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        Golf is a game whose aim is to hit a very small ball into an even smaller hole, with 
weapons singularly ill - designed for that purpose.  

  — Winston Churchill   

 Over 70 years have passed since the emergence of operations research during 
World War II. During this relatively short period, operations research has 
contributed signifi cantly to diverse areas in the military, industry, and govern-
ment, including to logistics, communication, transportation, energy, health 
care, manufacturing, marketing, fi nance, and more. A signifi cant part of opera-
tions research focuses on allocating limited resources among competing 
activities, or to put it simply, how to allocate the cake among the cake lovers 
(Fig.  1.1 ).   

 This chapter introduces the reader to certain classes of resource allocation 
models for which elegant and effi cient solution methodologies have been 
developed, and which have been found to be valuable in diverse application 
areas.  

   1.1    PERSPECTIVE 

 Resource allocation problems focus on the allocation of limited resources 
among competing activities with the intent of optimizing an objective function. 
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2  INTRODUCTION

Initially, during World War II, solution methodologies were developed to 
support critically important military activities including deployment of radar 
systems, antisubmarine warfare, and bombing strategies. After the war, these 
methodologies were welcomed enthusiastically in order to help solve prob-
lems across diverse application areas in the public and private sectors. Major 
companies in the telecommunication, oil, transportation, automobile, high -
 tech, and other sectors established operations research groups to solve major 
recurring resource allocation problems in support of strategic and tactical 
problems. Government agencies used these methodologies to address impor-
tant societal issues such as those occurring in health care, education, water 
resources, and environmental topics. 

 It is no doubt that linear programming has been, and still is, the most cel-
ebrated methodology used to solve resource allocation problems. Kantorov-
ich, Dantzig, and von Neumann are regarded as the founders of linear 
programming, and the simplex method for solving such problems was pub-
lished by Dantzig in 1947. Linear programming models consist of either mini-
mizing or maximizing a linear objective function while satisfying linear 
constraints. Major advances in linear programming methodologies and 

     Figure 1.1     Resource allocation: allocating the cake among people with different needs.  
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increased computing power have facilitated solving very large problems 
with hundreds of thousands and even millions of decision variables and 
constraints. 

 This book covers a large variety of resource allocation models with special 
mathematical structures, solvable by elegant, effi cient algorithms that take 
advantage of these structures. Moreover, the book primarily considers models 
that attempt to allocate the limited resources equitably (fairly) among compet-
ing activities; the notion of such equitable allocation will be described in the 
next section. From a historical perspective, the fi rst well - known paper on 
resource allocation models with a special mathematical structure was pub-
lished by Koopman in 1953 under the title of  Optimum Distribution of Effort . 
Koopman followed up with a series of three papers on the theory of search, 
where the third of these papers presents a solution methodology for optimal 
distribution of searching effort. These seminal papers mark the beginning of 
the topic of resource allocation models with special mathematical structures.  

   1.2    EQUITABLE RESOURCE ALLOCATION: LEXICOGRAPHIC 
MINIMAX (MAXIMIN) OPTIMIZATION 

 Consider a resource allocation problem where multiple resources are allo-
cated among numerous activities. We use the following notation:

  Indices and Sets 

   i     =    Index for resources.  
   j     =    Index for activities.  
   I     =    Set of resources;  I     =    {1, 2,    . . .    ,  m }.  
   J     =    Set of activities;  J     =    {1, 2,    . . .    ,  n }.   

  Parameters 

   b i      =    Amount available of resource  i ;  b i      >    0 for all  i     ∈     I .  
   a ij      =    Amount of resource  i  consumed by a single unit of activity  j ;  a ij      ≥    0 

for all  i     ∈     I  and  j     ∈     J , at least one  a ij      >    0 for each  i     ∈     I , and at least 
one  a ij      >    0 for each  j     ∈     J .  

   l j      =    Lower bound ( l j      ≥    0) on the selected level for activity  j  for all  j     ∈     J .  
   u j      =    Upper bound ( u j      ≥     l j  ) on the selected level for activity  j  for all  j     ∈     J .   

  Decision Variables 

   x j      =    Activity level selected for activity  j  for all  j     ∈     J ;  x     =    { x j  :  j     ∈     J }.   

  Performance Functions 

   f j  ( x j  )    =    Performance function for activity  j  for all  j     ∈     J .    
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 The resource allocation problem attempts to fi nd activity levels that optimize 
some objective function while satisfying the resource constraints. These con-
straints are formulated as follows:

    a x b i Iij j

j J

i

∈
∑ ≤ ∈for all ,     (1.2.1a)  

    l x u j Jj j j≤ ≤ ∈for all .     (1.2.1b)   

 Note that resource constraints  (1.2.1a)  are restricted to having all parameters 
 a ij      ≥    0 and all inequalities as  “  ≤ . ”  Such resource constraints are also referred 
to as  knapsack constraints . 

 Now, suppose that each activity  j  produces a value of  r j      >    0 per activity unit, 
which implies a linear performance function  f j  ( x j  )    =     r j  x j  . Performance func-
tions that are strictly increasing with their assigned activity level may represent 
revenues, profi ts, service characteristics, throughput, and so on. A linear 
programming model then attempts to maximize   ∑ ∈j J j jr x . Suppose  I  includes 
100 resources and  J  includes 1000 activities, all lower bounds are zero, and all 
upper bounds are very large. Since the optimal solution is typically at an 
extreme point, at most 100 activities will be assigned values above zero. In 
other words, in order to optimize the total value over all activities, at least 900 
activity levels are fi xed at zero while resources are allocated to just 100 activi-
ties. Such a disproportionate allocation scheme may not be acceptable in many 
applications as it may be perceived as grossly unfair (of course, such extreme 
examples can be avoided through the imposition of lower and upper bounds 
as well as other linear constraints). 

 This drawback can be remedied by using nonlinear performance functions 
for the activities. Thus, instead of maximizing   ∑ ∈j J j jr x , we might maximize 
  ∑ ∈j J j jf x( ) where the functions  f j  ( x j  ) are strictly increasing and strictly concave. 
Such performance function implies that the marginal increase in  f j  ( x j  ) decreases 
as  x j   increases. An equivalent problem is formulated with performance 
functions  f j  ( x j  ) that are strictly decreasing convex functions, representing 
cost, delay, poor service, and so on. The objective function is then changed to 
minimizing   ∑ ∈j J j jf x( ). 

 In many applications, it is important to allocate resources fairly among the 
activities. These include, for example, allocation of bandwidth in telecommu-
nication networks, allocation of takeoff and landing  “ slots ”  at airports, and 
allocation of water resources. This gives rise to minimax (or maximin) objec-
tive functions. In models with a minimax objective function, expressed as 
min  x  [max  j    ∈    J f j  ( x j  )], we fi nd feasible activity levels that satisfy all constraints so 
that the largest (i.e., worst) performance function value is as small as possible. 
Consider resource allocation problems with constraints  (1.2.1a)  and  (1.2.1b) , 
where all resource constraints are of the knapsack type (all  a ij      ≥    0 and all 
inequalities are  “  ≤  ” ). In the absence of other constraints, it is reasonable to 
assume that, for a minimax objective, the performance functions are strictly 
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decreasing, or at least nonincreasing. Equivalently, in a maximin objective 
function, expressed as max  x  [min  j    ∈    J f j  ( x j  )], we fi nd feasible activity levels so that 
the smallest performance function value is as large as possible. It is now rea-
sonable to assume that the performance functions are strictly increasing or at 
least nondecreasing. 

 A resource allocation model with a minimax objective function can readily 
be transformed to a model with a maximin objective function and vice versa 
by the following identities:

    min[max ( )] max[min( ( ))]
x xj J

j j
j J

j jf x f x
∈ ∈

= − −     (1.2.2a)  

  and

    max[min ( )] min[max( ( ))].
x xj J

j j
j J

j jf x f x
∈ ∈

= − −     (1.2.2b)   

 Note that the minimax (or maximin) objective function seeks a solution with 
the best feasible performance function value for the worst - off activity. Unfor-
tunately, there may be numerous feasible activity level assignments that result 
in the minimax (or maximin) solution. Thus, this objective function does not 
provide any guidance as to which solution should be selected from among all 
such solutions. Although a minimax solution provides some  “ safety net ”  to the 
activities, it may still be perceived as unfair by a majority of the activities. In 
addition, it is often criticized because a minimax solution is not a  pareto -
 optimal  solution. A pareto - optimal solution (also referred to as an  effi cient  
solution) is defi ned as a solution where no performance function value can be 
improved without degrading the value of some other performance function. 

 A natural extension of the minimax objective is within the scope of multi-
objective optimization, where each performance function  f j  ( x j  ) serves as an 
objective to be optimized. In this extension, we compute 

   •      the smallest feasible performance function value for activities with the 
largest (i.e., worst) performance function value (this is the minimax solu-
tion), followed by  

   •      the smallest feasible performance function value for activities with the 
second largest (i.e., second worst) performance function value without 
increasing the largest value, followed by  

   •      the smallest feasible performance function value for activities with the 
third largest (i.e., third worst) performance function value without 
increasing the two largest values, and so forth.    

 Likewise, we extend the maximin objective and compute 

   •      the largest feasible performance function value for activities with the 
smallest (i.e., worst) performance function value (this is the maximin 
solution), followed by  
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   •      the largest feasible performance function value for activities with the 
second smallest (i.e., second worst) performance function value, without 
decreasing the smallest value, and so forth.    

 The extended minimax and maximin objectives are called the  lexicographic 
minimax  and  lexicographic maximin  objectives, respectively. The resulting 
solution is pareto - optimal, that is, effi cient. Intuitively, the solution is also 
perceived as equitable by all activities, and hence it is often referred to as an 
 equitably effi cient solution . Properties of equitable solutions will be described 
in Section  1.4 . 

 In the present discussion, we assume that the objective function is separa-
ble; that is, performance function  j  depends only on the level  x j   assigned to 
activity  j . Later in this section, we extend the discussion to a nonseparable 
objective function, where each performance function may depend on values 
assigned to multiple activities. 

 We now formalize the concept of a lexicographic minimax solution. We fi rst 
need to defi ne the term  lexicographic . Consider two vectors  v  1  and  v  2 , each 
with  n  elements,   v1

1
1

2
1 1= [ , , , ]v v vn…  and   v2

1
2

2
2 2= [ , , , ]v v vn… , and suppose   v vj j

1 2=  
for  j     =    1, 2,    . . .    ,  k  ( k     <     n ) and   v vj j

1 2>  for  j     =     k     +    1. Then, vector  v  1  is lexico-
graphically larger than vector  v  2  (and, equivalently, vector  v  2  is lexicographi-
cally smaller than vector  v  1 ). Consider now a feasible solution vector  x  to a 
resource allocation problem, for example, a solution that satisfi es constraints 
 (1.2.1a)  and  (1.2.1b)  while having performance function values  f j  ( x j  ) for all 
 j     ∈     J . Let   f x( )( ) [ ( ), ( ), , ( )]n

j j j j j jf x f x f xn n=
1 1 2 2

…  be the vector of performance 
functions under allocation  x , where the elements of this vector are sorted in 
nonincreasing order. Thus, the vector  f   (   n   ) ( x ) is expressed as follows:

    f x( )( ) [ ( ), ( ), , ( )],n
j j j j j jf x f x f xn n=
1 1 2 2

…     (1.2.3a)  

  where

    f x f x f xj j j j j jn n1 1 2 2
( ) ( ) ( ).≥ ≥ ≥�     (1.2.3b)   

 A lexicographic minimax objective function searches for a feasible vector  x  
that provides the lexicographic smallest vector of performance functions 
whose elements (the performance function values) are sorted in a nonincreas-
ing order. In other words, it searches for the lexicographically smallest feasible 
vector  f   (   n   ) ( x ). 

