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    1.1    INTRODUCTION 

 The concepts of  experiments  and  events  are very important in the study of 
probability. In probability, an experiment is any process of trial and observa-
tion. An experiment whose outcome is uncertain before it is performed is 
called a  random  experiment. When we perform a random experiment, the 
collection of possible elementary outcomes is called the  sample space  of 
the experiment, which is usually denoted by  Ω . We defi ne these outcomes as 
elementary outcomes because exactly one of the outcomes occurs when the 
experiment is performed. The elementary outcomes of an experiment are 
called the  sample points  of the sample space and are denoted by  w i  ,  i     =    1, 
2,    . . .    If there are  n  possible outcomes of an experiment, then the sample space 
is  Ω     =    { w  1 ,  w  2 ,    . . .    ,  w n  }. An  event  is the occurrence of either a prescribed 
outcome or any one of a number of possible outcomes of an experiment. Thus, 
an event is a subset of the sample space.  

   1.2    RANDOM VARIABLES 

 Consider a random experiment with sample space  Ω . Let  w  be a sample point 
in  Ω . We are interested in assigning a real number to each  w     ∈     Ω . A random 
variable,  X ( w ), is a single - valued real function that assigns a real number, 
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2 BASIC CONCEPTS IN PROBABILITY

called the value of  X ( w ), to each sample point  w     ∈     Ω . That is, it is a mapping 
of the sample space onto the real line. 

 Generally a random variable is represented by a single letter  X  instead of 
the function  X ( w ). Therefore, in the remainder of the book we use  X  to denote 
a random variable. The sample space  Ω  is called the  domain  of the random 
variable  X . Also, the collection of all numbers that are values of  X  is called 
the  range  of the random variable  X . 

 Let  X  be a random variable and  x  a fi xed real value. Let the event  A x   defi ne 
the subset of  Ω  that consists of all real sample points to which the random 
variable  X  assigns the number  x . 

 That is,

    A w X w x X xx = ( ) ={ } = =[ ].   

 Since  A x   is an event, it will have a probability, which we defi ne as follows:

    p P Ax= [ ].   

 We can defi ne other types of events in terms of a random variable. For fi xed 
numbers  x ,  a , and  b , we can defi ne the following:

    

X x w X w x

X x w X w x

a X b w a X w b

≤[ ] = ( ) ≤{ }
>[ ] = ( ) >{ }

< <[ ] = < ( ) <{ }

,

,

.
  

 These events have probabilities that are denoted by 

   •       P [ X     ≤     x ] is the probability that  X  takes a value less than or equal to  x .  
   •       P [ X     >     x ] is the probability that  X  takes a value greater than  x ; this is 

equal to 1    –     P [ X     ≤     x ].  
   •       P [ a     <     X     <     b ] is the probability that  X  takes a value that strictly lies 

between  a  and  b .    

   1.2.1    Distribution Functions 

 Let  X  be a random variable and  x  be a number. As stated earlier, we can defi ne 
the event [ X     ≤     x ]    =    { x | X ( w )    ≤     x }. The distribution function (or the  cumulative 
distribution function  [ CDF ]) of  X  is defi ned by:

    F x P X x xX ( ) = ≤[ ] −∞ < < ∞.   

 That is,  F X  ( x ) denotes the probability that the random variable  X  takes on a 
value that is less than or equal to  x . Some properties of  F X  ( x ) include:

   1.      F X  ( x ) is a nondecreasing function, which means that if  x  1     <     x  2 , then 
 F X  ( x  1 )    ≤     F X  ( x  2 ). Thus,  F X  ( x ) can increase or stay level, but it cannot go 
down.  
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  2.     0    ≤     F X  ( x )    ≤    1  
  3.      F X  ( ∞ )    =    1  
  4.      F X  ( –  ∞ )    =    0  
  5.      P [ a     <     X     ≤     b ]    =     F X  ( b )    –     F X  ( a )  
  6.      P [ X     >     a ]    =    1    –     P [ X     ≤     a ]    =    1    –     F X  ( a )     

   1.2.2    Discrete Random Variables 

 A discrete random variable is a random variable that can take on at most a 
countable number of possible values. For a discrete random variable  X , the 
  probability mass function   ( PMF ),  p X  ( x ), is defi ned as follows:

    p x P X xX ( ) = =[ ].   

 The PMF is nonzero for at most a countable or countably infi nite number of 
values of  x . In particular, if we assume that  X  can only assume one of the 
values  x  1 ,  x  2 ,    . . .    ,  x n  , then:

    
p x i n

p x
X i

X

( ) ≥ =
( ) =

0 1 2

0

, , ,

otherwise.
  

 The CDF of  X  can be expressed in terms of  p X  ( x ) as follows:

    F x p kx X

k x

( ) = ( )
≤
∑ .   

 The CDF of a discrete random variable is a step function. That is, if  X  takes 
on values  x  1 ,  x  2 ,  x  3 ,    . . .    , where  x  1     <     x  2     <     x  3     <     …  , then the value of  F X  ( x ) is 
constant in the interval between  x  i – 1  and  x i   and then takes a jump of size 
 p X  ( x i  ) at  x i  ,  i     =    2, 3,    . . .    . Thus, in this case,  F X  ( x ) represents the sum of all the 
probability masses we have encountered as we move from  –  ∞  to  x .  

   1.2.3    Continuous Random Variables 

 Discrete random variables have a set of possible values that are either fi nite 
or countably infi nite. However, there exists another group of random variables 
that can assume an uncountable set of possible values. Such random variables 
are called continuous random variables. Thus, we defi ne a random variable  X  
to be a continuous random variable if there exists a nonnegative function  f  X ( x ), 
defi ned for all real  x     ∈    ( –  ∞ ,  ∞ ), having the property that for any set  A  of real 
numbers,

    P X A f x dxX

A

∈[ ] = ( )∫ .   

 The function  f X  ( x ) is called the   probability density function   ( PDF ) of the 
random variable  X  and is defi ned by:
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    f x
dF x

dx
X

X( ) = ( )
.   

