Chapter 1

Introduction

1.1 Modern Digital Communications

With the advent of high-speed logic circuits and very large scale integration (VLSI), data
processing and storage equipment has inexorably moved towards employing digital tech-
niques. In digital systems, data is encoded into strings of zeros and ones, corresponding
to the on and off states of semiconductor switches. This has brought about fundamental
changes in how information is processed. While real-world data is primarily in “analog
form” of one type or another, the revolution in digital processing means that this analog
information needs to be encoded into a digital representation, e.g., into a string of ones and
zeros. The conversion from analog to digital and back are processes which have become
ubiquitous. Examples are the digital encoding of speech, picture, and video encoding and
rendering, as well as the large variety of capturing and representing data encountered in
our modern internet-based lifestyles.

The migration from analog communications of the first half of the 20-th century to the
now ubiquitous digital forms of communications were enabled primarily by the fast-paced
advances in high-density device integration. This has been the engine behind much of the
technological progress over the last half century, initiated by the creation of the first inte-
grated circuit (IC) by Kilby at Texas Instruments in 1958. Following Moore’s informal law,
device sizes, primarily CMOS (Complementary Metal-Oxide Semiconductors), shrink by a
factor two every two years, and computational power doubles accordingly. An impression
for this exponential growth in computing capability can be gained from Figure 1.1, which
shows the number of transistors integrated in a single circuit and the minimum device size
for progressive fabrication processes — known as implementation nodes.

While straightforward miniaturization of the CMOS devices is becoming increasingly
more difficult, transistor designers have been very creative in modifying the designs to
stay on the Moore trajectory. As of 2015 we now see the introduction of 3-dimensional



2 CHAPTER 1. INTRODUCTION

transistor structures such as thin FETs, double-gated FETs, and tunnel FETs, and it is
expected that carbon nanotube devices may continue miniaturization well into the sub-10
nm range. In any case, the future for highly complex computational devices is bright.
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Figure 1.1: Moore’s law is driving progress in electronic devices. Top left: A basic CMOS
switching structure. Bottom left: Moore observed his “doubling law” in 1965 and predicted
that it would continue “at least another 10 years.”

One such computational challenge is data communications: in particular data integrity,
as discussed in this book. The migration from analog to digital information processing
has opened the door for many sophisticated algorithmic methods. Digital information is
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treated differently in communications than analog information. Signal estimation becomes
signal detection; that is, a communications receiver need not look for an analog signal and
make a “best” estimate, it only needs to make a decision between a finite number of
discrete signals, say a one or a zero in the most basic case. Digital signals are more
reliable in a noisy communications environment; they can usually be detected perfectly,
as long as the noise levels are below a certain threshold. This allows us to restore digital
data, and, through error correcting techniques, correct errors made during transmission.
Digital data can easily be encoded in such a way as to introduce dependency among a
large number of symbols, thus enabling a receiver to make a more accurate detection of
the symbols. This is the essence of error control coding.

Finally, there are also strong theoretical reasons behind the migration to digital pro-
cessing. Nyquist’s sampling theorem, discussed in Section 1.3, tells us that, fundamentally,
it is sufficient to know an analog signal at a number of discrete points in time. This opens
the door for the discrete time treatment of signals. Then, Shannon’s fundamental chan-
nel coding theorem states that the values of these discrete time samples themselves, can
contain only a finite amount of information. Therefore, only a finite amount of discrete
levels are required to capture the full information content of a signal.

The digitization of data is convenient for a number of other reasons too. The design
of signal processing algorithms for digital data is much easier than designing analog signal
processing algorithms, albeit not typically less complex. However, the abundance of such
digital algorithms, including the error control and correction techniques discussed in this
book, combined with their ease of implementation in very large scale integrated (VLSI)
circuits has led to the plethora of successful applications of error control coding we see in
practice today.

Error control coding was first applied in deep-space communications where we are
confronted with low-power communications channels with virtually unlimited bandwidth.
On these data links, convolutional codes (Chapter 4) are used with sequential and Viterbi
decoding (Chapter 5), and the future will see the application of turbo coding. The next
successful application of error control coding was to storage devices, most notably the
compact disk player, which employs powerful Reed-Solomon codes [21] to handle the raw
error probability from the optical readout device which is too large for high-fidelity sound
reproduction without error correction. Another hurdle taken was the successful application
of error control to bandwidth-limited telephone channels, where trellis-coded modulation
(Chapter 3) was used to produce impressive improvements and push transmission rates
towards the theoretical limit of the channel. Nowadays, coding is routinely applied to
satellite communications [41, 49], teletext broadcasting, computer storage devices, logic
circuits, semiconductor memory systems, magnetic recording systems, audio-video, and
WiFi systems. Modern mobile communications systems like the pan-European TDMA
digital telephony standard GSM [35], IS 95 [47], CDMA2000, IMT2000, and the new 4-th
generation LTE and LTE-A standards [63, 64] all use error control coding.
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1.2 The Rise of Digital Communications

Modern digital communication theory started in 1928 with Nyquist’s seminal work on
telegraph transmission theory [36]. The message from Nyquist’s theory is that finite
bandwidth implies discrete time. That is, a signal whose bandwidth is limited can always
be represented by sample values taken at discrete time intervals. The sampling theorem of
this theory then asserts that the band-limited signal can always be reconstructed exactly
from these discrete-time samples.! Only these discrete samples need to be processed by a
receiver since they contain all the necessary information of the entire waveform.

