CHAPTER 1

CUBIC EQUATIONS

The quadratic formula states that the solutions of a quadratic equation

al+bx+c=0, abceC, a#0

are given by
—b+ /b2 —dac
(1.1) X=—

In this chapter we will consider a cubic equation

ax3+bx2+cx+d=0, ab,c,deC,a#0,

and we will show that the solutions of this equation are given by a similar though
somewhat more complicated formula. Finding the formula will not be difficult, but
understanding where it comes from and what it means will lead to some interesting

questions.
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4 CUBIC EQUATIONS

1.1 CARDAN’S FORMULAS

Given a cubic equation ax® + bx? + cx +d = 0 with a # 0, we first divide by a to
rewrite the equation as

X 4bPtex+d=0, bye,dcC,

where &/a, ¢/a, and 4/a have been replaced with b, ¢, and d, respectively. Observe
that x* 4+ bx? + cx +d is a monic polynomial and that reducing to the monic case has
no effect on the roots.

The next step is to remove the coefficient of x? by the substitution

b
I=y—§

The binomial theorem implies that

x? =y2—2y%’+ (g)z =y~ %y—i—?
0o (§) - 4 -t
50 that
0=x+bx®+ex+d
(o ) esl 2ol

If we collect terms, then we can write the resulting equation in y as

Y +py+g=0,
where
bz
pz———?;+c,
1.2
- ke
T 273 '

You will verify the details of this calculation in Exercise 1.

We call a cubic of the form y° + py +¢ = 0 a reduced cubic. If we can find
the roots v|,y2,¥s of the reduced cubic, then we get the roots of the original cubic
x° + bx? + ex+d = 0 by adding —b/3 to each y;.

To solve y* + py + ¢ = 0, we use the substitution

P
1. =7——.
(1.3) y=2-3
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This change of variable has a dramatic effect on the equation. Using the binomial
theorem again, we obtain

P23l n(BY (LY 2o pee L
Combining this with (1.3) gives
3 3 r_r P s_ P
y —|—py+q=(z _pz+3_z_W)+P(Z_3_z)+q=z —W‘HI-

Multiplying by z*, we conclude that y* + py + ¢ = 0 is equivalent to the equation

3

1.4 CONpRE S Sy
(1.4) T +qz 7 0

This equation is the cubic resolvent of the reduced cubic y* + py+¢=0.

At first glance, (1.4) might not seem useful, since we have replaced a cubic
equation with one of degree 6. However, upon closer inspection, we see that the
cubic resolvent can be written as

3
232 a_P o _
() +q 57 0.

By the quadratic formula (1.1), we obtain

1 4p3
s_1f_ 2, 2P
z 2( gt ¢3'+2 ),

so that

__3]- 2 4p3
(1.5 Z_\/Z( gtifg +—2:§‘ .

Substituting this into (1.3) gives a root of the reduced cubic y* + py + ¢, and then

x=y—b/3is aroot of the cubic x* + bx® + cx + d.
However, before we can claim to have solved the cubic, there are several questions

that need to be answered:

e By setting y* +py+¢ =0, we essentially assumed that a solution exists. What
justifies this assumption?

* A cubic equation has three roots, yet the cubic resolvent has degree 6. Why?

¢ The substitution (1.3) assumes that z # 0. What happens when z = 0?

s ¥’ + py + q has coefficients in C, since b,c,d € C. Thus (1.5) involves square
roots and cube roots of complex numbers. How are these described?

The first bullet will be answered in Chapter 3 when we discuss the existence of roots.

The second bullet will be considered in Section 1.2, though the ultimate answer will
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involve Galois theory. For the rest of this section, we will concentrate on the last two
bullets. Our strategy will be to study the formula (1.5) in more detail.

First assume that p # 0 in the reduced cubic y* + py + ¢q. By Section A.2, every
nonzero complex number has # distinet nth roots when # € Z is positive. In (1.5),
the + in the formula indicates that a nonzerc complex number has two square roots,
Similarly, the cube root symbol denotes any of the three cube roots of the complex
number under the radical. To understand these cube roots, we use the cube roots of
unity 1,¢;,¢3 from Section A.2. We will write (; as w. Recall that

—1+iV3
2
and that given one cube root of a nonzero complex number, we get the other two cube
roots by multiplying by w and w?.
We can now make sense of (1.5). Let

W= Cj, — eZ'Jrf/3 —

ap
27
denote a fixed square root of ¢ +4p?/27 € C. With this choice of square root, let

M a2 4p’

denote a fixed cube root of 1 (— g+ /g2 +4p3/27). Then we get the other two cube
roots by multiplying by w and w?. Note also that p # 0 implies that z; # 0 and that
21 is a root of the cubic resolvent (1.4). It follows easily that if we set

7+

N
2= 32] 1
then
_ _ 14
(1.6) Yi=21t+22=z21— =—

3u

is a root of the reduced cubic y* + py +g¢.
To understand z;, observe that

An easy calculation shows that

1 4p3 1 4p3N 1 43 7
3. _f—g— T S W 24 Y, 24 8 Y _
Z‘z(q q+27) 2("+q+27 NI VT T 27 )=

Since z; # 0, these formulas imply that
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Hence 7 = —p/3z; is a cube root of % (—q —/q? +4p3/2?), so that

3f 1 4P 3f 1 4p3
= —f — 2 — = - —qg— 2 —_
(.7 2 \/2( q+1;‘q+2,?) and z, \/2( q+2?)

are cube roots with the property that their product is —p/3.

