected in
the Q(t + 1) (next state) output on the negative edge of the CP. Q(t + 1) follows the
D input regardless of the present state Q(t), if CP = 1 . If CP = 0, there is no change
in the output. This property can be applied, for example, to transferring data from
an input device (D) to microprocessor memory port Q(t + 1), according to the data
transfer rules of Figure 1.17 .

 JK Flip - fl op

 A JK fl ip - fl op is a refi nement of the RS fl ip - fl op by defi ning and allowing the illegal
state of the RS fl ip - fl op. In Figure 1.16 , inputs J and K behave like inputs S and R
to set and clear the fl ip - fl op (note that in a JK fl ip - fl op, the letter J is for set and the
letter K is for clear). When logic 1 inputs are applied to both J and K simultaneously,
the fl ip - fl op switches to its complement state (e.g., if Q = 0, it switches to Q = 1 in
Figure 1.18).

 Note that because of the feedback connection in the JK fl ip - fl op, a CP signal
that remains a 1 (while J = K = 1) after the outputs have been complemented once
will cause repeated and continuous transitions of the outputs. To avoid this, the CPs
must have a time duration less than the propagation delay through the fl ip - fl op.

 Table 1.36 shows how the state of output Q at t + 1 changes as a function of
the original state of Q(t) and the set input J and the clear input K. The K - map for

 Table 1.35 D Flip - Flop Truth Table

 D CP
 Present

state Q(t)
 Next state Q(t + 1) = D

when CP = 1
 Present

state Q t()
 Next state Q t D()+ =1

when CP = 1

 0 0 0 0 (no change) 1 1 (no change)
 0 1 1 0 (clear) 0 1
 1 0 1 1 (no change) 0 0 (no change)
 1 1 0 1 (set) 1 0

 Figure 1.18 JK fl ip - fl op circuit.

K

CP

Q(t)

J

Q(t)

KQ(t) = 0

Q(t)

Q(t)

Q(t)

Q(t)

JQ(t)

___________ ________ _ ___ _
KQ(t) + Q(t) = KQ(t)Q(t) = (K + Q(t))(Q(t) = KQ(t)

____________ ____ ___
J Q(t) + Q(t) = (J + Q(t))(Q(t) = JQ(t)

___ _
Q(t + 1) = JQ(t) + KQ(t)

________________ _ _ __ _ __
Q(t + 1) = JQ(t) + KQ(t) = (JQ(t))(K + Q(t)) = (J(K + Q(t)) + KQ(t)

Next States

Digital Logic and Microprocessor Design 41

JK fl ip - fl op in Table 1.37 is derived from the truth table in Table 1.36 by plugging
 1 s in the map wherever there is a Q(t + 1) = 1 in the Table 1.36 (bolded). For
example, when J = 0, K = 0, Q(t) = 1, and Q t + 1) = 1 in Table 1.36 , a 1 is placed
in the Q(t) = 1 column in Table 1.37 .

 Problem: Based on the K - map, what are the next state equations for Q(t + 1)
and Q t 1()+ ?

 Answer: Referring to Table 1.37 , the next state Q(t + 1) is governed by the
following equation:

 Q t 1 J Q t K Q t .() () ()+ = +

 Using this equation for Q(t + 1), the equation for Q t 1()+ can be computed as
follows:

 Q t J Q t K Q t J Q t K Q t J(K Q t K Q t .() () () (())(()) (()) ()+ = + = + + = + +1

 These equations are annotated on Figure 1.18 .

 Table 1.36 JK Flip - Flop Truth Table

 J K CP
 Q(t) present

state
 Q(t + 1)

next state
 Q t()

present state
 Q t 1()+
next state

 0 0 1 0 0 1 1
 0 1 (clear) 1 0 0 1 1
 1(set) 0 1 0 1 1 0
 1 1 1 0 1 1 0
 0 0 1 1 1 0 0
 0 1(clear) 1 1 0 0 1
 1(set) 0 1 1 1 0 0
 1 1 1 1 0 0 1

 Table 1.37 K - Map for JK Flip - Flop

J K Q(t) Present
State

Q(t) Present
State

0 1

0 0 1

0 1

1 1 1

1 0 1 1

J Q
—

(t) K
—

Q(t)

42 Computer, Network, Software, and Hardware Engineering with Applications

 T Flip - Flop

 The T fl ip - fl op is a single input version of the JK fl ip - fl op [RAF05] . It is typically
used in the design of binary counters (covered later in the section “ Design of Binary
Counters, ” where complementation of the output is required. For example, in Table
 1.38 when T = 1, the input Q(t) is toggled, producing its complement in output
Q(t + 1). By examining the gate operations in Figure 1.19 , at the Q output, we see that:

 Q t TQ t T Q t TQ t T Q t T Q t T Q t T Q t() () () (())(()) (())(()) (+ = + = = + + =1)) ().+ T Q t

 Furthermore, the equation for Q t()+1 is derived as follows:

Q t T Q t T Q t T Q t T Q t

T Q t T Q t T Q

() () () (())(())

(())(())

+ = + =

= + + =

1

(() ().t T Q t+

 Note that in Figure 1.19 feedback from the fl ip - fl op outputs to the inputs is used to
obtain the desired outputs at time t + 1.

