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1.1 INTRODUCTION

Drops are present in our everyday life in kitchens and
showers and are also used in fountains for aesthetic reasons.
In addition, drops are of fundamental importance in many
industrial processes [1–6]. Chemical and metallurgical
engineers rely on drop formation for operations as varied
as distillation, absorption, flotation, and spray drying [7].
Mechanical engineers have studied droplet behavior in
connection with combustion operations [6]. In the food
industry they are used to mask flavors and change textures
[8, 9], and in the pharmaceutical sector they are involved in
the production of creams and syrups [10–12].

The most common devices for mass production of drops
are mixers and ultrasound emulsificators. In the case of mix-
ers, the breakup of the dispersed phase results from the tur-
bulent motion induced by the mobile parts of the mixer [13],
whereas the operation of an ultrasound emulsificator relies
on the collapse of cavitation bubbles, which induces velocity
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gradients in the continuous phase that cause formation of
jets and subsequent breakup [14]. These methods are sim-
ple, robust, and of low cost, but they typically result in a
wide size distribution and a poor control on drop size. These
drawbacks can be overcome by filtering the droplets [15, 16].
However, the need of this second step complicates the pro-
cess and increases costs.

In the last decades, great efforts have been made to
improve current production methods in order to obtain
monodisperse micron-sized droplets at high production
rates. Recent fabrication methods rely on microfluidics as
this technology provides great control over fluid flow and
mixing of components.

In general, two different regimes can be experimentally
observed depending on the operating conditions: dripping
and jetting. The dripping regime operates at low flow
rates and drop formation occurs right at the exit of the
injection tube. In this regime, the resulting droplets are
very monodisperse, but the production frequency is low.
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Figure 1.1 (a) Schematic of the coflowing configuration. Source: Reprinted Figure 2a with permission from Ref. [20]. (b) Schematic of the
axisymmetric flow focusing configuration. Source: Reprinted Figure 1 from Ref. [52].

In addition, the droplet size is proportional to the diameter of
the injection tube, and as a consequence, in order to obtain
droplets that are smaller than ∼10 μm, needles with such a
small diameter are required. However, in this case, clogging
becomes an issue. The jetting regime operates at higher flow
rates than the dripping regime. In this case, the drop diameter
is proportional to the diameter of the jet, which under the
right conditions can be much smaller than the diameter of
the injection tube. Jetting can only be achieved under the
action of a force field. If only hydrodynamic forces act on
the liquid, jetting can be obtained in either the coflow or the
flow focusing configurations. Another alternative is the use
of electric forces, with techniques such as electrospray (see
Chapter 2).

The coflow configuration is characterized by the coaxial
flow of two immiscible fluids as shown in Figure 1.1a. In this
case, jetting occurs when the tangential stresses exerted by
the continuous phase on the dispersed phase overcome sur-
face tension stresses. In flow focusing, two fluids are forced
to flow through a small orifice located in front of an injec-
tion tube, as shown in Figure 1.1b. In this configuration, the
outer pressure gradient is favorable, and, as a consequence,
not only the outer tangential stresses but also the outer pres-
sure gradient imposed by the geometry accelerates the inner
fluid through the orifice inducing formation of a jet that can
be much smaller than the injection tube.

Other emulsification schemes besides coflow and flow
focusing, which is the focus of this chapter, have also been
explored. An important example is the T-junction geometry
introduced by Garstecki et al. [19], where an inlet channel
containing the dispersed phase perpendicularly intersects
the main channel hosting the continuous phase [20] (see
Figure 1.2a). Both phases form an interface at the junction,
and as the fluid flow continues, the tip of the dispersed phase
enters the main channel. The shear stresses of the continuous
phase and the subsequent pressure gradient cause the head
of the dispersed phase to elongate into the main channel
until breakup occurs and a drop is formed, as shown in
Figure 1.2b. The size of the drop can be changed by altering
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Figure 1.2 (a) Schematic illustration of the microfluidic
T-junction composed of rectangular channels. (b) Top view of
the same schematic in a two-dimensional representation. Source:
Reprinted Figure 1 from Ref. [17].

the flow rates, the channel dimensions, and the viscosity
ratio of the two liquids. This geometry is very popular due
to its simplicity and flexibility [21]. The main disadvantage
is that the minimum size of the drops is limited by the size
of the channel. Despite the production rate is not very high,
parallel production can reduce this limitation.

1.2 COFLOW

1.2.1 Problem and Dimensionless Numbers

One of the simplest designs of a coflow device consists in
coaxially aligning two capillary tubes. Typically, the inner
one is cylindrical, with a tapered tip, and the outer tube has
a square cross section [17]. Coaxial alignment is achieved
by matching the outer diameter of the untapered portion of
the inner capillary to the inner dimension of the square cross
section of the outer tube (Figure 1.1a). As the length scales
are below the capillary length, the effects of gravity are neg-
ligible. In addition, even if the flow in the outer capillary
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is not axisymmetric, since the tip is centered in the square
cross section and Di ≪ Do, with Di the inner diameter of the
tip and Do the inner length of the square cross section of the
outer capillary, the local flow around the tip is approximately
axisymmetric. The inner fluid is injected through the cylin-
drical capillary tube at a flow rate Qi and the outer fluid is
supplied through the voids between the cross sections of both
tubes at a flow rate Qo.

Drop formation in a coflow device is characterized by nine
physical parameters: the densities of both fluids, 𝜌i and 𝜌o,
their viscosities, 𝜇i and 𝜇o, their flow rates, the surface ten-
sion between the two fluids, 𝜎, the inner diameter of the injec-
tion tube, and the inner length of the square cross section
of the outer tube. Since there are three fundamental quanti-
ties (mass, length, and time), there are 9 − 3 = 6 independent
dimensionless groups [22, 23]. Assuming that the outer vis-
cous stresses are the most relevant stresses in the problem,
the selection of 𝜇o,Di, andQo = UoD

2
o, whereUo is themean

velocity of the outer stream, as characteristic quantities leads
to the following six dimensionless parameters:

Do

Di
, q =

Qi

Qo
,

𝜇i

𝜇o
, Cao =

𝜇oUo

𝜎
, Reo =

𝜌oUoDi

𝜇o
,

Rei =
𝜌iUiDi

𝜇i

where Cao is the capillary number of the outer fluid, Rei is
the Reynolds number of the inner fluid and Reo that of the
outer fluid in the scale of the tip diameter.