From (1.6), we see that y; = z) +z; is a root of y> + py+¢ when z; and z; are
the above cube roots. To get the other roots, note that (1.6) gives a root of the
cubic whenever the cube roots are chosen so that their product is —p/3 (be sure you
understand this). For example, if we use the cube root wz;, then

Wi wWn=1n= —%
shows that ¥, = wz; + w?z, is also a root. Similarly, using the cube root w?z; shows

that y;3 = w?z; +wzs is a third root of the reduced cubic.
By (1.7), it follows that the three roots of y* + py + ¢ = 0 are given by

31 "2 4p3 31 2 4p3
_ 31 9 4p3 231 2 4p3
y2= w\/2( q+ﬂq+27 +w 2 q q+27 .

31 4p3 31 4p3
=i = = 2y Ll (NP S ST i
¥3 “"\/z(q"' q+2?)+w\/2( q+2 '

provided the cube roots in (1.7) are chosen so that their product is —p/3. These are
Cardan's formulas for the roots of the reduced cubic y* + py +g.

¥

Example 1.1.1 For the reduced cubic y* 4+ 3y + 1, consider the real cube roots

Their product is —1 = —p/3, so by Cardan’s formulas, the roots of y* + 3y + 1 are
= yi(-1+V5)+ i(~1-V5),
y2=w i/ L= 1+V5) +w?{/L(~ 1-V5),

Note that v is real. In Exercise 2 you will show that y; and ¥3 are comiplex conjugates
of each other. <>

Although Cardan’s formulas only apply to a reduced cubic, we get formulas for
the roots of an arbitrary monic cubic polynomial x* + bx? + cx +d € C[x] as follows.
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The substitution x = y — b/3 gives the reduced cubic y° + py+q =0, where p and ¢
areas in (1.2). If z; and z, are the cube roots in Cardan’s formulas for y* + py+¢ =0,
then the roots of x* + bx? + cx+d = 0 are given by

b
X1 ——§+Z1+Zz,

b 2
xg=—§+wzl+w 22,
b 2
x;:—-g-i-w o+ Wiz,

where z; and z; from (1.7) satisfy z,z2 = —p/3. Our derivation assumed p £ 0, but
these formulas give the comrect roots even when p = 0 (see Exercise 3).

We will eventually see that Cardan’s formulas make perfect sense from the point
of view of Galois theory. For example, the quantity under the square root in (1.5) is

ap?
2 —r—
g+ 57
Up to a constant factor, this is the discriminant of the polynomial y* + py +q. We
will give a careful definition of discriminant in Section 1.2, and Section 1.3 will show
that the discriminant gives useful information about the roots of a real cubic.

Here is an example of a puzzle that arises when using Cardan’s formula.

Example 1.1.2 The cubic equation y* — 3y = 0 has roots y = 0, ++/3, all of which
are real. When we apply Cardan’s formulas, we begin with

zl={/%(—0+\/02+ﬂgﬁ)=%.

To pick a specific value for z;, notice that (—i)® = i, so that we can take 7; = —i.
Thus zo = —p/3z; = i, since p = —3. Then Cardan’s formulas give the roots

n=—i+i=0,
n =w(—) +w?(i)) = V3,
y3 = wi(=i) +w(i) = V3.
(You will verify the last two formulas in Exercise 4.) <

The surprise is that Cardan’s formulas express the real roots of y* — 3y in terms of
complex numbers. In Section 1.3, we will prove that for any cubic with distinct real
roots, Cardan’s formulas always involve complex numbers.

Historical Notes

The quadratic formula is very old, dating back to the Babylonians, circa 1700 B.C.
Cubic equations were first studied systematically by Islamic mathematicians such as
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Omar Khayyam, and by the Middle Ages cubic equations had become a popular topic.
For example, when Leonardo of Pisa (also known as Fibonacci) was introduced to
Emperor Frederick IT in 1225, Fibonacci was asked to solve two problems, the second
of which was the cubic equation

2+ 232+ 10x = 20.

Fibonacci’s solution was

2 7 4 33 4 40
60 ' 607 ' 607 ' 60° ' 60° ' 60

In decimal notation, this gives x = 1.368808107853 .. . ., which is comrect to 10 decimal
places. Not bad for 787 years ago!

Challenges and contests involving cubic equations were not uncommeon during
the Middle Ages, and one such contest played a crucial role in the development of
Cardan’s formula. Early in the sixteenth century, Scipio del Ferro found a solution
for cubics of the form x* + bx = ¢, where b and ¢ are positive. His student Florido
knew this solution, and in 15335, Florido challenged Niccold Fontana (also known as
Tartaglia) to a contest involving 30 cubic equations. Working feverishly in preparation
for the contest, Tartaglia worked out the solution of this and other cases, and went
on to defeat Florido. In 1539, Tartaglia told his solution to Girolamo Cardan (or
Cardano), who published it in 1545 in his book Ars Magna (see [2]).