 The properties of  f X  ( x ) are as follows:

   1.      f X  ( x )    ≥    0  
  2.     Since  X  must assume some value,   ∫ ( ) =−∞

∞
f x dxX 1  

  3.       P a X b f x dxa
b

X≤ ≤[ ] = ∫ ( ) , which means that   P X a f x dxa
a

X=[ ] = ∫ ( ) = 0. 
Thus, the probability that a continuous random variable will assume any 
fi xed value is zero.  

  4.       P X a P X a F a f x dxX
a

X<[ ] = ≤[ ] = ( ) = ∫ ( )−∞      

   1.2.4    Expectations 

 If  X  is a random variable, then the  expectation  (or  expected value  or  mean ) of 
 X , denoted by E[ X ], is defi ned by:

    E X

x p x X

xf x dx X

i X i

i

X

[ ] =
( )

( )









∑

∫−∞
∞

discrete

continuous
  

 Thus, the expected value of  X  is a weighted average of the possible values that 
 X  can take, where each value is weighted by the probability that  X  takes that 
value. The expected value of  X  is sometimes denoted by   X .  

   1.2.5    Moments of Random Variables and the Variance 

 The  n th moment of the random variable  X , denoted by   E X Xn n[ ] = , is defi ned 
by:

    E X X

x p x X

x f x dx X

n n

i
n

X i

i

n
x

[ ] = =
( )

( )









∑

∫−∞
∞

discrete

continuous
  

 for  n     =    1, 2, 3,    . . .    . The fi rst moment,  E [ X ], is the expected value of  X . 
 We can also defi ne the  central moments  (or  moments about the mean ) of a 

random variable. These are the moments of the difference between a random 
variable and its expected value. The  n th central moment is defi ned by

    E X X X X

x X p x X

x X f x dx

n n
i

n
X i

i

n
X

−( )



 = −( ) =

−( ) ( )

−( ) ( )

∑

−∞

discrete

∞∞

∫







 X continuous
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 The central moment for the case of  n     =    2 is very important and carries a special 
name, the  variance , which is usually denoted by   σX

2 . Thus,

    σX

i X i

i

X

E X X X X

x X p x X

x X f x

2 2 2

2

2
= −( )



 = −( ) =

−( ) ( )

−( ) ( )

∑ discrete

ddx X
−∞

∞

∫







 continuous

    

   1.3    TRANSFORM METHODS 

 Different types of transforms are used in science and engineering. In this book 
we consider two types of transforms: the z - transform of PMFs and the 
s - transform of PDFs of nonnegative random variables. These transforms are 
particularly used when random variables take only nonnegative values, which 
is usually the case in many applications discussed in this book. 

   1.3.1    The  s  - Transform 

 Let  f X  ( x ) be the PDF of the continuous random variable  X  that takes only 
nonnegative values; that is,  f X  ( x )    =    0 for  x     <    0. The s - transform of  f X  ( x ), denoted 
by  M X  ( s ), is defi ned by:

    M s E e e f x dxX
sX sx

X( ) = [ ] = ( )− −
∞

∫0
.   

 One important property of an s - transform is that when it is evaluated at the 
point  s     =    0, its value is equal to 1. That is,

    M s f x dxX s X( ) = ( ) ==

∞

∫0
0

1.   

 For example, the value of  K  for which the function   A s K s( ) = +( )5  is a valid 
s - transform of a PDF is obtained by setting  A (0)    =    1, which gives:

    K K5 1 5= =⇒ .    

   1.3.2    Moment - Generating Property of the  s  - Transform 

 One of the primary reasons for studying the transform methods is to use them 
to derive the moments of the different probability distributions. By 
defi nition:

    M s e f x dxX
sx

X( ) = ( )−
∞

∫0
.   

 Taking different derivatives of  M X  ( s ) and evaluating them at  s     =    0, we obtain 
the following results:
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d
ds

M s
d
ds

e f x dx
d
ds

e f x dx

xe f x dx

X
sx

X
sx

X

sx
X

( ) = ( ) = ( )

= − ( )

−
∞

−
∞

−

∫ ∫0 0

,,

,

0

0
0

2

2
1

∞

=

∞

−

∫
∫( ) = − ( )

= − [ ]

( ) = −( )

d
ds

M s xf x dx

E X

d
ds

M s
d
ds

xe

X s X

X
sxx

X
sx

X

X s X

f x dx x e f x dx

d
ds

M s x f x dx

( ) = ( )

( ) = ( )

=

−∞

∞
−

∞

=

∞

∫ ∫
∫

2

0

2

2 0
2

0

,

EE X 2[ ].

  

 In general,

    
d
ds

M s E X
n

n X s
n n( ) = −( ) [ ]=0 1 .    

   1.3.3    The  z  - Transform 

 Let  p X  ( x ) be the PMF of the discrete random variable  X . The z - transform of 
 p X  ( x ), denoted by  G X  ( z ), is defi ned by:

    G z E z z p xX
X x

X

x

( ) = [ ] = ( )
=

∞

∑
0

.   

 Thus, the PMF  p X  ( x ) is required to take on only nonnegative integers, as 
we stated earlier. The sum is guaranteed to converge and, therefore, the 
z - transform exists, when evaluated on or within the unit circle (where | z |    ≤    1). 
Note that:

    G p xX X

x

1 1
0

( ) = ( ) =
=

∞

∑ .   

 This means that a valid z - transform of a PMF reduces to unity when evaluated 
at  z     =    1. However, this is a necessary but not suffi cient condition for a function 
to the z - transform of a PMF. By defi nition,

    
G z z p x

p zp z p z p

X
x

X

x

X X X X

( ) = ( )

= ( ) + ( ) + ( ) + ( ) +
=

∞

∑
0

2 30 1 2 3 .