 Problem: Based on the above equations, develop the T fl ip - fl op truth table.

 Solution: The truth table is shown in Table 1.38 .

 Triggering of Flip - Flops

 There are situations where it is useful to have the output change only at the rising
or falling edge of the CP, rather than during the CP. This stabilizes the circuit because

 Figure 1.19 T fl ip - fl op circuit diagram.

T

CP

CP

Q(t)
Q(t) TQ(t)

_
T

Q(t)

Q(t)

TQ(t)

Q(t)

________ ________ ___ ____

______ ___ ______ ____ __

TQ(t) + TQ(t) = (TQ(t))(TQ(t)) = (T + Q(t))(T + Q(t)) = TQ(t) + TQ(t)

__________ _____
_______ _______ _______

__ _________ ___ ___ ____ __ ____

Q(t + 1) = TQ(t) + TQ(t) = (TQ(t)) (TQ(t) = (T + Q (t)) (T + Q(t)) = TQ(t) + TQ(t)

 Table 1.38 T Flip - Flop Truth Table

 T CP Q(t) Q t 1 T Q(t) T Q(t)()+ = + Q t() Q t T Q t T Q t() () ()+ = +1

 0 1 0 0 (no change) 1 1 (no change)
 1 1 0 1 (toggle) 1 0 (toggle)
 0 1 1 1 (no change) 0 0 (no change)
 1 1 1 0 (toggle) 0 1(toggle)

Digital Logic and Microprocessor Design 43

all changes are synchronized to the rising or falling edge of the CP. For example,
when an input interrupt occurs, it should be held by the microprocessor until it can
be serviced during the CP and only released on the falling edge of the CP. An edge -
 triggered fl ip - fl op achieves this by combining a pair of latches in series. Figure 1.20
shows an edge - triggered D fl ip - fl op where two D latches are connected in series,
one directly, and one through an inverter. The fi rst latch is called the master latch.
When CLK is a 1 at Step 1, with a positive edge trigger, the master latch is enabled
but the second latch, called the slave latch, is disabled with a negative edge trigger,
so that a 1 is produced at the Q output of the master latch and a 0 is produced at the
output of the slave latch. A 1 is produced at the master latch output because when
CLK = 1, the Q output follows the D input. Contrariwise, when CLK is a 0 at Step
2, with a negative edge trigger, the master latch is disabled but the slave latch is
enabled with a positive edge trigger (a negative edge is made positive with an
inverter) so that a 1 is produced at the Q output of the slave latch by the Q output
at the slave latch following the D input. In Step 2 it is assumed that Q still equals
1 in the master latch from Step 1. The Q output of the master latch does not change
when CLK = 0, so that a 1 is transferred from the master latch to the slave latch.

 Analysis of Asynchronous Sequential Circuits

 As you have seen, edge - triggered fl ip - fl ops change state at the edge of a synchro-
nizing CP. Many circuits require the initialization of fl ip - fl ops to a known state

 Figure 1.20 Edge - triggered fl ip - fl op.

Q

QSET

CLR

DD

Q

QSET

CLR

D

Master Slave

Q

Latch Latch

Q
1

1

0

1

Positive Edge
Triggered

Q

QSET

CLR

D

Q

QSET

CLR

DD1
1

1

Q

Q

1

Latch

Master Slave

Latch

Negative Edge
Triggered

0

1

disabled

enabled

CLK CLK

CLKCLK

CLK

CLK
0

disabled
enabled

Step 1: Q at Master = 1

Step 2: Q at Slave = 1

0

1

44 Computer, Network, Software, and Hardware Engineering with Applications

 Figure 1.21 Analysis of asynchronous sequential circuit.

a

z2

z1

Z1 =

__

a

__

2z

__ __

2a + z

__

a

z2

a + z1
(a + z1)

__ __

2(a + z)

Z2 = (a + z1)
__ __

2(a + z)
a + z1

z2

__

a +

Next statesPresent states

z1

z2

independent of the clock signal. Sequential circuits that change states whenever a
change in input values occurs, independent of the clock, are referred to as asynchro-
nous sequential circuits . Synchronous sequential circuits, latches, and fl ip - fl ops, on
the other hand, change state only at the edge of the CP. For asynchronous sequential
circuits, inputs are used to either set or clear the circuit without using the clock.
Figure 1.21 is an example of an asynchronous sequential circuit. The next state
equations for Z 1 and Z 2 — as a function of present states a, z 1 , and z 2 — provide the
logic for the outputs of the circuit in Figure 1.21 . Feedback from outputs to inputs
in Figure 1.21 produces the desired next states. The output equation

 Z a z a z) a a a z a z z z a z a z z z1 1 2 1 2 1 2 1 2= + + = + + + = + +()(1 2

 can be reduced because the term a a = 0, and the last term z z1 2 does not change the
value of the equation, as demonstrated by the K - map in Table 1.40 that is used to
minimize this equation, producing Z a z a z1 1 2= + . Thus, the resultant terms a z1
and a z2 are identifi ed in the K - map. The validity of this transformation is shown
in the truth table for Z 1 , Table 1.39 . The K - map in Table 1.40 is produced by record-
ing 1s in the map corresponding to 1 s (bolded) that appear for Z 1 in the truth table.
This example demonstrates the fact that K - maps can accomplish Boolean expression
reduction that is not possible with algebraic manipulation.