 We are now ready to formulate a basic resource allocation problem with 
a lexicographic minimax objective function, referred to as Problem L - 
RESOURCE ( “ L ”  stands for lexicographic minimax as well as, depending on 
the formulation, for lexicographic maximin). In this problem, performance 
function  f j  ( x j  ) is assumed to be strictly decreasing and depends only on  x j  , and 
the constraints include only knapsack - type resource constraints and lower and 
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upper bound constraints. The resulting formulation is a  lexicographic minimax 
optimization problem . The lexicographic maximin optimization problem will 
be discussed later. 

   PROBLEM  L  -  RESOURCE  (lex - minimax objective) 

     V f x
x

L n
j j j j j jf x f x f xn n= =lexmin{ ( ) [ ( ), ( ), , ( )]}( )
1 1 2 2

…     (1.2.4a)  

  subject to

    f x f x f xj j j j j jn n1 1 2 2
( ) ( ) ( ),≥ ≥ ≥�     (1.2.4b)  

    a x b i Iij j

j J

i

∈
∑ ≤ ∈for all ,     (1.2.4c)  

    l x u j Jj j j≤ ≤ ∈for all .     (1.2.4d)   

 We assume that   ∑ ≤∈j J ij j ia l b  for all  i     ∈     I , which implies that a feasible solution 
exists. Furthermore, since all  a ij      ≥    0 and at least one  a ij      >    0 for each  j     ∈     J , 
resource constraints  (1.2.4c)  imply that the solution is bounded even without 
the upper bounds in  (1.2.4d) . We use throughout the book superscript  L  to 
denote optimal values for problems with a lexicographic minimax (or lexico-
graphic maximin) objective function. We often refer to these values as lexico-
graphic minimax (or lexicographic maximin) values. Likewise, we use 
superscript  *  to denote optimal values for problems with a minimax (or 
maximin) objective function, and often refer to these values as minimax (or 
maximin) values. Objective function  (1.2.4a)  lexicographically minimizes the 
vector  f   (   n   ) ( x ), where constraints  (1.2.4b)  enforce the appropriate order of the 
elements of this vector. Note that the lexicographic minimax objective is quite 
different than a standard lexicographic optimization objective where the order 
in which performance functions are optimized is given as input. Here, the order 
is unknown as it must satisfy constraints  (1.2.4b) . Constraints  (1.2.4c)  are 
knapsack resource constraints, and constraints  (1.2.4d)  enforce lower and 
upper bound values for all activity levels. We will also write, on occasion,

    V f x
x

L
n nf x f x f x= =lex-minimax{ ( ) [ ( ), ( ), , ( )]}1 1 2 2 …     (1.2.5)  

  instead of  (1.2.4a)  and  (1.2.4b) . Here,  f ( x ) is the unsorted vector of perfor-
mance functions. Expressing the lexicographic minimax objective by  (1.2.5)  is 
more convenient in numerical examples.   

 Note that Problem L - RESOURCE, as formulated by  (1.2.4a) – (1.2.4d) , or 
by  (1.2.5) ,  (1.2.4c) , and  (1.2.4d) , is not a standard formulation for a mathemati-
cal optimization problem. However, as will be demonstrated throughout the 
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book, particularly in Chapters  3  –  6 , lexicographic minimax solutions for many 
problems, including Problem L - RESOURCE, can be obtained by repeatedly 
solving problems with a minimax objective function subject to the same con-
straints with minor modifi cations. These minimax problems can readily be 
formulated as standard optimization problems. On the other hand, as will be 
shown in Chapter  7 , computing lexicographic minimax solutions for problems 
with integer decision variables is, in general, much more diffi cult as it requires 
adding many auxiliary variables and constraints. 

 As stated earlier, a lexicographic minimax solution to Problem L - 
RESOURCE can be characterized quite intuitively as follows:

   (a)     It provides the smallest feasible performance function value for activi-
ties with the largest performance function value, followed by the small-
est feasible performance function value for activities with the second 
largest performance function value without increasing the largest value, 
followed by the smallest feasible performance function value for activi-
ties with the third largest performance function value without increas-
ing the two largest values, and so forth.    

 A precise mathematical characterization for Problem L - RESOURCE will be 
presented in Chapter  3 . Property (a) is the essence of lexicographic minimax 
optimization, not just for Problem L - RESOURCE, and does not require any 
assumptions regarding the performance functions or the feasible region. Char-
acterization (a) is simply an alternate defi nition of providing the smallest lexi-
cographic vector whose elements, the performance function values, are sorted 
in a nonincreasing order. 

 Now, suppose that the performance functions  f j  ( x j  ) are strictly decreasing 
and continuous. Then, a lexicographic minimax solution to Problem 
L - RESOURCE also satisfi es the following properties:

   (b)     No performance function value can be feasibly decreased without 
increasing the performance function value of some other activity whose 
performance function value is already at least as large.  

  (c)     No activity level can be feasibly increased without decreasing the level 
of some other activity whose performance function value is already at 
least as large.    

 Many of the problems presented in Chapters  3  –  6  have a lexicographic minimax 
separable objective function, where the performance functions  f j  ( x j  ) are strictly 
decreasing and continuous. These problems have mathematical structures that 
allow for fi nding the lexicographic minimax solution by repeatedly solving 
minimax problems of the same format. Such algorithms proceed as follows: A 
minimax problem is solved after which some activity levels are fi xed at their 
lexicographic minimax value. A new minimax problem is then formulated 
without these activities and with only leftover resources. A key concept for 
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making this approach work is the  minimal solution  for a minimax problem, 
defi ned as follows: Suppose optimal solution  x  *  is the minimal solution. Then 
 x  *     ≤     y  *  component - wise, where  y  *     ≠     x  *  is any other optimal solution to the 
minimax problem. Clearly,   x yj j

* *<  for some  j     ∈     J . After a minimax problem is 
solved, some activity levels are fi xed at their minimal values. Since the resource 
constraints are of the knapsack type, the amount of leftover resources for the 
subsequent minimax problem is the largest possible. This procedure is repeated 
until all activity levels are fi xed. The fi xed values of all activities comprise the 
lexicographic minimax solution. In the description above, resources are 
assigned to fi xed activities after a minimax problem is solved. However, in 
some problems (e.g., as in Section  4.3 ), assignment of resources to activities 
must be deferred until all activity levels are fi xed at their lexicographic minimax 
value. Furthermore, when the objective function is not separable, the lexico-
graphic minimax solution is still obtained by repeatedly solving minimax prob-
lems, but, as will be seen in Section  3.4 , the algorithm is more complicated. 

 We illustrate the solution approach by considering Problem L - RESOURCE 
with a lexicographic minimax objective and strictly decreasing performance 
functions. We assume bounds  l j      =    0 and  u j      =     ∞  for all  j     ∈     J . Consider fi nding 
the minimal solution to the minimax problem

    V f x
j J

j j
* min[max ( )]=

∈x
    (1.2.6a)  

  subject to

    a x b i Iij j

j J

i

∈
∑ ≤ ∈for all ,     (1.2.6b)  

    x j Jj ≥ ∈0 for all .     (1.2.6c)   

 This minimax problem can readily be formulated as a standard optimization 
problem by replacing objective function  (1.2.6a)  with the objective  V   *     =    min  x   V  
and adding constraints  V     ≥     f j  ( x j  ) for all  j     ∈     J . Figure  1.2  presents resource 
constraints  (1.2.6b)  for the  m  resources (rows) and the  n  activities (columns). 
Since the performance functions are strictly decreasing, there is at least one 
resource constraint that is satisfi ed at equality by any optimal solution. Suppose 
that the minimal solution has resource  i c   as the single  critical resource  that is 
fully used, that is, this constraint is satisfi ed at equality. The symbol  +  in row  i c   
means that the corresponding   ai jc > 0 while a zero indicates that the corre-
sponding   ai jc = 0 ( a ij      ≥    0 for all  i     ∈     I  and  j     ∈     J ). As will be proven in Chapter 
 3 , the lexicographic minimax values of variables associated with   ai jc > 0 are 
equal to their value at the minimal solution to the minimax problem, where 
the minimal solution satisfi es   f x Vj j( )* *=  if   xj

* > 0 and   f x Vj j( )* *≤  if   xj
* = 0. 

Hence, all activities in the shaded blocks in Figure  2.1  are fi xed and deleted 
from the formulation of the next minimax problem. Also, resource  i c   is deleted, 
while all other  b i   ’ s are updated to account for resources used by the deleted 
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activities. A new minimal solution is then found to the reduced minimax 
problem. This repeated determination of minimal solutions to minimax prob-
lems is continued until all variables are fi xed at their optimal values. Formal 
development of the methodology to solve this problem is deferred to Chapter 
 3 . It should, however, be clear that the key to developing a computationally 
effi cient algorithm for solving lexicographic minimax resource allocation 
problems, like Problem L - RESOURCE, is the development of effi cient algo-
rithms to the underlying minimax problems. As will be seen, for certain classes 
of performance functions, each of the minimax problems can be solved by 
manipulating closed - form expressions, resulting in extremely effi cient algo-
rithms. For other performance functions, more intensive computations will be 
required.   

 This procedure is further illustrated by the following example:

   V x
x

L f x x x= = − − −lex-minimax{ ( ) [ , , ]}20 2 15 101 2 3  

  subject to

   x x1 2 4+ ≤ ,  

   x x1 3 5+ ≤ ,  

   x jj ≥ =0 1 2 3, , , .   

     Figure 1.2     A critical resource constraint in the minimax problem.  

+ + +  0 0 0   + + + + +  0 0 0  + + + +  0 0 0   = 

≤ b1

Activities Supplies
1

m

ic

Resources

Fixed Activities Activities for
Next Iteration

≤ bm

cib
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 The solution of the fi rst minimax problem is  V   *     =    14 with the minimal 
solutions   x x x1 2 33 1 0* * *, ,= = =and . The fi rst constraint is fully used so 
that activities 1 and 2 are fi xed at their lexicographic minimax values 
  x x x xL L

1 1 2 23 1= = = =* *and  and the fi rst constraint is deleted. The second 
minimax problem is formulated as   V xx

* [ ]= −minimax
3

10 3  subject to  x  3     ≤    5    −    3 
and  x  3     ≥    0, implying  V   *     =    8 and   x3 2* = . The lexicographic minimax solution is 
therefore obtained as  V   L      =     f   (3) ( x   L  )    =    [14, 14, 8] with optimal activity levels 
  x x xL L L

1 2 33 1 2= = =, , and . 
 Although much of the discussion presented so far was in terms of lexico-

graphic minimax optimization problems, these problems can readily be 
translated to lexicographic maximin optimization problems. Let  w j  ( x j  ) be 
the performance function defi ned as  w j  ( x j  )    =     −  f j  ( x j  ) for all  j     ∈     J . Let 
  w x( )( ) [ ( ), ( ), , ( )]n

j j j j j jw x w x w xn n=
1 1 2 2

…  be the vector performance functions 
under allocation  x , where the elements of this vector are sorted in nondecreas-
ing order (note the reversal of the sorting). Formally, the vector  w  (   n   ) ( x ) is 
expressed as follows:

    w x( )( ) [ ( ), ( ), , ( )],n
j j j j j jw x w x w xn n=
1 1 2 2

…     (1.2.7a)  

  where

    w x w x w xj j j j j jn n1 1 2 2
( ) ( ) ( ).≤ ≤ ≤�     (1.2.7b)   

 Formulation of Problem L - RESOURCE as a  lexicographic maximin optimiza-
tion problem  is as follows (here  “ L ”  stands for lexicographic maximin). 