  

 This means that  P [ X     =     k ]    =     p X  ( k)  is the coeffi cient of  z k   in the series expan-
sion. Thus, given the z - transform of a PMF, we can uniquely recover the PMF. 
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The implication of this statement is that not every function of  z  that has a 
value of 1 when evaluated at  z     =    1 is a valid z - transform of a PMF. For example, 
consider the function  A ( z )    =    2 z     –    1. Although  A (1)    =    1, the function contains 
invalid coeffi cients in the sense that these coeffi cients either have negative 
values or positive values that are greater than one. Thus, for a function of  z  to 
be a valid z - transform of a PMF, it must have a value of 1 when evaluated at 
 z     =    1, and the coeffi cients of  z  must be nonnegative numbers that cannot be 
greater than 1. 

 The individual terms of the PMF can also be determined as follows:

    p x
x

d
dz

G z xX

x

x X

z

( ) = ( )





=
=

1
0 1 2

0!
, , , .   

 This feature of the z - transform is the reason it is sometimes called the  prob-
ability generating function .  

   1.3.4    Moment - Generating Property of the  z  - Transform 

 As stated earlier, one of the major motivations for studying transform methods 
is their usefulness in computing the moments of the different random vari-
ables. Unfortunately, the moment - generating capability of the z - transform is 
not as computationally effi cient as that of the s - transform. 

 The moment - generating capability of the z - transform lies in the results 
obtained from evaluating the derivatives of the transform at  z     =    1. For a dis-
crete random variable  X  with PMF  p X  ( x ), we have that:

 
   

G z z p x

d
dz

G z
d
dz

z p x
d
dz

z p x

X
x

X

x

X
x

X

x

x
X

x

( ) = ( )

( ) = ( ) = ( )

=

∞

=

∞

=

∞

∑

∑
0

0 0

,

∑∑ ∑ ∑

∑

= ( ) = ( )

( ) = ( )

−

=

∞
−

=

∞

=
=

∞

xz p x xz p x

d
dz

G z xp x

x
X

x

x
X

x

X z X

x

1

0

1

1

1
1

,

== ( ) = [ ]
=

∞

∑ xp x E XX

x 0

.

  

 Similarly,

 
   

d
dz

G z
d
dz

xz p x x
d
dz

z p x x x z p xX
x

X
x

X
x

X

x

2

2
1 1 2

1

1( ) = ( ) = ( ) = −( ) ( )− − −

=

∞

∑∑∑∑
=

∞

=

∞

=( ) = −( ) ( ) = −( ) ( ) = ( )

xx

X z X X X
d
dz

G z x x p x x x p x x p x

11

2

2 1
21 1

,

−− ( )

= [ ]− [ ]

[ ] = ( )

=

∞

=

∞

=

∞

=

∞

=

∑∑∑∑ xp x

E X E X

E X
d
dz

G z

X

xxxx

X z

0001

2

2
2

2

,

11 1+ ( ) =
d
dz

G zX z .
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 Thus, the variance is obtained as follows:

    

σX

X X X

z

E X E X

d
dz

G z
d
dz

G z
d
dz

G z

2 2 2

2

2

2

1

= [ ]− [ ]( )

= ( ) + ( ) − ( ){ }









=

..
    

   1.4    COVARIANCE AND CORRELATION COEFFICIENT 

 Consider two random variables  X  and  Y  with expected values E[ X ]    =     µ   X   and 
 E [ Y ]    =     µ   Y  , respectively, and variances   σX

2  and   σY
2 , respectively. The  covariance  

of  X  and  Y , which is denoted by  Cov ( X ,  Y)  or  σ   XY  , is defi ned by:

    

Cov X Y E X Y

E XY X Y

E XY

XY X Y

Y X X Y

X Y

,( ) = = −( ) −( )[ ]
= − − +[ ]
= [ ]−

σ µ µ
µ µ µ µ
µ µ −− +

= [ ]−
µ µ µ µ

µ µ
X Y X Y

X YE XY .

  

 If  X  and  Y  are independent, then  E [ XY ]    =     µ   X   µ   Y   and  Cov ( X ,  Y )    =    0. However, 
the converse is not true; that is, if the covariance of  X  and  Y  is zero, it does 
not mean that  X  and  Y  are independent random variables. If the covariance 
of two random variables is zero, we defi ne the two random variables to be 
 uncorrelated . 

 We defi ne the  correlation coeffi cient  of  X  and  Y , denoted by  ρ ( X ,  Y ) or  ρ   XY  , 
as follows:

    ρ
σ
σ σXY

XY

X Y

Cov X Y

Var X Var Y
= ( )

( ) ( )
=

,
.   

 The correlation coeffi cient has the property that:

    − ≤ ≤1 1ρXY .    

   1.5    SUMS OF INDEPENDENT RANDOM VARIABLES 

 Consider two independent continuous random variables  X  and  Y . We are 
interested in computing the CDF and PDF of their sum  g ( X ,  Y )    =     U     =     X     +     Y . 
The random variable  S  can be used to model the reliability of systems with 
stand - by connections. In such systems, the component A whose time - to - failure 
is represented by the random variable  X  is the primary component, and the 
component B whose time - to - failure is represented by the random variable  Y  
is the backup component that is brought into operation when the primary 
component fails. Thus,  S  represents the time until the system fails, which is the 
sum of the lifetimes of both components. 
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 Their CDF can be obtained as follows:

    F s P S P X Y s f x y dxdyS XY

D

s( ) = [ ] = + ≤[ ] = ( )≤ ∫∫ , ,  

where  f XY  ( x ,  y ) is the joint PDF of  X  and  Y  and  D  is the set  D     =    {( x ,  y) | x     +     y     ≤     s }. 
Thus,

    

F s f x y dxdy f x f y dxdy

f x

S XY

s y

X Y

s y

X

( ) = ( ) = ( ) ( )

= (

−∞

−

−∞

∞

−∞

−

−∞

∞

∫∫ ∫∫,

)){ } ( )

= −( ) ( )

−∞

−

−∞

∞

−∞

∞

∫∫
∫

dx f y dy

F s y f y dy

s y

Y

X Y .