 Problem: Reduce output equation Z2 by developing the truth table and corre-
sponding K - map.

 Solution: The output equation Z a z a z) a a a z a z z z2 1 2 1 2= + + = + + + =()(1 2
can be reduced, as shown above, because the fi rst term a a = 0

and the last term does not change the value of the equation, as demonstrated
by the K - map in Table 1.41 that is used to minimize this equation, producing
 Z a z a z2 1 2= + ,where it is shown that the term z 1 z 2 is redundant. Thus, the
resultant terms a z1 and a z 2 are identifi ed in the K - map. The validity of this

a z a z1 + 2

Digital Logic and Microprocessor Design 45

 Table 1.39 Truth Table for Z a z a z a z a z1 1 2 1 2= + + +()()

 a z 1 z 2
 Decimal

code = az 1 z 2 (a + z 1) ()a z2+ Z a z a z1 1 2= + +()() a z1 a z2 Z a z a z1 1 2= +

 0 0 0 0 0 1 0 0 0 0
 0 0 1 1 0 1 0 0 0 0
 0 1 0 2 1 1 1 1 0 1
 0 1 1 3 1 1 1 1 0 1
 1 0 0 4 1 1 1 0 1 1
 1 0 1 5 1 0 0 0 0 0
 1 1 0 6 1 1 1 0 1 1
 1 1 1 7 1 0 0 0 0 0

 Table 1.40 K - Map for Z a z a z a z +a z1 1 2 1 2= + + =()()

z1 z2 a

0 1

0 0 0 1

0 1 0 0

1 1 1 0

1 0 1 1

a— z1 z1
—z2 a —z2

redundant

 Table 1.41 K - Map for Z a z a z a z +a z2 1 2 1 2= + + =()()

z1 z2 a

0 1

0 0 0 0

0 1 0 1

1 1 1 1

1 0 1 1

a— z1 z1z2 az2

redundant

transformation is shown in the truth table for Z 2 (Table 1.42). The K - map is
produced by recording 1s in the map corresponding to 1 s (bolded) that appear
for Z 2 in the truth table.

 The state transition table, depicting the state changes in transitioning from input
variables a, z 1 , and z 2 to output variables Z 1 and Z 2 , is shown in Table 1.43 . This

46 Computer, Network, Software, and Hardware Engineering with Applications

table is constructed by noting the values of Z 1 corresponding to a = 0 and a = 1 and
values of Z 2 corresponding to a = 0 and a = 1 in Tables 1.39 and 1.42 , respectively,
and recording the relationships in Table 1.43 . Table 1.43 is used to indicate transi-
tions from microprocessor state Z 1 = 1 to state Z 2 = 1 and vice versa. Consider the
following application: when a = 1, z 1 = 0, and z 2 = 0 (decimal code 4), Z 1 is in the
next state = 1 processing transactions. However, when a = 1, z 1 = 0, and z 2 = 1
(decimal code 5), the microprocessor transitions to the next state Z 2 = 1 to receive
additional transaction input.

 Another application of the asynchronous sequential circuit is the occurrence of
asynchronous inputs to a microprocessor that arrive from the Internet, not on sched-
ule (not governed by CP), but unscheduled (i.e., asynchronously). For example, let
a, z 1 , and z 2 be the binary bits of a decimal transaction code, arriving from the
Internet, in a database application, where one type of transaction is processed by a
microprocessor at its input Z 1 and the second type at its input Z 2 . Suppose the allow-
able decimal codes at Z 1 are 2 , 3 , 4 , and 6 in Table 1.39 (bolded), and the allowable
codes at Z 2 are 2 , 3 , 5 , and 7 in Table 1.42 (bolded). Then, Tables 1.39 and 1.42
provide the required transaction processing logic for Z 1 and Z 2 , respectively.

 Table 1.42 Truth Table for Z a z a z)2 1 2= + +()(

 a z 1 z 2
 Decimal

code = az 1 z 2 (a + z 1) (a z)2+ Z Z a z a z2 2 1 2= = + +()() a z1 az 2 Z a z a z1 22 = +

 0 0 0 0 0 1 0 0 0 0
 0 0 1 1 0 1 0 0 0 0
 0 1 0 2 1 1 1 1 0 1
 0 1 1 3 1 1 1 1 0 1
 1 0 0 4 1 0 0 0 0 0
 1 0 1 5 1 1 1 0 1 1
 1 1 0 6 1 0 0 0 0 0
 1 1 1 7 1 1 1 0 1 1

 Table 1.43 State Transition Table for Asynchronous Sequential Circuit

 Present
state

 Next state

 a = 0 a = 1

 z 1 z 2 Z a z a z1 21 = + Z a z a z1 22 = + Z a z a z1 21 = + Z a z a z1 22 = +

 0 0 0 0 1 0
 0 1 0 0 0 1
 1 0 1 1 1 0
 1 1 1 1 0 1

Digital Logic and Microprocessor Design 47

 Relationship among Inputs, Flip - Flops,
and Output States

 Figure 1.22 shows an example of analyzing the inputs, D fl ip - fl ops, and output states
of an asynchronous sequential circuit. The diagram shows the equations for the next
states Q x and Q y , as a function of the present states D x and D y , recalling that for D
fl ip - fl ops, output Q follows input D.