Rather than present one solution to the cubic, as we have done here, Cardan’s
treatment in Ars Magna requires 13 cases. For example, Chapter X1V considers
x? +64 = 18x2, and Chapter XV does x* + 6x° = 40. The reason is that Cardan
prefers positive coefficients. However, he makes systematic use of the substitution
x=y—b/3to getrid of the coefficient of x2, and Cardan was also aware that complex
numbers can arise in solutions of quadratic equations.

Numerous other people worked to simplify and understand Cardan’s solution. In
1550, Rafael Bombelli considered more carefully the role of complex solutions (see
Section 1.3), and in two papers published posthumously in 1615, Frangois Viéte (or
Vieta, in Latin) introduced the substitution (1.3) used in our derivation of Cardan’s
formulas and gave the trigonometric solution to be discussed in Section 1.3 .

In addition to the cubic, Ars Magra also contained a solution for the quartic
equation due to Lodovico (or Luigi) Ferrari, a student of Cardan’s. We will discuss
the solution of the quartic in Chapter 12.

x=1+

Exercises for Section 1.1

Exercise 1. Complete the demonstration (begun in the text) that the substitution x = y— b/3
transforms x> + bx? + ex+ d into y° + py + ¢, where p and g are given by (1.2).

Exercise 2. In Example 1.1.1, show that ¥; and y; are complex conjugates of each other.
Exercise 3. Show that Cardan’s formulas give the roots of ¥ + py + g when p = C.

Exercise 4. Verify the formulas for y» and y; in Example 1.1.2.
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Exercise 5. The substitution x = y — /3 can be adapted to other equations as follows,
(a) Show that x = y— b/2 gets rid of the coefficient of x in the quadratic equation x> + bx+¢ =
0. Then use this to detive the quadratic formoula.
(b) For the quartic equation x* 4+ bx> + cx? 4 dx+ e = 0, what substitution should you use to
get rid of the coefficient of x*?
(c) Explain how part (b) generalizes to a monic equation of degree n.

Exercise 6. Consider the equation x” + x — 2 = 0. Note that x = 1 is a root.
(a) Use Cardan’s formulas (carefully) to derive the surprising formula

3 2 /7 s 2 /7
{3

(b} Show that 1+ 2 \@ = (£ + 14/1)’, and use this to explain the result of part (a).

Exercise 7. Cardan’s formulas, as stated in the text, express the roots as sums of two cube
roots, Each cube root has three values, so there are nine different possible values for the sum
of the cube roots. Show that these nine values are the roots of the equations y* + py+¢ =0,
Y +wpy+g=0and y’ +w?py + g = 0, where as usual o = %(—1 + i\/ﬁ).

Exercise 8. Use Cardan’s formulas to solve y* + 3wy + 1 =0.

1.2 PERMUTATIONS OF THE ROOTS
In Section 1.1 we learned that the roots of x> + bx? + cx +d = 0 are given by

b
X = —3 +zi+ 22,

b
(1.8) x2=—§+wzl+w2zz,
b, ,
X3 = —§+w 21 + Wz,

where z| and z; are the cube roots (1.7) chosen so that z;z; = —p/3. We also know
that z; is a root of the cubic resclvent

1.9 & - p_3 ={
1.9 " +gz 7 =
and in Exercise | you will show that z; is also a root of (1.9). The goal of this section
is to understand more clearly the relation between x,x3,x; and z;,z;. We will learn
that permutations, the discriminant, and symmetric polynomials play an important
role in these formulas.

A. Permutations. We begin by observing that we can use (1.8) to express z1,z2 in
terms of x,%2,x3. We do this by multiplying the second equation by % and the third
by w. When we add the three resulting equations, we obtain

b
X+ wixy 4+ wxg = —(1 +w2+w)§+3z| +(1+w+w2)z2.
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However, w is a root of x* — 1 = (x— 1){(x? + x + 1), which implies | + w+w?*=0.
Thus the above equation simplifies to

X1 +w?xs +wxs =3z,
50 that
1 2
= 3(11 + wxz +wxs3).

Similarly, multiplying the second equation of (1.8) by w and the third by w? leads to
the formula

1
= §(x1 + wixp +w2x3).

This shows that the roots z; and z; of the cubic resolvent can be expressed in termis
of the roots of the original cubic. However, z; and 2, are only two of the six roots of
(1.9). What about the other four? In Exercise 1 you will show that the roots of the
cubic resolvent {1.9) are

2 2
1, T2y W3, W3, WT, W22,
and that these roots are given in terms of x;,x2,x3 by

2t = 10n + Wi +wxs),
2= 1(x +win +wx),

(L10) wz = {0 +wh +wx),
' W = %(xﬁ—wzxz +wxy),

Wiz = %(x3 + wixy 4 wxz),
w'zy = L(my +wixy +ws).

These expressions for the roots of the resolvent all look similar. What lies behind
this similarity is the following crucial fact: The six roots of the cubic resolvent are
obtained from z, by permuting x),x2,%3. Hence the symmetric group 83 now enters
the picture.

From an intuitive point of view, this is reasonable, since labeling the roots xy,x2,x3
simply lists them in one particular order. If we list the roots in a different order, then
we should still get a root of the resolvent. This also explains why the cubic resolvent
has degree 6, since |S:| = 6.