  

 The PDF of  S  is obtained by differentiating the CDF, as follows:

    

f s
d
ds

F s
d
ds

F s y f y dy

d
ds

F s y f y dy

S S X Y

X Y

( ) = ( ) = −( ) ( )

= −( ) ( )

−∞

∞

−∞

∞

∫
∫

== −( ) ( )
−∞

∞

∫ f s y f y dyX Y ,

 

where we have assumed that we can interchange differentiation and integra-
tion. The expression on the right - hand side is a well - known result in signal 
analysis called the  convolution integral . Thus, we fi nd that the PDF of the sum 
 S  of two independent random variables  X  and  Y  is the convolution of the 
PDFs of the two random variables; that is,

    f s f s f sS X Y( ) = ( )∗ ( ).   

 In general, if  S  is the sum on  n  mutually independent random variables  X  1 , 
 X  2 ,    . . .    ,  X n   whose PDFs are   f xXi ( ),  i     =    1, 2,    . . .    ,  n , then we have that:

    
S X X X

f s f s f s f s
n

S X X Xn

= + + +
( ) = ( )∗ ( ) ∗ ( )

1 2

1 2

,

.
  

 Thus, the s - transform of the PDF of  S  is given by:

    M s M sS X

i

n

i( ) = ( )
=
∏

1

.    

   1.6    RANDOM SUM OF RANDOM VARIABLES 

 Let  X  be a continuous random variable with PDF  f X  ( x ) whose s - transform 
is  M X  ( s ). We know that if  Y  is the sum of  n  independent and identically 
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distributed random variables with the PDF  f X  ( x ), then from the results in the 
previous section, the s - transform of the PDF of  Y  is given by:

    M s M sY X
n( ) = ( )[ ] .   

 This result assumes that  n  is a fi xed number. However, there are certain situ-
ations when the number of random variables in a sum is itself a random vari-
able. For this case, let  N  denote a discrete random variable with PMF  p N  ( n ) 
whose z - transform is  G N  ( z ). Our goal is to fi nd the s - transform of the PDF of 
 Y  when the number of random variables is itself a random variable  N . 

 Thus, we consider the sum:

    Y X X XN= + + +1 2 ,  

where  N  has a known PMF, which in turn has a known z - transform. Now, let 
 N     =     n . Then with  N  fi xed at  n , we have that:

    

Y X X X

M s n M s

M s p n M s n p n

N n n

Y N X
n

Y N Y N

n

N

= = + + +

( ) = ( )[ ]
( ) = ( ) ( ) = (∑

1 2 ,

,

)) ( )[ ] = ( )( )∑ M s G M sX
n

n

N X .
  

 That is, the s - transform of the PDF of a random sum of independent and 
identically distributed random variables is the z - transform of the PMF of the 
number of variables evaluated at the s - transform of the PDF of the constituent 
random variables. Now, let  u     =     M X  ( s ). Then,

    

d
ds

M s
d
ds

G M s
dG u

du
du
ds

d
ds

M s
dG u

d

Y N X
N

Y s
N

( ) = ( )( ) = ( ){ }{ }
( ) = ( )

=

,

0 uu
du
ds s

{ }{ }



 =0

.
  

 When  s     =    0,  u |  s    = 0     =     M X  (0)    =    1. Thus, we obtain:

    

d
ds

M s
dG u

du
du
ds

dG u
du

dM s
ds

Y s
N

s

N

u

X

s

( ) = ( ){ }{ }





= ( ) ( )
=

= =
0

0 1 ==

− [ ] = [ ] − [ ]( ) = − [ ] [ ]
[ ] = [ ] [ ]

0

,

,

.

E Y E N E X E N E X

E Y E N E X

  

 Also,

    

d
ds

M s
d
ds

dG u
du

du
ds

du
ds

d
ds

dG u
du

d
Y

N N
2

2
( ) = ( ){ }{ }




= { } ( ){ }+ GG u

du
d u
ds

du
ds

d G u
du

dG u
du

d

N

N N

( ){ } 



= { } ( )






+ ( ){ }

2

2

2 2

2

22

2

u
ds









,
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d
ds

M s E Y
du
ds

d G u
du

dG u
du

d u
d

Y s
N N

2

2 0
2

2 2

2

2

( ) = [ ] = { } ( )






+ ( ){ }= ss

E X E N E N E N E X

E N

s u
2

0 1

2 2 2

2



















= − [ ]{ } [ ]− [ ]{ }+ [ ] [ ]
=

= =; 

[[ ] [ ]{ } + [ ] [ ]− [ ] [ ]{ }E X E N E X E N E X2 2 2.

  

 The variance of  Y  is given by:

    

σY E Y E Y

E N E X E N E X E N E X

E N E

2 2 2

2 2 2 2

= [ ]− [ ]( )
= [ ] [ ]{ } + [ ] [ ] − [ ] [ ]{ }
− [ ] XX

E N E X E X E X E N E N

E N X

[ ]( )
= [ ] [ ] − [ ]{ }{ }+ [ ]( ) [ ] − [ ]( ){ }
= [ ]

2

2 2 2 2 2

2σ ++ [ ]( )E X N
2 2σ .

  

 If  X  is also a discrete random variable, then we obtain:

    G z G G zY N X( ) = ( )( ),  

and the results for E[ Y ] and   σY
2  still hold.  

   1.7    SOME PROBABILITY DISTRIBUTIONS 

 Random variables with special probability distributions are encountered in 
different fi elds of science and engineering. In this section we describe some of 
these distributions, including their expected values, variances, and s - transforms 
(or z - transforms, as the case may be). 

   1.7.1    The Bernoulli Distribution 

 A Bernoulli trial is an experiment that results in two outcomes:  success  and 
 failure . One example of a Bernoulli trial is the coin - tossing experiment, which 
results in heads or tails. In a Bernoulli trial we defi ne the probability of success 
and probability of failure as follows:

    
P p p

P p

success

failure
[ ] = ≤ ≤
[ ] = −

0 1

1
  

 Let us associate the events of the Bernoulli trial with a random variable  X  
such that when the outcome of the trial is a success, we defi ne  X     =    1, and when 
the outcome is a failure, we defi ne  X     =    0. The random variable  X  is called a 
Bernoulli random variable, and its PMF is given by:

    P x
p x

p x
X ( ) =

− =
=





1 0

1
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 An alternative way to defi ne the PMF of  X  is as follows:

    p x p p xX
x x( ) = −( ) =−1 0 11 , .   