 The equations below produce the values shown in the state transition table,
Table 1.44 , which shows the relationships among components.

 Q X Y A D ,x x= + =()

 Q X Y A,x = +()

 Q A X D ,y y= + =

 Q A X AX,y = + =

 B AY AY.= +

 An application is the processing of transaction code bits occurring at microprocessor
input ports X, Y, and A. An output B = 1 is produced by setting a fl ag B in a micro-
processor register when correct transaction codes are received. For example, if
decimal interrupt code 1, 3, 4, 6, or 7, corresponding to X, Y, A = 001, 011, 100,

 Figure 1.22 D fl ip - fl ops in asynchronous sequential circuit.

Q

QSET

CLR

D
X

Y

A
X + Y

XxQ = (X + Y)A = DDx

= (X + Y) A

Qy =

A + X = Dy

Q

QSET

CLR

D
X

A

X

A + X Dy

___ ___ ___

yQ =A + X = AX

(X + Y)A

B =
__ __

AY + AY

X

Y

X

Present
states

Next
states

Y

A

A

Y

___ ___

A Y

Y

Output

A

AY

CLK ___

xQ

Microprocessor input ports

Set flag in microprocessor
register

48 Computer, Network, Software, and Hardware Engineering with Applications

110, or 111 in Table 1.44 , respectively, is received, the fl ag would be set. The micro-
processor queries this fl ag to determine when to process transactions. The bolded
terms in Table 1.44 indicate when the fl ag B is set.

 TYPES OF SYNCHRONOUS SEQUENTIAL CIRCUITS

 Mealy and Moore Machines

 In the Mealy machine, the output states depend on the inputs and the present states
of the fl ip - fl ops [RAF05] . In the Moore machine, output states depend only on the
present states of the fl ip - fl ops. For example, a Mealy machine would be used to
control the execution sequence of a microprocessor that uses both data inputs and
the current state of the program (i.e., program address) to decide which instruction
to execute next (e.g., doing database management using input data from the Internet).
On the other hand, the Moore machine would be used to control microprocessor
program execution when only the current state of the program is relevant (e.g., doing
a matrix multiplication on data stored in memory). Thus, the Mealy machine is the
more versatile of the two.

 Minimization of States

 Figure 1.23 shows a state diagram for a synchronous sequential circuit, which is
classifi ed as a Mealy machine because outputs depend on both present states and
inputs, where two of the paths are highlighted in red and green. It may be possible
to minimize the number of states in these circuits by developing the state sequence
diagram, based on Figure 1.23 , to see whether there are any redundant states. If there
are, the reduction in states is refl ected in the revised state sequence table. Using
Figure 1.23 and the original state sequence table, Table 1.45 , state Z is identifi ed as
being redundant because the next state for both states V and Z is W, and the state
changes have the same inputs and outputs (1, 1). Therefore, state Z is noted as

X Y A+() A X= +

 Table 1.44 State Transition Table for the Analysis of Asynchronous Sequential Circuit

 Inputs Next state Flip - fl op inputs Output

 X X Y Y A A
 Qx =
 Dx Qx Qy = Dy Qy

 D Qx x= = D Qy y=
 B AY AY= +

 0 1 0 1 0 1 1 0 1 0 1 1 0
 0 1 0 1 1 0 1 0 1 0 1 1 1
 0 1 1 0 0 1 1 0 1 0 1 1 0
 0 1 1 0 1 0 0 1 1 0 0 1 1
 1 0 0 1 0 1 1 0 0 1 1 0 1
 1 0 0 1 1 0 0 1 1 0 0 1 0
 1 0 1 0 0 1 1 0 0 1 1 0 1
 1 0 1 0 1 0 0 1 1 0 0 1 1

Digital Logic and Microprocessor Design 49

redundant in Figure 1.23 and Table 1.45 . Another state indicated as redundant in
Figure 1.23 and Table 1.45 is Y because both Y and W have the next state V, with
same state change inputs and outputs (1, 0). State Y is also noted as redundant in
Figure 1.23 and Table 1.45 . Therefore, states Z and Y do not appear in the revised
state sequence table, Table 1.46 .

 Figure 1.24 shows the result of eliminating redundant states in the state diagram.
It is important to note that it may not be possible to eliminate “ redundant states ”

 Figure 1.23 State diagram for minimization of states.

V W X Y Z

0/0

1/0

1/1

1/0

1/0

0/0

0/0 0/0

1/1

States: V,W,X,Y,Z

Input
Output

Input Sequence: (0 1 0 1) (1 0 1) (1 0 0 0 1 1) (1 0 0 0)

0/0

1

2

3

4

5

6

7
8

9 10

1112

13

14

15

16

Path Sequences: (1,2,3,4) (5,6,7) (8,3,9,10,11,12) (13,14,15,16)

Branch Identifier

0/1

Output Sequence:(0 1 1 0) (1 0 0) (1 1 0 0 1 0) (1 0 0 0)

Redundant State

 Table 1.45 Original State Sequence Table

 Originating state V V W X Y W V W Z
 States Y and Z
are redundant Branch 1 2 3 4 6 12 10 5 12

 Input 0 1 0 1 1 1 1 0 0

 Next state V W X V V V W Y V

 Output 0 1 1 0 0 0 1 0 0

 Table 1.46 Revised State Sequence Table (Eliminating Redundant States)

 Next state Output

 Present state Input = 0 Input = 1 Input = 0 Input = 1

 V V W 0 1
 W X V 1 0
 X V 0

50 Computer, Network, Software, and Hardware Engineering with Applications

because these states could be associated with important functions. For example,
redundant states could be associated with two microprocessors — one the primary,
currently executing, and the other, a backup, redundant microprocessor, designed to
take over if the primary fails. However, in general, digital circuitry can be simplifi ed
by eliminating redundant states.