B. The Discriminant. We can also use (1.10) to get a better understanding of the
square root that appears in Cardan’s formulas, If we set

4p3
1.11 =¢+-=
(1.11) D=g"+ Tk
then we can write z; and z; as

2=y i(—q+vD),

(1.12)
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We claim that D can be expressed in terms of the roots x;,x2,x3. To see why, note
that the above formulas imply that

zi -z =3(-g+vD) - §(-g-vD) = VD.
However, (A.15) gives the factorization
(1.13) 3 -3 = (1 - 2){&a —wa)la -wz).
Using (1.10), we obtain

—= -3'~(x1 +wlxs 4 wx3) — %(xl + wxz + whis)
= Hw? —w)(x2 —x3)

= SAn-x),
where the last line uses w? — w = —iv/3. Similarly, one can show that

.2
21— wiz = B {x) —x3),
(1.14) RS )
I — W Zz=%(x1—xz)

(see Exercise 2). Combining these formulas with z3 —z3 = +/D and (1.13) easily
implies that

i
{1.15) VD = ——— () —x)(x1 —x3)}(%2 — x3).
3‘/5(1 2)(x1 —x3)(x2 — x3)
If we square this formula for\/l_)and combine it with (1.11), we obtain
4 1
(1.16) @+ 2—;;3 = —ﬁ(ﬂ —x2 ) (0 — x3)? (o — x3)%

It is customary to define the discriminant of x* 4+ bx? + cx+ d to be

A= (.I] —12)2()‘.‘1 —X:J,)z(xz ~—x3)2.

Thus A is the product of the squares of the differences of the roots. In this notation
we can write (1,16) as

4p3 1
2 P _ 2
(117 g+ > 27A.

Then (1.12) becomes

118 a=yi(-g+y/F) md n={t(-a-/R).

Substituting this into (1.8), we get a version of Cardan’s formulas which uses the
square root of the discrirninant,
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The discriminant is also important in the quadratic case. By the quadratic formula,
the roots of x2 + bx + ¢ are

_ —b+vVA

_—b—VA
2 = |

and x 2

X1

where A = b? — 4c is the discriminant. This makes it easy to see that
VA = x—x; and A=(x —xz)z.

Thus the discriminant is the square of the difference of the roots. In Chapter 2 we
will study the discriminant of a polynomial of degree .

C. Symmetric Polynomlals. We begin with two interesting properties of
A = (1 —x2) {11 — x3)* (2 — x3)%.

First suppose that we permute x;,x3,x3 in this formula. The observation is that no
matter how we do this, we will still have the product of the squares of the differences
of the roots. This shows that A is unchanged by permutations of the roots. In the
language of Chapter 2 we say that A is symmetric in the roots xi,x2,x3.

Second, we can also express A in terms of the coefficients of x° + bx? +cx+4.
By (1.17), we know that A = —4p® —274%. However, we also have

b2
P= _? +c,
(1.19
% ke
1=%773

by Exercise | of Section 1.1. If we substitute these into (1.17), then a straightforward
calculation shows that

(1.20) A = b + 18bcd — 4¢® — 4b’d — 274>
(see Exercise 3). When & =0, it follows that x* + cx +  has discriminant
A =—4¢* - 2742

This will be useful in Section 1.3,

The above formula expresses the discriminant in terms of the coefficients of the
original equation, just as the discriminant of x>+ bx+c=0is A = b*> —4c. The
Fundamental Theorem of Symmetric Polynomials, to be proved in Chapter 2, will
imply that any symmetric polynomial in x;,x2,x; can be expressed in terms of the
coefficients &, ¢,d. In order to see why b, c,d are so important, note that if x;,x),x3
are the roots of x> + bx? 4+ cx + d, then

bl fextd=(x—x)x—x){x—x3).
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Multiplying out the right-hand side and comparing coefficients leads to the following
formulas for b, c,d:

b= —(x1 +x3 +x3),
(1.21) € = x1x2 +x1x3 + X023,

d = —x1x%3.

These formulas show that the coefficients of a cubic can be expressed as symmetric
functions of its roets. The polynomials &, ¢, d are (up to sign) the elementary
symmetric polynomials of x1,x3,x3. These polynomials (and their generalization to
an arbitrary number of variables) will play a crucial role in Chapter 2,

Mathematical Notes
One aspect of the text needs further discussion.

n Algebra versus Abstract Algebra. High school algebra is very different from a
course on groups, rings, and fields, yet both are called “algebra.” The evolution of
algebra can be seen in the difference between Section 1.1, where we used high school
algebra, and this section, where questions about the underlying structure {(why does
the cubic resolvent have degree 6?) led us to realize the importance of permutations.
Many concepts in abstract algebra came from high school algebra in this way.

Historical Notes

In 1770 and 1771, Lagrange's magnificent treatise Réflexions sur la résolution
algébrique des équations appeared in the Nouvelles Mémoires de I’ Academie royale
des Sciences et Belles-Lettres de Berlin. This long paper covers pages 205421 in
Volume 3 of Lagrange’s collected works [Lagrange). It is a leisurely account of the
known methods for solving equations of degree 3 and 4, together with an analysis of
these methods from the point of view of periutations. Lagrange wanted to determine
whether these methods could be adapted to equations of degree > 5.