Generally, for low values of the inner to outer flow rate
ratio, the dripping regime is observed, whereas for higher
values of q, jetting occurs. The inner to outer viscosity ratio,
𝜇i∕𝜇o, must play a significant role in the jet formation pro-
cess, since gas ligaments have not been reported in a coflow
configuration at low Reynolds numbers. The inner to outer
length ratio, Di∕Do, is fixed for each device and should be
sufficiently smaller than one to avoid wall effects. The rest of
the parameters measure the relative importance between dif-
ferent forces in the problem: capillary forces, viscous forces,
and inertial forces. The outer capillary number characterizes
the relative importance of the outer viscous stress compared
to the surface tension stress, while the Reynolds numbers
express the ratio between inertial and viscous forces.

Other dimensionless parameters that will appear in the
discussion are the inner capillary number, Cai = 𝜇iUi∕𝜎
and the inner Weber number, Wei = 𝜌iU

2
i Di∕𝜎; the latter

determines the relative importance between inertial and sur-
face tension forces for the inner fluid, with Ui = 4Qi∕(𝜋D2

i )
the mean velocity of the inner stream. The inner Ohnesorge
number,Ohi = 𝜇i∕(𝜌i𝑣cDi)will also play a significant role; it
measures the importance of inner viscous forces in the devel-
opment of capillary instabilities, where 𝑣c = [𝜎∕(𝜌iDi)]1∕2
is the capillary velocity. Note that these numbers can be

obtained from combinations of the above-mentioned six
parameters.

For given values of the physical parameters in the
problem, the magnitude of the dimensionless groups allows
identification of the most relevant forces and hence of the
expected operating regime of the device.

1.2.2 Dripping and Jetting

When a liquid is forced through an orifice in the presence
of a coflowing, immiscible fluid, it can drip or form a jet,
depending on the flow rates. In dripping, the growing droplet
experiences a force due to the viscous drag exerted by the
coflowing fluid and a force due to surface tension, which
keeps the drop at the tip of the capillary tube (Figure 1.3a).
As the outer flow rate increases, the drop size concomitantly
decreases until a critical value ofCao ∼ O(1) is reached [24].
At this point, the dripping regime transitions into a jetting
regime, where a long jet, which narrows in the downstream
direction, is formed. This jet ultimately breaks into drops due
to the Rayleigh–Plateau instability (Figure 1.3b) [25, 26].

Jetting can also result if the kinetic energy due to the flow
of the inner stream at the jet interface overcomes the surface
tension energy. In this case, a widening jet results, as shown
in Figure 1.3c. Dripping can thus transition into jetting when
Wei > 1, provided Rei is also larger than one. These jets are
very different from the narrowing jets not only in their shape.
The breakup is also very different. In fact, drop formation
from these widening jets is reminiscent of dripping at the tip,
even if the process takes place a distance downstream of it.

(a)

(b)

(c)

50 μm

Figure 1.3 Images in the (a) dripping, (b) narrowing jet, and
(c) widening jet regimes. Source: Reprinted Figure 1 fromRef. [23].
Copyright 2007 by the American Physical Society.



�

� �

�

6 FLUIDS, COLLOIDS AND SOFT MATERIALS

103

102

101

100

100

10−1

10−1

W
e

i

10−2

10−2

10−3

10−3

Cao

Figure 1.4 State diagram of the dripping-to-jetting transition for
coflowing streams as a function ofCao andWei. Filled symbols rep-
resent dripping while open symbols represent jetting. Each shape
is a different viscosity ratio, surface tension, or geometry. Surface
tension is 𝜎 = 40 mN/m unless otherwise stated. Square: 𝜇i∕𝜇o =
0.01. Diamond: 𝜇i∕𝜇o = 0.01, with the extra capillary tube to
increase Uo. Hexagon: 𝜇i∕𝜇o = 0.1. Circle: 𝜇i∕𝜇o = 0.1. Pentagon:
𝜇i∕𝜇o = 1. Triangle: 𝜇i∕𝜇o = 10. Star: 𝜇i∕𝜇o = 10 and 𝜎 = 4
mN/m. Source: Reprinted Figure 4 from Ref. [23]. Copyright 2007
by the American Physical Society.

For Reo ≪ 1 and Rei > 1, Utada et al. [24] proposed a
state diagram for the dripping to jetting transition in terms of
Wei and Cao. ForWei < 1, jetting occurs if the outer viscous
forces overcome capillary forces, Cao ≫ O(1), whereas for
Cao < 1, jetting is observed when the inertial forces of the
inner liquid dominate over surface tension forces, Wei > 1
(Figure 1.4).

More recently, Castro-Hernández et al. [27] reported that
when Rei < 1, the innerWeber number no longer predicts the
transition from dripping to jetting. In this case, the appropri-
ate dimensionless group is the capillary number of the inner
fluid; jetting occurs when Cai > 1.

1.2.3 Narrowing Jets

In this regime, the jet thins downstream until, eventually,
its diameter reaches a nearly constant value, as shown in
Figure 1.3b. For these jets, when the outer flow rate is
increased for a fixed value of the inner flow rate, the jet
diameter decreases, whereas when the inner flow rate is
increased, for a fixed value of the outer flow rate, the jet
diameter increases. The drop size mimics this behavior, as
shown in Figure 1.5. Utada et al. [28] proposed a simple
model to predict the jet diameter for these jets in the
axisymmetric coflow configuration. Solving the motion of
two coaxial liquids in Stokes flow, 𝛻P = 𝜇𝛻2u, and relating
the mean velocities of both fluids to the flow rates, one
obtains