 Design of Synchronous Sequential Circuits

 To design synchronous sequential circuits, or any circuit for that matter, start with
your objective. For example, suppose you want a microprocessor to produce an
output Z dependent on input A (e.g., input data A has arrived from the Internet, and
the microprocessor produces output Z); the present state of your computer program
is represented by X (e.g., ready to read input data A) and the present state of the
input buffer A is represented by Y (e.g., input buffer A empty). You need to identify
the transition to the next computer program state, X + , (e.g., fi ll buffer with input A
data) and Y + (e.g., input A buffer full). Thus, referring to the state diagram in Figure
 1.25 , if an input occurs on microprocessor line A = 1, and the present program state
are X = 1, Y = 1, representing instruction ready to execute and input buffer A empty,
respectively, output is produced on microprocessor line Z = 1, and the program
transitions to next state X + = 0 (fi ll buffer) and Y + = 0, (input buffer A full). The
state diagram in Figure 1.25 is an example of a Mealy machine circuit specifi cation
because outputs depend on both inputs and states of the circuit.

 To design your circuit, identify the states, inputs that cause state transitions, and
outputs produced by inputs and state transitions, as in the above example. Then, note

 Figure 1.24 Reduced state diagram.

V W X

0/0

1/0

1/1

1/0

0/0

States: V, W, X

Input
Output

Input Sequence: (0 1 0 1) (1 1)

1

2

3

4

5

6

Path Sequences: (1, 2, 3, 4) (5, 6)

Branch Identifier

0/1

Output Sequence: (0 1 1 0) (1 0)

Digital Logic and Microprocessor Design 51

in Figure 1.25 and in Table 1.47 the present states X and Y and input A that generate
next state output X + = 1. For example X = 0, Y = 1, and A = 1 (or XYA) produce
X + = 1. Next, for example, use the D fl ip - fl op, noting that the output corresponding
to next state X + is designated as D x and its formulation is the following:

 D XYA XYA XYA XY A A XY XYA.x = + + = + = +()

 Similarly, produce the next state Y + formulation in terms of a D fl ip - fl op output, as
follows:

 Figure 1.25 State diagram for design of sequential circuit.

10

00

11

01

0/1

0/1

1/0

0/0

0/1

1/0

1/1

A: input

Z: output

X, Y: present state: ready to
execute. Input buffer A empty

X+, Y+: next state: fill buffer,
input buffer A full

1/1

 Table 1.47 State Table for Sequential Circuit

 Present
states Input

 Next
states Flip - fl op inputs Output

 X Y A X + Y + D X XY XYAx = = ++ D Y YA YAy = = ++ Z YA X= +

 0 0 0 0 0 0 0 1
 0 0 1 0 1 0 1 0
 0 1 0 1 1 1 1 0
 0 1 1 1 0 1 0 0
 1 0 0 0 0 0 0 1
 1 0 1 1 1 1 1 1
 1 1 0 0 1 0 1 1
 1 1 1 0 0 0 0 1

52 Computer, Network, Software, and Hardware Engineering with Applications

 D XYA XYA XYA XYA YA X X YA X X YA YA .y = + + + = + + + = +() () ()

 Also, develop the equation for output Z by noting in Figure 1.25 the present states
X and Y and input A that generate Z = 1 output, producing the following equation:

 Z XYA XYA XYA XYA YA X X XY A A YA XY .= + + + = + + + = +() () ()

 Then, using these equations, develop the state table in Table 1.47 . Next, formulate
the K - maps in Tables 1.48 – 1.50 . Note that to construct the K - maps, 1s are placed
in the cells of the maps wherever 1s appear for D x , D y , and Z in the state table. Recall
that for D fl ip - fl ops, inputs are equal to the next states of the circuit. Last, based on
the fl ip - fl op and output equations, design the circuit in Figure 1.26 .

 Message Processing Design

 Synchronous sequential circuits are highly adaptable to message processing systems,
as shown in Figure 1.27 . As shown in the fi gure, a message processing system

 Table 1.48 K - Map for D XYA XYA XYA XY A A XY XYAx = + + = + = +()

YA

X 00 01 11 10

0 1 1

1 1

X Y
—

A X
—

Y

 Table 1.49 K - Map for Dy = X
—

Y
—

A + X Y
—

A + X
—

Y A— + XY A— =
Y
—

A(X
—

 + X) + Y A—(X
—

 + X) = (Y
—

A + Y A—)

YA

X 00 01 11 10

0 1 1

1 1 1

Y
—

A Y A—

 Table 1.50 K - Map for Z XYA XYA XYA XYA= + + +

YA

X 00 01 11 10

0 1

1 1 1 1

Y
—

A
—

XY

YA X X XY A A YA XY= + + + = +() () ()

Digital Logic and Microprocessor Design 53

 Figure 1.26 Logic diagram for synchronous digital circuit.