   PROBLEM  L  -  RESOURCE  (lex - maximin objective) 

     W w x
x

L n
j j j j j jw x w x w xn n= =lexmax{ ( ) [ ( ), ( ), , ( )]}( )
1 1 2 2

…     (1.2.8a)  

  subject to

    w x w x w xj j j j j jn n1 1 2 2
( ) ( ) ( ),≤ ≤ ≤�     (1.2.8b)  

    a x b i Iij j

j J

i

∈
∑ ≤ ∈for all ,     (1.2.8c)  

    l x u j Jj j j≤ ≤ ∈for all .     (1.2.8d)   

 The optimal activity levels in Problem L - RESOURCE with a lexicographic 
minimax objective and in Problem L - RESOURCE with a lexicographic 
maximin objective when  w j  ( x j  )    =     −  f j  ( x j  ) for all  j     ∈     J  are identical and the objec-
tive values satisfy  W   L      =     −  V   L  . Throughout the book, we will use both lexico-
graphic minimax and lexicographic maximin formulations. Transformation 
from one formulation to the other and the minor changes needed in the cor-
responding algorithms are quite obvious. 
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 Again, we will also write, on occasion,

    W w x
x

L
n nw x w x w x= =lex-maximin{ ( ) [ ( ), ( ), , ( )]}1 1 2 2 …     (1.2.9)  

  instead of  (1.2.8a)  and  (1.2.8b) . Here,  w ( x ) is the unsorted vector of perfor-
mance functions.   

 Note that so far, the objective function is assumed to be separable; that is, 
performance function  j  depends only on  x j  . Thus, the set of activities  J  also 
represents the set of performance functions. In more general cases, the objec-
tive function is nonseparable where each performance function may depend 
on a subset of activities  j     ∈     J , referred to as the  effective activity . For example, 
a performance function value may be determined by a linear combination of 
the activity levels in the corresponding subset, referred to as the  effective activ-
ity level . We continue to use  j  as an index for activities and introduce new 
notation:

    d     =    Index for effective activities and the corresponding performance 
functions.  

   D     =    Set of effective activities and the corresponding performance functions; 
 D     =    {1, 2,    . . .    ,  n }.  

   J d      =    Set of activities that contribute to effective activity  d  for all  d     ∈     D .    

 The vector of activity levels that contribute to effective activity  d  is denoted 
as  x   d      =    { x j  :  j     ∈     J d  }, and the vector of all activity levels is denoted as  x     =    { x j  : 
 j     ∈     ∪   d    ∈    D  J d  }. The performance function  d  may, for example, be   f xd j J dj jd( )x = ∑ ∈ λ  
for each  d     ∈     D , where the   λ  dj   ’ s are positive parameters. For the lexicographic 
minimax objective, the vector  f   (   n   ) ( x ) is then expressed as follows:

    f x x x x( )( ) [ ( ), ( ), , ( )],n
d d d d d df f f n n=

1 1 2 2
…     (1.2.10a)  

  where

    f f fd d d d d dn n1 1 2 2
( ) ( ) ( ).x x x≥ ≥ ≥�     (1.2.10b)   

 Consider Problem L - RESOURCE with a nonseparable objective function 
where  (1.2.4a)  and  (1.2.4b)  are replaced by  (1.2.10a)  and  (1.2.10b) , and suppose 
  f xd j J dj jd( )x = ∑ ∈ λ  for each  d     ∈     D . A lexicographic minimax solution to this 
problem provides the smallest feasible performance function value for effec-
tive activities with the largest performance function value, followed by the 
smallest feasible performance function value for effective activities with the 
second largest performance function value without increasing the largest 
value, and so forth. However, even for linear performance functions, solving 
the lexicographic minimax problems requires solving repeatedly minimax 
problems formulated as linear programming problems. Moreover, as will be 
seen, once a minimax problem is solved, the identifi cation of a critical resource 
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constraint that is satisfi ed at equality cannot readily be used to fi x activity 
levels. Instead,  saturated effective activities  need to be identifi ed. A saturated 
effective activity is defi ned as one whose corresponding performance function 
value cannot be further decreased without adversely affecting other perfor-
mance functions, whose value is at least as large. While saturated effective 
activities are excluded from the objective function of subsequent minimax 
problems, their saturation levels are protected through newly added con-
straints. In contrast, for certain classes of performance functions, including 
linear functions, Problem L - RESOURCE with a separable objective function 
is solved more easily by manipulating closed - form expressions. 

 We next present an example of an uncapacitated facility location problem 
for emergency services, where it is important to provide equitable services to 
all locations. The resource constraint here limits the number of facilities that 
can be placed. The example highlights the need for a lexicographic minimax 
objective rather than simply a minimax objective. Consider a network where 
we seek to open an emergency facility (e.g., a fi re station) at one of the nodes 
so that the distance from the farthest node to the facility is as small as possible. 
Figure  1.3  shows an example with two feasible solutions with the same minimax 
value of 10, where on the left the fi re station is located at node 1 and on the 
right at node 3. However, when we sort the distances from all nodes to the fi re 
station location from the largest distance to the smallest distance, it becomes 
obvious that the solution on the right with distances of 10 for node 1, 8 for 
node 4, 7 for node 2, and 0 for node 3 is better. Indeed, the solution on the 
right provides the smallest lexicographic vector of distances where the dis-
tances are sorted in a nonincreasing order.   

 This facility location problem is an example where the decision variables 
(facility locations) are integers. The solution approaches employed for lexico-
graphic minimax problems with continuous decision variables cannot be 
employed to solve problems with integer variables as the solution of the cor-
responding minimax problem does not readily provide guidance on how to 
proceed. The facility location problem with a lexicographic minimax objective 

     Figure 1.3     Illustration of a facility location problem.  
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can be solved by an algorithm that repeatedly solves mixed integer program-
ming problems of essentially the same size as that of the minimax formulation 
of the problem. However, in general, many auxiliary variables and constraints 
need to be added to solve problems with integer decision variables. Solution 
methods for problems with integer variables are presented in Chapter  7 .  

   1.3    EXAMPLES AND APPLICATIONS 

 This section describes a sample of examples taken from diverse application 
areas. The models presented have a lexicographic minimax (or lexicographic 
maximin) objective function. Thus, as discussed, the resulting solutions are 
equitably effi cient. 

   1.3.1    Allocation of High - Tech Components 

 Typically, high - tech products consist of the assembly of numerous (thousands) 
components, like integrated circuits, onto a variety (hundreds) of circuit boards. 
Due to the large number of components and rapid changes in technology, 
shortages of components are often incurred. In our terminology, the compo-
nents are the resources and the circuit boards are the activities. The problem 
of allocating components to circuit boards can then be formulated as Problem 
L - RESOURCE (with a lexicographic minimax objective; see  (1.2.4a) – (1.2.4d) ) 
with the following performance function:

    f x
x

j Jj j j
j j

j

( ) ,=
−

∈α
ρ

ρ
for all     (1.3.1)  

  where   ρ  j   is the demand for activity  j ,  x j      ≤      ρ  j  , and   α  j   is the weight that refl ects 
the relative importance of activity  j  with respect to other activities. This per-
formance function is the weighted, normalized shortfall from the target 
demand. If all weights   α  j      =    1, then all activities are equally important. If, for 
example,   α   1     =    1 and   α   2     =    2 (activity 2 is more important than activity 1), then 
 x  1     =    0.8  ρ   1  and  x  2     =    0.9  ρ   2  have the same weighted normalized shortfall of 0.2. 
Since  x j      ≤      ρ  j   for all  j     ∈     J , only resources for which   ∑ >∈j J ij j ia bρ  need to be 
included in the set of resources  I  as all other resources satisfy demands   ρ  j   for 
all  j     ∈     J . Problem L - RESOURCE is examined in Chapter  3 . As will be shown, 
for linear performance functions, the lexicographic minimax solution is 
obtained by simply manipulating closed - form expressions; thus, very large 
problems can be solved in a negligible computing time. 

 In high - tech manufacturing, substitutions among components are quite 
common. Effective use of substitutable resources is especially important due 
to rapidly changing technologies. Hence, extending Problem L - RESOURCE 
to handling possible substitutions among resources within a subset  SUB     ⊆     I  
is important. Let  by ( i ) be the set of resources that can be substituted by 
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resource  i  and let  for ( i ) be the set of resources that can substitute for resource 
 i . Let  y ik   be the amount of resource  i  used as a substitute for resource  k , where 
 y ii   is the amount of resource  i  used directly (not as a substitute). The resource 
constraints for  i     ∈     SUB  are then formulated as follows:

    y y b i SUBii ik

k by i

i+ ≤ ∈
∈
∑

( )

,for all     (1.3.2a)  

    a x y y i SUBij j

j J

ii ki

k for i∈ ∈
∑ ∑= + ∈

( )

.for all     (1.3.2b)   

 Constraints  (1.3.2a)  ensure that the amount of any resource  i     ∈     SUB  does not 
exceed its supply  b i  . Constraints  (1.3.2b)  ensure that the amounts used of 
resource  i  and of its substitutes suffi ce to sustain the selected activity levels 
for all  j     ∈     J . If we aggregate all inequalities ( 1.3.2a ) and equalities ( 1.3.2b ) for 
all  i     ∈     SUB , we obtain a knapsack resource constraint   ∑ ∑ ≤ ∑∈ ∈ ∈i SUB j J ij j i SUB ia x b
. This constraint relaxes the restrictions imposed by the allowed substitutions. 
In other words, it assumes that any of the resources in the set  SUB  can sub-
stitute for any other resource in that set. Various lexicographic minimax 
resource allocation models with substitutable resources are examined in 
Chapter  4 . The degree of diffi culty encountered in solving these problems 
depends on the structure of the allowed substitutions. 

 Typically, production planning is executed for a planning horizon that con-
siders multiple periods, for instance, weekly plans for a 6 - month period. Exten-
sion of the problems described above to a multiperiod setting is examined in 
Chapter  5 .  

   1.3.2    Throughput in Communication and Computer Networks 

 Consider a network  G ( N ,  A ) with a set of nodes  N  and a set of undirected 
links  A  that provides communications between multiple node pairs. The 
demand between a specifi ed node pair may use fl ows along multiple paths 
connecting these nodes (here, the term fl ow on a specifi ed path means the 
demand volume routed on the path, or, equivalently, the bandwidth assigned 
to the demand along that path). Since link capacities are limited, node - pair 
demands compete on the use of these capacities. The objective is to determine 
equitable throughputs among all communicating node pairs, where the 
throughput for a demand between a node pair is the sum of fl ows of the 
demand along the multiple paths. We follow what is known as a link - path 
formulation in networks and use the following notation:

  Indices and Sets 

   e     =    Index for links in the network.  
   d     =    Index for demands between node pairs.  
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   p     =    Index for paths connecting node pairs in the network.  
   D     =    Set of demands in the network;  D     =    {1, 2,    . . .    ,  n }.  
   P d      =    Set of all paths considered for demand  d  for all  d     ∈     D .   

  Parameters 

   a edp      =    1 if link  e  is on path  p  of demand  d  and 0 otherwise.  
   b e      =    Capacity of link  e ;  b e      >    0 for all  e     ∈     A .   

  Decision Variables 

   x dp      =    Flow of demand  d  on path  p  for all  p     ∈     P d   and  d     ∈     D ;  x   d      =    { x dp   : 
 p     ∈     P d  } and  x     =    [ x  1 ,  x  2 ,    . . .    ,  x   n  ].  

   X d      =    Sum of fl ows (i.e., throughput) of demand  d  across all paths  p     ∈     P d  ; 
  X xd p P dpd= ∑ ∈  for all  d     ∈     D  and  X     =    [ X  1 ,  X  2 ,    . . .    ,  X n  ].   

