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1.1 INTRODUCTION

Chemical safety assessment has long relied on exposing a few species of laboratory
animals to high doses of chemicals and observing adverse effects. These results are
extrapolated to humans by applying safety factors (uncertainty factors) to account for
species differences, susceptible sub-populations, establishing no observed adverse
effect levels (NOAEL) from the lowest observed adverse effect levels, and data gaps
yielding theoretically safe exposure limits. This approach is often criticized for lack
of relevance to human health effects due to the many demonstrated differences in
physiology, metabolism, and toxicological effects between humans and rodents or
other laboratory animals [1]. Such criticism exists mainly due to the lack of knowl-
edge of specific mechanisms of toxicity and whether these are relevant to humans.
Toxicological modes of action (MOA) have been elucidated for only a limited number
of chemicals; even fewer chemicals have had their specific molecular mechanisms
of action determined. Having such detailed knowledge would facilitate higher con-
fidence in species extrapolation and setting of exposure limits. However, tens of
thousands of chemicals currently in commerce and with some potential for human
exposure lack even traditional toxicity testing and much less elucidated modes or
mechanisms of toxicity [2]. Understanding mechanisms of toxicity usually results
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from decades-long research dedicated to single chemicals of interest, a model unsuit-
able for such vast numbers of chemicals. Even with dedicated research, such efforts
are not guaranteed to succeed; the extended focus on understanding the mechanism of
toxicity of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) is an example [3]. Traditional
animal testing, in addition to the criticisms discussed above, is not appropriate or fea-
sible for the large numbers of untested chemicals due to the high costs and number
of animals required [1].

One major effort to address this dilemma by providing a high-capacity alternative
is underway, facilitated by integration of the fields of computational toxicology and
high-throughput in vitro testing [4, 5]. The ultimate goals of this approach are the
means to screen and prioritize thousands of chemicals, predict the potential for human
health effects, and derive safe exposure levels for the myriad of chemicals to which we
are exposed. This approach relies on a shift in toxicology research away from “black-
box” testing on whole animals and toward an understanding of the direct interactions
of chemicals with a broad spectrum of potential toxicity targets comprising specific
molecular entities and cellular phenotypes. This bioactivity profiling of chemicals
generated through the use of high-throughput approaches produces characteristic
chemical response profiles, or signatures, which may describe the potential for toxicity
of that chemical [6].

Computational analysis and modeling of the results are required to provide insight
into complex datasets and support the development of predictive toxicity algorithms
that ultimately may serve as the foundation of an in vitro toxicity testing approach
replacing most or all animal testings. The groundwork required for a computational
toxicology approach is the generation of datasets comprising the quantitative effects
of chemicals on biological targets. Two types of data are required. The first are the test
results from in vitro and/or in silico assays that can be run in high-throughput mode
and provide bioactivity profiles for hundreds to thousands of chemicals. The second
is a dataset that details the effects of these chemicals on whole organisms, ideally the
species of interest. These data are used to anchor and build predictive models that
can then be applied to chemicals that lack in vivo testing. Generation of the in vitro
dataset has become feasible and widely available as high-throughput in vitro screening
technology, developed in support of the drug discovery community. The selection and
use of these assays for computational toxicology will be discussed further in Section
4. Obtaining the latter dataset of in vivo effects necessary to build the computational
models presents unique challenges. Although thousands of chemicals have been
tested using in vivo approaches, only a limited amount of this information has been
readily available. Much of it lies in formats not readily conducive to computational
analysis, for example, paper records, in the data stores of private corporations, or
protected by confidentiality clauses [7], and generation of extensive new in vivo data
to support the approach is cost prohibitive. The access and collation of these data
into a relational database useful for computational toxicology will be discussed in
Section 5.

Beyond the technical aspects of generating the data, assembling the collection of
required datasets to support computational approaches is a challenging task in itself.
Robust, efficient, and accurate knowledge discovery from large datasets require a



JWST267-c01 JWST267-Steinberg December 25, 2012 12:3 Printer Name: Trim: 6.125in × 9.25in

INTRODUCTION 5

robust data infrastructure. There are a number of critical steps in the process begin-
ning with designing an underlying architecture to manage the data. Appropriate data
must be selected and preprocessed into common formats usable to computer programs
(e.g., standardized field names for the types of attributes being measured, standardized
chemical names and links to other data sources). The use of standardized ontologies
can be particularly useful in the sharing of information across organizations [8].
Because of the complexities of achieving this on a large scale, these approaches are
perhaps best conducted by large organizations with access to computational scientists
in addition to experts in chemistry, toxicology, statistics, and high-throughput screen-
ing (HTS). Examples of integration of these diverse areas of expertise include the U.S.
Environmental Protection Agency’s (EPA) ToxCast program [4] and the Tox21 col-
laboration between the EPA, the National Toxicology Program, the National Institutes
of Health Center for Translational Therapeutics—NCTT (formally the NIH Chemical
Genomics Center [NCGC]), and the U.S. Food and Drug Administration [9, 10]. In
addition, a number of large pharmaceutical companies have internal programs in this
area relying on their own, extensive in-house expertise [11, 12].

As described, the ultimate goal is to use high-throughput in vitro assays to rapidly
and inexpensively profile the bioactivity of chemicals of unknown toxicity and make
predictions about their potential for causing various adverse endpoints [4]. Achieving
a robust, predictive toxicology testing program is a long-range goal that will need to
proceed through a number of systematic stages including proof-of-concept, extension
of chemical and bioassay diversity, refinement, and ultimately, supplementation or
replacement of existing methods. The initial stage involves multiple steps including
(1) selecting an appropriate chemical test set for which in vivo data are available; (2)
selecting high-throughput biological assays for screening the chemicals; (3) generat-
ing the screening data on the chemicals; (4) collating the in vivo anchoring data for the
chemicals; and (5) building up predictive models. Such models can then be validated
through testing of additional chemicals with known toxicity endpoints to determine
the robustness of the models. It is likely that the development of the test systems,
as well as the computational models, will be an iterative process. New biological
assays and statistical approaches are evaluated for potential inclusion in the program,
whereas assays and models not producing useful results are dropped.

The success of this stage of the process would be models judged useful for
prioritizing chemicals for the potential to cause specific toxicity endpoints. This
prioritization will be valuable in the short term by allowing focused and limited
in vivo use of testing resources on chemicals most likely to be of concern. The
results of targeted testing of designated chemicals for specific endpoints should
ensure a reduced use of test animals as only limited endpoints would need to be
evaluated. This targeted testing will also provide an additional validation method for
the testing program, that is, do the adverse endpoints predicted by the models occur
to a significant extent in the tested chemicals? Ultimately, refinement of the testing
and modeling approaches should allow high-confidence prediction of the likelihood
for toxicity, thereby avoiding animal testing altogether for many chemicals. The
remainder of this chapter will focus more specifically on providing background on
the steps undertaken in developing the initial stages of the ToxCast testing program at
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EPA, as well as examples of applications of the program in prioritizing environmental
chemicals for multiple toxicity endpoints.

1.2 CHEMICAL LANDSCAPE

A major driver of the development and use of HTS methods in toxicology is the
scope of the chemical problem, that is, tens of thousands of chemicals to which
individuals are potentially exposed, the majority of which have never been tested in
any significant way [2] . What chemicals are of interest and the kind of data that is
likely to be available depends on the use of the chemical, which in turn is related
to the regulations to which the chemicals are subjected. To understand the world of
chemicals that are of concern for potential toxicity and candidates for testing, it is
useful to discuss a set of chemical inventories, some of which are overlapping.