The second pillar to establish the supremacy of digital information processing came
precisely from Shannon’s 1948 theory. Shannon’s theory essentially establishes that the
discrete-time samples which are used to represent a bandlimited signal, could be ade-
quately described by a finite number of amplitude samples, the number of which depended
on the level of the channel noise. These two theories combined state that a finite num-
ber of levels taken at discrete time intervals are completely sufficient to characterize any
bandlimited signal in the presence of noise, that is, in any communication system.

With these results, technology has moved towards a complete digitization of commu-
nications systems, with error control coding being the key to realize the sufficiency of
discrete amplitude levels. We will study Shannon’s theorem in more detail in Section 1.5.

1.3 Communication Systems

Figure 1.2 shows the basic configuration of a point-to-point digital communications link.
The data to be transmitted over this link can either come from some analog source, in
which case it must first be converted into digital format (digitized), or it can be a digital
information source. If this data is a speech signal, for example, the digitizer is a speech
codec [22]. Usually the digital data is source encoded to remove unnecessary redundancy
from the data, i.e., the source data is compressed [14]. Source encoding has the effect
that the digital data which enters the encoder has statistics which resemble that of a
random symbol source with maximum entropy, i.e., all the different digital symbols occur
with equal likelihood, and are statistically independent. The channel encoder operates
on this compressed data and introduces controlled redundancy for transmission over the
channel. The modulator converts the discrete channel symbols into waveforms which are
transmitted through the waveform channel. The demodulator reconverts the waveforms

Since it is not shown elsewhere in this book, we present Nyquist’s sampling theorem here. It is given
by the following exact series expansion of the function s(¢) which is bandlimited to [—1/2T,1/2T1:
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back into a discrete sequence of received symbols, and the decoder reproduces an estimate
of the compressed input data sequence, which is subsequently reconverted into the original
signal or data sequence.
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Figure 1.2: System diagram of a complete point-to-point communication system for digital
data. The forward error control (FEC) block is the topic of this book.

An important ancillary function at the receiver is the synchronization process. We
usually need to acquire carrier frequency and phase synchronization, as well as symbol
timing synchronization in order for the receiver to be able to operate. Synchronization is
not a topic of this book, and we will assume in most of our discussion that synchronization
has been established (with the exception of phase synchronization in the case of rotation-
ally invariant codes in Chapters 4 and 8). References [32] and [33] treat synchronization
issues in detail. Since synchronization is a relatively slow estimation process, and data
detection is a fast process, we usually have those two operations separated in real receiver
implementations as indicated in Figure 1.2. However, we would like to note at this point
that novel, iterative receiver designs are increasingly integrating these auxillary functions,
for an example of phase synchronization see Chapter 8.
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Another important feature in some communication systems is automatic repeat request
(ARQ). In systems with ARQ the receiver also performs error detection, and, through
a return channel, requests retransmission of erroneous data blocks, or data blocks which
cannot be reconstructed with sufficient confidence [25]. ARQ can usually improve the data
transmission quality substantially, but the return channel needed for ARQ is not always
available, or may be impractical. For a deep-space probe on its way to the outer rim of
our solar system, ARQ is infeasible since the return path takes too long (several hours!).
For speech-encoded signals ARQ is usually impossible for an analogous reason, since only
a maximum speech delay is of about 200 ms is acceptable. In broadcast systems, ARQ is
ruled out for obvious reasons. Error control coding without ARQ is termed forward error
correction or control (FEC). FEC is more difficult to perform than simple error detection
and ARQ, but dispenses with the return channel. Oftentimes, FEC and ARQ are both
integrated into hybrid error control systems [25, 24] for data communications.

This book deals primarily with FEC—the dashed block in Figure 1.2. The reason why
we can do this relatively easily is due to different functionalities of the various blocks just
discussed, and the fact that they operate largely autonomously from each other. Each of
them represents a separate entity with its own optimization strategy, and data is simply
passed between the different blocks, sometimes with lithe extra mutual interaction. A no-
table point in Figure 1.2 is that the encoder/modulator and the demodulator/decoder are
combined operations. This is done to reflect the fact that error protection and modulation—
in the sense of choosing the discrete signal points that represent the digital data—is a pro-
cess best addressed jointly. This view of joint encoding/modulation was first proposed by
Wozencraft and Kennedy [61] and Massey [30] and then realized with stunning results by
Ungerbock [50, 51, 52] in the methods of trellis-coded modulation of the 1980’s.

Since we will assume the encoder input data to be a sequence of independent, identically
and uniformly distributed symbols (courtesy of the source compression), the single most
important parameter to optimize for the FEC block is arguably the bit and/or symbol
error rate, and we will adopt this as our criterion for the quality of an FEC system.
Note that this is not necessarily the most meaningful measure in all cases. Consider, for
example, pulse-code-modulated (PCM) speech, where an error in the most significant bit
is significantly more detrimental than an error in the least significant bit. Researchers
have looked at schemes with unequal error protection for such applications (e.g., [18]).
However, such methods usually are a variation of the basic theme of obtaining a minimum
error rate. Occasionally we may have need for the frame-, or block error rate (FER),
which describes the probability that an entire block of data is incorrectly received. Most
communications protocols operate on the basis of frame errors, and frame error control
is exercised at the upper layers of a communications protocol. While of course tightly
connected, the frame-, and bit error rates do sometimes follow different tendencies. This
will become important when we discuss error floors for very-low error rate applications,
such as those using cable modem or optical fiber communications.
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1.4 Error Control Coding