  Performance Functions 

   w d  ( X d  )    =    Performance function of demand  d  for all  d     ∈     D .    

 Figure  1.4  shows a network with four nodes, labeled as 1, 2, 3, 4, and fi ve links, 
labeled as 1, 2, 3, 4, 5. Consider demand  d     =    1 between nodes 1 and 4. In this 
example, the links are undirected and the demand is between nodes. The set 
 P  1  of possible paths for demand 1 includes three alternatives as depicted by 
the dashed curves. Path 1 consists of links 1 and 4, path 2 of link 3, and path 
3 of links 2 and 5. The number of feasible paths for each demand can be 

     Figure 1.4     A network example with three feasible paths for the demand between nodes 1 
and 4.  
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derived from the network topology, and it may be very large even for moder-
ately sized networks. Quite often, the links are directed, with capacity assigned 
to a directed link, and the demands are specifi ed from a source node to a 
destination node. Undirected links are then represented by two directed links.   

 We now formulate the Flow Allocation Model with Multiple Paths, referred 
to as Problem L - FAM - MP, that determines lexicographic maximin through-
puts for all demands in the network. Thus, we assume the performance 
function  w d  ( X d  )    =     X d   for all  d     ∈     D . Specifi cally, the model determines the 
lexicographic largest vector of throughputs for specifi ed demands where the 
throughputs are sorted in nondecreasing order. Each demand  d     ∈     D  is equiva-
lent to an effective activity, while each fl ow of demand  d  on path  p     ∈     P d   is 
equivalent to an activity  j     ∈     J  in Problem L - RESOURCE with a nonseparable 
objective. The links  e     ∈     A  are equivalent to resources  i     ∈     I  in that problem. 

   PROBLEM  L  -  FAM  -  MP  (lex - maximin objective,  w d  ( X d  )    =     X d  ) 

     W w X
X

L n
d d dX X X n= =lexmax{ ( ) [ , , , ]}( )

1 2
…     (1.3.3a)  

  subject to

    X X Xd d dn1 2
≤ ≤ ≤� ,     (1.3.3b)  

    a x b e Aedp dp

p Pd D

e

d∈∈
∑∑ ≤ ∈for all ,     (1.3.3c)  

    X x d Dd dp

p Pd

= ∈
∈
∑ for all ,     (1.3.3d)  

    x p P d Ddp d≥ ∈ ∈0 for all and .     (1.3.3e)   

 The lexicographic maximin objective function is defi ned by ( 1.3.3a ) and 
( 1.3.3b ). Constraints  (1.3.3c)  ensure that the link capacity constraints are satis-
fi ed, while constraints  (1.3.3d)  defi ne the throughput for each of the demands. 
Note that Problem L - FAM - MP is the same as Problem L - RESOURCE with a 
nonseparable objective function where   w X xd d p P dpd( ) = ∑ ∈  for each  d     ∈     D  and 
the throughput  X d   of demand  d  is achieved by fl ows along one or more paths 
 p     ∈     P d  . Indeed, let   ω ωd d d d P d d p P dpx x x xd d( , , , ) ( )1 2 … = = ∑ ∈x  for all  d     ∈     D  (| P d  | 
denotes the number of paths in  P d  ). Hence, we can remove variable  X d   and 
obtain an equivalent formulation.   

   PROBLEM  L  -  FAM  -  MP  (lex - maximin objective,   wd d p P dpx xd( ) = ∑ ∈ ) 

     W x x x x
x

L n
d d d d d dn n= =lexmax{ ( ) [ ( ), ( ), , ( )]}( )w ω ω ω

1 1 2 2
…     (1.3.4a)  
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  subject to

    ω ω ωd d d d d dn n1 1 2 2
( ) ( ) ( ),x x x≤ ≤ ≤�     (1.3.4b)  

    a x b e Aedp dp

p Pd D

e

d∈∈
∑∑ ≤ ∈for all ,     (1.3.4c)  

    x p P d Ddp d≥ ∈ ∈0 for all and .     (1.3.4d)   

 In this equivalent formulation, it is obvious that the objective function of 
Problem L - FAM - MP is nonseparable. 

 Algorithms for solving such problems will be discussed in Sections  3.4  and 
 6.2 . When the routing of each of the demands is limited to a single fi xed path, 
the formulation reduces to a special case of Problem L - RESOURCE, where 
the links are the resources and the demands are the activities. This problem is 
discussed in Section  6.1 .    

   1.3.3    Point - to - Point Throughput Estimation in Networks 

 Telecommunication and transportation network design methods are employed 
to plan the expansion of critical link capacities for a long planning horizon 
and to change routing patterns over relatively short time frames. Typically, 
these methods require as input estimates of throughputs that need to be sup-
ported between all node pairs, which are not readily available. Numerous 
variants of point - to - point throughput estimation problems in networks have 
been published (the fi rst paper was published by Kruithof in 1937), and many 
solution approaches have been proposed. Here, we present a model for a 
network that carries multiple service types with different characteristics, for 
example, different types of data. The information available includes total 
carried load (average carried traffi c per time unit) on each link, and originating 
load per service at each node and terminating load per service at each node. 
Viewing these collected load information as  “ resources ”  that should be allo-
cated equitably among all demands, a throughput estimation problem with a 
lexicographic minimax objective can be formulated. Let  G ( N ,  A ) be a network 
with a set of nodes  N  and a set of directed links  A . We use the following 
notation:

  Indices and Sets 

   e     =    Index for directed links in the network.  
   i ,  j     =    Indices for nodes in the network.  
   s     =    Index for services.  
   d     =    Index for demands. A demand  d  uniquely implies a triplet ( s ,  i ,  j ), 

that is, the service  s , its originating node  i , and its terminating 
node  j .  

   D     =    Set of demands in the network;  D     =    {1, 2,    . . .    ,  n }.  



EXAMPLES AND APPLICATIONS  19

   S     =    Set of services.  
   I s      =    Set of nodes where service  s  is originated.  
   J s      =    Set of nodes where service  s  is terminated.   

  Parameters 

    β  ed      =    Fraction of throughput of demand  d  that is carried on link  e . 
Depending on the application, this input is available from historical 
data or from routing protocols.  

    γ  isd      =    1 if demand  d  is for service  s  and originates at node  i ; otherwise, 
  γ  isd      =    0.  

    δ  jsd      =    1 if demand  d  is for service  s  and terminates at node  j ; otherwise, 
  δ  jsd      =    0.  

   L e      =    Load measured on link  e  for all  e     ∈     A .  
   O is      =    Load measured for service  s , originated at node  i  for all  i     ∈     I s   and 

 s     ∈     S .  
   T js      =    Load measured for service  s , terminated at node  j  for all  j     ∈     J s   and 

 s     ∈     S .  
    ρ  d      =    Rough throughput estimate for demand  d  for all  d     ∈     D . These esti-

mates can be based on demographic information and simple models, 
such as gravity models or Kruithof ’ s method.   ρ  d      >    0 for all  d     ∈     D .   

  Decision Variables 

   x d      =    Throughput estimate for demand  d  for all  d     ∈     D . These estimates 
are the output of the model. They depend on the rough estimates 
  ρ  d  , the routing fractions   β  ed  , and on all load measurements  L e  ,  O is  , 
and  T js  .   

  Performance Functions 

   f d  ( x d  )    =    Deviation of the throughput estimate of demand  d  from its rough 
estimate;  f d  ( x d  )    =    (  ρ  d      −     x d  )/  ρ  d   for all  d     ∈     D .    

 Since the demand throughput estimates depend on load measurements, the 
model can be employed for different time periods, thus providing estimates 
that are consistent with load measurements for each particular time. The 
Throughput Estimation Problem, referred to as Problem L - THPUTEST, is 
formulated as follows. 

   PROBLEM  L  -  THPUTEST  (lex - minimax objective) 

     V f x
x

L n
d d d d d df x f x f xn n= =lexmin{ ( ) [ ( ), ( ), , ( )]}( )

1 1 2 2
…     (1.3.5a)  



20  INTRODUCTION

  subject to

    f x f x f xd d d d d dn n1 1 2 2
( ) ( ) ( ),≥ ≥ ≥�     (1.3.5b)  

    βed d

d D

ex L e A
∈
∑ ≤ ∈for all ,     (1.3.5c)  

    γ isd d

d D

is sx O i I s S
∈
∑ ≤ ∈ ∈for all and ,     (1.3.5d)  

    δ jsd d

d D

js sx T j J s S
∈
∑ ≤ ∈ ∈for all and ,     (1.3.5e)  

    x d Dd ≥ ∈0 for all ,     (1.3.5f)  

  where  f d  ( x d  )    =    (  ρ  d      −     x d  )/  ρ  d   for all  d     ∈     D . The lexicographic minimax objective 
function is defi ned by  (1.3.5a)  and  (1.3.5b) . Constraints  (1.3.5c)  ensure that, 
for each link, the total fl ow assumed to be routed through a link does not 
exceed the link load measurement. Constraints  (1.3.5d)  ensure that, for each 
originating node of service  s , the total load for service  s  originated at that node 
and routed to all destinations does not exceed the corresponding load mea-
surement. Likewise, constraints  (1.3.5e)  ensure the same for each terminating 
node of each service. The formulation of Problem L - THPUTEST is in the 
same format as the formulation of Problem L - RESOURCE and is solved by 
the same algorithms. Note that the link and node load measurements do not 
account for lost traffi c due to congestion, failures, and so on. Hence, in order 
to estimate demand volumes between node pairs, some adjustments are 
needed to account for lost traffi c. 

 The model attempts to compute equitable throughput estimates using the 
static estimates   ρ  d   for all  d     ∈     D  as benchmarks. In addition, the lexicographic 
minimax objective attempts to provide a solution that is consistent with all 
load measurements by attempting to satisfy all resource constraints at equali-
ties. Computational results for Problem L - THPUTEST are shown in Section 
 3.3 . Indeed, large problems can be solved with negligible computational effort. 

 A similar lexicographic minimax model can be employed for estimating 
spatial loads in cellular wireless networks. Consider an area of 40   km by 40   km, 
partitioned into 40,000  “ bins ”  of size 200   m by 200   m, and served by 200 base 
transceiver stations. Using load measurements at the base stations (200 mea-
surements) and propagation models that compute probabilities of assigning 
each bin to each of the base stations, estimates of loads originating at each of 
the 40,000 bins can be computed. Since, typically, the load measurements at 
the base stations are aggregated over all services, the formulation of Problem 
L - THPUTEST for this application considers a single service without nodal 
measurements.    

   1.3.4    Bandwidth Allocation for Content Distribution 

 Content distribution over networks has become increasingly popular. Primary 
application areas include on - demand home entertainment, remote learning 
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and training, video conferencing, and news on demand. Service providers must 
provide signifi cant bandwidth resources in order to provide adequate service, 
which requires large capital investments. Consider, for example, near  video -
 on - demand  ( VOD ) applications where a server broadcasts a copy of a popular 
movie every 5 minutes meaning that a customer may wait, on average, 2.5 
minutes. Thus, if the length of the movie is 100 minutes, the network must carry 
20 copies of the movie simultaneously. In other delivery technologies that 
provide almost instantaneous VOD delivery, bandwidth allocation to any 
program can be controlled by changing the video quality provided to users. 
The quality expected by customers may depend on the application. For 
example, broadcasting of movies requires better video quality than multicast-
ing video conferences. 