One of Lagrange’s powerful ideas is that one should study the roots of a polynomial
without regard to their possible numerical value. When dealing with functions of the
roots, such as

1
1= —j(xl +w2x2+wx3)

from (1.10), Lagrange says that he is concerned “only with the form” of such expres-
sions and not “with their numerical quantity” [Lagrange, Vol. 3, p. 385]. In modem
terms, Lagrange is saying that we should regard the roots as variables, We will learn
more about this idea when we discuss the universal polynomial in Chapter 2.

We will see in Chapter 12 that many basic ideas from group theory and Galois
theory are implicit in Lagrange’s work. However, Lagrange’s approach fails when
the roots take on specific numerical values. This is part of why Galoiss work is so
important: he was able to treat the case when the roots were arbitrary. The ideas of
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Galois, of course, are the foundation of what we now call Galois theory. This will be
the main topic of Chapters 4-7.

Exercises for Section 1.2

Exercise 1. Let z;,2; be the roots of {1.9) chosen at the beginning of the section.
(a) Show thatzy, 22, w21, w2z, w?z1, wizs are the six roots of the cubic resolvent.
(by Prove (1.10).

Exercise 2. Prove (1.14) and (1.15).

Exercise 3. Prove (1.20).

Exercise 4. We say that a cubic x* + bx” 4 cx + d has a multiple root if it can be written as
(x—r )2 {(x—r2). Prove that L +b*+ex+dhasa multiple root if and only if its discriminant
is zero.

Exercise 5. Since A = (x) —x2){x; — x3)*(x2 — x3}°, we can define the square root of A to
be vVA = (x; —x2)(x; — x3}(x2 — x3). Prove that an even permutation of the roots takes /A
to /A while an 0dd permutation takes v/A to —v/A, Tn Section 2.4 we will see that this
generalizes nicely to the case of degree n.

1.3 CUBIC EQUATIONS OVER THE REAL NUMBERS

The final topic of this chapter concerns cubic equations with coefficients in the
field R of real numbers. As in Section 1.1, we can reduce to equations of the form
3+ py+¢ = 0, where p,g € R. Then Cardan’s formulas show that the roots y1, ¥, 3
lie in the field C of complex numbers. We will show that the sign of the discriminant
of y* + py +g = 0 tells us how many of the roots are real. We will also give an
unexpected application of trigonometry when the roots are all real.

A. The Number of Real Roots. The discriminant of y° + py + g is
A=y -0 -»)00-»)

As we noted in the discussion following (1.20), A can be expressed as

(1.22) A=—-4p’-274%.

You will give a different proof of this in Exercise 1.

For the rest of the section we will assume that the cubic y* + py -+ g has distinct
roots vy, vz, ys. It follows that the discriminant A is a nonzero real number. We next
show that the sign of A gives interesting information about the roots.

Theorem 1.3.1 Suppose that the polynomial y* + py + q € R[y| has distinct roots
and discriminant A # 0. Then:

(@) A > 0ifand only if the roots of y* + py + g =0 are all real.

(b) A <0 if and only if v* + py + g = 0 has only one real root and the other two
roots are complex conjugates of each other.
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Proof: First recall from Section A.2 that complex conjugation z — 7 satisfies

z+w=32+wand 7w = Zw. It follows that if y, is a root of ¥* + py + ¢ = 0, then
0=0=yi+pyi+q=7"+p¥i+4q,

so that ¥y is also a root. This proves the standard fact that the roots of a polynomial

with real coefficients either are real (if ¥ = y1) or come in complex conjugate pairs

(f 31 # y1).

If y1, 2.3 are all real and distinct, then A = (y; — y2)(y1 —¥3)%(v2 — 3) shows
that A > Q. If the roots are not all real, then the above discussion shows that we
must have one real root, say y;, and a complex conjugate pair, say y; and y;. Write
¥2 =u+iv, where 4,v € R and v # 0. Then 7 = u — iv and

.y 2 . 132 , Y
A=y —(u+iv)) (- w—w)) ((ut+iv) — (u—iv))
.32 2 pna 2
= {(y1—uw)—iv) ((n —u)+iv)" (28)
= - (31 —u)* + v2)2.
It follows that & < 0 when there is only one real root. This completes the proof. w

In Exercises 2-5, we will sketch a different proof of Theorem 1.3.1 which uses
curve graphing techniques from calculus.
We next apply the theory developed so far to Cardan’s formulas
= o+ zz
y1= wz +win,
¥3 =w221 + wz,

where the cube roots

1 4p3 W1 4p3
= —_l — 2 — = — | — — 2 _
(1.23) 7 \/2( q-ﬂ/q + 27) and z; \/2( q \/Q + >7

are chosen so that 2,72 = —p/3.
First, suppose that A < 0. Then Theorem 1.3.1 implies that y* + py + ¢ = 0 has
precisely one real root. Furthermore, by (1.22), we have

A=—4p’-214* <0,

Hence the square root 1/¢? + 4p* /27 is real, which means that we can take z; to be
the unique real cube root. Then z,2; = —p/3 implies that z; is also the real cube root.
It follows that

_31 2 4p3 31 2 4p3
y'_\/z( YTt oT )2 TSy

expresses the real root of y* + py + g = 0 in terms of real radicals. Furthermore, in
the above formulas for v, and y4, we see that y; = 73, since the cube roots are real and
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w? =@. Thus we have a complete understanding of how Cardan’s formulas work

when the discriminant is negative.
However, the case when A > (0 is very different. Here, y* + py + ¢ = 0 has three
real roots by Theorem 1.3.1. Since