The modern approach to error control in digital communications started with the ground-
breaking work of Shannon [45], Hamming [19], and Golay [16]. While Shannon presented
a theory which explained the fundamental limits on the efficiency of communications
systems, Hamming and Golay were the first to develop practical error control schemes.
A new paradigm was born, one in which errors are not synonymous with data which is
irretrievably lost; but by clever design, errors could be corrected, or avoided altogether.
This new thinking was revolutionary. Even though Shannon’s theory promised that large
improvements in the performance of communication systems could be achieved, practical
improvements had to be excavated by laborious work over half a century of intensive
research. One reason for this lies in a fundamental shortcoming of Shannon’s theory.
While it clearly states theoretical limits on communication efficiency, its methodology
provides no insight on how to actually achieve these limits, since it is based on sophisticated
averaging arguments which eliminate all detailed system structure. Coding theory, on the
other hand, evolved from Hamming and Golay’s work into a flourishing branch of applied
mathematics [27].

Let us see where it all started. The most famous formula from Shannon’s work is
arguably the channel capacity of an ideal band-limited Gaussian channel,? which is given
by

C = Wlogy(1+ S/N) [bits/second]. (1.1)

In this formula, C is the channel capacity, that is, the maximum number of bits which
can be transmitted through this channel per unit time (second), W is the bandwidth of
the channel, and S/N is the signal-to-noise power ratio at the receiver. Shannon’s main
theorem, which accompanies (1.1), asserts that error probabilities as small as desired
can be achieved as long as the transmission rate R through the channel (in bits/second)
is smaller than the channel capacity C. This can be achieved by using an appropriate
encoding and decoding operation. However, Shannon’s theory is silent about the structure
of these encoders and decoders.

This new view was in marked contrast to early practices, which embodied the opinion
that in order to reduce error probabilities, the signal energy had to be increased, i.e., the
S/N had to be improved. Figure 1.3 shows the error performance of QPSK, a popular
modulation method for satellite channels (see Chapter 2) which allows data transmission
of rates up to 2 bits/symbol. The bit error probability (BER) of QPSK is shown as a
function of the signal-to-noise ratio S/N per dimension normalized per bit (see Section 1.3),
henceforth called SNR. It is evident that an increased SNR provides a gradual decrease in
error probability. This contrasts markedly with Shannon’s theory which promises zero(!)
error probability at a spectral efficiency of 2 bits/s/Hz, which is the maximum that QPSK

2The exact definitions of these basic communications concepts are given in Chapter 2.
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can achieve, as long as SNR > 1.5 (1.76 dB), shattering conventional wisdom. The limit
on SNR is calculated using (1.1)-see Section 1.5.

Bit Error Probability (BER)
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Figure 1.3: Bit error probability of quadrature phase-shift keying (QPSK) and selected
8-PSK trellis-coded modulation (TCM), trellis-turbo-coded (TTCM), and block-turbo-
coded (BTC) systems as a function of the normalized signal-to-noise ratio.

Also shown in Figure 1.3 is the performance of several trellis-coded modulation (TCM)
and trellis-turbo-coded (TTCM) schemes using 8-ary phase-shift keying (8-PSK) (Chapter
4), and the improvement made possible by coding becomes evident. The difference in SNR
for an objective target bit error rate between a coded system and an uncoded system is
termed the coding gain. Note that the coding schemes shown in Figure 1.3 achieves these
gains without requiring more bandwidth than the uncoded QPSK system.

As we will discuss in Chapter 4, a trellis code is generated by a circuit with a finite
number of internal states. The number of these states is a direct measure of its decoding
complexity if maximume-likelihood decoding is used. Note that the two very large codes are
not maximum-likelihood decoded, they are sequentially decoded [55]. The turbo-trellis-
coded modulation (TTCM) system is based on turbo coding principles (Chapter 9) using
two small concatenated trellis codes. Coding then helps to realize the promise of Shannon’s
theory which states that for a desired error rate of P, = 1075 we can gain almost 9 dB
in expended signal energy over QPSK. This gain can be achieved by converting required
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signal power into decoder complexity, as is done by the TCM and TTCM coding methods.

Incidentally, 1948, the year Shannon published his work, is also the birth year® of the
transistor, arguably the 20-th century’s most fundamental invention, one which allowed
the construction of very powerful, very small computing devices. Only this made the
conversion from signal energy requirements to (system) complexity possible, giving coding
and information theory a platform for practical realizations [21].

Figure 1.4 shows an early feasibility experiment, comparing the performance of a 16-
state 8-PSK TCM code used in an experimental implementation of a single channel per
carrier (SCPC) modem operating at 64 kbits/second [49] against QPSK and the theoretical
performance established via simulations (Figure 1.3). This illustrates the viability of trellis
coding for satellite channels. Interestingly, the 8-PSK TCM modem performance comes
much closer to the theoretical performance than the original QPSK modem, achieving a
practical coding gain of 5 dB. This is due to an effect where system inaccuracies, acting
similar to noise, are handled better by a coded system.
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Figure 1.4: Measured bit error probability of (QPSK) and a 16-state 8-PSK (TCM) modem
over a 64 kbit /s satellite channel [49]. The discrepancy between the theoretical curves and
the implemented BER results are due to non-ideal behaviors of other components in the
signaling chain, collectively known as implementation loss.