Qi

Qo
=

𝜇o

𝜇i

𝜖4

(1 − 𝜖2)2
+ 2

𝜖2

1 − 𝜖2
, (1.1)
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Figure 1.5 Experimentally measured jet diameter (triangles) and
droplet diameter (circles) scaled by Do as a function of the inner to
outer flow rate ratio for a viscosity ratio 𝜇i∕𝜇o = 0.1 (Ohi = 0.11).
The solid line is the prediction from the model for djet with no
fitting parameters. The dashed line is the predicted result assum-
ing ddrop ≈ 2djet from the Rayleigh–Plateau instability. Source:
Reprinted Figure 2 fromRef. [23]. Copyright 2007 by the American
Physical Society.

where 𝜖 = djet∕Do is the ratio between the diameter of the jet
and the inner radius of the outer tube. When 𝜖 ≪ 1 the lead-
ing term in Equation 1.1 results in a normalized jet diameter,
djet∕Do =

√
Qi∕2Qo, which correctly accounts for the mea-

surements, as shown in Figure 1.5.
The observed proportionality between djet and the drop

size can be understood by considering the Rayleigh–Plateau
breakup of a jet, which predicts that the wavelength of the
fastest unstable mode, 𝜆∗, is proportional to the jet diameter.
The proportionality constant is only a function of the viscos-
ity ratio for sufficiently large Ohi [29]. Considering that this
mode causes the breakup of the jet, we equate the volume of a
cylinder of length 𝜆∗, to the volume of the resulting spherical
droplet: 𝜋d3drop∕6 = 𝜋d2jet𝜆

∗∕4, with ddrop the drop diameter.
This suggests that the drop size should be proportional to
the jet diameter, consistent with the experimental results. In
addition, since 𝜇i∕𝜇o = 0.1 and 𝜆∗ = 5.48djet, ddrop ≈ 2djet,
consistent also with the experimental results (Figure 1.5).

Interestingly, Suryo and Basaran [30] found out numeri-
cally that in this coflow geometry, djet can be much smaller
than Di. Soon after, Marín et al. [31] showed that under the
right operating conditions, droplets below the micron could
be obtained from needles with Di = 100 μm. The require-
ments for the observation of this regime are that (i) Reo ≪ 1,
so that the outer flow remains attached at the jet interface,
(ii) Rei ≪ 1, so that the momentum of the outer fluid effec-
tively diffuses to the inner stream, and (iii) Cao ≳ O(1). In
this case, if q ≪ 1, a cone-jet transition is observed and the
jet diameter can be much smaller than Di.

Recently, Castro-Hernández et al. [32] have studied
the role of 𝜇i∕𝜇o, Cao and q in the coflow configuration
when operated under the narrowing-jet regime. They exper-
imentally observed that when the inner to outer flow rate
decreases, for fixed values of the viscosity ratio and the outer
capillary number, the diameter of the jet and of the droplets
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200 μm

(a)

(b)
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Figure 1.6 Experimental images showing jet formation and
breakup when silicone oil of 10 cP is used as inner fluid and glyc-
erin as the outer fluid. 𝜇i∕𝜇o = 10−2 and Cao = 5. (a) Ui∕Uo =
10−2, Qi = 5 × 10−1 μl∕min, Qo = 7 ml∕min; (b) Ui∕Uo = 6 ×
10−3, Qi = 3 × 10−1 μl∕min, Qo = 7 ml∕min; (c) Ui∕Uo = 5 ×
10−4, Qi = 2 × 10−2 μl∕min, Qo = 7 ml∕min. Source: Reprinted
Figure 2 from Ref. [31].

200   m

(a)

(b)

(c)

Figure 1.7 Experimental images showing jet formation and
breakup for Cao = 5, Ui∕Uo = 4 × 10−3 and different values of the
viscosity ratio: (a) silicone oil of 100 cP/glycerin, 𝜇i∕𝜇o = 10−1; (b)
silicone oil of 10 cP/glycerin, 𝜇i∕𝜇o = 10−2; (c) water/silicone oil
of 1000 cP, 𝜇i∕𝜇o = 10−3. Qi = 2 × 10−2 μl∕min, Qo = 7 ml∕min.
Source: Reprinted Figure 6 from Ref. [31].

that result from its breakup both decrease (see Figure 1.6),
consistent with the results shown in Fig. 1.5. In addition,
when Cao reaches a value above the threshold at which the
transition between dripping and jetting occurs, they reported
that the length of the jet before breakup is proportional to
Cao, whereas the jet diameter and, as a consequence, the
droplet size remain constant. Lastly, they could verify that if
the viscosity ratio decreases, the cone-jet structure becomes
more elongated (see Figure 1.7), eventually resulting in

(a)

(b)

(c)

200 μm

Figure 1.8 Experimental images obtained using different silicone
oils as the inner fluid and glycerin as the outer fluid for Cao =
5. The continuous white line corresponds to the theoretical jet
shape. The values of the control parameters in each of the three
cases shown are (a) 𝜇i∕𝜇o = 10−1, Ui∕Uo = 6 × 10−3, Qi = 3 ×
10−1 μl∕min, Qo = 7 ml∕min; (b) 𝜇i∕𝜇o = 10−2, Ui∕Uo = 10−2,
Qi = 5 × 10−1 μl∕min, Qo = 7 ml∕min; (c) 𝜇i∕𝜇o = 10−3 Ui∕Uo =
10−2, Qi = 8 × 10−1 μl∕min, Qo = 12 ml∕min. Source: Reprinted
Figures 18–20 from Ref. [32].

aperiodic jet breakup and a drop size that is no longer
uniform.

Making use of the continuity equation, the axial momen-
tum equation, the normal stress balance across the interface
and the kinematic boundary condition at the free interface,
they obtained a parameter-free theoretical prediction for the
jet shape, finding good agreement with the experimental
results (Figure 1.8).

1.2.4 Unified Scaling of the Drop Size in Both
Narrowing and Widening Regimes

The drop size that results from the breakup of a widening jet
decreases with Qo for a fixed Qi, consistent with the results
for narrowing jets. In contrast, when Qi is increased for a
fixed value ofQo, two different situations are observed: If the
viscosity of the outer fluid is 𝜇o ≃ 10 cP, the behavior of ddrop
is consistent with the situation encountered with narrowing
jets; ddrop increases with Qi. However, when 𝜇o ≃ 1 cP, the
opposite behavior is observed and the drop size decreases
with Qi, as shown in Figure 1.9.