A
Dx

Q
x

xQ

X

X

Dy

Q
y

yQ

Y

X

Y A

Y

Y

X

X

Y

X Y

___ ___

X Y + X Y A

A

Y

___ ___

Y A Y A+

X

Y
XY

A

Y

XY

Y

A _____

(YA + XY)Z =

involves a sequence of inputs X with the objective of the circuit detecting a bit
pattern, such as 101. The circuit accomplishes this objective by changing state
according to the bit pattern received. When the desired bit pattern is recognized, the
sequence 101 is generated at the output. An application is the detection of computer
program operation codes by a microprocessor. For example, if the operation code
for the add instruction is the decimal 5 (binary 101), the output 101 would be gener-
ated in Figure 1.27 designating that the add instruction should be executed.

 Figure 1.27 Message processing state diagram.

A B C

01 11 10

11 10

01

Input X Output Z

Present
state

Next
state

Detects message output sequence 101

State transitions

State A detects input X = 1 and outputs Z = 1 to state B
State B receives 1 from A and outputs Z = 0 to state C
State C receives 0 from B and outputs Z = 1 to state A

54 Computer, Network, Software, and Hardware Engineering with Applications

 Figure 1.28 Message processing circuit.

T Q = 0

T Q = 0

T Q = 0

X = 1

1

1

Z = 1

Z = 0

Z = 1

1

1

Present
state

Next
state

Output

Output sequence = 101CLK

 Table 1.51 State Transition Table

 Present
state

 Present T fl ip - fl op
binary state Q

 Input X = 1 Input X = 1 Input X = 1

 Next T fl ip - fl op
state Q

 Next T fl ip - fl op
binary state Q Output Z

 A 0 B 1 1
 B 0 C 1 0
 C 0 A 1 1

 The fi rst step in the design process is to specify the state transitions, as shown
in Figure 1.27 , where the desired detected bit pattern is shown. State transitions are
identifi ed that will serial process the incoming bit stream, looking for the desired
pattern in Figure 1.27 . Additional steps involve designing the state transition table
in Table 1.51 to represent the logic of Figure 1.27 in a tabular form and selecting a
fl ip - fl op type to implement state transitions. In this case, the T fl ip - fl op is selected
because its output toggles with each CP. If T = 1, the fl ip - fl op causes complementa-
tion of the present state. This is the logic required to detect the input sequence 101
in Figure 1.28 .

Digital Logic and Microprocessor Design 55

 Figure 1.29 Binary counter state transition diagram and circuit.

00 01

Next state 01 recognizes
present state sequence 00

10

a1 a0Present state

a1+ a0+

11

Q

CLK

b1 = = 1001
Output

+

1a=T2

T4

__

1a 1100=

0 0b a 0101+= =___

0a += Q

0a 1010=

Output

Next state

Q

Q

Q

Q

0

1 1Q T Q (1)(a) 0011+ = = =

1

2 1Q T Q (a)(1) 1001++ = = =

1

T3 = 1

3 0Q T Q (1)(a) 0101+ = = =

a1

a0
0

4 0Q T Q (a)(1) 0101++ = = =

1a +

T1 = 1
1

 Design of Binary Counters

 Two - Bit Counter

 The binary counter is an example of a synchronous sequential circuit designed to
count a sequence of binary digits. For example, if the counter can count two binary
digits at a time, it would be able to process the following sequence of digits: 00, 01,
10, and 11. Thus, the counter can count 2 n binary numbers, using fl ip - fl ops (e.g., T
fl ip - fl ops), where n is the number of binary bits in the count. Figure 1.29 shows the
state transition diagram for a 2 - bit binary counter that implements the binary
sequence count rules (e.g., if the sequence is 00, it is recognized by the next state
01). After Figure 1.29 has been constructed, the state table (Table 1.52) for fl ip -
fl ops 1 and 2 is developed followed by the state table (Table 1.53) for fl ip - fl ops 3
and 4. The outputs b 0 and b 1 follow the logic rule: TQ(t) TQ(t)+ in Figure 1.29 . Note

56 Computer, Network, Software, and Hardware Engineering with Applications

that an inverter is inserted between the fl ip - fl ops in Figure 1.29 in order to achieve
the correct state transitions.

 Three - Bit Counter

 A 3 - bit counter design proceeds by fi rst constructing the state diagram in Figure
 1.30 , with present and next states annotated. Next, using JK fl ip - fl ops, show the 3 - bit
counter excitation table (Table 1.54), noting fl ip - fl op states and fl ip - fl op inputs. The
salient state conditions can be summarized as follows: when Q = 0 and J = 0, no
change in state; when J = 1, set the fl ip - fl op; when K = 1, clear the fl ip - fl op; and
when Q = 1 and K = 0, no state change. The reader may wonder how the present
states are obtained in Figure 1.30 . The answer is that present states correspond to
the present states of the fl ip - fl ops that, in turn, correspond to the condition where
there is no CP (e.g., a 2 a 1 a 0 = 000).