1.2.1 Pesticide Active Ingredients

These are typically the active compounds in pesticide formulations, which are
designed to be toxic against select types of organisms. A related category of com-
pounds falling under this general label are antimicrobials, which are also designed to
be toxic to certain organisms, in this case-targeting fungi or bacteria. These groups of
chemicals are further divided into food-use and nonfood-use actives for the purpose
of regulation. EPA sets tolerance levels for pesticides that may be used in specific
foods, for particular reasons, and at particular exposure levels. Thus, EPA regulates
the maximum amount of pesticide residue permitted to remain on a food approved
for pesticide application. FDA, in contrast, has the authority to monitor and enforce
levels of food-use pesticides and ensure that they comply with EPA regulations.
FDA has additional authority regarding the use of antimicrobials in food packaging
[13]. Food-use pesticide actives have the highest data requirements and, for these,
a company will typically generate data from 2-year chronic/cancer bioassays in rats
and mice, developmental toxicity studies in rats and rabbits, multigenerational repro-
ductive toxicity studies in rats, and other specialized in vivo studies [14]. These are
similar to the complete set of preclinical studies that are required for human phar-
maceuticals. Because of this large data requirement, these chemicals are ideal for
use in building up toxicity prediction models, since one will have near-complete in
vitro and in vivo datasets. It is not surprising that pesticide actives have some of the
same features and chemical properties as pharmaceutical products, given that they
are often designed to interact with a specific molecular target.

1.2.2 Pesticidal Inerts

These are all of the ingredients in a pesticide product or formulation other than the
active ingredients. Although they are labeled as “inert”, there is no requirement that
they be nontoxic. These can range from solvents (e.g., benzene) to animal attractants,
such as peanut butter or rancid milk. As with the actives, inerts are classified as
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food-use and nonfood-use. Regulatory data requirements are, in general, limited,
thus resulting in the availability of little in vivo data [15].

1.2.3 Industrial Chemicals

This is an extremely broad class of chemicals including solvents, detergents, plas-
tic monomers and polymers, fuels, synthesis intermediates, and dyes. As such, they
are typically not designed to be bioactive, although many do have bioactivity, some-
times through interaction with enzymes and receptors, or by chemically reacting with
biomolecules or via physical interactions (e.g., by disrupting cell membranes). Many
of these compounds are manufactured in very large quantities, posing greater potential
risks. Such chemicals typically have less stringent regulatory oversight and toxicity
testing requirements but are subject to reporting rules under the Toxics Substances
Control Act (TSCA). Under TSCA, different reporting requirements and regulatory
scrutiny are applied depending on production volume levels (MPV—medium produc-
tion volume chemicals, >25 K tons/year; HPV—high-production volume chemicals,
>1 M tons/year). On average, these industrial compounds have lower molecular
weight than pesticidal actives or pharmaceuticals, and include many more volatile
and semivolatile compounds.

1.2.4 Pharmaceuticals

These are the active ingredients in drugs and, hence, are designed to have specific
bioactivity. It is well known that many drugs have toxic side effects, often through
unexpected off-target interactions, and that this is a major economic concern for
the pharmaceutical industry driving up the costs of drug development. In addition,
there is increasing concern for toxicity, not only for patients directly taking the
drug, but also for ecological species exposed to these compounds in waste water [16].
Despite large amounts of toxicity data submitted to the FDA during the drug-approval
process, including clinical data on humans if the drug reaches clinical trials, as well
as additional preclinical toxicity data generated within the pharmaceutical industry,
little of these data see the light of day due to confidentiality concerns. As a result,
public availability of toxicity data on pharmaceuticals is generally limited to what is
available in the open literature.

1.2.5 Food Additives/Ingredients

This category includes both natural and synthetic small molecules that are inten-
tionally added to food, often to enhance nutritional value (e.g., vitamins), to act as
preservatives, such as in food packaging, or to enhance color or texture. FDA regu-
lates allowed tolerances for such chemicals and has the authority to require a battery
of in vitro (primarily genotoxicity) and in vivo toxicity testing to support such reviews
within the Center for Food Safety and Nutrition (CFSAN) [17]. Such data can be
made publicly available, hence providing a potentially rich source of additional in
vivo data for computational toxicology modeling.
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1.2.6 Water Contaminants

EPA regulates chemicals in surface and drinking water, and the relevant chemicals
include any of the above categories that enter the water system, as well as metabolites
or degradation products. One example of the latter is disinfection byproducts that
can result from reactions of chlorine with organic molecules in a drinking water
system to produce polychlorinated organic compounds. The regulatory authority in
this instance is reactive. First, a chemical has to be detected in water at sufficient levels
to cause some concern, and then sufficient scientific justification must be provided to
warrant regulatory action. As a result, toxicity data is generally lacking for many of
these chemicals, similar to the situation for industrial chemicals.

Because there are so many chemicals to which humans and ecological species are
potentially exposed, it is necessary to prioritize among them when setting up a large-
scale screening program such as ToxCast or Tox21. The potential for exposure is one
critical aspect of this prioritization, and these and further chemical use-categories are
important indicators of the potential for exposure. For instance, any chemical that is
directly in food or water (e.g., food additives or pesticides that leave residues on crops
or chemicals found in drinking water) would have extra weight in a prioritization
scheme. More detailed “use-categories” are also available to help refine estimates
of potential exposure routes. For instance, if a chemical is found in products to
which children are exposed (e.g., baby bottles, clothing), that chemical would have
a heightened priority for screening. There is no general mapping of chemicals to
use-categories that is publicly available, but the ExpoCast project, affiliated with
the ToxCast project within EPA, is currently developing such a mapping based on
merging data from many different sources [18].

The lack of data availability on chemicals, whether it is use-category, exposure
potential, or toxicity data, is one of the major drivers of EPA’s HTS computational
toxicology program [4]. However, the success of this effort also relies upon the ability
to collate as much available data as possible and systematize and format these data
into computable forms to enable modeling efforts to proceed. To provide a central
resource to support this effort, a large-scale database is being created to gather all
publicly available data on chemicals in the environment through the Aggregated
Computational Toxicology Resource (ACToR) effort [19]. Thus far, varying amounts
and types of data have been compiled on several hundred thousand chemicals col-
lected from over 1,000 different sources, consisting of data types that, for example,
include information on hazard (i.e., in vitro and in vivo toxicity data), exposure, use,
and production.

The above discussion focuses on the chemical landscape of concern for testing
from a regulatory and use or exposure perspective, but an equally important consid-
eration for our long-range purposes is providing adequate coverage of the chemical
feature and property landscape spanned by the various use-category inventories of
chemicals. Given the intimate relationship between the chemical structure and its bio-
logical activity, building a computational toxicology approach capable of predicting
toxicity from HTS bioactivity profiles must provide for sufficient coverage of bio-
logical pathways and toxicity mechanisms across the chemical landscape of interest.
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This means that a chemical testing library must also provide sufficient coverage of
the diverse chemical property and features space capable of adequately probing this
biological mechanism diversity.

1.3 THE CHEMICAL LIBRARIES

To generate the in vitro dataset required for the computational toxicology approach,
a chemical library was assembled, with initial and later testing candidates largely
drawn from the chemical inventories described above. Meeting the initial objectives of
providing proof-of-concept of the HTS computational toxicology approach required
a strong anchoring to in vivo animal toxicity studies. Hence, selection of the initial
testing set for ToxCast, which we refer to as the Phase I chemical library, was
primarily driven by the availability of detailed, in vivo toxicity data. The existence of
high-quality regulatory guideline studies required for chemical safety evaluation of
pesticide active ingredients by EPA motivated the selection of these compounds to
fulfill these data requirement needs. Thus, the Phase I library consisted of 309 unique
chemical substances, with more than 90% pesticides and the rest a mixture of in
vivo data-rich industrial chemicals such as bisphenol A (BPA) and perfluorooctanoic
acid (PFOA).