To understand this dependence, let us revisit the behav-
ior of narrowing jets. Since for these jets, Reo < 1, there is
an effective diffusion of momentum across the whole cross
section of the jet. As a result, the inner and outer velocities
become equal at some distance downstream of the injection
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Figure 1.9 Dependence of the drop diameter on Qi for a fixed
value ofQo = 200ml/h and various inner/outer viscosities. Observe
that the trends are different depending on the values of the inner
and outer viscosities. Numbers in the caption indicate inner/outer
viscosities in centipoises. Source: Reprinted Figure 7c from
Ref. [26].

tube and the jet diameter simply results from

𝜋d2jet
4

Uo = Qi → djet =
(

4Qi

𝜋Uo

)1∕2
, (1.2)

which is consistent with Equation 1.1 for djet ≪ Do, except
for a numerical prefactor related to the details of the velocity
profile. In addition, since these jets are convectively unstable
(see Section 2.5), the size of the drops obtained from
their breakup can be determined from the mass balance:
𝜋 d3drop∕6 = 𝜋2d3jet∕(4k

∗), where k∗ = k∗(𝜇i∕𝜇o,Ohi) is
the dimensionless wave number corresponding to the
maximum growth rate of sinusoidal capillary perturbations
and 𝜆∗ = 𝜋djet∕k∗ is its corresponding wavelength. Since
k∗ depends weakly on Ohi for relatively large values of
this parameter, as shown in Figure 1.10, it is sensible to
write k∗ = k∗t , with k∗t = k∗t (𝜇i∕𝜇o) the dimensionless wave
number corresponding to the maximum growth rate in the
limit, first considered by Tomotika [29], Ohi → ∞. With
these considerations and using Equation 1.2 , we obtain

ddrop =
(144

𝜋

)1∕6
(k∗t )−1∕3

(
Qi

Uo

)1∕2
. (1.3)

Castro-Hernández et al. [27] extended these ideas to
describe the behavior of ddrop for both narrowing and

10−4

0.2

k*
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10−3 10−2 10−1

𝜇i/𝜇o= 10−1

𝜇i/𝜇o= 10−2

𝜇i/𝜇o= 10−3

Oh i

100 101 102

Figure 1.10 Dimensionless wave number versus inner Ohnesorge
number for different viscosity ratios.

widening jets. The main quantity in this approach is the time
for drop formation, T , which is the sum of the convective
time, tconv, and the pinch-off time, tpinch: T = tconv + tpinch
[33]. The convective time, tconv, is the time required to
convect the inner fluid a distance 𝜆 at a velocity Up, where
𝜆 is the distance traveled by the downstream location of
the jet within two consecutive pinch-off events and Up is
the velocity of the tip of the jet, as shown in Figure 1.11.
The pinch-off time is the time needed to break the liquid
thread. Since tpinch ≪ tconv in most experimental situations,
breakup can be considered to take place almost instanta-
neously. However, for breakup to happen, a length equal to
𝜆∗ = 𝜋djet∕k∗ is required. This means that the downstream
location of the jet would need to travel a distance 𝜆∗ before
breakup can occur. As a result,

T = 𝜆

Up
=

𝜋 djet
k∗ Up

, (1.4)

and since continuity demands that 𝜋d3drop∕6 = QiT , then

ddrop
Di

= 1
Di

(6Qi djet
k∗ Up

)1∕3

. (1.5)

The drop diameter is then determined by djet, k
∗, and Up.

For the narrowing jets,Up ≃ Uo [24] and Equation 1.5 corre-
sponds to Equation 1.3 . However, for the widening jets, this
is not always the case. If the outer fluid viscosity is large com-
pared to the viscosity of water, Up ≃ Uo and Equation 1.5
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Figure 1.11 Image showing the velocity at the more downstream
position of the jet, Up, the jet diameter, djet, and the axial dis-
tance traveled by the tip of the jet between two consecutive
pinch-off events, 𝜆. The value of 𝜆 can be approximated by the
wavelength corresponding to the maximum growth rate of cap-
illary perturbations, 𝜋djet∕k∗. Source: Reprinted Figure 8 from
Ref. [26].

captures the increase of ddrop with Qi observed experimen-
tally. In contrast, when the outer viscosity is similar to that
of water, Up ≠ Uo since the inner fluid can drag the outer
fluid and affect the velocity of the jet interface, which will
then be larger than the outer velocity. As a result, Up = f (Qi)
and could result in a decreasing ddrop with Qi. See [27] for
further details.

This is not the only difference between narrowing and
widening jets. As we have seen, the jet diameter for the case
of the narrowing jets is simply djet = [4Qi∕(𝜋Uo)]1∕2 [24,
31]. However, for the widening jets this equality is generally
not correct since the inner liquid velocity can be different
from Uo, as pointed out in the previous paragraph. Hence, a
different way to estimate djet is needed. To do this, we recall
that upstream the breakup point, this inner liquid velocity is
larger than the speed of capillary perturbations; this explains
why the jets do not break in this region. As the jet widens
downstream, the inner liquid velocity decreases and at some
axial location, it becomes comparable to the speed of capil-
lary disturbances. At this place, the jet breaks. We empha-
size that this can happen before the inner velocity of the jet
equals the outer fluid velocity. Based on this, we estimate djet
from the condition tpinch ≃ tprop, where tprop is a characteris-
tic time for the propagation of capillary perturbations, tprop =
djet∕Ui, with Ui = 4Qi∕(𝜋d2jet). The characteristic pinch-off

0
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vg

k

Ohi  =  0.71

Ohi  =  1

Ohi  =  2.24

k*

v*g

0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 1.12 Growth rate, 𝑣g, versus dimensionless wave number
for different values of the inner Ohnesorge number and 𝜇i∕𝜇o = 0.1.
Source: Reprinted Figure 11 from Ref. [26].

time is tpinch = 1∕(𝑣∗g)(𝜌i∕𝜇i) (djet∕2)2, with 𝑣∗g the maximum
dimensionless growth rate associated to k∗ (see Figure 1.12).
With all these facts, we obtain

djet =
1
𝑣∗g

𝜌iQi

𝜋𝜇i
, (1.6)