 Figure  1.5  shows a tree network with a server at its root (node 1) that 
broadcasts programs 1, 2, 3, and 4. Each node has requests for a subset of 
these programs. For example, node 2 requests programs 1 and 4 and node 3 
requests program 3. The programs are routed along the tree where each of the 
links carries at most a single copy of the same program. The boxes adjacent 
to the links indicate the link index and which programs are carried on each of 
the links. For example, link 1 (between nodes 1 and 2) carries programs 1, 2, 
3, and 4, and link 3 (between nodes 2 and 4) carries programs 1, 3, and 4. Each 
link has a limited bandwidth capacity that is allocated among the programs 
carried on the link. Suppose program 3 is allocated 100   Mbps on link 1. The 
bandwidth allocated to program 3 on links 3 or 4 can be less than 100   Mbps, 
but cannot exceed 100   Mbps. These constraints are referred to as  treelike 

     Figure 1.5     A tree network for content distribution.  
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ordering constraints . As a result, links that are farther away from the server 
may end up with excess capacities. Each of the requested programs is associ-
ated with a performance function that represents service satisfaction as a 
function of the incoming bandwidth of that program into the node requesting 
the program. The objective is to allocate the bandwidths along all links so that 
the service provided to all requested programs at the different nodes is 
equitable.   

 Let  G ( N ,  A ) be a tree network with a set of nodes  N  and a set of directed 
links  A . We use the following notation:

  Indices and Sets 

   i ,  j     =    Indices for nodes.  
   e ,  m     =    Indices for directed links.  
   p     =    Index for programs.  
   SUC e      =    Set of immediate successor links of link  e ; for example, in Figure 

 1.5 ,  SUC  2     =    {5, 6}.  
   P     =    Set of programs broadcasted from the server at root node 1.  
   D j      =    Set of programs requested at node  j ;  D j      ⊆     P .   

  Parameters 

   b e      =    Bandwidth capacity of link  e ;  b e      >    0 for all  e     ∈     A .  
   l p      =    Lower bound ( l p      ≥    0) for bandwidth required by program  p  for 

all  p     ∈     P .   

  More Sets (Derived from the Set Dj and the Tree Topology) 

   LP e      =    Set of programs that are carried on link  e  for all  e     ∈     A . These are 
shown in Figure  1.5  for each link.  

   NP     =    {( j ,  p ) |  p     ∈     D j  ,  j     ∈     N }; that is, doubleton (  j ,  p )    ∈     NP  if program  p  
is requested at node  j . Let  n  be the number of doubletons in  NP .  

   LP     =    {(e,  p ) |  p     ∈     LP e  ,  e     ∈     A }; that is, doubleton ( e ,  p )    ∈     LP  if program 
 p  is carried on link  e .   

  Decision Variables 

   x ep      =    Bandwidth allocated on link  e  to program  p  for all ( e ,  p )    ∈     LP ; 
 x     =    { x ep  : ( e ,  p )    ∈     LP }.   

  Performance Functions 

   w jp  ( x  e   p  )    =    Performance function associated with program  p  requested at 
node  j , representing service quality satisfaction, for all (  j ,  p )    ∈     NP . 
The performance functions are strictly increasing with  x  e   p  , where 
the incoming link  e  into node  j  is unique.    
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 We now formulate the Bandwidth Allocation Model with a Single Server, 
referred to as Problem L - BAM - SS, as a lexicographic maximin optimization 
problem. 

   PROBLEM  L  -  BAM  -  SS  (lex - maximin objective) 

     W w
x

L n
j p e p j p e p j p e px w x w x w xn n n= =lexmax{ ( ) [ ( ), ( ), , (( )
1 1 1 1 2 2 2 2

… nn )]}     (1.3.6a)  

  subject to

    w x w x w xj p e p j p e p j p e pn n n n1 1 1 1 2 2 2 2
( ) ( ) ( ),≤ ≤ ≤�     (1.3.6b)  

    x b e Aep

p LP

e

e∈
∑ ≤ ∈for all ,     (1.3.6c)  

    x x m SUC p LP e p LPep mp e m≥ ∈ ∈ ∈for all and for all, ( , ) ,     (1.3.6d)  

    x l e p LPep p≥ ∈for all ( , ) .     (1.3.6e)   

 To clarify the notation, consider   w xj p e p1 1 1 1
( ). This is the performance function 

at node  j  1  for program  p  1  as a function of the bandwidth allocated to program 
 p  1  on link  e  1 , where link  e  1  is the incoming link into node  j  1 . For example, in 
Figure  1.5 ,  w  41 ( x  31 ) is the performance function at node 4 for program 1 as a 
function of the bandwidth allocated to program 1 on link 3. We assume that 
  ∑ ≤∈p LP p ee l b  for all  e     ∈     A  so that a feasible solution to Problem L - BAM - SS 
exists. The lexicographic maximin objective function is defi ned by ( 1.3.6a ) and 
( 1.3.6b ). Constraints  (1.3.6c)  enforce the bandwidth capacity constraint on 
each of the links. Constraints  (1.3.6d)  enforce the treelike ordering constraints. 
Under these constraints, for each program, the allocated bandwidth along the 
links may decrease, but not increase, when moving farther away from the root 
node. Due to these constraints, bandwidth allocated to a specifi c program on 
a link close to the root node may limit the bandwidth that can be allocated to 
that program on farther away links even if these links have excess capacity. 
Constraints  (1.3.6e)  enforce lower bounds on bandwidth allocation for each 
program on each link that carries the program. Variants of such bandwidth 
allocation problems for content distribution purposes are examined in Sec-
tions  6.3  and  6.4 .    

   1.3.5    Location of Emergency Facilities 

 The problem of locating emergency facilities, such as fi re or police stations, at 
a subset of nodes of a network was briefl y discussed in Section  2.1 . Figure  1.3  
demonstrated the value of seeking a lexicographic minimax solution rather 
than being satisfi ed with an arbitrary minimax solution, where only the largest 
distance between a node and its assigned facility is minimized. Let  G ( N ,  A ) 
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be a network with a set of nodes  N  and a set of undirected links  A . We use 
the following notation:

  Indices 

   i ,  j     =    Indices for nodes.   

  Parameters 

   d ij      =    Length of shortest path between nodes  i  and  j  for all  i ,  j     ∈     N  ( d ii      =    0).  
   K     =    Number of facilities that can be installed;  K     <     n  (where  n  is the 

number of nodes in  N ).   

  Decision Variables 

   x i      =    1 if a facility is located at node  i , and  x i      =    0 otherwise;  x     =    { x  1 ,  x  2 ,    . . .    , 
 x n  }.  

   y ij      =    1 if a facility at node  i  is assigned to serve node  j , and  y ij      =    0 otherwise, 
for all  i ,  j     ∈     N . Note that  x  readily implies the assignment of nodes 
to facilities (  j  is assigned to the closest facility);  y     =    { y ij  :  i ,  j     ∈     N }.   

  Performance Functions 

   f j  ( x )    =    The distance of node  j  to its assigned facility (the closest one) as a 
function of all facility locations, as specifi ed by  x , for all  j     ∈     N .    

 We now formulate the Facility Location Model with a lexicographic minimax 
objective, referred to as Problem L - FLM. Note that this problem is quite dif-
ferent from those described before. Specifi cally, the problem has 0 – 1 decision 
variables. The performance functions are not separable since, for each  j ,  f j  ( x ) 
depends on the vector  x  and not just on  x j  . 

   PROBLEM  L  -  FLM  (lex - minimax objective) 

     V f x x x x
x y

L n
j j jf f f n= =lexmin

,

( ){ ( ) [ ( ), ( ), , ( )]}
1 2

…     (1.3.7a)  

  subject to

    f f fj j jn1 2
( ) ( ) ( ),x x x≥ ≥ ≥�     (1.3.7b)  

    f d y j Nj ij ij

i N

( ) ,x = ∈
∈
∑ for all     (1.3.7c)  

    x Ki

i N∈
∑ = ,     (1.3.7d)  

    y x i j Nij i≤ ∈for all , ,     (1.3.7e)  



EXAMPLES AND APPLICATIONS  25

    y j Nij

i N∈
∑ = ∈1 for all ,     (1.3.7f)  

    x i Ni = ∈0 1or for all ,     (1.3.7g)  

    y i j Nij = ∈0 1or for all , .     (1.3.7h)   

 Constraints  (1.3.7c)  defi ne the performance functions. For example, if a facility 
at node 1 is assigned to serve node 5, then, by  (1.3.7f)   y  15     =    1 while  y i   5     =    0 for 
all  i     ≠    5, which implies by  (1.3.7c)  that the performance function value of node 
5 is equal to the distance  d  15  between nodes 1 and 5. Constraint  (1.3.7d)  limits 
the number of facilities (the resources) to  K . Constraints  (1.3.7e)  ensure that 
nodes will not be assigned to be served by another node that does not have a 
facility. Constraints  (1.3.7f)  ensure that all nodes will be assigned to a facility. 
Constraints  (1.3.7g)  and  (1.3.7h)  limit the decision variable values to 0 or 1. 
An algorithm for solving this problem is described in Section  7.2 .    

   1.3.6    Other Applications 

 The examples described in this section hopefully provided the reader with 
some insight regarding the broad applicability of equitable resource allocation 
models with a lexicographic minimax (or maximin) objective function to 
numerous diverse areas. Allocation of strategic resources for military applica-
tions is another obvious area, for example, the distribution of spare parts to 
various weapon systems among different locations, and the assignment of dif-
ferent types of aircrafts for the execution of multiple missions. Equitable 
scheduling issues faced by the U.S.  Federal Aviation Administration  ( FAA ) 
are critically important. Collaborative air traffi c fl ow management addresses 
issues such as allocation of takeoff and landing slots and allocation of airspace. 
Energy resources and water resources are often in short supply and should be 
allocated equitably and effi ciently among users. Other examples include allo-
cation of inspection effort among numerous components of large systems and 
allocation of effort for software reliability. In many countries, signifi cant atten-
tion has been devoted to improving health services under limited resources. 
Many health care decisions would benefi t from applying equitable resource 
allocation models, including allocating beds among competing hospital depart-
ments, allocating expensive equipment among hospitals in a region, and pro-
viding incentives to have the right mix of specialist physicians. 

 Equitable resource allocation models are obviously important for service -
 related applications as society expects that services will be provided fairly. 
Nevertheless, as our examples demonstrate, such models play an important 
role in numerous, diverse application areas. We believe that the message is 
clear: There are endless challenges and opportunities to apply variations of 
such resource allocation models in order to solve important problems that 
would benefi t the private and public sectors, and society at large.   



26  INTRODUCTION

   1.4    RELATED FAIRNESS CRITERIA 

 The issue of fairness has received considerable attention in the literature. In 
fact, it has been practiced since ancient times under the philosophy of  “ winner 
takes all ”  as demonstrated mildly in Figure  1.6 .   

 This book focuses on resource allocation models with a  lexicographic 
minimax  (or  lexicographic maximin ) objective function. The merit of a lexico-
graphic minimax (or lexicographic maximin) objective function has been 
explained in this chapter through intuitive arguments without resorting to 
axiomatic analysis. As already discussed, a well - known notion is that of a 
 pareto - optimal  ( effi cient ) solution, where no performance function value of 
any activity can be feasibly improved without worsening that of another activ-
ity. It is easy to see that a minimax (or maximin) solution is not necessarily 
pareto - optimal, whereas a lexicographic minimax (or lexicographic maximin) 
solution is. A lexicographic minimax (maximin) solution selects a particularly 
attractive pareto - optimal solution that is also equitable. Hence, it is often 
referred to as an  equitably effi cient  solution. In some sense, the lexicographic 
minimax (maximin) solution can also be referred to as the  “ most equitable 
solution ”  since it provides the best feasible performance function value for 
activities with the worst performance function value, followed by the best 

     Figure 1.6     Winner takes all.  

The Prize
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feasible performance function value for activities with the second worst per-
formance function value without degrading the worst value, and so forth. 