3Transistor action was first observed on December 15, 1947, but the news of the invention was not made
public until June 30, 1948.
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Figure 1.5 shows the performance of selected rate R = 1/2 bits/symbol (binary) con-
volutional and turbo codes codes on an additive white Gaussian noise channel (see also
[24, 20, 37, 38, 39]). Contrary to TCM, these codes do not preserve bandwidth and the
gains in power efficiency in Figure 1.5 are partly obtained by a power bandwidth trade-off,
i.e., the rate 1/2 convolutional codes require twice as much bandwidth as uncoded trans-
mission. This bandwidth expansion may not be an issue in deep-space communications
or the application of error control to spread spectrum systems [53, 54]. As a consequence,

for the same complexity, a higher coding gain is achieved than with TCM. Note that the
convolutional codes reach a point of diminishing returns.
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Figure 1.5: Bit error probability of selected rate R = 1/2 convolutional and turbo codes as
a function of the normalized signal-to-noise ratio. The large-state space code is decoded
sequentially, while the performance of all the other convolutional codes is for maximum-
likelihood decoding. Simulation results are taken from [20], [38], and [4]. The Shannon
limit is at E,/No=0 dB, and that for BPSK is at E,/Ny = 0.19 dB.

For very low target error probabilities, tandem coding methods, called concatenated
coding, have become very popular [24, 10, 23, 4]. In classic concatenation, as illustrated in
Figure 1.6, the FEC codec is broken up into an inner and an outer code. The inner code
is most often a trellis code which performs the channel error control, and the outer code
is typically a high-rate Reed-Solomon (RS) block code. Its function it is to clean up the
residual output error of the inner code. This combination has proven very powerful, since
the error mechanism of the inner code is well matched to the error correcting capabilities
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of the outer system. Via this tandem construction, very low error rates are achievable.
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Figure 1.6: Classic concatenated FEC coding using inner and outer codecs.

With the discovery of turbo codes [4] new concatenated structures have appeared,
shown in Figure 1.7. Serial concatenation is very similar to classic concatenation; however,
the interleaver II and deinterleaver II™! are fundamental structures, discussed later in
Chapters 6 and 8. Furthermore, the outer code in these new structures is usually a very
weak error control code such as a simple parity check code. Its function is not to clean
up residual errors from the inner decoder, but, through interaction with the inner codes
to form a strong error control system, a.k.a. a turbo code.

The original turbo codes, however, used a parallel arrangement of two codes, known
as parallel concatenation, where both encoders have identical roles. Both arrangements,
parallel and serial concatenation, are decoded with the same iterative decoding procedure
which alternately invokes soft-output decoders for the two component codes. The structure
and workings of these decoders is explored in detail in Chapters 5, 6, 8, and 9.

The field of error control and error correction coding naturally breaks into two dis-
ciplines, named somewhat inappropriately block coding and trellis coding. While block
coding, which traditionally was approached as applied mathematics, has produced the
bulk of publications in error control coding, trellis and turbo coding is favored in most
practical applications. One reason for this is the ease with which soft-decision decoding
can be implemented for trellis and turbo codes. Soft-decision is the operation whereby
the demodulator does not make hard final decisions on the transmitted symbols or bits.
Rather, it passes the received signal values directly on to the decoder which derives prob-
abilistic information from those signals, which are then used to generate a final estimate
of the decoded bits. There are no “errors” to be corrected; the decoder operates on re-
liability information obtained by comparing the received signals with the possible set of
transmitted signals to arrive at a decision for an entire codeword. This soft-decision pro-
cessing yields a 2 dB advantage on additive white Gaussian noise (AWGN) channels. In
many applications the trellis decoders act as “S/N transformers” (e.g., [17]), improving
the channel behavior as in concatenated coding. Ironically, many block codes can be de-
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Figure 1.7: Modern concatenated FEC coding using two component codes.

coded very successfully using decoding methods developed for trellis codes (Chapter 4),
smearing the boundaries between these two branches of error control coding.

1.5 Bandwidth, Power, and Complexity

Nyquist showed in 1928 [36] that a channel of bandwidth W (in Hz) is capable of supporting
PAM signals at a rate of 2W samples/second without causing intersymbol interference.
In other words, using Nyquist’s method of interpolating band-limited functions, there are
2 independent signal dimensions per second?. If two carriers (sin(27f.) and cos(27f.))
are used in quadrature, as in double side-band suppressed carrier amplitude modulation
(DSB-SC), we have W pairs of dimensions (or complex dimensions) per second. This is
the ubiquitous QAM format popular in digital radio systems (Chapter 2).

The parameter which characterizes how efficiently a system uses its allotted bandwidth
is the bandwidth efficiency 7, defined as

Transmission Rate
n =
! Channel Bandwidth W

4A more general analysis using more sophisticated interpolation functions and a more general definition
of bandwidth reveals that there are approximately 2.4W independent signal dimensions per second [62].