A= —-4p*-274* >0,
one value of the square root /g% +4p3/27 is
4p3 \/ -A A
2 —_ = — _—
\/q T TV TVE

Using this and (1.23), we can write z; and z; as the cube roots

M CaridBY and =i ogmi/B
A=Y\ 79TV 57 2=\ W7 )

This shows that z; and z; are both nonreal complex numbers when A > 0. You will
prove in Exercise 6 that

(1.24) an=-f—n=a
Combining (1.24) with Cardan’s formulas, we see that when A > 0, the roots of
y* + py + ¢ can be written

Y= FA| + z_l;
y2 = wz +wT,
v =l + Wl

The root y; is real, since it is expressed as the sum of a complex number and its
conjugate. Furthermore, using w? = &, one easily sees that

ZZi=w’7 and Wiz =uw7,
so that y2 and y; are also real, since they too are the sum of a complex number and
its conjugate.

Notice that, unlike the case when A < 0, we no longer have a canonical choice of
z1—it is just one cube root of the complex number % (—gq+#+/A/27). Furthermore,
we get yi, ¥z, ¥3 by taking the three cube roots of this number and adding each to its
conjugate. This explains how Cardan’s formulas work when A > 0.

The puzzle, of course, is that we are using complex numbers to express the real

roots of a real polynomial. Historically, this is referred to as the casus irreducibilis.
We will have more to say about this below.

Example 1.3.2 In 1550, Rafael Bombelli applied Cardan’s formulas to the cubic
y* ~ 15y —4 = 0. This polynomial has discriminant A = —4(—15)* —27(—4)? =
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13068 > 0, so that all three roots are real. Bombelli noted that one root is y = 4 and
used Cardan’s formulas to show that

4=2+1L+v2—-11i

for appropriate choices of cube roots. To understand this formula, Bombelli noted
that (2+4)* =2+ 11i and (2—i)® =2 — 11, Hence the cube roots in the above
formula are 2 4/ and 2 — ¢, and their sum is clearly 4,

In Exercise 7 below, you will find the other two roots of the equation and explain
how Cardan’s formulas give these two roots, <

From the point of view of Cardan’s formulas, complex numbers are unavoidable
when A > 0. But is it possible that there are other ways of expressing the roots which
only involve real radicals? In Chapter & we will prove that when an irreducible cubic
has real roots, the answer to this question is no—using Galois theory, we will see
that complex numbers are in fact unavoidable when trying to express the roots of an
irreducible cubic with positive discriminant in terns of radicals.

B. Trigonometric Solution of the Cubic. Although complex numbers are
unavoidable when applying Cardan’s formulas to a cubic with positive discriminant,
there is a purely “real” solution provided we use trigonometric functions rather than
radicals. This is the frigonometric solution of the cubic, due to Viite.

Our starting point is the trigonometric identity

c0s(38) = 4cos*d — 3cosd,

which you will prove in Exercise 8. If we write this as 4cos*@ — 3 cosf — cos(36) =0,
thent, = cos @ is aroot of the cubic equation 1> - 3¢ — cos(36) = 0. However, replacing
¢ with 6 + & gives the same cubic polynomial, since cos(3(8 + %)) = cos(36). It
follows that t» = cos(8 + &) is another root of 41> — 3¢ — cos{38) = 0, and similarly,
13 = cos{f + T ) is also a root.

In Exemise 9 you will show that the discriminant of 4¢> — 3¢ — cos(36) is given
by 2 5in*(36). This is zero if and only if sin(3¢) = 0, which in turn is equivalent to
cos[39) +1. Thus cos{38) # 1 implies that 4¢3 — 3¢ — cos(38) has roots

(1.25) ty=cosf, h=cos(f+%)}, #=cos(0+%).

Hence 4¢* — 3t — cos(38) = Ois a cubic equation with known roots. Viéte's insight
was that by a simple change of variable, we can use this to solve any cubic equation
with positive discriminant. Here is his result,

Theorem 1.3.3 Let ¥° + py + g = 0 be a cubic eguation with real coefficients and
positive discriminant. Then p < 0, and the roots of the equation are

y1—21|r‘ cosﬁ yo = 11;‘—cos 9+2" ), andy; = 21,' 3 cos(9+4”)
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where 0 is the real number defined by

6= lcos_l ( 3v3q )
3 2pv/—p
Proaf: You will prove this in Exercise 10. "

In Exercise 11 you will explore how this relates to Cardan's formulas.

Historical Notes

When Cardan wrote Ars Magna in 15435, he and his conteimporaries wanted to find
real roots of cubic equations. In fact, they worked almost exclusively with positive
roots, although they were aware of the existence of negative roots, which Cardan
called “false” or “fictitions,” However, Cardan does use complex nnmbers in Chapter
XXXVII when he censiders the problem of dividing 10 into two parts so that their
product is 40. In modern notation this gives the equations x + y = 10 and xy = 40,
Eliminating y, we get the quadratic equation

¥ —10x+40=0

with roots 5 +iv/15. After deriving this solution, Cardan says “Putting aside the
mental tortures involved, multiply 5 + +/—15 by 5 — +/—15, making 25 — (—15) ...
Hence this product is 40.” Cardan’s conclusion is that “This truly is sophisticated”
[2. pp. 219-220).