In vitro HTS testing procedures additionally have a number of practical require-
ments that affect the types of chemicals that can be tested using current technologies.
Obvious concerns are the solubility of the chemical in aqueous buffer, which is the
medium used to conduct HTS testing, as well as dimethyl sulfoxide (DMSO), which
is the near universal solvent used to solubilize test chemicals for testing. Addition-
ally, volatility is a concern, since the chemicals are run in batch mode and attention
cannot be paid to special handling requirements for volatile or semivolatile chem-
icals. A few physical–chemical property filters, primarily molecular weight (MW)
and octanol/water partition coefficient (logP), were used to choose the Phase I chem-
icals, but the structures of pesticides are such that most met the criteria for inclusion
and were soluble in DMSO. The ToxCast Phase I chemical solutions that under-
went the initial round of HTS testing were also post-analyzed by analytical quality
control (QC) methods that are amenable to high-throughput application (primarily
liquid chromatography–mass spectrometry [LC/MS] with gas chromatography–mass
spectrometry [GC/MS] follow-up for compounds not suitable for LC/MS analysis).
Identity and purity were confirmed for over 80% of the Phase I library, with the major-
ity of the remaining compounds deemed unsuitable for analysis because they were
metal containing or of low MW. One class of pesticides, consisting of 14 sulfurons,
was found to significantly dissociate in DMSO over time, motivating the removal of
these compounds from further ToxCast testing.

The ToxCast Phase I chemical library, despite its relatively small size, contained
a significant amount of chemical and functional diversity, spanning over 40 chem-
ical functional classes (e.g., pyrazoles, sulfonamides, organochlorines, pyrethroids,
carbamates, organophosphates) and 24 known pesticidal functional classes (e.g.,
phenylurea herbicides, organophosphate insecticides, dinitroaniline herbicides). The
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implication is that although the particular compounds included in this Phase I test set
may not be representative of the larger chemical universe of potential interest such
as antimicrobials, food-additives, drugs, and industrial compounds, the constituent
features of these chemicals are potentially capable of representing a much broader
set of chemicals from a wide range of use-categories.

Clearly, however, in order to meet the larger objectives of the ToxCast program
for modeling in vivo toxicity, it is necessary to test larger chemical inventories that
include greater representation of the various use-categories of high interest, as well
as the more varied chemical and biological interactions that must be probed and
characterized in order to build general models for predicting toxicity. Following the
testing of the Phase I library, a much larger chemical collection was assembled based
on these considerations for the dual purposes of expanding the ToxCast test library
and constructing the EPA contribution to the Tox21 library. Nominations for this
library were broadly drawn from the previously described inventories and initially
exceeded 9,000 compounds. Given the much larger structural diversity of the chem-
icals nominated, a greater number of compounds were excluded from consideration
on the basis of calculated physical–chemical properties, such as MW, vapor pres-
sure, boiling point, solubility, and logP. Finally, practical considerations pertaining
to physical samples, such as cost, availability, actual solubility in DMSO, and con-
firmed volatility, determined whether or not a compound was included in the final
EPA Tox21 inventory, consisting of more than 3,700 unique chemical substances.

The ToxCast Phase II chemical library, currently undergoing testing, consists of
776 unique chemical substances, including nine Phase I compounds used as testing
replicates, drawn from the expanded EPA Tox21 chemical inventory, spanning a much
broader range of use-cases and chemical structures than in Phase I. For the selection of
Phase II compounds, significant weight was given to those substances with extensive
in vivo data available, as well as to toxicity reference substances with well-defined
activities and mechanisms of action. Pursuant to this goal, approximately 30% of the
Phase II compounds have in vivo data available from the National Toxicology Program
or were generated to meet EPA or FDA’s regulatory requirements for pesticide or food
additives. However, due to the relative paucity of data for many of the use-categories
described previously, many of the chemicals in this expanded collection had relatively
little or no such data available. In addition, higher weight was given to chemicals
on high-interest EPA inventories (such as listed above), as well as to chemicals
that appeared on multiple inventories or use-categories. The Phase II inventory also
benefitted from an unprecedented collaboration between EPA and the pharmaceutical
industry, whereby 135 “failed drugs” were donated by six pharmaceutical companies
(Pfizer, Merck, GlaxoSmithKline, Sanofi, Roche, and Astellas), along with preclinical
and, in some cases, human clinical data reporting adverse effects. The value of these
data in extending findings made on chemicals tested only in laboratory animals to
those tested in humans may be significant.

The ToxCast Phase I and Phase II inventories total 1,060 unique compounds.
These compounds are being run in the full suite of more than 500 ToxCast assays.
Both of these chemical inventories are fully contained within the EPA Tox21 chem-
ical inventory, which in turn is a subset of the complete Tox21 collection, totaling
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approximately 8,200 unique chemical structures. In addition to the failed pharmaceu-
ticals, the Tox21 library contains an extensive collection of human pharmaceuticals
[20]. Although the Tox21 inventory is much larger and spans much greater chemical
diversity, this library will only be tested in HTS assays being run at the NCTT and,
thus, will have more limited bioactivity profiling data available. On the other hand,
the smaller ToxCast Phase I and II chemical inventories will be run in the full suite of
ToxCast assays, as well as in the additional Tox21 assays, providing a rich chemical
and biological context for the interpretation of these data. Details of the chemical
libraries can be accessed at http://www.epa.gov/ncct/toxcast/chemicals.html.

An expanded analytical quality control process to ensure that the tested chemicals
are indeed what they are intended to be is accompanying the full Tox21 effort.
Careful review and curation of chemical identifiers, including names and Chemical
Abstracts Service Registry Numbers (CASRN), as well as reported purity were
extracted from Certificates of Analysis at the time of procurement. Further review
and chemical structure annotation of the full Tox21 inventory and component ToxCast
inventories were carried out within EPA’s Distributed Structure-Searchable Toxicity
(DSSTox) project (see http://www.epa.gov/ncct/dsstox/ for access to downloadable
structure files). Following solubilization in DMSO, the chemical identity, purity, and,
concentration are determined by appropriate analytical techniques, including LC/MS
and follow-up GC/MS. This analysis will be repeated over the course of the use of
the library to assess compound stability during testing. While complex and costly,
such efforts ensure that biological activity measured in an assay is associated with the
appropriate chemical structure and, conversely, those negative results are associated
with a chemical structure only if that chemical was indeed present.