Taking all these aspects into account, we consider the data
in Figure 1.9 together with the drop size data of narrowing
jets and plot ddrop∕Di versus [6Qidjet∕(k∗Up)]1∕3∕Di, where
djet is obtained from Equation 1.6 and Up is taken equal to
Uo when 𝜇o ≥ 5 cP or it is directly measured experimen-
tally. For k∗, we solve Tomotika’s complete equations for any
value of Ohi; see Ref [29]. We find that there is a linear rela-
tion between the two quantities, as shown in Figure 1.13 and
consistent with the expectations from Equation 1.5 . Further-
more, the slope of the best fit is 0.9, which is close to 1, and
the intercept is 0.75, which is small compared to the values
of ddrop∕Di. Thus, the proposedmodel correctly describes the
drop size that results from the breakup of both widening and
narrowing jets.

1.2.5 Convective Versus Absolute Instabilities

Dripping is a common example of an absolute instability,
where the perturbations that induce breakup grow in time at
a fixed location in space, at a frequency that is intrinsic to the
system. As a result, dripping is insensitive to external noise
and results in extremely monodisperse droplets. By contrast,
jetting is often the result of a convective instability, where
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Figure 1.13 Experimentally measured drop diameters ddrop∕Di as
a function of the parameter (6Qi djet∕(D3

i k
∗ Up))1∕3. The slope of

the linear regression fit to the experimental data is very close to 1,
consistent with the theoretical prediction given by Equation (1.5 ).
The relative errors, however, are ±30%. The maximum experimen-
tal error associated to the measurement of the tip velocity is of the
order of ∼ 10%. Hence, the dispersion in the data is attributable to
necessary simplifications in the way the wavelength of maximum
growth rate and the tip velocity, Up, are calculated. Numbers in
the caption indicate inner/outer viscosities in centipoises. Source:
Reprinted Figure 13b from Ref. [26].

the perturbation that leads to breakup amplifies the external
noise as it is advected downstream, usually leading to less
uniform droplets.

Absolute instabilities in the jetting regime are rarely
observed. However, Utada et al. [34] reported that drop
formation in the widening jet regime happens via absolute,
rather than convective instabilities. Experimentally, this is
supported by the following facts: (i) Despite the widening
jets are generated by injecting the inner fluid atWei > O(1),
drop pinch-off from the end of the jet occurs only after
the jet diameter has widened sufficiently such that Wei
decreases to order unity as in the dripping regime, which
only occurs when Wei ≲ O(1) and results in drop formation
via absolute instabilities [35, 36]. (ii) The large difference
in velocity between Ui and the neck of the widening
jet, highlighted with arrows in Figure 1.14(a), coupled
with the spatially stationary oscillations throughout the
entire pinch-off process suggests that the superposition
of the perturbations produces the condition of zero group
velocity at a fixed location. (iii) The envelope associated

(a)
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(b)
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Figure 1.14 (a) High-speed image of a typical widening jet. The
small neck between the jet and the bulb has a diameter, dneck.
The outer diameter of the tip is∼ 40μm, while dtip ≃ 30 μm and the
inner diameter of the surrounding cylindrical capillary is∼ 600 μm.
Here Wei = 5.5. (b) Neck diameter as a function of time. The line
is an exponential fit to the envelope. The associated growth rate
is ∼ 40 Hz. The frequency of oscillation is ∼ 2000 Hz. The flow
rates of the outer and inner fluids are 9 × 104μl∕h and 6 × 103μl∕h,
respectively. Source: Reprinted Figure 1 from Ref. [32]. Copyright
2008 by the American Physical Society.

to the oscillatory motion of the neck grows exponen-
tially in time, as shown in Figure 1.14(b) for the case of
𝜇i∕𝜇o = 0.1, implying that the growth rate of the instability is
positive.

Narrowing jets essentially break via Rayleigh-Plateau
instabilities that are convected by the flow. Nevertheless,
assessing whether widening jets indeed result from absolute
instabilities requires performing a linear stability analysis.
Using the classical quasi-parallel approximation, any param-
eter associated with the flow, such as the velocity and the
pressure, is assumed to be proportional to exp (i(kz −𝑤t)),
where z is the axial position measured with respect to the
injection needle and t is the time. In general, the frequency,
𝑤 = 𝑤r + i𝑤i, and the wave number, k = kr + iki, are
complex and are related through a dispersion relation
D(𝜔, k) = 0. Furthermore, the superposition of all possible
modes generates wave packets that travel both up- and
downstream along the interface of the jet with group veloc-
ity 𝑣g = 𝜕𝑤r∕𝜕kr. Typically, a temporal stability analysis
is used to determine whether or not a system is stable.
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This corresponds to examining the behavior of the per-
turbations over time. In this analysis, the wave number is
assumed to be real and the frequency is a complex quantity.
If the growth rate of the instability is negative, 𝜔i < 0, the
perturbations decay in time, the jet is temporally stable and
breakup will not occur. In contrast, if 𝜔i > 0, the pertur-
bations grow exponentially in time, the jet is temporally
unstable and breakup can occur. The breakup time of the jet
is calculated from the growth rate, tb = 1∕𝜔i and the drop
size can be determined from Qitb = 𝜋d3drop∕6.

For the unstable situations in the temporal analysis, we
perform an additional spatiotemporal study to distinguish
absolute from convective instabilities. This analysis is based
on the Briggs–Bers criterion [37, 38], which is employed
to determine whether perturbations introduced at a fixed
spatial location in the flow are amplified or decay at that
spatial location. For that purpose, we look for frequencies
and wave numbers, 𝜔0 and k0, that satisfy the dispersion
relation, D(𝜔0, k0) = 0, and result in a zero group velocity,
𝑣g|𝜔=𝜔0,k=k0 = 0 at some specific spatial location, in the
laboratory frame of reference. If Im(𝜔0) < 0, the instability
is convective since the perturbations decay in time at that
specific spatial location. In contrast, if Im(𝜔0) > 0, the
instability is absolute since the perturbations grow exponen-
tially in time at that spatial location. When the instability
is convective, unstable waves are convected in the direction
of the flow. In this case, what one visually sees is the result
of an unperturbed flow with superimposed waves that grow
and propagate in the downstream direction. If, however,
the instability is absolute, the stability analysis predicts
that tiny perturbations will exponentially grow in time right
at the place where the noise is introduced, preventing the
unperturbed flow to be experimentally observable. In this
way, whether the instability is convective or absolute can be
detected experimentally.