 A minimax (maximin) objective is partially equitable according to the 
Rawlsian theory of justice, which implies that the greater social and economic 
advantages of society should not be at the expense of the least fortunate. 
However, a minimax (maximin) solution, although fair for the worst - off activ-
ity, does not give any guidance how to select an equitable solution across 
all activities. This gap is fi lled by the lexicographic minimax (maximin) 
objective. 

 Consider performance vector  f ( x )    =    [ f  1 ( x ),  f  2 ( x ),    . . .    ,  f n  ( x )] for any feasible 
 x . The vector   f x x x x( )( ) [ ( ), ( ), , ( )]n

j j jf f f n=
1 2

…  is generated from  f ( x ) by 
sorting the performance functions in nonincreasing order (the discussion 
below is for lexicographic minimax optimization). The lexicographic minimax 
vector satisfi es various preference relations, which are perceived as desired 
properties of equitable solutions. Let  z j   be the outcome of performance func-
tion  j  for a given decision vector  x ; that is,  z j      =     f j  ( x ) for  j     =    1, 2,    . . .    ,  n , and in 
vector notation,  z     =     f ( x ). The discussion below is limited to the criteria (per-
formance function outcomes) space and let the set of feasible outcome vectors 
be  Z . We use well - known terminology of preference relations as follows: 
Vector of outcomes  z  1  is weakly preferred over   z z z2 1 2( ), vector  z  1  is strictly 
preferred over  z  2  ( z  1     ≺     z  2 ), and vectors  z  1  and  z  2  are equally preferred ( z  1     ≅     z  2 ). 
Equitable solutions should satisfy the following properties:

   (a)     Completeness :      Either   z z1 2 or   z z2 1 for any  z  1 ,  z  2     ∈     Z .  

  (b)     Transitivity :      If   z z1 2 and   z z2 3, then   z z1 3 for any  z  1 ,  z  2 ,  z  3     ∈     Z .  

  (c)     Strictly Monotonic :       z     −     ε  e   j      ≺     z  for any ( z     −     ε  e   j  ),  z     ∈     Z  and  j     =    1, 2,    . . .    , 
 n , where  e   j   is the  j th unit vector and  ε  is an arbitrarily small positive 
constant.  

  (d)     Scale Invariance :      If   z z1 2, then   c cz z1 2 for any  z  1 ,  z  2     ∈     Z  and scalar 
 c     >    0.  

  (e)     Anonymity (Impartiality) :       z  1     ≅     z  2  if  z  2  is a permutation of the elements 
of  z  1  for any  z  1 ,  z  2     ∈     Z .  

  (f)     Principle of Transferability :      If  z j    ′      >     z j    ″  , then  z     −      ε   e   j    ′      +      ε   e   j    ″      ≺     z  for any 
0    <      ε      <     z j    ′      −     z j    ″   and ( z     −      ε   e   j    ′      +      ε   e   j    ″  ),  z     ∈     Z .    

 The most interesting properties for our purposes are (e) and (f). Indeed, the 
vector  f   (   n   ) ( x ) is the same for any permutation of  f j  ( x ) for  j     =    1, 2,    . . .    ,  n , imply-
ing that an equitable solution is impartial with respect to the specifi c values 
of  j . For instance, if   z x x1

1
1

2
110 5= = =[ ( ) , ( ) ]f f  and   z x x2

1
2

2
15 10= = =[ ( ) , ( ) ]f f , 

then  z  1     ≅     z  2 . The principle of transferability states that improving a worse - 
off outcome at the expense of a better - off one is a preferred solution, and 
the preference relation is maintained as long as the change is within the 
specifi ed interval. For instance, suppose that   z1

1
1

2
1

3
110 5 2= = = =[ , , ]z z z . Then, 
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  z z2
1
2

2
2

3
2 110 7 3 5 2 7 9= = − = = = + =[ , , ]z z z ≺ . The lexicographic minimax 

objective satisfi es the properties of equitable solutions as described above. 
These preference relations can readily be modifi ed for a lexicographic maximin 
objective. 

 A notion of fairness, referred to as  max - min fairness , is often used in 
network fl ow problems. Consider, for example, Problem L - FAM - MP in Section 
 1.3  that considers throughput in communication and computer networks. 
Suppose  x  0  (and  X  0 ) satisfy constraints  (1.3.3c) – (1.3.3e) . Then,  x  0  (and  X   0 ) is 
a max - min fair solution if and only if for any other feasible solution  x  (and 
 X  ),   w X w Xd d d d2 2 2 2

0( ) ( )>  implies the existence of demand  d  1  such that 
  w X w X w Xd d d d d d1 1 1 1 2 2

0 0( ) ( ) ( )< ≤ . In other words, a max - min fair solution implies 
that no performance function value can be feasibly increased without decreas-
ing the performance function value of some other activity whose performance 
function value is already at least as small. Thus, the max - min fair and lexico-
graphic maximin solutions are the same for problem L - FAM - MP. In general, 
the max - min fair solution (as defi ned above) and the lexicographic maximin 
solution are equivalent as long as the feasible region is convex and compact, 
and the performance functions are continuous and strictly increasing (or 
concave). These conditions will be satisfi ed for all models in Chapters  3  –  6 . 
However, for problems with discrete or integer decision variables, discussed 
in Chapter  7 , max - min fair solutions and lexicographic maximin solutions are 
not equivalent. Consider the following simple example with two activities and 
a single resource constraint:  w  1 ( x  1 )    =     x  1 ,  w  2 ( x  2 )    =     x  2  subject to  x  1     +     x  2     =    10, 
 x  1     ≥    0, and  x  2     ≥    0. Both the max - min fair solution and the lexicographic 
maximin solution are  x  1     =     x  2     =    5. Now, suppose that the only feasible solutions 
are either  x  1     =    3 and  x  2     =    7, or  x  1     =    8 and  x  2     =    2. It is easy to see that whereas 
the fi rst solution is the lexicographic maximin solution, neither solution is a 
max - min fair solution. 

 It is important to note that signifi cant work has been published on a variety 
of fairness issues. After all, seeking fairness in societal issues has captured the 
energy of people for centuries with only partial success. For an in - depth discus-
sion on fairness, the reader will be referred to representative references. The 
discussion below highlights only some related concepts. 

 A well - known fairness notion that has been motivated by communication 
network applications is that of proportional fairness. Consider a special case 
of the network example in Section  1.3.2 , where each demand is routed on a 
specifi ed single path. Suppose that the lexicographic maximin objective is 
replaced by   max logx ∑ ∈d D dx . It can be shown that the optimal solution  x    pf   
satisfi es

    [( ) / ] ,x x xd d
pf

d
pf

d D

− ≤
∈
∑ 0     (1.4.1)  

  where  x d  ,  d     ∈     D , is any feasible solution. Solution  x    pf   is called proportionally 
fair since the aggregate of proportional changes with respect to any other 
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feasible solution is zero or negative. The proportional fairness concept has 
been extended by adding positive weights to each term in the objective func-
tion. It has also been applied to more complicated models like the network 
example with multiple routes. Of course, we can use other strictly concave 
performance functions instead of the logarithmic function. A logarithmic func-
tion is convenient as it eliminates the case of zero allocation to any of the 
demands (log(0)    =     −  ∞ ). Whereas the lexicographic maximin objective gives 
priority to fairness over resource utilization, proportional fairness better uti-
lizes the resources at the expense of fairness. 

 A family of performance functions that includes proportional fairness and 
lexicographic maximin objective (with  w d  ( x d  )    =     x d   for all  d     ∈     D ) is known as 
the   α   - fair utility function:

    w x
x

d Dd
d

α

α

α
α α( ) , , ,=

−
≥ ≠ ∈

−1

1
0 1for and     (1.4.2a)  

    w x x d Dd dα α( ) log( ) ,= = ∈for and1     (1.4.2b)  

  where the objective is to maximize the sum of the utility functions over all 
demands. This utility function captures a whole family of criteria by selecting 
different values for   α  . When   α      =    1, the optimal solution is proportionally fair 
and has been shown to be effective for rate control in communication 
networks. 

 When   α      =    0, the utility function is linear. When   α      →     ∞ , the function approx-
imates the lexicographic maximin objective. It is quite diffi cult, though, to 
understand the meaning of some arbitrary value of   α  . Nevertheless, for suffi -
ciently large   α  , maximizing the sum of utility functions ( 1.4.2a ) may serve as 
an approximation to the lexicographic maximin objective. 

 The topic of multiobjective optimization, where a collection of objective 
functions are optimized, has been thoroughly studied. For instance, lexico-
graphic optimization methods order the criteria according to specifi ed impor-
tance and then optimize fi rst the most important criterion, followed by the 
second most important criterion without degrading the value achieved for the 
fi rst criterion, and so forth. These methods do not necessarily provide equi-
table solutions; for instance, they do not satisfy impartiality since they priori-
tize in advance the order in which the criteria are optimized. Lexicographic 
optimization methods, with a predetermined order in which criteria are opti-
mized, should not be confused with lexicographic minimax (or maximin) 
methods. Other multiobjective methods use an objective function that is a 
weighted composite of the individual criteria. Weighted proportional fairness 
(  max logx ∑ ∈d D d dxα  with   α  d      >    0) is an example for such an objective function. 
Again, such methods do not necessarily provide equitable solutions. A modi-
fi cation of these methods, referred to as the ordered weighted average method, 
assigns the largest weight to the worst performance function value, the second 
largest weight to the second worst performance function value, and so forth. 
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Indeed, under certain conditions, the ordered weighted average solution 
approximates the lexicographic minimax (or maximin) solution.  

   1.5    OUTLINE OF THE BOOK 

   1.5.1    Chapter  2 : Nonlinear Resource Allocation 

 Chapter  2  covers initially the well - studied problem of maximizing a separable 
objective function subject to a single linear resource constraint. The decision 
variables are assumed to be continuous and represent activity levels. The 
objective function maximizes the sum of concave performance functions (or 
minimizes the sum of convex functions), where each of these functions depends 
on the level selected for one activity. This problem has proven to be valuable 
in many applications. Since the marginal return of any specifi c activity decreases 
with the amount of resource allocated to that activity, resources are allocated 
somewhat  “ fairly ”  among the activities. For example, as discussed before, pro-
portional fairness is achieved when the sum of logarithmic performance func-
tions is maximized. For certain classes of performance functions, algorithms 
that compute optimal solutions by manipulating closed - form expressions are 
presented. For other functions, we present an algorithm that employs function 
evaluations and a numerical search. 

 The algorithms are then extended to maximizing the sum of concave func-
tions subject to a resource constraint composed of the sum of convex resource -
 usage functions. Again, for certain classes of performance functions, the 
algorithms compute optimal solutions by manipulating closed - form expres-
sions, while for other functions, a numerical search is employed. As will be 
shown, large problems can be solved with a small computational effort. 

 The fi nal topic considers an example taken from allocating different pro-
motional activities across multiple regions. The problem is formulated with a 
nonseparable objective function that maximizes the sum of performance func-
tions subject to multiple resource constraints, and is solved by repeatedly 
solving problems with a separable objective function and a single resource 
constraint. 

 Although the models do not provide equitable solutions, some of the algo-
rithms are quite similar to the minimax algorithms presented in Chapter  3 . 
Hence, this chapter serves as a worthwhile lead into equitable resource alloca-
tion models.  