1.4 THE BIOLOGICAL ASSAYS

Selection of in vitro assays for toxicity testing would be relatively straightforward
if the molecular targets underlying mechanisms of toxicity were known. Advances
in HTS technologies to support the drug discovery industry have provided the tools
to develop assays for large numbers of biological targets, ranging from receptors to
enzymes to ion channels and more. If a protein has a defined function, it is safe to
say that an in vitro assay can be built to measure effects of chemicals on that function.
Techniques such as surface plasmon resonance or LC–MS–MS exist that measure
chemical–protein interactions even when the function is unknown [21]. Beyond
assays focusing on specific molecular targets, many assays are available to probe
phenotypic changes induced in cells by chemical exposure including effects on
organelles and cellular structures such as mitochondria, nuclei, cytoskeleton, and
cell membrane. Again, with advances in automated fluorescent microscopy screen-
ing platforms and associated imaging algorithms, the ability to measure altered cel-
lular phenotypes is almost unlimited. However, assays targeting specific proteins
or cellular phenotypes suffer from our lack of detailed knowledge with respect to
mechanisms of toxicity that would guide high-confidence assay selection. Excep-
tions to this, while clear, are relatively few and include molecular targets such as the
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potassium ion channel hERG [22], acetylcholinesterase [23], cytochrome P450s [24],
drug transporters [25], nuclear receptors including the androgen, estrogen, and aryl
hydrocarbon receptor (AhR) [26], as well as the 5-HT2b G-protein-coupled recep-
tor (GPCR) [27]. In addition, cellular phenotypic assays for genotoxicity, oxidative
stress, mitochondria energy homeostasis, calcium release from intracellular stores,
and necrotic and apoptotic cell death can be used to determine toxicity, although with
less specificity with respect to molecular target. Acceptance of these as valid toxic-
ity targets usually resulted from many years of research, sometimes combined with
serendipitous findings. Continuing with this model to complete our understanding of
toxicology would be a long, expensive, and arduous route.

As an alternative approach, a broadly based interrogation of important families
of biological targets and cellular phenotypes can be conducted efficiently using
high-throughput in vitro screens, probing them with large chemical libraries with
known animal and human health effects. The reference in vivo toxicity data for these
chemicals are needed to correlate the in vitro findings with in vivo endpoints. The
tools of computational toxicology can then be applied to analyze, interpret, and model
the results, ultimately generating predictive signatures of toxicity compatible with
cost-efficient, high-throughput assays conducive to screening unknown chemicals.

Defined toxicity targets are usually members of large protein families such as
enzymes (e.g., acetylcholinesterase), receptors (e.g., estrogen receptor), and ion chan-
nels (e.g., voltage-gated sodium channels). These protein families make up the major-
ity of what is called the “druggable genome”, molecular targets thought to provide
an opportunity for therapeutic intervention and of high interest to the pharmaceutical
industry [28]. As a result, hundreds of HTS assays have been developed to support
this drug discovery research. Since the vast majority of these potential drug targets
have been selected based on believed critical roles in various pathological processes,
extension of this thinking suggests that such targets could also be involved in toxicity
when inappropriately perturbed by xenobiotic chemicals. This served as the impetus
for developing a diverse suite of HTS assays to use for profiling the biological activ-
ity of chemical libraries by several groups including ourselves through the ToxCast
program [4, 11, 12].

In vitro HTS assays facilitate the rapid, parallel generation of large numbers of
individual assay data points through the use of miniaturized assay formats, automated
liquid dispensers, and high-speed plate readers. The miniaturized assay formats are
usually in multi-well plates with densities of 96, 384, or 1536 wells per plate in
a single, standardized plate footprint, and use total assay volumes ranging from
200 �L down to 5 nL. The assay components can be highly varied and depend to a
large degree on the biological target being measured. For instance, an assay measuring
kinase activity would have a purified kinase, required cofactors, required substrates,
appropriate buffer, and chemical to be tested. In addition, a means of measuring the
assay endpoint, here the phosphorylation of the substrate, is required. This could
be a radioactive or fluorescent technique, a means to detect the loss of ATP or the
increase in ADP, or a separation of the phosphopeptide from the nonphosphorylated
one by means of mobility shift microfluidics assay technology. Cellular phenotypic
assays use in vitro cultured cells and automated, fluorescence microscopy to image
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chemical perturbations of cellular structures, organelles, and functions followed by
specific imaging algorithms to quantitate results [29]. Examples of this are assays
using fluorescently tagged antibodies to actin microfilaments to monitor chemical
affects on the stabilization or destabilization of the cytoskeleton [30].

The diversity of techniques used to quantitate HTS results underscores a critical
point of understanding of HTS assays; all assays are susceptible to artifacts, and
different assay formats are susceptible to different types of artifacts [31]. Assay
artifacts are defined as test chemical-induced events that interfere with the ability to
measure an accurate assay result such as chemical-induced fluorescent quenching,
precipitation of the biological target by chemical aggregation, and inherent chemical
fluorescence among others. Thus, an underlying caveat of any HTS assay is that all
results must be interpreted with caution. In addition to artifacts induced by specific
test chemicals, there are also experimental errors and normal assay variabilities that
can affect the results. While HTS assays should be validated according to industry
standards (http://spotlite.nih.gov/assay/index.php/) inherent in testing large numbers
of chemicals is that some results will not be accurate. Inaccurate results can generate
both false-positive and false-negative findings. Each has its own issues.

For toxicity testing, it is strongly desirable to avoid false-negative results that
could miss important activities potentially resulting in endangering the health of
exposed populations. Too many false-positives, however, can invalidate the utility
of the screening by requiring extensive measures to follow-up on the large number
of active chemicals. Unfortunately, decreasing the false-negative rate is usually at
the expense of increasing the false-positive rate; thus, finding the right balance with
a robust HTS assay is of high importance. Two methods of utility in providing
high-confidence results for HTS toxicity testing are to use a concentration–response
format for testing all chemicals and to have multiple assays using different assay
technologies for important targets. Concentration–response testing allows testing
concentrations high enough to detect the activity of weakly active chemicals, while
minimizing concern for high concentration-induced artifacts such as cytotoxicity,
which can mimic inhibition of functional activity in a cell-based assay. In addition,
knowledge about the types of response expected for specific biological targets can
help discriminate between chemicals affecting the target from those active by artifact.
Receptor binding assays, for example, should follow the law of mass action and
resulting concentration–response curves should display sigmoidal behavior with a
slope near one on a semi-log plot [32]. Results with slopes of 10, for example,
should flag the response as potentially suspect. Orthogonal assays are particularly
useful as, for example, the use of a radioligand receptor binding assay and a cellular
transactivation assay for the estrogen receptor. Chemicals active in both would have
a high degree of confidence of being truly active at the receptor site and likely
active in vivo, assuming the chemical reaches its receptor target. The efficiency of
HTS supports both of these approaches by providing inexpensive screening methods
with sufficient capacity to screen both large numbers of chemicals and at multiple
concentrations [33].

However, given the sheer numbers of possibilities, testing of all potential toxicity
targets is not feasible even with HTS technologies. Selection of the assays for testing
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FIGURE 1.1 Distribution of assays categories in the ToxCast Phase I testing battery.
(See insert for color representation of this figure.)

within the ToxCast program followed a strategy of selecting targets with known links
to toxicity, for which assays were available, combined with widely sampling potential
targets from the large protein superfamilies including GPCRs, kinases, phosphatases,
nuclear receptors, chromatin-modifying enzymes, CYP P450s, ion channels, and
transporters [34]. A list of the families and numbers of assays targeting specific
molecular targets is shown in Figure 1.1. Sampling of these families may provide a
window into potential chemical activity, even when the specific target of a chemical-
induced toxicity is not included. This occurs through testing in a concentration–
response format, which may allow the detection of chemical promiscuity at higher
concentrations. This can be helpful when a specific target of toxicity is not included in
the assay suite. Due to conservation of protein structure within families, it is somewhat
more likely that a chemical will affect other closely related family members, but with
different affinities. These may serve as assay surrogates for the actual target and may
still be useful in developing signatures of toxicity.