The simplest stability analysis is the parallel stability
analysis, which consists in solving the stability problem at
every spatial location of the base flow, once it is assumed
that, as far as the stability problem is concerned, the
velocity profile at such axial location remains unchanged
in the downstream and upstream directions up to ±∞,
respectively. Interestingly, this approach correctly captures
the differences observed experimentally in the resulting
flow [34, 39]. For this reason, despite a global stability
analysis [40, 41] would be conceptually more appropriate
to predict what is experimentally observed, in this section
we only present results obtained with the local parallel flow
assumption.

To perform the stability analysis under the parallel flow
assumption, we need to know the steady base flow. Hence,
we need to calculate the downstream evolution of the velocity
profiles of both inner and outer fluids. These can be obtained
from the continuity and Navier–Stokes equations, which in

the slender jet approximation can be written as [42]

𝜕ui,o

𝜕z
+ 1

r
𝜕(r𝑣i,o)
𝜕r

= 0, (1.7)

ui,o
𝜕ui,o

𝜕z
+ 𝑣i,o

𝜕ui,o

𝜕r
= 𝜈i,o

1
r
𝜕

𝜕r

(
r
𝜕ui,o

𝜕r

)
− 1

𝜌i,o
𝜕Pi,o

𝜕z
,

(1.8)

where u and 𝑣 are the axial and radial velocities, respec-
tively, and the superscripts refer to outer and inner fluids,
respectively. Once the system of equations above is solved
subjected to the boundary conditions (see [42]), we find that
the parabolic velocity profile of the inner fluid is very pro-
nounced near the tip, as shown by the curve for z = 36 μm
in Figure 1.15, and progressively flattens downstream, as
shown by the curves for z = 160 μm, z = 336 μm, and
z = 513 μm in Figure 1.15. In contrast, the velocity profile
of the outer liquid is essentially flat on the length scale of
the jet. We confirm that the local Weber number is of order
unity at the experimental distance from the tip where jet
breakup happens.

This base flow is then perturbed at each z to obtain
the sign of the imaginary part of 𝜔0. The axial distance,
z∗, where the instability transitions between convective
and absolute, can be located studying the behavior of the
solutions of the dispersion relation in the complex k-plane.
These solutions can be seen as propagating wave packets
with an amplitude that increases or decreases depending
on whether they correspond to unstable or stable modes,
respectively. The way to distinguish if these solutions
represent upstream or downstream wave packets is by noting
the sign of the group velocity. If 𝑣g > 0, the wave packet
travels downstream, while if 𝑣g < 0, the wave packet travels
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Figure 1.15 Velocity profile for different axial positions. The
parameters used in this case are 𝜇i∕𝜇o = 0.1, Wei = 1.66 and
Cao = 0.67.
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upstream. Now, since we are only interested in a local stabil-
ity analysis, we can perform a Taylor expansion of D(𝜔, k)
around (𝜔0, k0) and keep terms up to leading order in 𝜔

and k: D(k, 𝜔) = D(k0, 𝜔0) + [𝜕D(k, 𝜔)∕𝜕𝜔]k0,𝜔0
(𝜔 − 𝜔0) +

[𝜕2D(k, 𝜔)∕𝜕k2]k0,𝜔0
(k − k0)2∕2, where we have used that

[𝜕D(k, 𝜔)∕𝜕k]k0,𝜔0
= [𝜕D(k, 𝜔)∕𝜕𝜔]k0,𝜔0

[𝜕𝜔∕𝜕k]k0,𝜔0
= 0,

given that the group velocity at (𝜔0, k0) is zero. In this case,
the dependence between 𝜔 and k is quadratic, implying
that, in the vicinity of (𝜔0, k0), there are two solutions;
these correspond to wave packets propagating in opposite
directions and appear as branches in the complex k-plane,
as shown in Figure 1.16 for representative values of z. The
value of z∗ can then be located as the axial distance where
the two branches coalesce. This corresponds to the existence
of a saddle point in the complex k-plane. Mathematically,
this means that at z∗: D(𝜔0, k0) = 0, [𝜕D(𝜔, k)∕𝜕k]𝜔0,k0

= 0,
Im(𝜔0) = 0 and [𝜕2D(𝜔, k)∕𝜕k2]k0,𝜔0

≠ 0.
The way to find the saddle point is equivalent to solving

the so- called signaling problem [43] at every spatial
location, for situations where the stable perturbations are
convected upstream. Note first that the signaling problem
consists in finding the response of the unperturbed flow
to a periodic forcing of small amplitude. In the case of a
stable flow, the amplitude of the perturbations will decay
both in the upstream and downstream directions. In contrast,
the flow will be convectively unstable if stable/unstable
perturbations propagate in the upstream/downstream
direction. When the conditions for a saddle point are
fulfilled, the group velocity of unstable perturbations is zero,
implying that the energy seeded in the flow by the forcing
cannot be evacuated away from the location where it is
introduced.

For the case of 𝜇i∕𝜇o = 0.1, Cao = 0.67, andWei = 1.66,
Utada et al. [34] find that this point is located at z∗ ≈ 275 μm.
For z < z∗, Im(𝜔0) > 0 and the instability is absolute, while
for z > z∗, Im(𝜔0) < 0 and the instability is convective.
When the region of the jet located right at the exit of the
injection tube that is absolutely unstable is much larger
than the characteristic wavelength of the absolute mode,
𝜆0 = 2𝜋∕k0, the jet breaks via an absolute instability. The
transition to a convective instability takes place for the
values of the Capillary and Weber numbers for which
the extent of the region adjacent to the injector where
the instability is absolute, either is zero, or possesses a
length much smaller than that of the wavelength of the
absolute mode.