[bits/s/Hz]. (1.2)
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Using Shannon’s capacity formula (1.1) and dividing by W we obtain the maximum band-
width efficiency for an additive white Gaussian noise channel, the Shannon limit, as

Nmax = 108y (1 + %) [bits/s/Hz]. (1.3)

In order to calculate 7, we must suitably define the channel bandwidth W. This is
obvious for some signaling schemes, like Nyquist signaling, which have a rather sharply
defined bandwidth (see Chapter 2), but becomes more arbitrary for modulation schemes
with infinite spectral occupancy. One commonly used definition is the 99% bandwidth
definition, i.e., W is defined such that 99% of the transmitted signal power falls within the
band of width W. This 99% bandwidth corresponds to an out-of-band power of -20 dB.

The average signal power S can be expressed as

S = % = RE, (1.4)
where Ej is the energy per bit, k£ is the number of bits transmitted per symbol, and T is
the duration of a symbol. The parameter R = k/T is the transmission rate of the system
in bits/s. Rewriting the signal-to-noise power ratio S/N, where N = W Ny, i.e., the total
noise power equals the one-sided noise power spectral density (Np) multiplied by the width
of the transmission band, we obtain the Shannon limit in terms of the bit energy and noise
power spectral density, given by

RE,
Nmax = 108, (1 + WN())' (1.5)

Since R/W = nmax is the limiting spectral efficiency, we obtain a bound from (1.5) on the
minimum bit energy required for reliable transmission at a given spectral efficiency:

Eb QMmax _ |
2= 000 -

, 1.6
NO - TImax ( )

also called the Shannon bound.

If spectral efficiency is not at a premium, and a large amount of bandwidth is available
for transmission, we may choose to use bandwidth rather than power to increase the
channel capacity (1.1). In the limit as the signal is allowed to occupy an infinite amount
of bandwidth, i.e., 7max — 0, we obtain

E QMmax _ ]
P> lim S = n(2), (1.7)
No ™ max—0  Nmax
the absolute minimum bit energy to noise power spectral density required for reliable
transmission. This minimum £,/Ny = In(2) = —1.59 dB.
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We can cheat on the Shannon limit by allowing a certain number of errors in the
following way: Assume that the original information source of rate R is being compressed
into a rate R’ < R. According to source coding theory, this introduces a distorting in
the sense that original information can no longer be reconstructed perfectly [14]. If the
source is binary, this compression results in a non-zero reconstruction bit error rate and
satisfies R' = R(1 — h(BER)), where h(p) = —plog(p) — (1 — p)log(1 — p) is the binary
entropy function. As long as R’ < C, the channel coding system will add no extra errors,
and the only errors are due to the lossy compression. The source encoder has a rate of
1/(1 — h(BER)), and consequently the average power is

RE,

5= h(BER)

(1.8)

since less energy is used to transport a bit. The actual rate over the channel is R/, from
which we obtain a modified Shannon bound for non-zero bit error rates, given by

B, _ 9(1=h(BER)mmax _ |

N, 2 — (1 — h(BER)). (1.9)
This is the bound plotted in Figure 1.3 for a spectral efficiency of nmax = 2 bits/s/Hz.

The implicit dependence of our formulas on the somewhat arbitrary definition of the
bandwidth W is not completely satisfactory, and we prefer to normalize these formulas per
signal dimension. Let Ry be the rate in bits/dimension, then the capacity of an additive
white Gaussian noise channel per dimension is the maximum rate/dimension at which
reliable transmission is possible. It is given by [62]

1 B
Cq = = log, (1 + 2Rd b) [bits/dimension], (1.10)
2 No
or as RE
C. =log, <1 + Tb> [bits/complex dimension], (1.11)
0

if we normalize to complex dimensions, in which case R is the rate per complex dimension.
Both (1.10) and (1.11) can easily be derived from (1.1).
Applying similar manipulations as above, we obtain the Shannon bound normalized
per dimension as
E, _ 2%¢a_1 E, 26 —1
~ 2 A N 2 .
No 2Cy Ny C.
Equations (1.12) are useful when the question of waveforms and pulse shaping is not a
central issue, since it allows one to eliminate these considerations by working with signal
dimensions, rather than the signals itself (see also Chapter 2). We will use (1.12) for our
comparisons.

(1.12)
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The Shannon bounds (1.3) and (1.12) relate the spectral efficiency 7 to the power
efficiency Ej,/Ny, and establish fundamental limits in the trade-off between the two primary
resources of data communications; power and spectrum. These limits hold regardless of
the signal constellation or coding method that is used for transmission.

Figure 1.8 shows (1.12)-as a solid line-as well as similar limits calculated for the cases
where the transmitted signal constellations are restricted to BPSK, QPSK, 8-PSK, 16-
PSK, and 16-QAM (see Chapter 2). As can be seen, these restrictions lead to various
degrees of loss that has to be accepted when a particular constellation is chosen. The
figure also shows the power and bandwidth efficiencies of some popular uncoded quadrature
constellations as well as that of a number of error control coded transmission schemes. The
trellis-coded modulation schemes used in practice, for example, achieve a power gain of
up to 6 dB without loss in spectral efficiency, while the more powerful coded modulation
methods such as trellis-turbo coding and block turbo coding provide even further gain. The
binary coding methods achieve a gain in power efficiency, but at the expense of spectral
efficiency with respect to the original signal constellation. The turbo-coded methods come
extremely close to capacity for n < 1; we present such methods which can be made to
approach the Shannon bound arbitrarily closely in Chapter 8.