The use of cellular assays provides a means to include large numbers of potential
targets concurrently in a more physiologically relevant format. Such assays usually
rely on coordinated signaling networks to carry out the downstream function being
measured, for example, cell proliferation. There are many nodes in the pathways reg-
ulating cell proliferation that are potentially susceptible for chemical perturbation.
These include growth factor receptors on the plasma membrane, kinase second mes-
sengers transmitting the growth signal to the nucleus, transcriptional regulatory and
protein synthesis machinery, mitotic spindle apparatus, cytoskeletal components, and
associated regulatory enzymes. It is because of this complexity that cell proliferation
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has been described as one of the most sensitive endpoints for in vitro toxicology
[35]. Endpoints may be more narrowly defined, such as mitochondrial function or
DNA damage endpoints, but these also have many potential upstream targets. Thus,
cellular assays, in general, lack the ability to clearly identify molecular mechanisms
of action. They do, however, put the molecular targets in a more physiologically rel-
evant context than generally are found with cell-free, biochemical assays. A valuable
strategy is a combination of a biochemical assay, in which chemical specificity can be
defined, as well as a cellular assay, in which functional efficacy can be demonstrated.
The assays used in the ToxCast program provide both a broader coverage of toxicity
targets as well as opportunities to define cellular efficacy for chemicals active in the
biochemical screens.

Choosing the appropriate cell type for HTS assays supporting predictive toxicol-
ogy approaches is important to the success of the approach. Many factors need to
be considered and these vary, depending on the goal of the assay. In measuring the
ability of a chemical to perturb a specific molecular target such as a kinase or a
nuclear receptor, it may be appropriate to use standard, immortalized cell lines that
provide robust and highly reproducible results. However, in determining the effects
of chemicals on complex signaling pathways, the use of such cells may be of little
value if these pathways have been altered during the immortalization process and
adaptation to growth under standard cell culture conditions. In this case, the use of
primary cells may have distinct advantages and provide more physiologically relevant
information useful to predicting in vivo effects [36, 37]. However, the use of primary
cells also has its limitations in terms of limited passage numbers, batch-to-batch
variation, difficulty to engineer with respect to introducing reporter genes, and lack
of large signal-to-background ratios for the endpoints being measured.

To effectively use data from HTS assays for computational toxicology approaches,
it is very useful to acquire complete testing datasets, meaning testing all chemicals
against all assays in the testing set and to define standard data handling and analysis
procedures. The ToxCast project used defined chemical libraries, described earlier,
in testing against suites of in vitro assays in a concentration–response format. All
chemicals were run in all assays as minimizing missing values in the data matrix
greatly enhances the value of the dataset for subsequent analysis. Screening results
were used to generate AC50 values, the concentration at which an assay is activated
or inhibited by 50% when compared to the control values, for each chemical–assay
pair. The AC50 is somewhat arbitrary in that it often has no direct toxicological
interpretation. However, it does provide a means of comparing chemicals within an
assay, serves as a flag for activity for a chemical in a given assay, and provides
information as to its general potency range.

The concentration–response curves for ToxCast are modeled by the four-parameter
Hill equation [38] implemented in the R programming language [39]. Heuristics are
employed to accommodate aspects of assay results that cause implementation of the
Hill equation to fail. The reasons underlying the curve-fitting failures may apply
to all assays or be specific to a given assay or platform. For example, results that
show no concentration-dependent increase in activity but rather maximal activity
at all concentrations tested must be flagged with an AC50 less than the lowest
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concentration tested. Assays susceptible to cytotoxicity at high concentrations often
need the responses obtained at these cytotoxic concentrations removed from the curve-
fitting routine. Since it would be very difficult to generate a universally accepted best
method for doing curve-fitting to a wide variety of biological assays, it is important
to provide transparency to the process used, as well as access to the underlying
unprocessed data in order for others to apply their own techniques.

The combination of chemicals and assay AC50 values defines the basic data matrix
required for the computational toxicology input. Value can be added to the matrix
through additional metadata. One very useful type of metadata is the mapping of the
assays to specific gene ontologies, which are tied to biological pathways annotated
by databases such as GO or KEGG [40]. This bioinformatics approach links chemical
effects to biological pathways that can provide an additional connection to toxicity
endpoints. The annotation is relatively straightforward for most biochemical assays
targeting single proteins. However, the ability to do this properly with cellular assays
is more challenging, since often a specific molecular target of the assay is not known.
In some cases, specific biological pathways could be used to annotate the assay
endpoint. This approach will be illustrated in Sections 6 and 7.

Development of a complete, well-annotated data matrix consisting of curated
chemical structures and their activity against well-characterized biological targets is
the core component of a computational toxicology approach. Such a dataset could be
the final product for a predictive toxicology effort, if the biological assays were all
highly validated surrogates for in vivo toxicology. However, as previously discussed,
few such validated targets exist. Therefore, one needs to identify which assays or
groups of assays are linked to toxicity endpoints and can serve as signatures for in
vivo toxicity. We thus focused much of our early ToxCast screening on chemicals
with rich in vivo toxicity information to use as an anchor for our in vitro results. The
development of the in vivo database to support this effort will be described next.

1.5 IN VIVO TOXICITY DATABASE

ToxRefDB (Toxicity Reference Database) aims to capture traditional animal toxicity
studies across a variety of study types and endpoints, including short-term and long-
term systemic toxicity, cancer, reproductive toxicity, and developmental toxicity
[7]. The ToxRefDB project initially focused on capturing previously unpublished
high-quality regulatory guideline studies required for chemical safety evaluation by
the EPA. The study submissions were reviewed by the EPA’s Office of Pesticide
Programs (OPP) and results consolidated into Data Evaluation Record (DER), which
is the primary data source for ToxRefDB. Study results from this DER as well as
from other high-quality, publically available studies have been manually curated
into ToxRefDB’s relational database model. The relational database for ToxRefDB
ensures data integrity by forcing specific vocabulary to be used across all major
ToxRefDB fields. The ToxRefDB relational format follows the following logic: A
chemical can have many studies performed, each study can have multiple treatment
groups (male and female, low-, mid-, and high-dose), and each treatment group can
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TABLE 1.1 Study and Chemical Counts from the ToxRefDB Website

Summary Statistics

Study count 1,978
Chemical count 474
Combined chronic/cancer rat 324
Combined chronic/cancer mouse 324
Multigenerational reproductive rat 352
Prenatal developmental rat 365
Prenatal developmental rabbit 331
Subchronic rodent 302

observe many effects. ToxRefDB has subsequently been integrated into the ACToR
system, primarily through generic chemical linkages (i.e., CASRN) and is available
as a searchable database (http://actor.epa.gov/toxrefdb). ToxRefDB was designed
to capture detailed study design, dosing, and treatment-related effect information.
In addition to the relational design of the database, controlled and standardized
vocabularies were used for the vast majority of fields to ensure the uniformity of
the manually curated and entered legacy toxicity information. The current publically
released version of ToxRefDB has study and chemical effect information on 474
chemicals, primarily pesticides due to their consistent and large data coverage of
chronic, cancer, reproductive, and developmental studies. The “Basic Info” page on
the ToxRefDB website contains summary information about the database and the
associated manuscripts. Importantly, the manuscripts release supplemental files with
aggregated and detailed endpoints across the full ToxRefDB chemical library. These
“flattened” endpoint files (i.e., flat tabular listings) have been directly incorporated
into the ToxCastDB system for predictive modeling exercises. The “Basic Info” page
also provides information on the current database and chemical coverage counts for
each study type (Table 1.1).