 The CDF is given by:

    F x

x

p x

x
X ( ) =

<
− ≤ <

≥







0 0

1 0 1

1 1
  

 The expected value of  X  is given by:

    E X p p p[ ] = −( ) + ( ) =0 1 1 .   

 Similarly, the second moment of  X  is given by:

    E X p p p2 2 20 1 1[ ] = −( ) + ( ) = .   

 Thus, the variance of  X  is given by:

    σX E X E X p p p p2 = [ ]− [ ]{ } = − = −( )2 2 2 1 .   

 The z - transform of the PMF is given by:

    G z z p x z p x z p z p p zpX
x

X

x

x
X

x

( ) = ( ) = ( ) = −( ) + = − +
=

∞

=
∑ ∑

0 0

1
0 11 1 .    

   1.7.2    The Binomial Distribution 

 Suppose we conduct  n  independent Bernoulli trials and we represent the 
number of successes in those  n  trials by the random variable  X ( n ). Then,  X ( n ) 
is defi ned as a binomial random variable with parameters ( n ,  p ). The PMF of 
a random variable,  X ( n ), with parameters ( n ,  p ) is given by:

    p x
n

x
p p x nX n

x n x
( )

−( ) = 




−( ) =1 0 1 2, , , , .   

 The binomial coeffi cient,   
n

x





, represents the number of ways of arranging

 x  successes and  n     –     x  failures. 
 The CDF, mean and variance of  X ( n ), and the z - transform of its PMF are 

given by:
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F x P X n x
n

k
p p

E X n np

E X n

X n
k n k

k

x

( )
−

=

( ) = ( ) ≤[ ] = 





−( )

( )[ ] =

∑ 1
0

2

,

,

(( )[ ] = −( ) +

= ( )[ ]− ( )[ ]{ } = −( )( )

( )

n n p np

E X n E X n np p

G

X n

X n

1

1

2

2 2 2

,

,σ

zz zp p n( ) = + −( )1 .

   

   1.7.3    The Geometric Distribution 

 The geometric random variable is used to describe the number of independent 
Bernoulli trials until the fi rst success occurs. Let  X  be a random variable that 
denotes the number of Bernoulli trials until the fi rst success. If the fi rst success 
occurs on the  x th trial, then we know that the fi rst  x     –    1 trials resulted in fail-
ures. Thus, the PMF of a geometric random variable,  X , is given by:

    p x p p xX
x( ) = −( ) =−1 1 2 31 , , , .   

 The CDF, mean, and variance of  X  and the z - transform of its PMF are given 
by:

    

F x P X x p

E X p

E X
p

p

E X E X

X
x

X

( ) = ≤[ ] = − −( )
[ ] =

[ ] = −

= [ ]− [ ]{ }2

1 1

1

22
2

2

,

,

,

σ 22
2

1

1 1

=
−

( ) =
− −( )

p
p

G z
zp

z p
X

,

.

   

   1.7.4    The Pascal Distribution 

 The Pascal random variable is an extension of the geometric random variable. 
A Pascal random variable of order  k  describes the number of trials until the 
 k th success, which is why it is sometimes called the  “  k th - order interarrival time 
for a Bernoulli process. ”  The Pascal distribution is also called the  negative 
binomial distribution . 

 Let  X k   be a  k th - order Pascal random variable. Then its PMF is given by:

    px n
n

k
p p k n k kk

k n k( ) =
−
−







−( ) = = +−1

1
1 1 2 1, , ; , , .   
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 The CDF, mean, and variance of  X k   and the z - transform of its PMF are given 
by:

    

F x P X x
n

k
p p

E X k p

E X

x k
k n k

n k

x

k

k

k ( ) = ≤[ ] =
−
−







−( )

( ) =

[ ]

−

=
∑ 1

1
1

2

,

,

==
+ −( )

= [ ]− [ ]{ } =
−( )

( ) =
− −

k k p
p

E X E X
k p

p

G z
zp

z

X k k

X

k

k

2

2

2 2 2
2

1

1

1 1

,

,σ

pp

k

( )






.

   

   1.7.5    The Poisson Distribution 

 A discrete random variable  K  is called a Poisson random variable with param-
eter  λ , where  λ     >    0, if its PMF is given by:

    p k
k

e kK

k

( ) = =−λ λ

!
, , ,0 1 2 .   

 The CDF, mean, and variance of  K  and the z - transform of its PMF are given 
by:

    

F k P K k
r

e

E K

E K

E K E K

K

r

r

k

K

( ) = ≤[ ] =

[ ] =
[ ] = +

= [ ]− [ ]

−

=

2

∑ λ

λ
λ λ

σ

λ

!0

2

2 2

,

,

,

{{ } =

( ) = −1( )

2 λ
λ

,

.G z eK
z

   

   1.7.6    The Exponential Distribution 

 A continuous random variable  X  is defi ned to be an exponential random vari-
able (or  X  has an exponential distribution) if for some parameter  λ     >    0 its 
PDF is given by:

    f x
e x

x
X

x

( ) = ≥
<





−λ λ 0

0 0
  

 The CDF, mean, and variance of  X  and the s - transform of its PDF are given 
by:
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F x P X x e

E X

E X

E X E X

X
x

X

( ) = ≤[ ] = −
[ ] =
[ ] =

= [ ]− [ ]{ } =

−

2

1

1

2

1

2

2 2 2

λ

λ
λ

σ λ

,

,

,
22,

.M s
s

X ( ) =
+
λ
λ

   

   1.7.7    The Erlang Distribution 

 The Erlang distribution is a generalization of the exponential distribution. 
While the exponential random variable describes the time between adjacent 
events, the Erlang random variable describes the time interval between any 
event and the  k th following event. A random variable is referred to as a  k th -
 order Erlang (or Erlang -  k ) random variable with parameter   λ   if its PDF is 
given by:

    f x
x e
k

k x

x
X

k k x

k ( ) = −( )
= ≥

<







− −λ λ1

1
1 2 3 0

0 0

!
, , , ;

  

 The CDF, mean, and variance of  X k   and the s - transform of its PDF are given 
by

    

F x P X x
x e

j

E X k

E X
k k

X k

j x

j

k

k

k

k ( ) = ≤[ ] = − ( )

[ ] =

[ ] = +( )

−

=

−

∑1

1

0

1

2

λ

λ

λ

!
,

,

λλ

σ
λ

λ
λ

2

2 2 2
2

,

,

.