C. [bits/complex dimension]
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Figure 1.8: Theoretical spectral and power efficiency limits for various signal constellations
and spectral efficiencies achieved by coded and uncoded transmission methods.
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In all cases a rate reduction (traditional coding) or a signal set expansion (coded
modulation) is required in order to give the coding system the required redundancy. This
is also clearly obvious from the capacity curves for the different signal constellations.

In order to compare these different communications systems, we also need a parameter
expressing the performance level of a system. This parameter is the information bit error
probability P,. For practical systems it typically falls into the range 1073 > P, > 1076,
though it is sometimes required to be lower, e.g., for digital TV, or much lower as for
optical and cable modem systems where BER on the order of P, < 1075 are required. The
performance points in Figure 1.8 are drawn for P, = 107°.

Other methods which combine coding with signal shaping exist and exhibit similar
gains. For example, coded overlapped quadrature modulation (OC-QPSK) is a combined
coding and controlled intersymbol interference method [43] which causes smaller ampli-
tude variations than Nyquist signaling, and is therefore useful for systems with amplifier
non-linearities, like satellite traveling wave tube (TWT) amplifiers. Continuous-phase
modulation (CPM) is a constant-amplitude modulation format [1], which also has many
similarities with TCM, and derives from frequency modulation aiming at improving the
bandwidth efficiency by smoothing phase transitions between symbols. CPM has gone
through an evolution similar to TCM, and the reader is referred to the book by Anderson,
Aulin, and Sundberg [1], the standard reference on the subject. However, with the ad-
vent of highly linear amplifiers, CPM has lost one of its main selling points and has seen
significantly less deployment then the linear modulation techniques.

The last, and somewhat hidden, player in the application of coding is complexity.
While we have shown that power and bandwidth can be captured elegantly by Shannon’s
theory, measures of complexity are much more difficult to define. First there is what we
might term code complezity. In order to approach the Shannon bound, larger and larger
codes are required. In fact, Shannon et al. [46] proved the following lower bound on the
codeword error probability Pp:

Py > 2—'/L(Esp(R)'?'O(N))7 Esp(R) = mgxmai( (Eo(q7p) — pR)) (113)
o>

The exponent Ey(q, p) is called the Gallager exponent and depends on the symbol prob-
ability distribution g and the optimization parameter p, it is discussed in more detail in
Chapter 5, as well as in Gallager’s book on information theory [13]. The most important
point to notice is that this bound is exponential in the codelength n.

The bound is plotted for rate R = 1/2 in Figure 1.9 for BPSK modulation [44], together
with selected turbo-coding schemes and classic concatenated methods. The performance
of codes for various lengths follows the tendency of the bound, and we see a diminishing
return as the code size exceeds n ~ 10* — 10°, beyond which only small gains are possible.
This is the reason why most practical applications of large codes target block sizes no larger
than this. On the other hand, codes cannot be shortened much below n = 10* without
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a measurable loss in performance, which must be balanced against the overall system
performance. Implementations of near-capacity error control systems therefore have to
process blocks of 10,000 symbols or more, requiring appropriate storage and memory
management.

Ey/No ads
16-state
4 / ; i i
\ :
v on= i (32,26,4) Block Turbo
/ 8 D360 O ide Bpsk
/“ @ =448 Length=1334
. .l 6-state 4-state Turbo Code
3 - N °
. n=2048 concatenated
. (2,1,6) CC + RS (255,223)
v S O]
> 3 i~ n=4599 concatenated
*. nh=1334
2 Llostate’' @ @ @/ (2,1,8) CC+RS(511,479)

0 . Y n=2040 concatenated
O, L 2048 (2,1,8) CC# RS (255,223)
-~ N=

=
1 i@ M=16084
@~ _[6state 65536

- @ . l6state

-1

10 100 1,000 10,000 10° 106 n

Figure 1.9: Block error rate Pp and sphere-packing lower bound for rate R = 1/2 coded
example coding systems using BPSK. Turbo codes and selected classic concatenated coding
schemes are compared. The solid line is the Shannon limit at Ej,/No = 0.19 dB at R = 0.5.

The other component of our complexity consideration is the computational complexity,
that is, the amount of processing that has to be performed to decode a codeword. This
is notoriously difficult to measure, and parameters like the code state space or number
of multiplications may not be relevant. What ultimately counts is the size and power
consumption of a VLSI implementation, which is very much technology, architecture, and
design dependent. It suffices to say that what a coding theorist considers complex may
not be complex for a VLSI circuit designer. An example of this is the “folk theorem” that
an APP trellis decoder (Chapter 5) is about four times as complex as a Viterbi decoder for
the same code. Some circuit designers would argue that the trace-back implementation
of the Viterbi decoder easily compensates for the more complex arithmetic of the APP
decoder and that there is no real difference between the two in terms of implementation
complexity.
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The situation of turbo codes is even more complicated to evaluate, since most of the
complexity of the decoder resides in the storage requirements of the large blocks that need
to be processed and the efficient management of the this memory. The computational
units of a turbo decoder take up less than 10% of the VLSI area. Processing large blocks,
however, is inherent in effective error control coding as discussed above.