The “home” page of ToxRefDB, similar to that of all ACToR system databases,
allows the user to search by generic chemical. As an example, the key word “azole”
was used to search all 474 chemicals in ToxRefDB, by both their assigned chemical
name and all synonyms, and resulted in the return of 46 chemicals (Fig. 1.2). The
red boxes indicate whether or not a study is available in ToxRefDB for the particular
study type. A “Generic Chemical Page” is displayed, as shown in the ACToR website.
However, when accessing the ToxRefDB portion of ACToR, only chemicals with
traditional toxicity data captured in ToxRefDB can be viewed. Under the “Toxicology
Data” heading, all ToxRefDB data are displayed in a three-tiered structure. The first
tier contains the study design information, including data quality, species and strain,
dose administration, study type, and citation information. The second tier contains
treatment group and dosing information, while the third tier indicates the treatment-
related effects observed at the various dose levels. The study information is available
for viewing, but, due to the amount of detailed information stored within each tier,
the system does not currently allow for detailed filtering of the data. However, a full
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FIGURE 1.3 Screen shot from the ToxRefDB website of the endpoint search page with the
search criteria and additional field information to be included.

download of the ToxRefDB data is available for each chemical as a csv file, enabling
further analysis and viewing options.

The primary search tool currently available within the ToxRefDB system is located
in the “Search by Endpoint” tab. The page allows the user to select from the standard-
ized effect vocabulary, the exact search criteria of interest as well as the additional
field information to be displayed (Fig. 1.3). The results of searching, for example,
“Chronic/Cancer Rat Liver Neoplastic Pathology” returns the lowest effect level
(LEL) in mg/kg/day dose, which represents the lowest dose at which a treatment-
related change in the selected effect or effects was observed (Fig. 1.4). Each row
from the returned search represents a unique study in ToxRefDB, with the low and
high dose tested (LDT and HDT) provided for reference. If multiple effects are
selected, a single LEL is returned, which aggregates all selected effects with a pri-
mary goal of providing the field of predictive toxicology a tool for rapidly defining

FIGURE 1.4 Screen shot from the ToxRefDB website of the endpoint search page with the
results of the search displayed.
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endpoints across a large chemical library. The endpoint search tool can also be used
for researchers interested in delineating a set of reference chemicals with positive
and negative outcomes for a particular effect or endpoint.

ToxRefDB has been applied to multiple problem types, including retrospective
and prospective questions. Retrospectively, ToxRefDB has been used to assess the
impact of specific traditional toxicity endpoints and parameters on the safety regula-
tion of chemicals. For example, traditional toxicity testing for reproductive toxicity
potential has relied heavily on a two-generation reproductive toxicity study in rats.
However, the importance of the second generation has come into question [41]. An
extended one-generation protocol has been proposed that would only produce a sec-
ond generation when triggered, would require far fewer animals, and would derive
more toxicological and kinetic information from each animal used. To assess the
impact of the second generation on risk assessment, ToxRefDB was used as a data
source to systematically evaluate the question, relying on the highly standardized
vocabulary and relational format of ToxRefDB. Based on the data in ToxRefDB, the
analysis indicates that the second generation does not greatly impact the interpreta-
tion of the reproductive study from a risk assessment perspective. The two-generation
retrospective analysis demonstrated the ability of ToxRefDB to provide a systematic
review of traditional toxicity studies. Additional retrospective analyses are underway,
including the analysis of the relative impact and importance of running both rat and
rabbit in prenatal developmental toxicity studies.

ToxRefDB also stores no-observed and lowest-observed adverse effect levels
(NOAEL and LOAEL) for studies reviewed by EPA and used in the chemical registra-
tion process. The Threshold of Toxicological Concern (TTC) is an approach that uses
NOAEL/LOAEL distributions and chemical structure characteristics to establish safe
exposure levels for chemicals with limited to no toxicity information [42]. ToxRefDB
is currently being applied to TTC approaches in numerous venues, including assess-
ing the applicability of the standard TTC to antimicrobial pesticide products and the
refinement of TTC approaches for specific chemical classes. In the example of the
antimicrobial TTC study, all available toxicity study information on antimicrobials
is being collected and entered into ToxRefDB. Antimicrobial pesticides typically
have less available toxicity data when compared to conventional pesticides, and this
underscores the need for alternative safety assessment approaches. With the full
food-use antimicrobial traditional toxicology dataset available in a standardized and
relational format, detailed analysis of the NOAEL/LOAEL distributions across study
type, endpoint categories, and structural classes can be obtained and compared to
other TTC analyses. If found to be similar, then all or a portion of antimicrobials
could be evaluated using a TTC approach.

1.6 PREDICTIVE MODELS

An important use of the HTS data we produce is to develop predictive signatures
of particular types of toxicity. A signature is a pattern of in vitro assay hits that
is predictive of a particular toxic endpoint. The basic approach used is as follows.
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First, we select a set of chemicals for which we have both in vitro data and in vivo
phenotype information, based on data from ToxRefDB. The phenotype or endpoint
can either be a quantitative value (e.g., the LEL) or a yes/no (either causes or does not
cause the phenotype, at any dose). We then look for statistical correlations between
the chemicals active in one or more in vitro assays and the endpoint. Concretely, we
ask if chemicals that are active in a particular assay are significantly more likely than
chance to be positive for the phenotype. A variety of standard statistical methods can
be used, including multivariate machine learning techniques. Whenever doing these
types of analyses, one needs to be particularly careful to not overfit a statistical model,
which would result in the creation of a model with little or no forward predictive
value. One method that one almost always uses is called cross-validation, in which
the dataset is divided into training and test sets. A model is built on the training set
and evaluated on the test set. If the performance in the latter is not significantly better
than chance, the model is rejected. After the statistical model is built, one typically
looks at the biological meaning of the signature, for example, is there a support in the
literature for a linkage between the target that is probed by the assay and the endpoint
being evaluated? Finally, one may then modify the model to enhance the biological
content while retaining the statistical predictive power. The ultimate test of a model
is always a forward validation against an entirely new dataset.