X k k

X

k

k

k

E X E X
k

M s
s

= [ ]− [ ]{ } =

( ) =
+







   

   1.7.8    The Uniform Distribution 

 A continuous random variable  X  is said to have a uniform distribution over 
the interval [ a ,  b ] if its PDF is given by:

    f x b a
a x b

X ( ) = −
≤ ≤






1

0 otherwise
  

 The CDF, mean, and variance of  X  and the s - transform of its PDF are given 
by:
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F x P X x

x a

x a
b a

a x b

x b

E X
b a

E X
b

X ( ) = ≤[ ] =

<
−
−

≤ <

≥










[ ] = +

[ ] =

0

1

2

2
2

,

,

++ +

= [ ]− [ ]{ } =
−( )

( ) = −
−( )

− −

ab a

E X E X
b a

M s
e e
s b a

X

X

as bs

2

2 2 2
2

3

12

,

,σ

   

   1.7.9    The Hyperexponential Distribution 

 The Erlang distribution belongs to a class of distributions that are said to have 
a  phase - type  distribution. This arises from the fact that the Erlang distribution 
is the sum of independent exponential distributions. Thus, an Erlang random 
variable can be thought of as the time to go through a sequence of phases or 
stages, each of which requires an exponentially distributed length of time. For 
example, since an Erlang -  k  random variable  X k   is the sum of  k  exponentially 
distributed random variables  X  with mean 1/ µ , and we can visualize  X k   as the 
time it takes to complete a task that must go through  k  stages, where the time 
the task spends at each stage is  X . Thus, we can represent the time to complete 
that task by the series of stages shown in Figure  1.1 .   

 The hyperexponential distribution is another type of the phase - type distri-
bution. The random variable  H k   is used to model a process where an item can 
choose one of  k  branches. The probability that it chooses branch  i  is  α   i  ,  i     =    1, 
2,    . . .    ,  k . The time it takes the item to traverse branch  i  is exponentially dis-
tributed with a mean of 1/ µ   i  . Thus, the PDF of  H k   is given by:

    

f x e xH i i
x

i

k

i

i

k

k
i( ) = ≥

=

−

=

=

∑

∑

α µ

α

µ

1

1

.

, 0

1

  

     Figure 1.1     Graphical representation of the Erlang -  k  random variable.  

… …µ µ µ µ
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SOME PROBABILITY DISTRIBUTIONS 17

 The random variable can be visualized as in Figure  1.2 .   
 The mean, second moment, and s - transform of  H k   are given by:

    

E H

E H

M s
s

k
i

ii

k

k
i

ii

k

H
i i

ii

k

k

[ ] =

[ ] =

( ) =
+

=

=

=

∑

∑

∑

α
µ

α
µ

α µ
µ

1

2
2

1

1

2

,

,

.

   

   1.7.10    The Coxian Distribution 

 The Coxian distribution is the third member of the phase - type distribution. A 
random variable  C k   has a Coxian distribution of order  k  if it has to go through 
up to at most  k  stages, each of which has an exponential distribution. The 
random variable is popularly used to approximate general nonnegative distri-
butions with exponential phases. The mean time spent at stage  i  is 1/ µ   i  ,  i     =    1, 
2,    . . .    ,  k . A task arrives at stage 1; it may choose to receive some service at 
stage 1 with probability  β  1  or leave the system with probability  α  1     =    1    –     β  1 . 
Given that it receives service at stage 1, the task may leave the system with 
probability  α  2  or proceed to receive further service at stage 2 with probability 
 β  2     =    1    –     α  2 . This process continues until the task reaches stage  k , where it 
fi nally leaves the system after service. The graphical representation of the 
process is shown in Figure  1.3 .   

 The probability  B i   of advancing to the  i th stage to receive service is given 
by:

    B i ki j

j

i

= =
=
∏β

1

1 2, , , .   

     Figure 1.2     Graphical representation of  H k  .  
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 Thus, the probability  L i   of leaving the system after the  i th stage is given by:

    L
B i k

B i k
i

i i

k

=
= −
=





+α 1 1 2 1, , ,
  

 If we defi ne the PDF of the service time  X i   at stage  i  by   f xXi ( ),  x     ≥    0, then 
we note that  C k   takes on the following values with the associated 
probabilities:

    

L P C X

L P C X X

L P C X X X P C X

k

k

k k i

i

1 1

2 1 2

3 1 2 3

1

3

= =[ ]
= = +[ ]

= = + +[ ] = =


 =
∑

,

,







= =










=
∑

,

.L P C Xk k i

i

k

1

  

 Also, let  g i  ( x ) denote the PDF of the sum of random variables  X  1     +     X  2     +     . . .     +     X i  . 
Then, we know that  g i  ( x ) is the convolution of the PDFs of the  X i  , that is,

    g x f x f x f xi X X Xi( ) = ( )∗ ( )∗ ∗ ( )1 2 .   

 Therefore, the s - transform of  g i  ( x ) is:

    M s M s M s M s
s

G X X X
j

jj

i

i i( ) = ( ) ( ) ( ) =
+=

∏1 2

1

µ
µ

.   

     Figure 1.3     Graphical representation of  C k   .   
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 The mean and second moment of  C k   are given by:

     Figure 1.4     Graphical representation of phase - type distribution.  
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   1.7.11    The General Phase - Type Distribution 

 The three types of phase - type distributions (Erlang, hyperexponential, and 
Coxian) are represented by feedforward networks of stages. A more general 
type of the phase - type distribution allows both feedforward and feedback 
relationships among the stages. This type is simply called the phase - type dis-
tribution. An example is illustrated in Figure  1.4 .   