More recently decoding circuits based on analog processing have emerged [26, 34, 57,
using subthreshold CMOS and bipolar multiplier circuits, both based on variations of
the well-known Gilbert cell [31]. These circuits are ideally matched to the arithmetic re-
quirements of soft-decision decoders, making use of the fundamental exponential transfer
characteristics of the transistors. Digital information is processed by small currents in the
transistor’s off-region, representing probabilities of the various discrete random variables.
Contrary to mainstream digital VLSI implementations where the component transistors
are used as on-off switches, and are optimized for that operation, analog processing oper-
ates the transistors in their off-position, and all computations are accomplished by what
digital technology calls leakage currents. Analog decoding is also different from conven-
tional analog processing in that digital information is processed. This leads to a surprising
robustness of the analog decoder to typical analog impairments such as current mismatch,
body effects, etc.

Several such decoders have already been successfully fabricated and tested, or exten-
sively simulated by a few research groups around the world, see, e.g., [58, 59]. The initial
idea was that subthreshold operation would result in substantial power savings of the de-
coding operation. While operating the transistor in the subthreshold region has indeed
a strong potential to save power (see, e.g., [6, 7]), the story regarding analog decoders is
more complex.

Zargham et al. [65] for example show that the current mirror circuit which is the base
of the Gilbert multiplier used in most of the analog designs is increasingly susceptible to
gate threshold voltage variations in the transistors that are paired to make the current
mirror. As the fabrication process shrinks, small variations in the gate size translate into
exponentially varying current errors in the Gilbert cells. This ultimately leads to a break-
down of the functionality of the decoder as a whole. Zargham et al. [65] argue that analog
decoders in sub-100 nm processes will require such large oversizing of the transistors that
going to smaller processes is not productive.

In an investigation by Winstead and Schlegel [42], the computational and energy re-
quirements of message passing decoders as discussed in Chapters 6 and 9 are examined
from fundamental viewpoints of computational theory and minimum-energy switching
principles. Since advanced message-passing decoders have a computational complexity
which is linear in the number of bits decoded, a direct energy cost measure per decoded
bit can be computed, quite irrespective of the actual code or the code family being used.
This leads to predictions of the energy cost per decoded message bit as miniaturization
processes continue to advance to ever smaller scales. Figure 1.10 shows the energy per-
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formance attained by a number of message-passing decoders that were built by several
research and industrial groups. What is evident is that the process miniaturization is the
major driver for a reduction in the energy per bit. The ultimate limit for charged-based
computation is based on a conceptual single-charge device [66], and would attain a decod-
ing energy consumption anywhere between sub-fempto-joule to about 10 fJ/decoded bit,
depending on code and implementation parameters.

Energy per decoded bit in joules
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Figure 1.10: Energy consumption of various message-passing decoders and predictions for
future developments in joules per decoded bit.

While predictions are notoriously difficult to make with accuracy, it appears that analog
decoders based on Gilbert-cell technology would flatten out at around 10 pJ/decoded bit,
primarily due to the gate-threshold variations discussed above [65]. Digital decoders, on
the other hand, can benefit from the miniaturization, and the calculations in [42] indicate
that a minimal energy cost for a digital implementation would be around 30,000k7T, where
k is Boltzmann’s constant, and T is the temperature. This translates to about 0.1 fempto-
joules. Any further reductions in power consumption would need to rely on speculative
technologies such as adiabatic computation and/or quantum computing.
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1.6 A Brief History—The Drive Towards Capacity

Forward error control (FEC) coding celebrated its first success in the application of con-
volutional codes to deep-space probes in the 1960’s and 1970’s, and for quite a while
afterwards, FEC was considered an intellectual curiosity with deep-space communications
as its only viable practical application. Deep space communications is a classical case
of power-limited communications, and it serves as a picture book success story of error
control coding.

If we start with uncoded binary phase-shift keying (BPSK) as our baseline transmission
method (see Chapter 2) and assume coherent detection, we can achieve a bit error rate
of P, = 1077 at a bit energy-to-noise power ratio of F,/Ny = 9.6 dB and at a spectral
efficiency of ideally 1 bit/dimension. From the Shannon limit in Figure 1.11, it can be
seen that 1 bit/dimension is theoretically achievable with Fj/Ny = 1.76 dB, indicating
that a power savings of nearly 8 dB is possible by applying proper coding. 8 dB is an
over 6-fold savings in transmit power, antenna size, or other aspect directly linked to the
received signal power, as, for example, 2.5 times the transmission distance.
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Figure 1.11: Some milestones in the drive towards channel capacity achieved by the space
systems which evolved over the past 50 years as answer to the Shannon capacity challenge.

One of the earliest attempts to close the signal energy gap to the Shannon limit was
the use of a rate 6/32 biorthogonal (Reed-Muller) block code [27]. This code was used
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on the Mariner Mars and Viking missions in conjunction with BPSK and soft-decision
maximum-likelihood decoding. This system had a spectral efficiency of 0.1875 bits/symbol
and achieved a bit error rate of P, = 107° with an FE,/Ny = 6.4 dB. Thus, the (32,6)
biorthogonal code required 3.2 dB less power than BPSK at the cost of a five-fold increase
in the bandwidth. The performance of the 6/32 biorthogonal code is plotted in Figure
1.11, as are all the other systems discussed below.

In 1967, a new algebraic decoding technique was discovered for the popular Bose-
Chaudhuri-Hocquenghem (BCH) codes [2, 28]. This new algorithm enabled the efficient
hard-decision decoding of an entire class of block codes—for example, the (255,123) BCH
code, which has a code rate of Rq ~ 0.5 bits/symbol and achieves a BER of P, = 1075 at
Ey/Ny = 5.7 dB using algebraic decoding.