Here we briefly describe several signatures we have developed using the ToxCast
and ToxRefDB data from Phase I of the ToxCast project. The chemicals in this set
are largely pesticidal active ingredients, so they have a wealth of high-quality in
vivo animal toxicology data. Judson et al. [6] show significant correlations between
several pathways and preneoplastic and neoplastic liver lesions in rats. The target
genes included the peroxisome proliferator-activated receptors (PPARs)—PPAR�
and PPAR� . Activation of these receptors is a well-documented cause of liver tumors
in rodents [43], so that this is an external validation that our screening and statistical
approach can recover correct biological links. Kleinstreuer et al. [44] have demon-
strated associations between particular pathways leading to disrupted vasculogenesis
and involving inflammatory chemokine signaling, the vascular endothelial growth
factor pathway and the plasminogen-activating system. Activity in these pathways
can lead to limb malformations during embryonic development, as demonstrated in
prenatal developmental studies in rats and rabbits. This analysis is based on the data
from ToxCast and ToxRefDB. Martin et al. [45] have used these same approaches
to develop signatures for predicting reproductive toxicity. They built composite end-
points of male and female effects, including fertility and reproductive fitness. The
signature included assays related to endocrine disruption (estrogen and androgen
receptor), PPAR activity, liver metabolism as evidenced through activity in a preg-
nane X receptor (PXR) assay and in CYP450 assays, and generalized activity against
GPCRs. This model produced a balanced accuracy for sensitivity and specificity of
>0.70 in both a cross-validation test set and an independent forward validation set
[45]. Finally, Sipes et al. [46] have developed a model of cleft palate and urogeni-
tal defects in rat and rabbit. The assays statistically associated with these endpoints
include the retinoic acid receptor (RAR), interleukins 1A and 8, and the transforming
growth factor � (TGF-�).
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Using HTS data for predictive modeling may have opened the door for developing
an accurate predictive model of reproductive toxicity. Reproductive toxicity is an
aggregated multi-modal and multi-effect outcome. No single assay has the ability
to broadly identify reproductive toxicants and, to date, traditional structure-based
and other methods, have not been able to produce an externally validated predictive
model of reproductive toxicity. Computational modeling of HTS data allows one to
explore the complex relationships between in vivo observations and networks of in
vitro activity. One of the more simplistic computational modeling approaches is the
development of a classification model, which aims to accurately classify or predict an
outcome based on a training set with known outcomes. The training set for modeling
reproductive toxicity was the set of chemicals in the ToxCast library with high-quality
reproductive toxicity data [45]. The initial inputs into the model were the hundreds
of ToxCast assays that were collectively mapped to genes and the aggregate activity
across the assays per gene provided the quantitative inputs into the model. The
assay–gene combinations were further filtered based on a feature selection process
that evaluated the statistical association to the training set data. The filtered gene set
was then weighted in a multivariate model using linear discriminate analysis (LDA)
and fivefold cross-validation. Many other approaches and methods could have been
deployed, but our observation has been that the use of complex machine learning
algorithms has a tendency to over-fit the data lowering the output model’s ability
to be externally predictive. The resulting internal model performance statistics were
greater than or equal to 75% balanced accuracy, and there was no significant difference
between the training and test set accuracies. The final combined model produced a
balanced accuracy of 80%.

Among the chemicals selected for external validation, the model provided accurate
predictions for 16 of the 21 chemicals. The five chemicals with inaccurate predictions
provide valuable insight into potential limitations or gaps of the model. Interestingly,
the five chemicals had a common phenotypic profile with respect to reproductive
toxicity causing reduced early offspring survival, particularly the litter size decreases
with little to no accompanying effects on reproductive performance or reproductive
tract pathology. The reproductive LOAEL for all the five chemicals was set at the
high dose tested based on the early offspring survival effects, and the parental and
offspring LOAEL were set at the lower dose levels. Based on the inclusive definition
used for defining a positive for reproductive toxicity for model development, all the
five were considered positive but lack evidence of specific fertility-related or develop-
mentally sensitive reproductive outcomes. Nonetheless, a gap in model predictivity
was identified and could potentially be filled using additional assay technologies,
physical–chemical properties, or structural descriptors.

The model development process identified biologically plausible features and
pathways from over 500 assays mapped to less than 100 genes or gene sets and span-
ning many reproductively relevant MOA. PPAR� activity was clearly associated with
reproductive toxicity, with all 10 PPAR� agonists in the training set causing repro-
ductive toxicity. Although a mechanistic link between PPAR activity and fertility or
other reproductive impairments remains unclear [47], the role of PPAR in steroid
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metabolism and its activity in reproductive tissues infers that it is a plausible target
for the disruption of endocrine signaling and altered gametogenesis. Androgen and
estrogen � activities were also associated with reproductive toxicity. The ToxCast
receptor profiling identified, most if not all, the known antiandrogenic and estrogenic
chemicals in the current dataset, but the causal relationship between reproductive
toxicity and steroid receptor activity, absolute and relative potency and efficacy needs
to be explored further. CYP enzyme inhibition, as compared to gene induction, was
significantly associated with reproductive toxicity. Alterations in steroid metabolism
through CYP induction have previously been associated with reproductive impair-
ment [48]. However, the nonspecific inhibition of CYPs may be a surrogate for
the capacity of a chemical to disturb steroid metabolism including inhibition of
key CYPs involved in steroidogenesis (e.g., CYP19 and CYP17). Related to CYP
activity, PXR interestingly displayed a negative correlation/association with repro-
ductive toxicity. In general, PXR lowered the false positive rate of the model by
lowering the model score of chemicals with nonspecific and low-potency nuclear
receptor activity. Robust PXR activity is an indication of potent xenobiotic sensing
and potentially rapid metabolism. A major component of the model not directly
related to nuclear receptor biology and xenobiotic/steroid metabolism was GPCR
binding. Numerous GPCR binding assays were significantly associated with repro-
ductive toxicity. Those chosen to represent the GPCR family were selected for sta-
tistical and not for biological reasons as there is limited literature information on
their role in reproduction in contrast to their well-characterized role in the nervous
system function. Platforms measuring epidermal growth factor receptor, TGF�1 and
NF-�B activity were also associated with reproductive toxicity. All the three gene
products have been shown to modulate the relative sensitivity of developmental
toxicants, especially AhR signaling [49, 50], and may be indicative of altered xeno-
biotic metabolism, cellular proliferation, cell–cell signaling, or potential epigenetic
effects [51, 52]. Overall, the key targets in the model identify plausible MOA leading
to reproductive toxicity and covering antiandrogenic, estrogenic, cholesterol/steroid
metabolism, limited coverage of disruption of steroidogenesis, and altered xenobiotic
metabolism MOA.

With the availability of an externally validated classification model predicting
reproductive toxicity, the bottleneck of uncharacterized chemicals can be evaluated
either through improvement in the overall statutory authority to request multigener-
ational reproductive studies or in the ability to quantitatively identify reproductive
toxicants. If the statutory authority to request these studies were improved, then the
current model in concert with other models, alternative methods, and institutional
knowledge could identify with fairly good accuracy and efficiency for all chemicals
for which a multigenerational reproductive study should be requested. If the latter
were improved to the point of accurate adverse dose predictions, then the model could
drastically decrease the need for multigenerational studies and be used in the assess-
ment of the majority of environmental chemicals. To do this, improvements in HTS
assay reproducibility, metabolic capacity, mode-of-action coverage, reverse toxicoki-
netics, and overall model accuracy would need to be made. Placing the classification
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model into a system modeling context will begin to address this next generation of
research questions. For now, the predictive model of reproductive toxicity can go a
long way in improving reproductive chemical testing efficiency and decision making.

1.7 CHEMICAL PRIORITIZATION

Alternative testing methods (in vitro and in silico) will require extensive refinement
and validation before they ultimately replace standardized animal testing. Their more
immediate utility may lie in their use as tools for chemical prioritization of the
extensive chemical inventories of exposure concern. Prioritization is the key link-
age between rapidly deployed, computational models and downstream applications.
These downstream applications may address the question “In what order do we test
chemicals?” or “Which sets of chemicals deserve targeted testing first?” Both of
these questions involve prioritization in terms of ranking, but the second question
also involves communication of reasons underlying a ranking. Thus, the ideal priori-
tization approach yields both an explicit, prioritized order of chemicals as well as a
transparent look at the evidence used.