 This distribution is characterized by both the mean service time 1/ µ   i   at stage 
 i  and a transition probability matrix that defi nes the probability  p ij   that a task 
that has completed service at stage  i  goes next to stage  j . The details of this 
particular type of distribution are very involved and will not be discussed here.  

   1.7.12    Normal Distribution 

 A continuous random variable  X  is defi ned to be a normal random variable 
with parameters  µ   X   and   σX

2  if its PDF is given by:

 This means that the s - transform of  C k   is given by:     
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    f x e e xX

X

x

X

x
X X

X

X( ) = = −∞ < < ∞− −( ) − −



1

2

1

22

2

2

1
2

2 2

2

πσ πσ
µ σ

µ
σ .   

 The PDF is a bell - shaped curve that is symmetric about  µ   X  , which is the mean 
of  X . The parameter   σX

2  is the variance. Figure  1.5  illustrates the shape of the 
PDF.   

 The CDF of  X  is given by:

    F x P X x e duX

X

u
x

X X( ) = ≤[ ] = − −( )

−∞∫
1

2

2 22

σ π
µ σ .   

 The normal random variable  X  with parameters  µ   X   and   σX
2  is usually desig-

nated   X N X X= ( )µ σ, 2 . The special case of zero mean and unit variance (i.e., 
 µ   X       =    0 and   σX

2 = 1) is designated  X     =     N (0, 1) and is called the  standard normal 
random variable . Let  y     =    ( u     –     µ   X  )/ σ   X   . Then,  du     =     σ   X dy  and the CDF of  X  
becomes:

    F x e dyX
y

x X X

( ) = −

−∞

−( )

∫1

2

2 2

π

µ σ
.   

 Thus, with the above transformation,  X  becomes a standard normal random 
variable. The above integral cannot be evaluated in closed form. It is usually 
evaluated numerically through the function  Φ ( x ), which is defi ned as follows:

    Φ x e dyy
x

( ) = −

−∞∫
1

2

2 2

π
.   

     Figure 1.5     PDF of the normal random variable.  

µX

fX x( )

x

1

σX 2π
-----------------



LIMIT THEOREMS 21

 Thus, the CDF of  X  is given by

    F x e dy
x

X
y

-

x
X

X

X X

( ) = =
−





−

∞

−( )

∫1

2

2 2

π
µ

σ

µ σ
Φ .   

 The values of  Φ ( x ) are sometimes given for nonnegative values of  x . For nega-
tive values of  x ,  Φ ( x ) can be obtained from the following relationship:

    Φ Φ−( ) = − ( )x x1 .   

 Values of  Φ ( x ) are given in standard books on probability, such as Ibe 
( 2005 ).   

   1.8    LIMIT THEOREMS 

 In this section we discuss two fundamental theorems in probability. These are 
the law of large numbers, which is regarded as the fi rst fundamental theorem, 
and the central limit theorem, which is regarded as the second fundamental 
theorem. We begin the discussion with the Markov and Chebyshev inequalities 
that enable us to prove these theorems. 

   1.8.1    Markov Inequality 

 The Markov inequality applies to random variables that take only nonnegative 
values. It can be stated as follows: 

   Proposition 1.1:     If  X  is a random variable that takes only nonnegative values, 
then for any  a     >    0,

    P X a
E X

a
≥[ ] ≤ [ ]

.     

   Proof:     We consider only the case when  X  is a continuous random variable. 
Thus,

    

E X xf x dx xf x dx xf x dx

xf x dx

af x

X X

a

X
a

X
a

X

[ ] = ( ) = ( ) + ( )

≥ ( )

≥ (

∞ ∞

∞

∫ ∫ ∫
∫

0 0

))

= ( )

= ≥[ ]

∞

∞

∫
∫

dx

a f x dx

aP X a

a

X
a

,

 

and the result follows.    
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   1.8.2    Chebyshev Inequality 

 The Chebyshev inequality enables us to obtain bounds on probability when 
both the mean and variance of a random variable are known. The inequality 
can be stated as follows: 

   Proposition 1.2:     Let  X  be a random variable with mean  µ  and variance  σ  2 . 
Then, for any  b     >    0,

    P X b
b

− ≥[ ] ≤µ
σ2

2
.     

   Proof:     Since ( X     –     µ ) 2  is a nonnegative random variable, we can invoke the 
Markov inequality, with  a     =     b  2 , to obtain:

    P X b
E X

b
−( ) ≥  ≤

−( ) µ
µ2 2

2

2
.   

 Since ( X     –     µ ) 2     ≥     b  2  if and only if | X     –     µ |    ≥     b , the preceding inequality is equiva-
lent to:

    P X b
E X

b b
− ≥[ ] ≤

−( )  =µ
µ σ

2

2

2

2
,   

 which completes the proof.    

   1.8.3    Law of Large Numbers 

 There are two laws of large numbers that deal with the limiting behavior of 
random sequences. One is called the  “ weak ”  law of large numbers and the 
other is called the  “ strong ”  law of large numbers. We will discuss only the weak 
law of large numbers. 

  Proposition 1.3:     Let  X  1 ,  X  2 ,    . . .    ,  X n   be a sequence of mutually independent 
and identically distributed random variables, and let their mean be 
 E [ X k  ]    =     µ     <     ∞ . Similarly, let their variance be   σ σXk

2 2= < ∞. Let  S n   denote the 
sum of the  n  random variables, that is,

    S X X Xn n= + + +1 2 .     

 Then the weak law of large numbers states that for any  ε     >    0,

    lim
n

nP
S
n→∞
− ≥




→µ ε 0.   

 Equivalently,

    lim
n

nP
S
n→∞
− <




→µ ε 1.   
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   Proof:     Since  X  1 ,  X  2 ,    . . .    ,  X n   are independent and have the same distribution, 
we have that:
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2 2
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n
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 From Chebyshev inequality, for  ε     >    0, we have that:

    P
S
n n

n − ≥




≤µ ε
σ
ε

2

2
.   