The next step was taken with the introduction of sequential decoding (see Chapter 5),
which could make use of soft-decision decoding. Sequential decoding allowed the decoding
of long constraint-length convolutional codes, and it was first used on the Pioneer 9 mission
[11]. The Pioneer 10 and 11 missions in 1972 and 1973 both used a long constraint-length
(2,1,31), nonsystematic convolutional code (Chapter 4) [29]. A sequential decoder was
used which achieved P, = 1072 with Ey/Ny = 2.5 dB, and Ry = 0.5. This is only 2.5 dB
away from the capacity of the channel.

Sequential decoding has the disadvantage that the computational load is variable, and
this load grows exponentially the closer the operation point moves towards capacity (see
Chapter 4). For this and other reasons, the next generation of space systems employed
maximum-likelihood decoding. The Voyager spacecraft, launched in 1977, used a short
constraint-length (2,1,6) convolutional code in conjunction with a soft-decision Viterbi
decoder achieving P, = 107 at E,/Ny = 4.5 dB and a spectral efficiency of Ry = 0.5
bits/symbol. The biggest Viterbi decoder built to date [8] found application in the Galileo
mission, where a (4,1,14) convolutional code is used, yielding a spectral efficiency of Ry =
0.25 bits/symbol at P, = 107° and E,/Ny = 1.75 dB. The performance of this system is
2.5 dB away from the capacity limit. The systems for Voyager and Galileo are further
enhanced by the use of concatenation in addition to the convolutional inner code. An outer
(255,223) Reed-Solomon code [27] is used to reduce the required signal-to-noise ratio by
2.0 dB for the Voyager system and by 0.8 dB for the Galileo system.

More recently, Turbo-codes [3] using iterative decoding have virtually closed the ca-
pacity gap by achieving P, = 107 at a spectacularly low Ej/Ng of 0.7 dB with R; = 0.5
bits/symbol, and longer turbo codes come even closer to capacity, e.g., [48]. It is probably
appropriate to say that the half-century effort to reach capacity has been achieved with
this latest invention, in particular in the regime of lower spectral efficiencies. With turbo
coding then, another quite unexpected step of about 2 dB right to the capacity limit was
made possible. Newer space communications systems virtually all use turbo or low-density
parity-check codes discussed in this book—see also Chapter 9.

Space applications of error control coding have met with spectacular success, and
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for a long time the belief that coding was useful only for improving power efficiency of
digital transmission was poplar. This attitude was thoroughly overturned by another
spectacular success of error control coding, this time for applications of data transmission
over voiceband telephone channels. Here it was not the power efficiency which was the
issue, but rather spectral efficiency, i.e., given a standard telephone channel with a fixed
bandwidth and SNR, what was the maximum practical rate of reliable transmission?

The first commercially available voiceband modem in 1962 achieved a transmission
rate of 2400 bits/s. Over the next 10 to 15 years these rates improved to 9600 bits/s,
which was then considered to be the maximum achievable rate, and efforts to push the
rate higher were frustrated. Ungerbock’s invention of trellis-coded modulation in the late
1970’s, however, opened the door to further, unexpected improvements. The modem rates
jumped to 14,400 bits/s and then to 19,200 bits/s using sophisticated TCM schemes [12].
The latest chapter in voiceband data modems is the establishment of the CCITT V.34
modem standard [15, 9]. The modems specified therein achieve a maximum transmission
rate of 28,800 bits/s, and extensions to V.34 to cover two new rates at 31,200 bits/s
and 33,600 bits/s have been specified. However, at these high rates, modems operate
successfully only on a small percentage of the connections. It seems that the limits of
the voiceband telephone channel have been reached (according to [56]). This needs to be
compared to estimates of the channel capacity for a voiceband telephone channel, which
are somewhere around 30,000 bits/s. The application of TCM was one of the fastest
migrations of an experimental laboratory system to an international standard (V.32 -
V.34) [5, 15, 9]. The trellis codes used in these advanced modems are discussed in treated
in detail in Chapter 3.

In many ways the telephone voiceband channel is an ideal playground for the appli-
cation of error control coding. Its limited bandwidth of about 3 kHz (400 Hz - 3400 Hz)
implies low data rates by modern standards. It therefore provides an ideal experimental
field for high-complexity error control methods, which can be implemented without much
difficulty using current DSP technology. It is thus not surprising that coding for voiceband
channels was the first successful application of bandwidth efficient error control.

Nowadays, trellis coding in the form of bandwidth-efficient TCM as well as more
conventional convolutional coding and higher-order modulation turbo-coding systems are
used for satellite communications, both geostationary and low-earth orbiting satellites, for
land-mobile and satellite-mobile services, for cellular communications networks, personal
communications services (PCS), high-frequency (HF) tropospheric long-range communi-
cations, and cable modems, and increasingly also for high-speed optical communications
systems. The Shannon capacity is now routinely the goal that is targeted for high-efficiency
communications systems. As an example thereof, the IEEE 802.3an standard for Ethernet
communications over twisted pair copper cables is discussed in more detail in Chapter 6.
To us it seems clear that the age of widespread application of error control coding is upon
us and every efficient communications systems will entail some form of FEC.
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