There are several prioritization and decision-analysis approaches being developed
to support chemical prioritization needs [53]. One example is the ToxPi (Toxicological
Prioritization Index) framework [54]. This approach can be tailored to diverse sets of
chemicals, evidence (data), and prioritization tasks, because it is based on relative—
rather than absolute—rankings. It satisfies both the rank and evidence aspects above,
as ToxPi provides a visual, weight-of-evidence index that can be used to rank and
compare chemicals. Its initial application was to aid in the prioritization of chemicals
for putative endocrine activity, in support of the Endocrine Disruptor Screening
Program (EDSP). Composite activity scores across sets of endocrine relevant data
from the ToxCast assay battery for each chemical were calculated to rank all 309
ToxCast Phase I chemicals from the highest to lowest priority. Inclusion of well-
studied reference chemicals from the domain of the prioritization is particularly
valuable. In the EDSP example, the Phase I chemicals contained BPA, methoxychlor
and its active metabolite 2,2-bis(p- hydroxyphenyl)-1,1,1-trichloroethane (HPTE),
all well-studied chemicals with estrogenic activity. Such chemicals serve to put
results for unknown chemicals in a better toxicological perspective. In the face of
practical temporal and economic limitations, this estimate of potential endocrine
activity provides a formal rationale for prioritizing resources toward further testing.
Alternatively, the ToxPi profiles could be used for chemical “read-across”, analogous
to QSAR structural alert models. The read-across can be implemented in terms of
overall ToxPi bins/clusters of chemicals having similar profiles, or subsets of slices
can be interpreted as in vitro “alerts” to support targeted testing decisions.

Future prioritization approaches will have an increasing demand for transparency
and interactivity. This demand is driven by a more informed public, as well as
the thoughtful work of many non-governmental organizations (NGOs) and govern-
ment entities. Transparency in both data and models is facilitated by web-accessible
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databases and software tools. These interactive prioritization interfaces allow formal
input into decisions by stakeholders, regulators, and the public.

1.8 TARGETED TESTING

The objective of targeted testing of chemicals is to reduce the use of test animals by
limiting the endpoints that need to be evaluated. The way we identify the endpoints
for targeted testing on a given chemical is not straightforward. For new chemicals
and for thousands of existing chemicals in commerce, there is little or no information
about biological effects. In such cases structural similarity between a new chemical
and a well-studied chemical may be used to infer plausible similarity of biologi-
cal effects. While this approach works for some endpoints such as genotoxicity, it
is currently difficult to accurately classify chemicals by hazard based on structural
information alone. The availability of high-throughput bioactivity profiling makes
it feasible to rapidly produce a rich overview of molecular and cellular effects of
thousands of chemicals. Bioactivity profiles can be used to guide targeted tests in
two main ways. First, bioactivity profiles can be phenotypically anchored to adverse
effects from animal testing to discover predictive signatures to classify chemicals by
hazard. Second, the molecular and cellular activities in the signatures can be used
to relate early events in the pathways to adverse outcomes. Knowledge about such
pathways, which are also known as adverse outcome pathways (AOPs) [55], can be
combined with signatures to improve confidence in their predictions. Predictive sig-
natures can serve as a practical tool for identifying endpoints for targeted testing and
Section 4 describes their development from bioactivity profiles. Briefly, a signature
is developed using computational tools that mine hundreds of thousands of associ-
ations between bioactivity patterns and an endpoint. We select signatures that are
statistically significant and that accurately classify known toxicants. This approach
has been used to develop and evaluate signatures for cancer, reproductive toxicity,
and developmental toxicity endpoints using ToxCast bioactivity profiles, and animal
toxicology outcomes from ToxRefDB. In principle, the bioactivity profiles of new
chemicals can be matched with signatures to select endpoints for targeted testing. For
instance, if a new chemical activates inflammatory chemokine signaling, the vascular
endothelial growth factor pathway and the plasminogen-activating system according
to the signature proposed by Kleinstreuer et al. [44], it may be a developmental tox-
icant. Similarly, if a chemical is a potent activator of multiple nuclear receptors, it
could be a hepatocarcinogen [43] and may warrant testing in a 2-year bioassay.

To use a predictive signature to propose an endpoint for targeted testing, it should
be objectively evaluated using known chemicals first. The predictive accuracy of
the signature is a measure of confidence but does not guarantee future performance.
Future performance depends on the reproducibility and biological breadth of the
assays (Section 4), the diversity of the chemical landscape (Section 2), and a sufficient
number of chemicals to build statistically rigorous signatures of adverse effects.
Another approach for improving confidence in empirically derived signatures is to
highlight their role in pathophysiological processes that lead to toxicity.
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A major challenge for using bioactivity profiling for targeted testing will be to
provide confidence in their ability to extrapolate from in vitro to chronic human health
outcomes. It is extremely difficult at this time to elucidate the detailed sequence of
cause and effect relationships, so translating in vitro assays and in vivo outcomes
will always involve a level of uncertainty. In addition to this uncertainty, a significant
difference between the two approaches further confounds correlation due to the
general lack of xenobiotic metabolism with in vitro approaches. This metabolism
could either activate a chemical to a toxic metabolite or inactivate a toxic chemical to
a less toxic one, thus leading to incongruent in vitro and in vivo results. However, it is
important to note that extrapolating adverse effects from test species to humans is also
fraught with considerable uncertainty. For instance, a number of PPAR activators are
rodent hepatocarcinogens, but it is difficult to evaluate the relevance of this outcome
in humans given the widespread use of pharmaceuticals targeting the same receptor
family [56].

The effectiveness of targeted testing will improve as diverse evidence about the
events that lead to human toxicity is organized, such as AOPs. An AOP describes
the initiation of molecular events by chemicals, followed by a complex sequence
or network of key molecular, cellular, and tissue level changes that culminate in
an adverse effect [55]. In the context of an AOP, we can assume that bioactivity
assays directly or indirectly measure changes in early molecular events, and that the
endpoints are the toxic outcomes. For instance, PPAR� activation may be considered
a molecular initiating event that begins a cascade of subsequent changes. Persistent
stimulation with PPAR� activators may lead to proliferative lesions that can progress
to neoplasms. However, the AOP in this case includes a series of intermediate effects,
among others sustained cell proliferation, hepatic hyperplasia, and preneoplastic
lesions.

This knowledge can be used to assess the events preceding the apical endpoint
such as cell cycle progression. This is valuable because apical outcomes may only
be measured in animals, whereas the incipient events such as cell cycle changes may
be observed in cell culture models. Targeted testing approaches are feasible now
by using predictive signatures derived from high-throughput bioactivity assays. We
believe that confidence in these signatures will improve over time as more chemicals
undergo HTS via programs such as ToxCast. In addition, growing knowledge about
AOPs may enable additional tiers of in vitro tests, thereby further reducing the need
for animal testing. Sophisticated system models [57, 58] that can accurately estimate
the dynamic changes in AOPs in humans at environmentally relevant exposures may
one day help us design a battery of tiered tests that eliminate the need of animals to
evaluate chemical safety.

1.9 CONCLUSION

Changing the nature of toxicity testing in the interest of better identifying and char-
acterizing the potential for risk to the health of human and other populations is a
central need in the environmental toxicology field. The use of HTS technologies
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and computational toxicology approaches is currently in the initial proof-of-concept
phase. Much progress has been achieved to date including the demonstration of the
feasibility of testing large chemical libraries in diverse HTS assays, collating in vivo
toxicity information on myriads of chemicals in a relational database, and building
predictive models and prioritization schemes for a number of important toxicological
endpoints. However, much work remains to be performed. Many important toxic-
ity endpoints have not yet been modeled. Many chemical classes have not yet been
tested and remain as major obstacles to HTS screening. Lack of significant xenobiotic
metabolic activity in in vitro assays remains yet another challenge. Finally, models
will require extensive refinement and validation before they will serve regulatory
purposes. However, the success of these early steps provides hope that continued
research efforts in this arena will eventually lead us to our goal of an efficient, robust,
in vitro predictive toxicity screening program that will serve the needs of the public by
providing the capacity to routinely screen existing inventories as well as new chemical
entities for the potential for harm to the health of human and other populations.
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