As a further test to the interpretation of the experimental
results, Utada et al. [34] did additional experiments to induce
a transition from an absolute to a convective jet instability.
The idea was to start with a jet that breaks up via absolute
instabilities and increase Cao sufficiently to induce the
formation of a narrowing jet, which breaks up convectively.
To achieve larger values of the outer capillary number, they
used a more viscous outer fluid and set 𝜇i∕𝜇o = 0.01. They
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Figure 1.16 Saddle point in the complex k-plane indicating the
axial location at which the instability transitions to absolute. The
parameters used are 𝜇i∕𝜇o = 0.1,Wei = 1.66, and Cao = 0.67.

started with an absolutely breaking jet at Wei = 3.1 and
Cao < 1 (see Figure 1.17a) and gradually increased Qo
and thus Cao. Interestingly, at a critical Ca∗o ≃ 0.65, they
observed an abrupt and dramatic increase in the length of the
jet, as shown in Figure 1.17b–d. This large increase in the
jet length also coincided with the suppression of the spatial
oscillations that were observed initially, as also shown
in Figure 1.17b and c. Remarkably, the stability analysis
predicts that at Ca∗o = 0.69 the instability transitions from
absolute to convective, consistent with the experimental
results. Furthermore, the theoretical analysis also predicts
that Ca∗o should not change significantly with Wei; this
implies that the shear from the outer liquid determines the
transition from an absolute to convective instability irre-
spective of the inertia of the inner liquid. This is remarkable
because when Wei < 1 and Cao < Ca∗o, the system is in a
dripping regime; above Ca∗o, however, the system transitions
from an absolutely unstable dripping regime [36, 43–46] to
a convectively unstable jetting one.

The experiments and their theoretical analysis then sug-
gest that the widening jet regime results in drop formation via
absolute instabilities, consistent with the dripping regime. In
contrast, the narrowing jet regime results in drop formation
via convective instabilities. The presence of absolute instabil-
ities in jets then enables a route that is alternative to dripping
for the generation of uniform emulsions. The key advantage
here is that absolute instabilities are, in principle, not affected
by noise.

1.3 FLOW FOCUSING

The flow focusing configuration can be implemented in an
axisymmetric device [28, 48] or in a two- dimensional device
that can be generated by soft-lithography techniques [49].
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Figure 1.17 (a) Image of the jet generated atWei = 3.1 andCao =
0.07. (b) Transient image of the jet generated at Cao = 0.69. The
oscillations on the jet gradually die out as the length increases at
the critical value, Ca∗o. (c) Image of the jet at Cao = 0.69 after the
lengthening. (d) Plot of the jet length as a function of Cao. The
filled squares are the measured jet lengths. The open circles and
triangles are dripping. The Wei for the circles and triangles are
0.19 and 0.05, respectively. For these experiments, 𝜇i∕𝜇o = 0.01.
Source: Reprinted Figure 3 from Ref. [32]. Copyright 2008 by the
American Physical Society.

Different configurations are possible with an axisymmetric
flow focusing device, as shown in Figure 1.18. Using a gas
as focusing fluid and a liquid as focused stream in a simple
configuration, the generation of a spray is observed. If the
fluids are both liquids, this technique allows the generation
of emulsions that may be used as templates to produce parti-
cles, for example, bymeans of an evaporative solvent method
[50]. Using a concentric device where the immiscible fluids
are focused by an outer stream, the production of capsules
has also been reported [51].

In the simplest axisymmetric version, a fluid is injected
through a needle of inner diameter Di, which is in front of
an orifice of diameter D, located at a distance H from the
needle, surrounded by an outer immiscible fluid that focuses
the inner stream through the orifice. As in the coflow con-
figuration, a “dripping” mode and a jetting regime can be

(a) (b) (c)

Figure 1.18 Different configurations in an axisymmetric flow
focusing device. (a) Simple gas–liquid. (b) Simple liquid–liquid. (c)
Concentric. Source: Reprinted Figure 21 fromL.Martín-Banderas’s
PhD Thesis Reference [52].

obtained. The “dripping” regime is characterized by the gen-
eration of droplets close to the orifice, within a distance of
about one orifice diameter. By contrast, when jetting occurs,
the droplets are produced at the end of a jet that extends at
least three orifice diameters.

When operated under adequate conditions, the inner
stream can develop a cusp-like shape that is stable and that
results in a thin jet of diameter djet that eventually breaks
into droplets due to capillary instabilities. In these devices,
the Weber and Reynolds numbers are generally much
larger than one, which means that the process is essentially
controlled by inertia.

The simple flow focusing configuration when the outer
fluid is a gas and the focused stream is a liquid has been
extensively described by Gañán-Calvo [48] when operated
in the jetting regime. The physical properties involved in this
problem are the density of the inner stream, 𝜌i, its viscosity,
𝜇i, the inner flow rate, Qi, the outer pressure drop, ΔPo, the
surface tension between both phases, 𝜎, the diameter of the
injection tube, the diameter of the orifice, and the distance
between the capillary tube and the orifice. As the characteris-
tic lengths are below the capillary length, gravitational forces
are negligible.

Perhaps the most important quantity to control is the
jet diameter, which is almost constant along the jet, or
alternatively the jet velocity Ujet = 4Qi∕(𝜋d2jet). Using djet
and Ujet as characteristic length and velocity, the Weber and
Reynolds numbers based on the properties of the inner fluid
are Wei = 𝜌iU

2
jetdjet∕𝜎 and Rei = 𝜌iUjetdjet∕𝜇i. For large

values of these numbers, surface tension and viscous effects
can be neglected and it is possible to assume that the energy
injected in the system is transformed into kinetic energy of
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Figure 1.19 Dimensionless jet diameter at the constriction as a
function of the nondimensional inner flow rate for different liquids
and geometrical configurations. Source: Reprinted Figure 5 from
Ref. [47]. Copyright 1998 by the American Physical Society.

the jet. This allows the estimation of the jet diameter [52]:

ΔPo ≈
1
2
𝜌iU

2
jet ⇒ djet =

(
8𝜌i

𝜋2ΔPo

) 1
4

Q1∕2
i . (1.9)

Another important quantity is the minimum liquid flow
rate, for a given device and hence a given ΔPo, resulting in a
stable jet. This results from the requirement thatWei = 1, as
otherwise jet formation would not be achieved. The result is
Qmin = (𝜎d3jet∕𝜌i)

1∕2.
Measurements of djet for different liquids and geometrical

configurations all collapse together in a single mastercurve
when scaled by a reference length, d′ = 𝜎∕ΔPo, and plot-
ted versus a dimensionless inner-fluid flow rate, Qi∕Q′, with
Q′ = (𝜎4∕(𝜌iΔPo)3)1∕2 (see Figure 1.19). This implies that

djet∕d′ = (8∕𝜋2)1∕4(Qi∕Q′)1∕2 . (1.10)

Since 𝜇i is not a relevant quantity, there are seven vari-
ables and hence four independent dimensionless groups. Two
of them have already been identified as d′ and Q′. The other
two can be chosen as Di∕D and H∕D and involve geomet-
rical details of the device. These are indeed important since
for a chosen Di, there is an optimum value of H for which
Qmin is minimum.Moreover, this value significantly depends
on D. As expected, then, if Di is increased, H and D should
increase accordingly to ensure similarity in the working con-
ditions.

In flow focusing, both global and local instabilities are
important. We say that flow focusing is globally unstable
if a steady meniscus cannot be formed [18]. Three mecha-
nisms responsible for global instability have been identified.
(i) If djet is too small, the injected energy is invested in sur-
face energy resulting in the lack of steady-state emission. (ii)
When the applied pressure is not big enough, the stresses
exerted by the outer stream on the jet interface do not over-
come surface tension forces and the meniscus never forms.
(iii) For small enough inner flow rates, recirculation cells are
formed inside the meniscus preventing jet formation and ulti-
mately interrupting the flow.

Importantly, global stability is a necessary but not a suffi-
cient condition to obtain a stable jet. Flow focusing must also
be locally stable, which means that the jet must be convec-
tively unstable. As a consequence, the growing perturbations
must be convected downstream and result in a steady liquid
ligament. If the jet is absolutely unstable, “dripping” kicks in.
Vega et al. [18] performed a stability analysis showing that
the “dripping” to jetting transition can be described as a tran-
sition from an absolute to a convective instability. Hence, the
“dripping” mode is associated to an absolutely unstable jet,
while the jetting mode is associated to a convectively unsta-
ble jet.

Figure 1.20 shows the stability regions in the Wei, Rei
representation when water is used as focused fluid and air
as focusing fluid with H = Di = 200 μm. Three different
regimes are observed: (i) the steady jetting regime, where
the meniscus is stable and the jet is convectively unstable
(jetting), (ii) the local instability regime, where the meniscus
is stable and the jet is absolutely unstable (dripping), and (iii)
the global instability regime, where the meniscus is unstable.
The experimental data is plotted in the upper graph, while
the lower graph reproduces the boundary lines seen exper-
imentally and identifies the regions where these regimes
are observed. The open symbols show transitions from
steady states to local instability situations, while the solid
symbols corresponds to transitions from local to absolutely
unstable situations. The dotted line shows the prediction
obtained from the linear stability analysis of the basic flow.
The dashed-dotted line corresponds to Qmin = 2.9 ml/h for
the fluids and device used in this particular experiment.
Note that there is a turning point in the two experimental
transition lines; above this point, asWei increases, both lines
almost coincide with the curve corresponding to a constant
Qmin. Hence, there is a minimum value of the inner flow
rate below which flow focusing becomes globally unstable
independently of the outer pressure drop.

Vega et al. [52] perform the same stability analysis for
different H∕D and reported that the transition from the
steady jetting mode to the locally unstable “dripping” mode
was not affected by the geometry. The same conclusion was
reached for the transition from local to global instability
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Figure 1.20 The lower graph shows the stability regions plot-
ted from the experimental data shown in the upper graph. The
dashed-dotted line is the curve of constant minimum flow rate,
while the dotted line is the Leib and Goldstein prediction for the
convective/absolute transition. Source: Reprinted Figure 6 from
Ref. [52].

at small Weber numbers. In contrast, the geometry and the
properties of the focused fluid have an effect on Qmin and
on the pressure drop corresponding to the turning point of
the transition curves. In addition, the relative importance of
the global instability region is smaller when 𝜇i increases;
in this case, an additional dimensionless group accounting
for the relative influence of the viscous force must be
considered.

1.4 SUMMARY AND OUTLOOK

We have discussed the generation of droplets with a narrow
size distribution using coflowing fluids and flow focusing:

(1) In the coflow configuration, a fluid is injected through
an injection tube in the presence of an immiscible fluid that
flows in parallel. Depending on the operating conditions,
two different regimes are obtained: dripping and jetting. In
the “dripping” regime, extremely monodisperse droplets are
generated at the tip of the capillary tube with a low produc-
tion rate. In contrast, in the jetting regime less monodisperse
droplets are obtained at the end of a long liquid ligament or
jet, but at much higher production rates. Within the jetting
regime, we find that the jet can either widen or narrow in the
downstream direction. Despite these jets break into droplets

via either absolute or convective instabilities, respectively,
the drop size can be unified by a single scaling law.

(2) In the flow focusing configuration, a focused fluid
is forced by an immiscible focusing fluid through a con-
striction. This configuration can be implemented in an
axisymmetric or in a two-dimensional device. In the “drip-
ping” regime, the generation of the droplets occurs close to
the orifice while in the jetting regime it happens within a
distance at least three orifice diameters. We have reviewed
the relevant scaling laws for the jet size and hence for
the resulting drop size. In addition, we have discussed the
operating regimes in terms of global and local instabilities,
as well as in terms of absolute and convective instabilities.

The advantage of these techniques and the many related
techniques that are currently in use or under development
compared to the more traditional methods for emulsion
generation rests on the exquisite fluid flow control offered
by microfluidics. The high throughout is still the major
hurdle for these techniques to completely dominate the field
of emulsion generation.
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