   1.5.2    Chapter  3 : Equitable Resource Allocation: Lexicographic 
Minimax and Maximin Optimization 

 Chapters  3  –  6  present a large variety of resource allocation models with a lexi-
cographic minimax or maximin objective function and continuous decision 
variables. 
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 Chapter  3  fi rst covers the basic equitable resource allocation problem, for-
mulated as Problem L - RESOURCE. The problem considers a lexicographic 
minimax separable objective function subject to multiple knapsack resource 
constraints, and lower and upper bounds on activity levels. The lexicographic 
minimax algorithm repeatedly solves minimax problems. After each such 
problem is solved, some activity levels are fi xed at their lexicographic minimax 
value and are removed from subsequent minimax problems. This lexicographic 
minimax (or maximin) optimization framework is repeated throughout Chap-
ters  3  –  6 . The key difference in various problems lies in the algorithms for 
solving the minimax problems. For certain classes of performance functions, 
the algorithms for Problem L - RESOURCE are extremely effi cient as they 
only require manipulating closed - form expressions. For more general perfor-
mance functions, the algorithms require more intensive computations. Simi-
larities between the algorithms presented in Chapter  2  and the minimax 
algorithms presented here are quite striking, especially when the minimax 
problem has only one resource constraint. 

 This chapter also discusses algorithms for a nonseparable objective func-
tion, where each performance function depends on a linear combination 
of multiple activity levels, referred to as the effective activity level. 
These problems are signifi cantly more diffi cult than those with a separable 
objective function, even with linear performance functions. We present an 
algorithm for linear performance functions that repeatedly solves minimax 
problems as linear programming problems and identifi es saturated 
effective activities after each such solution is computed. Saturated effective 
activities are excluded from the objective function of subsequent minimax 
problems, while their saturation level is protected through newly added 
constraints. 

 The work described in this chapter was initially motivated by the allocation 
of critical components for the manufacturing of high - tech products. It is, 
however, applicable to many other areas, including communication networks, 
transportation, logistics, and water resources. For instance, the basic problem 
with a separable objective function is directly applicable to determining the 
lexicographic maximin throughputs in communication networks with a single 
fi xed path for each demand. The model with a nonseparable objective function 
is directly applicable to determining the lexicographic maximin throughputs 
in communication networks with multiple feasible paths for each demand.  

   1.5.3    Chapter  4 : Equitable Resource Allocation with Substitutable 
Resources 

 Chapter  4  extends Problem L - RESOURCE of Chapter  3  to models where 
subsets of resources are substitutable. Consideration of substitutions among 
resources adds signifi cant fl exibility to resource allocation. It is particularly 
important in a dynamic environment with rapidly changing technologies. For 
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example, in high - tech manufacturing, subsets of components, such as inte-
grated circuits, are often substitutable. 

 The chapter considers different structures of substitutions and presents 
effi cient algorithms for these cases. The fi rst structure considers transitive 
substitutable resources represented by networks with a tree topology. Transi-
tivity among substitutable resources means that if resource  i  1  can substitute 
for resource  i  2  and resource  i  2  can substitute for resource  i  3 , then resource  i  1  
can also substitute for resource  i  3 . Representation by a tree topology implies 
that each resource, except for the root node of the tree, can be substituted 
directly (not by transitivity) by exactly one other resource. The second struc-
ture considers transitive resources represented by more general acyclic net-
works. Here, a resource may be substituted directly by multiple resources, 
adding signifi cant fl exibility to resource allocation decisions. The third struc-
ture considers nontransitive substitutable resources. The last structure consid-
ers activity - dependent substitutable resources, for example, where resource  i  1  
may substitute for resource  i  2  when used for activity  j  1 , but not when used for 
activity  j  2 . 

 Again, as will be shown, the lexicographic minimax algorithms for these 
problems repeatedly solve minimax problems. However, the algorithms for the 
minimax problems are more complicated and consist of two major compo-
nents. The fi rst component repeatedly solves relaxed minimax problems by 
aggregating substitutable resource constraints, resulting in problems that are 
in the format of Problem L - RESOURCE. The second component checks 
whether the solution to the relaxed problem is feasible or not for the original 
minimax problem. If not feasible, it identifi es subsets of resources with suffi -
cient supplies that can be deleted from subsequent relaxed problems. The 
methods for identifying such subsets depend on the structures of the substitu-
tions, and vary from employing simple backtracking schemes to solving max -
 fl ow network problems. Other solution approaches for the minimax problem 
are also presented.  

   1.5.4    Chapter  5 : Multiperiod Equitable Resource Allocation 

 Chapter  5  extends the models of Chapter  3  to a multiperiod setting. Much of 
the material examines storable resources, where resources not used in one 
period can be used in subsequent periods. Examples for such resources include 
nonperishable commodities such as integrated circuits used in high - tech prod-
ucts, water reserves, oil reserves, and so forth. The multiperiod model for stor-
able resources extends the formulation of Problem L - RESOURCE by adding 
a sequence of ordering constraints for each activity that restrict selected cumu-
lative activity levels for each activity to be nondecreasing over time. Several 
minimax algorithms are presented for this problem. The fi rst algorithm is 
based on a numerical search. It can handle quite general performance func-
tions, but its computational effort is pseudo - polynomial as it depends on the 
desired accuracy. The second algorithm is particularly effi cient for classes of 
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performance functions that solve Problem L - RESOURCE of Chapter  3  
by manipulating closed - form expressions, since it repeatedly solves such 
problems. The third algorithm is tailored for linear performance functions 
that represent weighted shortfalls from cumulative demand levels. A lexico-
graphic minimax algorithm that can employ any of these algorithms is also 
presented. 

 Next, this chapter examines the allocation of nonstorable resources. These 
resources include production facilities and workforce where unused capacity 
in any given period is lost, and perishable resources like certain medications 
and fresh food that need to be discarded at the end of a period. The multipe-
riod model with nonstorable resources is formulated with a nonseparable 
objective function, similar to Problem L - RESOURCE with a nonseparable 
objective function described in Section  3.4 . 

 Finally, we examine multiperiod resource allocation models with substitut-
able resources. As expected, such models and the corresponding algorithms 
combine elements of the models and algorithms described in Chapter  4  and 
in this chapter.  

   1.5.5    Chapter  6 : Equitable Network Resource Allocation 

 Chapter  6  presents allocation of network resources in communication and 
computer networks, though some of the models also apply to other areas, for 
example, transportation. 

 The chapter fi rst considers network fl ow problems with demands between 
multiple node pairs, where the throughput for a given node pair is the total 
fl ow routed between these nodes. Such problems are referred to in the litera-
ture as multicommodity network fl ow problems. 

 The simplest problem considers a network where the demand between each 
node pair is routed on a single fi xed path. The problem with a lexicographic 
maximin objective is then essentially the same as Problem L - RESOURCE of 
Chapter  3 . A simple algorithm for performance functions that represent 
weighted throughputs is presented. A more challenging problem arises when 
the demand between each node pair may be routed on multiple paths and the 
throughput is then the sum of fl ows along these paths (recall the example in 
Section  1.3.2 ). When the set of feasible paths for each node pair is limited and 
given as input, this problem is the same as that discussed in Section  3.4  for a 
nonseparable objective function. Thus, for performance functions that repre-
sent weighted throughputs, the lexicographic maximin solution is computed 
by repeatedly solving linear programming problems, where after each such 
problem is solved, some demands are identifi ed as saturated. However, the 
actual fl ows of saturated demands across the multiple paths are only deter-
mined at the last iteration, once all demands are saturated. When the set of 
paths for each demand is not specifi ed as input, the problem is even more 
challenging since the number of feasible paths may be prohibitively large. In 
that case, some column generation method (a well - studied topic in large - scale 
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optimization) needs to be incorporated within the linear programming algo-
rithm. When the performance functions are concave, the algorithm must 
repeatedly solve convex optimization problems instead of linear programming 
problems. 

 Next, we consider equitable bandwidth allocation for content distribution 
through a network composed of one or more tree topologies, where a server 
at the root of a tree stores multiple programs that are broadcasted throughout 
the tree. Primary application areas include VOD for home entertainment, 
remote learning and training, video conferencing, and news on demand. Each 
link of the network carries at most one copy of any program; thus, the problem 
is quite different from the standard multicommodity network fl ow problems. 
Furthermore, the bandwidth allocated to a program may decrease when 
moving away from the server, but may not increase. This results in treelike 
ordering constraints in the formulation as the bandwidth allocated to a 
program on a link must be at least as large as the bandwidth allocated to that 
program on all successor links. Section  1.3.4  presents an example of a single 
tree network for content distribution. 

 We examine two problems. The fi rst problem assumes that the performance 
function for a specifi c program is the same at all nodes. The resulting lexico-
graphic maximin algorithm is then a relatively simple extension of that for 
Problem L - RESOURCE of Chapter  3 , where the extensions are needed to 
enforce the treelike ordering constraints. The second problem allows node -
 dependent performance functions for each program. The previous algorithm 
cannot be extended to handle this case. Instead, a maximin algorithm that 
employs a numerical search is presented. This algorithm extends one of the 
algorithms of Chapter  5  for multiperiod problems with storable resources. 
The maximin algorithm is then incorporated into a lexicographic maximin 
algorithm.  

   1.5.6    Chapter  7 : Equitable Resource Allocation with Integer 
Decisions 

 This chapter covers equitable resource allocation models with integer decision 
variables. Thus, unlike in all problems discussed in Chapters  3  –  6 , the feasible 
region is not convex. This nonconvexity forces the development of different 
solution approaches since the solution of a minimax problem does not provide 
obvious guidance as to which activity levels can be fi xed at their lexicographic 
minimax value. 

 The chapter starts by examining the challenges through Problem L -
 RESOURCE with integer decision variables. An effi cient algorithm for solving 
the minimax problem is presented; however, as will be shown, it cannot readily 
be extended to solve the lexicographic minimax problem. A simple algorithm, 
based on marginal allocations, is described for a special case of the lexico-
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graphic minimax problem with a single resource constraint. This problem is 
related to the problem of fair apportionment of seats in a legislative body. 

 Next, the emergency facility location problem, discussed in Section  1.3.5 , is 
examined. The problem can be converted to a lexicographic minimization 
problem, where the  r th term in the objective function is the number of occur-
rences of the  r th worst possible distinct outcome. The optimal solution is then 
obtained by minimizing the fi rst term in the objective function, followed by 
minimizing the second term without increasing the fi rst term, and so forth. This 
lexicographic minimization requires repeatedly solving mixed integer pro-
gramming problems. Although constructing the counting functions for  r     =    1, 
2,    . . .    is easy for the facility location problem with a negligible increase in the 
problem size, in general, it can only be done at the expense of adding many 
auxiliary continuous variables and constraints. We present details of the 
general approach. However, this solution approach is practical only if the 
number of possible distinct outcomes is relatively small. 

 Next, solution approaches for problems with a large, possibly infi nite, 
number of distinct outcomes are presented. Although such problems can be 
found in many application areas, much of the work has been done in the 
context of communication networks, where consideration of integer decision 
variable is often important. The key idea consists of expressing the sum of the 
 k  worst performance function values for a given solution as an optimization 
problem. As a result, the original lexicographic maximin (or minimax) problem 
can be converted to a standard lexicographic optimization problem, again, at 
the expense of adding many auxiliary continuous variables and constraints. 
Still, although this approach can be used for many problems, the computa-
tional effort may become prohibitively large since it may require the repeated 
solution of large mixed integer programming problems. To that end, several 
approximation approaches are also presented.   

   1.6    CONCLUDING REMARKS AND LITERATURE REVIEW 

 Resource allocation models are concerned with the allocation of limited 
resources among numerous activities. This book focuses on resource allocation 
models that can be adapted to diverse application areas, and for which effi -
cient, elegant solution methodologies can be developed because of their 
special mathematical structure. In particular, most of the material covers 
resource allocation models with a lexicographic minimax (or a lexicographic 
maximin) objective function. We often refer to these models as  equitable 
resource allocation models  with the understanding that these models use lexi-
cographic minimax (or maximin) objective functions. 