 To demonstrate the validity of the JK fl ip - fl op transformations in Figure 1.30 ,

recall the fundamental property of the JK fl ip - fl op: Q next state) J Q(t) K Q(t)+ = +(.
For example, in the state transition a a a a a a2 1 0 2 1 0000 001= =+ + + , applying Q + (next
state) yields:

 a J Q t K Q t a a a a a a .2
+

2 2 1 0 2= + = +() ()2 2 1 0 2

 Thus,

 a a a a a a a 001 000 0,2
+

1 0 2 1 0 2= + = + =

 a J Q (t) K Q (t) a a a a .1
+

1 1 1 1 0 1 0 1= + = +

 Table 1.52 Binary Sequence Counter State Table

 Present state Next state fl ip - fl op 1 Next state fl ip - fl op 2 Output

 a 1 a1
+ Q T Q 1 a1 1

+ = = ()() Q T Q a+ += =2 1 1()() b a1 1= +

 0 0 0 1 1
 0 1 0 0 0
 1 1 1 0 0
 1 0 1 1 1

 Table 1.53 Binary Sequence Counter State Table

 Present state Next state fl ip - fl op 3 Next state fl ip - fl op 4 Output

 a 0 a0
+ Q T Q 1 a3 0

+ = = ()() Q T Q a+ += =4 0 1()() b a0 0= +

 0 0 0 0 0
 0 1 0 1 1
 1 1 1 0 0
 1 0 1 1 1

Digital Logic and Microprocessor Design 57

 Figure 1.30 Three - bit counter state diagram and logic diagram.

000 001 010 011

111 110 101 100

a
2
a

1
a

0 a
2
+

a
1
+

a
0
+

Present states

Next state 001 recognizes present state 000

State diagram

J
2 Q

2

J
1

Q
1

J
0

Q
0

a
2

2a

2Q

a
1

1a___

1Q

0a

a
0

0Q

a
0
a

1

J
2

= a
0
a

1

K
2

K
2

= a
0
a

1

K
1

K
1
= a

0

J
1

= a
0

K
0

J
0

= 1

K
0

= 1

CLK

Logic diagram

0

0Q =

= =

= 1

Q
0

Next states

58 Computer, Network, Software, and Hardware Engineering with Applications

 Thus,

 a a a a a ,1
+

0 1 0 1= + = + =01 10 0

 a J Q (t) K Q (t) a a .0
+

0 0 0 0 0 0= + = + = + =1 0 11 00 1

 Thus, the state transition a a a a a a2 1 0 2 1 0000 001= =+ + + is demonstrated.
 Next, using Figure 1.30 , formulate the truth table (Table 1.54), incorporating

the state transitions from Figure 1.30 and the fl ip - fl op inputs that generate these
transitions. Next, the K - maps in Tables 1.55 – 1.60 , by noting the fl ip - fl op inputs that
are bolded in Table 1.54 , and resultant equations, are developed for the fl ip - fl op
inputs.

 Table 1.54 Three - Bit Counter Truth Table

 Present
State Next state Flip - fl op inputs

 a 2 a 1 a 0 a2
+ a1

+ a0
+ J 2 = a 1 a 0 K 2 = a1 1 a 0 J 1 = a 0 K 1 = a 0 J 0 = 1 K 0 = 1

 0 0 0 0 0 1 0 0 0 0 1 1
 0 0 1 0 1 0 0 0 1 1 1 1
 0 1 0 0 1 1 0 0 0 0 1 1
 0 1 1 1 0 0 1 1 1 1 1 1
 1 0 0 1 0 1 0 0 0 0 1 1
 1 0 1 1 1 0 0 0 1 1 1 1
 1 1 0 1 1 1 0 0 0 0 1 1
 1 1 1 0 0 0 1 1 1 1 1 1

 Table 1.55 K - Map for J 2

a1a0

00 01 11 10

a2 0 1

1 1

J2 = a1a0

 Table 1.56 K - Map for K 2

a1a0

00 01 11 10

a2 0 1

1 1

K2 = a1a0

Digital Logic and Microprocessor Design 59

 Table 1.57 K - Map for J 1

a1a0

00 01 11 10

a2 0 1 1

1 1 1

J1 = a0

 Table 1.58 K - Map for K 1

a1a0

00 01 11 10

a2 0 X 1 1

1 X 1 1

K1 = a0

 Table 1.59 K - Map for J 0

a1a0

00 01 11 10

a2 0 1 1 1 1

1 1 1 1 1

J0 = 1

 Table 1.60 K - Map for K 0

a1a0

00 01 11 10

a2 0 1 1 1 1

1 1 1 1 1

K0 = 1

 Shift Register Design

 The design process starts by documenting the elements of the basic building block
of the shift register — called the basic cell in Figure 1.31 — comprised of the multi-
plexer and the D fl ip - fl op. The D fl ip - fl op is used because the fl ip - fl op Q output
follows the multiplexer basic cell D input, thus enabling the shift operation. The

60 Computer, Network, Software, and Hardware Engineering with Applications

 Figure 1.31 Basic cell and logic design of shift register.