Cardan was also aware of Theorem 1.3.1, though he stated it in very different
terms. As an example of a cubic with three real roots, he considers ¥ +9 =12, for

which he gives the “true” (i.e., positive) solutions 3 and 5% — 1% and the “false”

: : : 1 1
(Le., negative) solution — /57 — 13.

However, Cardan never applies his formulas to cubics like ¥° +9 = 12x. He
only considers cases where there is one real root, which can be expressed in terms
of real radicals. Yet Cardan must have known that complex numbers appear in the
radicals when the discriminant is positive. This is the casus irreducibilis (“irreducible
case”) mentioned above. According to [1], Tartaglia was also aware of the casus
irreducibilis, and in fact delayed publication of his results because he was so troubled
by it. This is part of the reason why Cardan’s work appeared first.

One of the first people to comment directly on the casus irreducibilis was Rafael
Bombelli. In his book L'algebra, written around 1550 but not published until 1572,
he treats this case in detail, including the formula

(1.26) 4=+2+11i+v2-1li

from Example 1.3.2. There we saw how Bombelli explained this formula by showing
that 24 11i = {2+ /)3, so that (1.26) reduces to 4 = (2 + i) + (2 — ). Bombelli was
pleased with this calculation and commented that

At first, the thing [equation (1.26)] secemed to me 10 be based more on sophism
than on truth, but I searched until I found a proof.
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In working out this solution, Bombelli was the first to give systematic rules for
adding and multiplying complex numbers. Exercise 12 will discuss ancther example
of complex cube roots taken from Bombelli's work,

The moral is that cubic equations forced mathematicians to confront complex
numbers. For quadratic equations, one could pretend that complex solutions don’t
exist. But for a cubic with real roots, we’ve seen that Cardan’s formula must involve
complex numbers. So it is impossible to ignore complex numbers in this case. See the
books [1] and [3] for more background and discussion on the discovery of complex
numbers.

We should also say a few words about Vigte’s trigonometric solution of the cubic.
Once we realize that cos(38) = 4cos*d — 3cosf gives a cubic equation with cos®
as a root, proving Theorem 1.3.3 is not that difficult. Viete was well aware of
such identities. For example, in 1593, Adrianus Romanus (also called Adriaen van
Roomen) posed the problem of finding a root of the equation

A= ¥ —45x80945x* —12300x¥ + 11115077 —740259x°
+3764565x% — 14945040x° +46955700x%7 — 117679100x%
(1.27) +236030652x™ —37865800x +483841800x7! —488494125x'*
+384942237x17-232676280x 7+ 105306075x > — 34512071
+7811375x°— 1138500x” +95634x° — 3795x° 4-45x,

where

(1.28) \J \/' \/157

Vidte solved this equation by noting that 2sin(45q) can be expressed as a polynomial
of degree 45 in 2sino whose coefficients match the right-hand side of (1.27). It
follows that if A = 2sin{45«), then x = 2sin« is a root.

Vigte also realized that (1.28) can be written

A =2sin{r/15) = 25in{45 - 7 /675),

which easily implies that one root of (1.27) is x = 2sin{x/675). Using the trick of
(1.25), we get the 44 additional solutions

T 2m
= 2 i j = . .
x=2sin(ge+jgg)s J=lo4
Viéte listed only 23 roots, since he (like Cardan) wanted positive solutions. Never-
theless, Viete's insight is impressive, and his solution of (1.27) makes it clear how he
was able to find the trigonometric solution of the cubic.
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Exercises for Section 1.3

Exercise 1. Let f(y) =¥' +py+g=(y —»){(y —32){y — »3), and set
A= —y) -y 0 -n)

The goal of this exercise is to give a different proof of (1.22).

{a) Use the product rule to show that f'(y)) = (y. — ¥2)(» —y1), where f' denotes the
derivative of f. Also derive similar formulas for f'(v2) and f'(ys).

(b) Concludethat A = — {3} 7/ {32) f/ (3:). Be sure to explain where the minus sign comes
from.

(c) The quadratic f'(y} = 3y*+ pfactors as f'(y) = 3(y—a)(y— ), where « = y/—p/3 and
B=—+/—p/3(whenp >0, welet/—p/3 =i/ p/3). Provethat A = —27 f(a) f{5).
(d) Use f(y) =y* + py+gand o = /—p/3 10 show that

flo) = (/=p/3V +pv/-p3+a=(2/3)pv/-P/3+4.

Similarly, show that £(8) = —(2/3)p/—p/3+4q.
{e) By combining parts (c} and (d), conclude that A = -4p3 - 2?q2.

Exercise 2, Let f(y) = y* 4 py +q. The purpose of Exercises 2-5 is to prove Theorem 1.3.1
geometrically using curve graphing techniques. The proof breaks up into three cases corre-
sponding to p > 0, p =0, and p < 0. This exercise will consider the case p > 0.

{a) Explain why A < 0.

(b} Analyze the sign of f*(¥), and show that f(y) is always increasing.

(c) Explain why f({y) has only one real root.

Exercise 3. Next, consider the case p = 0.
(a) Explain why A < 0.
(b) Explain why f(y) has only one real root.

Exercise 4. Finally, consider the case p < 0. In this case, f'{¥)} = 3y’ + p has roots o =

v —p/3and 8 = —/—p/3, which are real and distinct.