 It is important to note that linear programming, the most widely used 
operations research methodology, addresses numerous resource allocation 
problems. Many books have been written on this topic. We refer to just three: 
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the seminal linear programming book by Dantzig  [Dan63] ; the book by Lasdon 
 [Las70] , which presents algorithms for large - scale problems; and the more 
recent book by Vanderbei  [Van08]  (fi rst edition published in 1997). Much of 
the work on resource allocation models with special mathematical structures 
has been inspired by the initial work of Koopman  [Koo53, Koo56a, Koo56b, 
Koo57]  on search effort distribution. Over the decades, operations research 
has demonstrated many success stories as documented, for example, in the 
 Committee on the Next Decade in Operations Research  ( CONDOR )  [CO88]  
and in Luss and Rosenwein  [LR97] . Much of the work that led to these 
successes includes elements of resource allocation models and solution 
methodologies. 

 As work on resource allocation models with special mathematical structure 
grew along with better solution methodologies, there was an obvious need for 
books and expository papers that would be a source for education and guid-
ance. Mjelde  [Mje83a]  published the fi rst book that covers a large number of 
such models. Ibaraki and Katoh  [IK88]  wrote an excellent book that covers 
much of the work until that date primarily for models with a single resource 
constraint for both continuous and integer decision variables. Katoh and 
Ibaraki  [KI98]  continued that work in a detailed survey with an emphasis 
on models with integer variables. Luss and Smith  [LS86]  published the 
fi rst paper on lexicographic minimax approach for resource allocation prob-
lems with continuous variables and multiple resource constraints (Problem 
L - RESOURCE). Luss  [Lus99]  presented an expository paper on equitable 
resource allocations using a lexicographic minimax (or lexicographic maximin) 
approach. Pioro and Medhi  [PM04 , chapters 8 and 13] described models and 
algorithms for equitable resource allocations in networks. 

 Signifi cant work has been devoted to the understanding of different notions 
of fairness, starting with the work of Pigou  [Pig12]  in 1912 and Dalton  [Dal20]  
in 1920 in the fi eld of economics. Rawls  [Raw71]  presented a comprehensive 
theory of justice, which among other implications protects the most unfortu-
nate individuals from  “ the greater value to society ”  (as in a minimax objec-
tive). The literature on multiobjective optimization models is quite rich; see, 
for example, Isermann  [Ise82]  and surveys by White  [Whi90] , Ehrgott and 
Gandibleux  [EG00] , and Marler and Arora  [MA04] . Some multiobjective 
optimization models assume that the objectives are incomparable, and thus, 
the performance functions have no obvious basis for comparison. One solution 
approach to such models uses lexicographic optimization, where an objective 
function vector consists of multiple criteria, which are optimized sequentially 
in a predetermined order. 

 This book focuses on resource allocation applications where the different 
objectives are comparable, and it is important to measure and achieve some 
equitable allocation of the resources. To that end, the concept of a lexico-
graphic minimax (or lexicographic maximin) objective, a natural extension of 
the widely used minimax (or maximin) objective, is introduced. A similar 
notion is known in cooperative games theory as the nucleolus allocation; 
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see, for example, Schmeidler  [Sch69] , Potters and Tijs  [PT92] , and Kern 
and Paulusma  [KP03] . Many references, including Ogryczak  [Ogr97]  and 
Kostreva and Ogryczak  [KO99] , describe preference relations for equitable 
solutions (shown in Section  1.4 ) that are satisfi ed by lexicographic minimax 
optimization. As mentioned earlier, lexicographic minimax solutions are also 
pareto - optimal and, thus, are called  equitably effi cient . Indeed, lexicographic 
minimax solutions are sometimes referred to as the  “ most equitable solutions ”  
(see, e.g., Kostreva and Ogryczak  [KO99] ). Bertsekas and Gallager  [BG92 , 
chapter 6] introduced the max - min fair fl ow solution for networks with fl ows 
over a single fi xed route (it appeared in the fi rst edition published in 1987). 
Radunovic and Le Boudec  [RLB07]  and Nace and Pioro  [NP08]  discussed 
the max - min fairness criterion and its relation to lexicographic maximin 
optimization. 

 This book presents many problems for which effective lexicographic minimax 
algorithms do exist. For example, for certain classes of performance functions, 
the algorithms can solve large - scale problems in the format of Problem 
L - RESOURCE very fast. For more complicated problems, for example, with 
substitutable resources and multiperiod allocations, more involved algorithms, 
which leverage of the algorithms for Problem L - RESOURCE, are available; 
see Luss  [Lus99]  and references therein. Algorithms for problems with a non-
separable objective function are more time - consuming and, typically, require 
solving multiple linear or nonlinear optimization problems. Such problems are 
common in communication network applications; see, for example, Pioro and 
Medhi  [PM04 , chapters 8 and 13] and Nace and Pioro  [NP08] . Next, consider 
problems with integer decision variables. Such problems are signifi cantly more 
diffi cult, and, in general, are converted to lexicographic minimization (or maxi-
mization) problems at the expense of adding many auxiliary variables and 
constraints. This lexicographic optimization problem is solved by repeatedly 
solving large mixed integer programming problems. In one approach, the lexi-
cographic objective is composed of counting functions that count the number 
of occurrences of distinct outcomes; see, for example, Ogryczak, Pioro, and 
Tomaszewski  [OPT05] . In a different approach, the lexicographic objective is 
composed of multiple criteria, where the  k th criterion is the sum of the  k  worst 
performance function values; see, for example, Ogryczak, Wierzbicki, and 
Milewski  [OWM08] . Although these approaches are very useful, large prob-
lems, such as those encountered, for example, in large communication networks 
with integer decision variables, may require prohibitively large computing 
effort. Hence, various algorithms that provide approximations to the lexico-
graphic minimax solutions have been proposed. 

 Wierzbicki  [Wie82]  and Wierzbicki, Makowski, and Wessels  [WMW00]  pre-
sented interactive methods that provide a range of equitably effi cient solutions 
based on reservation and aspiration levels for each of the activities. The res-
ervation levels are the required activity levels, whereas the aspiration levels 
are the desired levels, commonly referred to as reference points. Depending 
on the aspiration and reservation levels, a utility function is constructed. If the 
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solution achieved for the utility function is not acceptable to a decision maker, 
the reservation and aspiration levels are modifi ed and a new utility function 
is constructed and a new problem is solved; otherwise, the method terminates. 
Many successful applications are reported in Wierzbicki, Makowski, and 
Wessels  [WMW00]  and Kaleta et al.  [KOTZ03] , as one may provide the deci-
sion maker with numerous appealing alternatives. Gardiner and Steuer  [GS94a, 
GS94b]  examined a variety of interactive methods for problems with multiple 
objectives and provide a unifi ed approach to these methods. 

 Kelly, Maulloo, and Tan  [KMT98]  employed a logarithmic utility function 
that leads to proportional fairness. Mo and Walrand  [MW00]  presented the 
  α   - fair utility function, which includes a wide spectrum of fairness criteria, 
depending on the selected value for   α  . Lan et al.  [LKCS10]  presented an even 
more general axiomatic theory of fairness in network resource allocation, 
which includes, among others, the   α   - fair utility notion as a special case. The 
interested reader may consult the references listed in these papers. 

 It is important to understand and quantify the price of fairness relative to 
a fully effi cient allocation that maximizes the sum of all performance functions. 
Tang, Wang, and Low  [TWL04]  examined the price of fairness for network 
fl ow problems using the   α   - fair utility function. Bertsimas, Farias, and Trichakis 
 [BFT11]  examined the price of fairness for a broad family of problems, focus-
ing on proportional fairness and max - min fairness. It should be noted that in 
various applications, solutions that are perceived as unfair to some are doomed 
to fail in practice. For example, the majority of proposals for effi cient alloca-
tion schemes of takeoff and landing  “ slots ”  at airports (an expensive scarce 
resource), which benefi t the overall system at the expense of some airlines, are 
often discarded as impractical. 

 We conclude with a sample of references used for the applications 
described in Section  1.3 . Many more references will be mentioned throughout 
the book. 

   1.6.1    Equitable Allocation of High - Tech Components 

 Luss and Smith  [LS86]  presented the fi rst paper on this application with a 
lexicographic minimax objective. Related papers include Tang  [Tan88]  and 
King  [Kin89] . The latter presents an interactive solution approach for produc-
tion planning that repeatedly solves problems in the format of Problem 
L - RESOURCE.  

   1.6.2    Equitable Throughput in Communication and Computer 
Networks 

 Bertsekas and Gallager  [BG92 , chapter 6] presented a simple max - min fair 
solution for networks with a single fi xed route per demand. Pioro and Medhi 
 [PM04 , chapters 8 and 13] presented a variety of equitable fl ow models for 
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networks, including models where the fl ow between a node pair may be routed 
on multiple paths. Ogryczak, Pioro, and Tomaszewski  [OPT05]  and Ogryczak, 
Wierzbicki, and Milewski  [OWM08]  presented various models with continu-
ous and integer decision variables.  

   1.6.3    Point - to - Point Throughput Estimation in Networks 

 Kruithof  [Kru37]  presented the fi rst paper on this topic; see Krupp  [Kru79] . 
Since then, numerous solution approaches have been proposed for different 
variants of this problem. Luss and Vakhutinsky  [LV01]  presented a resource 
allocation model with a lexicographic minimax objective that computes esti-
mated point - to - point throughputs based on load measurements, and Luss 
 [Lus05]  described a similar model for cellular wireless networks.  

   1.6.4    Equitable Bandwidth Allocation for Content Distribution 

 Sarkar and Tassiulas  [ST00]  presented the fi rst paper on this application for 
an equitable throughput objective. The formulation in Section  1.3.4  is quite 
different and follows Luss  [Lus08, Lus10] . Lee, Moon, and Cho  [LMC04]  and 
Sarkar and Tassiulas  [ST02]  addressed this problem with integer bandwidth 
allocation decisions.  

   1.6.5    Equitable Location of Emergency Facilities 

 Ogryczak  [Ogr97]  presented an algorithm that computes a lexicographic 
minimax solution by minimizing fi rst the number of occurrences of the worst 
possible outcome, followed by minimizing the number of occurrences of the 
second worst possible outcome, and so forth. Ogryczak  [Ogr99, Ogr00]  also 
presented other approaches with fairness criteria to the location problem.  

   1.6.6    Other Applications 

 The broad applicability of equitable resource allocation models is further 
demonstrated through a sample of references in diverse application areas. 
These include the following:

    •      Air Traffi c Management :      Sherali, Staats, and Trani  [SST03, SST06] , Vossen 
and Ball  [VB06] , and Bertsimas, Lulli, and Odoni  [BLO11] .  

   •      Congestion Control in Sensor Network and Sensor Location Deci-
sions :      Chen, Fang, and Xia  [CFX07]  and Neidhardt, Luss, and Krishnan 
 [NLK08] .  

   •      Municipal Solid Waste Management :      Erkut et al.  [EKPT08] .  
   •      Visual Quality of Video Coded Pictures :      Hoang, Linzer, and Vitter 

 [HLV97] .  
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   •      Health Services, for Example, Evaluation of Radiation Dose Distribu-
tion :      Svahn, Peterson, and Hansson  [SPH06] .  

   •      Search Effort :      Koopman  [Koo53, Koo56a, Koo56b, Koo57] .  
   •      Water Rights Allocation :      Wang, Fang, and Hipel  [WFH07, WFH08] .  
   •      Military Applications :      Danskin  [Dan67] , Jaiswal  [Jai97] , Newman et al. 

 [NRSB11] , and Golany et al.  [GKPR12] .  
   •      Final Assembly Sequencing in Production Systems :      Monden  [Mon98]  

(fi rst edition published in 1983) and Groefl in et al.  [GLRW89] .        

  
 
 
 
 
    

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