 Thus, for a fi xed  ε ,

    P
S
n

n − ≥




→µ ε 0   

 as  n     →     ∞ , which completes the proof.    

   1.8.4    The Central Limit Theorem 

 The central limit theorem provides an approximation to the behavior of sums 
of random variables. The theorem states that as the number of independent 
and identically distributed random variables with fi nite mean and fi nite vari-
ance increases, the distribution of their sum becomes increasingly normal 
regardless of the form of the distribution of the random variables. More for-
mally, let  X  1 ,  X  2 ,    . . .    ,  X n   be a sequence of mutually independent and identically 
distributed random variables, each of which has a fi nite mean  µ   X   and a fi nite 
variance   σX

2 . Let  S n   be defi ned as follows:

    S   X   X   Xn n= + + +1 2 .   

 Now,

    
E S   n

n
n X

S Xn

[ ] =
=

µ
σ σ

,

.2 2   

 Converting  S n   to standard normal random variable (i.e., zero mean and vari-
ance    =    1) we obtain:
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 The central limit theorem states that if   F yYn ( ) is the CDF of  Y n  , then:

    lim lim
n

Y
n

n
u

y

F y P Y y e du yn→∞ →∞

−

−∞
( ) = ≤[ ] = = ( )∫1

2

2 2

π
Φ .   

 This means that   lim ,
n

nY N
→∞

( )0 1 . Thus, one of the important roles that the

normal distribution plays in statistics is its usefulness as an approximation of 
other probability distribution functions. 

 An alternate statement of the theorem is that in the limit as  n  becomes very 
large,

    �
…
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S S

n

X X X

n
n

n
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n
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n

Xn
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+ + +

σ σ σ
1 2

  

 is a normal random variable with unit variance. 

  1.9   PROBLEMS 

       1.1    A sequence of Bernoulli trials consists of choosing seven components 
at random from a batch of components. A selected component is clas-
sifi ed as either defective or nondefective. A nondefective component is 
considered to be a success, while a defective component is considered 
to be a failure. If the probability that a selected component is nondefec-
tive is 0.8, what is the probability of exactly three successes?   

    1.2    The probability that a patient recovers from a rare blood disease is 0.3. 
If 15 people are known to have contracted this disease, fi nd the following 
probabilities:
   a.     At least 10 survive.  
  b.     From three to eight survive.  
  c.     Exactly six survive.      

    1.3    A sequence of Bernoulli trials consists of choosing components at 
random from a batch of components. A selected component is classifi ed 
as either defective or nondefective. A nondefective component is con-
sidered to be a success, while a defective component is considered to be 
a failure. If the probability that a selected component is nondefective is 
0.8, determine the probabilities of the following events:
   a.     The fi rst success occurs on the fi fth trial.  
  b.     The third success occurs on the eighth trial.  
  c.     There are two successes by the fourth trial, there are four successes 

by the 10th trial, and there are 10 successes by the 18th trial.      
    1.4    A lady invites 12 people for dinner at her house. Unfortunately the 

dining table can only seat six people. Her plan is that if six or fewer 
guests come, then they will be seated at the table (i.e., they will have a 
sit - down dinner); otherwise, she will set up a buffet - style meal. The prob-
ability that each invited guest will come to dinner is 0.4, and each guest ’ s 
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decision is independent of other guests ’  decisions. Determine the 
following:
   a.     The probability that she has a sit - down dinner  
  b.     The probability that she has a buffet - style dinner  
  c.     The probability that there are at most three guests      

    1.5    A Girl Scout troop sells cookies from house to house. One of the parents 
of the girls fi gured out that the probability that they sell a set of packs 
of cookies at any house they visit is 0.4, where it is assumed that they 
sell exactly one set to each house that buys their cookies.
   a.     What is the probability that the fi rst house where they make their 

fi rst sale is the fi fth house they visit?  
  b.     Given that they visited 10 houses on a particular day, what is the 

probability that they sold exactly six sets of cookie packs?  
  c.     What is the probability that on a particular day the third set of cookie 

packs is sold at the seventh house that the girls visit?      
    1.6    Students arrive for a lab experiment according to a Poisson process with 

a rate of 12 students per hour. However, the lab attendant opens the 
door to the lab when at least four students are waiting at the door. What 
is the probability that the waiting time of the fi rst student to arrive 
exceeds 20   min? (By waiting time we mean the time that elapses from 
when a student arrives until the door is opened by the lab attendant.)   

    1.7    Cars arrive at a gas station according to a Poisson process at an average 
rate of 12 cars per hour. The station has only one attendant. If the atten-
dant decides to take a 2 - min coffee break when there were no cars at 
the station, what is the probability that one or more cars will be waiting 
when he comes back from the break, given that any car that arrives 
when he is on coffee break waits for him to get back?   

    1.8    An insurance company pays out claims on its life insurance policies in 
accordance with a Poisson process with an average rate of fi ve claims 
per week. If the amount of money paid on each policy is uniformly 
distributed between $2000 and $10,000, what is the mean of the total 
amount of money that the company pays out in a 4 - week period?   

    1.9    Three customers  A ,  B , and  C  simultaneously arrive at a bank with two 
tellers on duty. The two tellers were idle when the three customers 
arrived, and  A  goes directly to one teller,  B  goes to the other teller, and 
 C  waits until either  A  or  B  leaves before she can begin receiving service. 
If the service times provided by the tellers are exponentially distributed 
with a mean of 4   min, what is the probability that customer  A  is still in 
the bank after the other two customers leave?   

    1.10    A fi ve - motor machine can operate properly if at least three of the fi ve 
motors are functioning. If the lifetime  X  of each motor has the PDF 
 f X  ( x )    =     λ  e   –  λ    x  ,  x     ≥    0,  λ     >    0, and if the lifetimes of the motors are indepen-
dent, what is the mean of the random variable  Y , the time until the 
machine fails?                   