(a) Show that the graph of f{¥} has a local minimum at ¢ and a local maximum at 5. Thus
f(a) is a local minimum value and f{3) is a local maximum value. Also show that
fla) < f(B).

(b} Explain why (¥} has three real roots if f (o) and f(3) have opposite signs and has one
real root if they have the same sign. Illustrate your answer with a drawing of the three
cases that can oceur.

(c} Conclude that f{y) has three real roots if and only if f{c) f{8) < 0.
(d) Finally, use part {c) of Exercise 1 to show that the roots are all real if and only if A > 0.

Exercise 5. Explain how Theorem 1.3.1 follows from Exercises 2, 3, and 4. Notice that

the quantity f{a} f(3), which appeared earlier in part {c) of Exercise 1, arises naturally in
Exercise 4.

Exercise 6. Prove (1.24).

Exercise 7. Example 1.3.2 expressed the root y = 4 of ¥* — 15y — 4 in terms of Cardan’s
formulas. Find the other two roots, and explain how Cardan’s formulas give these roots.

Exercise 8. Derive the trigonometric identity cos(36) = 4cos’# — 3cos# using cos(x+ y) =
cos xcosy — sinxsiny and cos™d + sin’f = 1.
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Exercise 9. When divided by 4, 4° — 3r — c0s(30) gives £ — 31 — 1c0s{38), which is monic.
Show that the discriminant of this polynomial is Zsin®(38).

Exercise 10. The goal of this exercise is to prove Theorem 1,3.3. Lety’ + py4+¢g=0bea
cubic equation with positive discriminant. Consider the substitution y = A\f, which transforms
the given equation into A** 4 Apt +g =0,

(a) Show that Exercises 2 and 3 imply that p < (.

(b) The equation A3 + Apt + g = 0 can be written as

3 —4p s A Y
o - (F)- (5 =0
Show that this coincides with 41> — 3t — cos(36) = 0 if and only if

— 3v/3g
A=2/"2 and cos(36) = X
3 (36) PN

Note that /—p is real and nonzero by part (a),
(c) Use A = —(4p’ +274%) > 0 1o prove that

| 3v3q <1

2py/=p)

(d) Explain how part (c) implies that the second equation of part (b) can be solved for 6. Also
show that A > 0 implies that cos(36) # £1.

{¢) By (1.25), f1 = cosf, £, = cos (6 + &), and #5 = cos(6 + %) are the three roots of
Mt* + Apt + ¢ = 0. Then show that the theorem follows by transforming this back to
y = A via part (b).

Exercise 11. Consider the equation 4¢° — 3t — cos(36) = 0, where cos(38) # £1. In (1.25),

we expressed the roots in terms of trigonometric functions. In this exercise, yon will study

what happens when we use Cardan’s formulas.

(a) Show that Cardan’s formulas give the root

H= %Vcos(w) +£sin{30) + %f/cos(S&) — isin{36).

(b) Explain why 3¢ = }(cos#+isind) is a value of 1 /cos(38) + isin(36), and use this to
show that ¢ is just cos#.
{c) Similarly, show that Cardan’s formulas also give the roots £; and 3 as predicted by (1.25),

Exercise 12. Example 1.3.2 discusses Bombelli's discovery that Y2+ 11i = 2 +i. Butnot all

cube roots can be expressed so simply. This exercise will show that v/4 ++/11i is not of the
form a+ v 11ifora,b € Z.
(a) Suppose that 4+ v/11i = {a+ b\/l_lhi)3 for some a,b € Z. Show that this implies that
4=a'—33ab” and 1 = 3a’b— 115"
(b} Show that the equations of part {a) imply that & = £1 and a|4. Conclude that the equation
4+ V11i = (a+b+/11)° has no solutions with a,b € Z.
(¢) Find a cubic polynomial of the form x> + px+q with p,g € Z which has the number
V4+1li+ V4 — 1li as a root.
In contrast to &2+ 11i = 2 + i, Bombelli was not certain that Y 4+ +/11i was a complex
number. He calls +/4 + +/11i “another sort of cubic radical.” Bombelli never deals with this
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radical by itself, but rather considers the sum /4 +v/11i + ¥/4 — v/11i, which is a root of the
cubic equation found in part (c).

Exercise 13. Suppose that a quartic polynomial f = x* +bx” +cx? + dx+ e in R[x] has distinct
TOOts X1, X7, x3,x4 € C. The discriminant of f is defined by the equation

A = (1 —x2) (0 — 0 (0 — 20 (2 — 1) (32 — x)2 (13 — xa)%.

The theory developed in Chapter 2 will imply that A € R, and A # 0, since the x; are distinct.
Adapt the proof of Theorem 1.3.1 to show that

A<l = x4+bx3+cx2+dx+e=0hasexacﬂy two real roots.

Exercise 14. In Section 1.1, we discussed the equation x* + 2x* + 10x = 20 considered by
Fibonacci.

(a) Show that this equation has precisely one real root. This is the root Fibonacci approxi-
mated so well.

{b)} Use Cardan’s formulas and a calculator to work out numerically the three roots of this
polynomial.

Exercise 15. Use a calculator and Theorem 1.3.3 to compute the roots of the cubic equation
¥* —Ty+ 3 = 0 1o eight decimal places of accuracy.
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