Q

QSET

CLR

DS1

S8

D

C1 ENBC3C2

Multiplexer

s0

s1

External Inputs X

Operation Selectors

CLK CLR

Output

x3
x2 x1 x0

Operation
Selectors

Q3 Q2 Q1
Q0

Q0Q1

Q2
Q3

Q2
Q1

Left ShiftRight Shift

Shift Register Logic Design

Basic Cell

s0

s1
CLK

CLR

Multiplexer Multiplexer Multiplexer Multiplexer

x0 x1 x2 x3

c0

Q3

Q0

basic cell is replicated in the shift register logic design, also shown in Figure 1.31 .
The shift register operates in Figure 1.31 by shifting the least signifi cant bit, x 0 , for
a left shift, one fl ip - fl op output to the left on each CP. For a right shift, the most
signifi cant bit, x 3 , is shifted one fl ip - fl op output to the right on each CP. These shifts
are referred to as “ end around ” because for a right shift, the least signifi cant bit,
represented by Q 3 in Table 1.61 , is shifted to the most signifi cant bit position. More-
over, in a left shift, the most signifi cant bit, represented by Q 0 in Table 1.61 , is shifted
to the least signifi cant bit position. The type of shift is based on the values of the
operation selectors in Table 1.61 .

 RAM DESIGN

 There are two types of RAM: static and dynamic. Static RAM stores data in fl ip -
 fl ops. Dynamic RAM stores data in capacitors. Because capacitors gradually lose
their charge, dynamic RAM must be refreshed periodically. A RAM circuit is shown
in Figure 1.32 where 1 bit, 0 or 1, can either be read or written depending on whether
a read or write operation is selected and whether a 1 or 0 appears at the input.

Digital Logic and Microprocessor Design 61

 Figure 1.32 Random access memory (RAM) circuit.

Q

QSET

CLR

D

R/ W

R/ W = 1 for read and 0 for write
Select = 1 : select flip flop for read or write

Read gate

Select
1

1

10
Write gate

Input

1 or 0

Read output gate

1, 0

1, 0

1

CLK

1

Write output gate

1 or 0
1 or 0

1 or 0

1 or 01

Red: read
Blue: write

 Table 1.61 Truth Table for Shift Register

Operation
selectors

Clock Clear
input CLR

Operation Input Output

s0 s1

0 0 1 Clear Q0 Q1 Q2 Q3 0000

0 1 0 No
operation

Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3

1 0 0 Shift
right “end
around”

Q0 Q1 Q2 Q3 Q3 Q0 Q1 Q2

1 1 0 Shift left
“end
around”

Q0 Q1 Q2 Q3 Q1 Q2 Q3 Q0

input CLK

 HARDWARE DESCRIPTION LANGUAGE (HDL)

 Given the complexity of some digital circuits, implementing them can be error
prone. Therefore, as a design aid, aimed to increase design productivity and reduce
errors, HDLs have been developed. In electronics, an HDL is any language from a
class of computer languages for formal description of electronic circuits, and more
specifi cally, digital logic. It can describe the circuit ’ s operation, its design and orga-
nization, and tests to verify its operation by means of simulation.

 Using the proper subset of virtually any HDL, a software program called a
synthesizer can infer hardware logic operations from the language statements and
produce equivalent hardware functions to implement the specifi ed logic. Synthesiz-
ers use clock edges as the way to time a circuit.

62 Computer, Network, Software, and Hardware Engineering with Applications

 HDLs are text - based expressions of the logical and timing characteristics of
electronic systems. Like concurrent programming languages, HDL syntax and
semantics includes notations for expressing concurrency. Languages whose only
purpose is to express circuit connectivity between blocks are classifi ed as computer -
 aided design languages.

 The automated steps in using an HDL are the following:

 Develop the logic diagram, using truth tables.

 Generate the logic equations corresponding to the truth table relationships.

 Minimize the logic equations, if necessary, using K - maps.

 Use the simulator component of the HDL to verify the correct operation of the
circuit logic, in particular, test timing constraints.

 More details on HDL can be found in Salcic and Smailagic [SAL08] .

 SUMMARY

 This chapter has provided the reader with numerous microprocessor design fundamentals and
practical examples that lay the groundwork for the practicing engineer or student to design a
complete microprocessor. In addition to elucidating principles, the chapter explained why
circuits operate the way they do. Furthermore, there was a focus on design process to provide
the reader with a road map to successful design. Last, many examples of digital logic were
drawn from everyday experience to show the reader that the application of digital logic is not
limited to designing microprocessors.

 REFERENCES

 [GIB80] G. A. Gibson and Y. Liu , Microcomputers for Engineers and Scientists . Englewood Cliffs, NJ :
 Prentice - Hall, Inc. , 1980 .

 [GRE80] S. E. Greenfield , The Architecture of Microcomputers . Cambridge, MA : Winthrop Publishers,
Inc. , 1980 .

 [HAR07] D. M. Harris and S. L. Harris , Digital Design and Computer Architecture . New York :
 Elsevier , 2007 .

 [RAF05] M. Rafiquzzaman , Fundamentals of Digital Logic and Microcomputer Design . New York :
 Wiley - Interscience , 2005 .

 [SAL08] Z. Salcic and A. Smailagic , Digital Systems Design and Prototyping: Using Field Program-
mable Logic and Hardware Description Languages . Boston : Kluwer Academic Publishers , 2000 .

