CHAPTER 1

INTRODUCTION

We assume that the reader has a basic knowledge of graph theory. Concepts and

notation not defined in this book will be used as in standard textbooks on graph
theory.

1.1 GRAPHS

By a graph & we mean a finite undirected graph without loops, and possibly with
multiple edges. The vertex set and the edge set of & are denoted by V(&) and
E(G), respectively. Every edge of G is incident with two distinct vertices and
the edge is then said to join these two vertices. For a vertex € V{G), denote
by Eg(z) the set of all edges of G that are incident with z. Two distinct edges
of G incident to the same vertex will be called adjacent edges. Furthermore, for
X, Y CV(G), let E¢{X,Y) denote the set of all edges of ( joining a vertex of X
with a vertex of Y. When Y = V(G)\ X, then E;(X,Y) is called the coboundary
of X in G and is denoted by 8¢(X). We write Ec:(z,y) instead of Eq({x}, {y}).
Two distinet vertices z,y of G with Eg(x,y) # B are called adjacent vertices
and neighbors. The set of all neighbors of z in @ is denoted by Ng(z), ie,
No(z) = {y € V(G) | Eq(z,y) # ).
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The degree of the vertex 2 € V() is dg(z} = {Eg(z)|, and the multiplicity
of two distinet vertices x,y € V{(G) is pa(x,y) = |Ec(z,y)|- Let 8(G), A(G)
and p() denote the minimum degree, the maximom degree, and the maximum
multiplicity of G, respectively. A graph G is called simple if u(G} < 1. A graph &
is called regular and r-regular if 5{G) = A(G) = r, where v > 0 is an integer.

For a subgraph H of G, we write briecfly H C . For a graph G and a set
X C V{G),let G[X] denote the subgraph of G induced by X, thatis, V(G[X]) = X
and E(GIX]) = Eg(X, X). Furthermore, let G — X = GIV(G)} Y X]. We write
G —- z instead of G — {z}. For ' C E(G), let G — F denote the subgraph H of &
with V(H) = V(G) and E(H) = E(G) \ F. If F = {e} is a singleton, we write
G — e rather than & — {e}.

If 5 is a sequence consisting of edges and vertices of a given graph G, then
we denote by V(.8), respectively E(S), the set of all elements of V(¢), respec-
tively E((G), that belong to the sequence S. Let G be a graph and let § =
{(vgy€1,%1,. .., Up—1, €p, Up) be asequence such that vy, . . . , v, are distinct vertices of
Gandey, ..., ey are edges of G, where we do not assume anything about incidences
of the elements in S. For a vertex v; € V(9), we define Sv; = (v, e1,...,€i, )
and U‘iS = ('U", [T PO ’Up).

By a path, a cycle, or a tree we usually mean a graph or subgraph rather than
a sequence consisting of edges and vertices. There are only two exceptions o
this: The Kierstead path {Sect. 3.1) and the Tashkinov tree (Sect. 5.1) are con-
sidered as sequences. If P is a path of length p > 0 with V(P) = {vo,..., v}
and E(P) = {e1,...ep} such that e; € Ep{v;_1,1) for 1 < ¢ < p, then we

also write P = Path{vgp,e1,v1,...,€5,0p). Note that Path{vg, e1,...,ep,0p) =
Path(v,, ep. ..., e1, ty); but the cormesponding sequences are distinct, provided that
p = 1. The vertices vg, ..., v, of the path P are distinct and we say that vg, vy, are

the endvertices of the path I and that P is a path jeining the vertices vg and vp.

The complete graph on n vertices is denoted K ,,, while the ¢yele on n vertices is
denoted C,,. A K3 (isomorphic to (') is often called a triangle. A cycle C,, is odd
or even, depending on whether its order n is odd or even. As usual, the number of
vertices of a graph is its order.

If G and H are two graphs with the same vertex set such that every pair (2, y) of
distinct vertices satisfies gy (x, y) = 01if ug(z,y) = 0 and py(z,y) > palr,y)
otherwise, then H is called an inflation graph of G. If H is an inflation graph of G
such that py(2,y) = tpg(e,y) for every x,y € V(G), where t > 1 is an integer,
then we simply write H = {G and call H a multiple of . An inflation graph of a
cycle O, withn > 3 is also called a ring graph,

As usual, we shall write |&] for the lower integer part of the real number x,
and [z] for the upper integer part of x.

1.2 COLORING PRELIMINARIES

A k-edge-coloring of a graph G is a map ¢ : E(G) — {1,...,k} that assigns to
every edge e of G a color p(e} € {1,...,k} such that no two adjacent edges of G
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receive the same color. Denote by C*(G) the set of all k-edge-colorings of G. The
chromatic index or edge chromatic number x’((7) is the least integer k& > 0 such
that C*(G) # 0.

Let ¢ be a k-edge-coloring of G. For a color @ € {1,...,k}, the edge set
E, o = {e € E(Q)|p(e) = a} is called a color class. Then every vertex z of G
is incident with at most one edge of E, ,, i.e., By o is 2 matching of G (possibly
empty). So, there is a one-to-one correspondence between k-edge-colorings of G and
partitions (E1, . .., Ei) of E{() into k matchings (color classes); and the chromatic
index of G is the minimum number of matchings into which the edge set of G can
be partitioned.

A simple, but very useful recoloring technique for the edge color problem was
developed by Konig [174], Shannon [284], and Vizing [297, 298]. Suppose that
(; is a graph and v is a k-edge-coloring of 7. To obtain a new coloring, choose
two distinct colors e, 3 and consider the subgraph H with V{(H) = V(@) and
E(H) = F, . UE, 3. Thenevery component of f is either a path or an even cycle
and we refer to such a component as an {«, )-chain of & with respect to . Now
choose an arbitrary (e, 3)-chain C' of G with respect 1o . If we interchange the
colors a and 3 on C, then we obtain a new k-edge-coloring ¢’ of G satisfying

ple) ifec E(G)\ E(C),
ley=1 B ife € E(C) and p(e) = a,
o ife € E(C) and p(e) = .

In what follows, we briefly say that the coloring ¢’ is obtained from by recoloring
(', and we write ' = /. This operation is called a Kempe change. Furthermore,
we say that an (a, F)-chain C has endvertices z, y if C is a path joining x and y.
Let G be a graph, let F' C E((G) be an edge set, and let ¢ € C*(G — F) be a
coloring for some integer & > 0. For a vertex v € V((G), define the two color sets

p(v) = {ple)| e € Eg(v) \ F} and B(v) = {1,..., k} \ o(v).

We call (v} the set of colors present at v and (v} the set of colors missing at v,
Evidently, we have

B(W)| = k — dg(v) + |[Ec(v) N F. (1.1

For a color o € {1,...,k}, let m,, o denote the number of vertices v € V(G)
such that o € P(v). Since the color class E, , is a matching of &, we have
Mya = |V{G) — 2|E, o] Consequently, we obtain

Moo = |V(G)| mod 2 (1.2)
for all colors & € {1,..., k} and, moreover, from (1.1)

k
3 (k—daw) +2FI= > ()= mya (1.3)

veV(G) vEV{G) a=1
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Figure 1.1 A graph G with a chain Pr{e, 8, ) (bold edges).

For a vertex set X C V(G), we define

B(%) = | Bv).

veX

If X = {v1,...vp}, then we also write B(vy, ..., v,) instead of H(X). The set X
is called elementary with respect to o if @(u) N @(v) = @ for every two distinct
vertices u, v € X. The set X is called closed with respect to ¢ if for every colored
edge f € Jg{X) the color {f) is present at every vertex of X, i.e., w(f) € w(v)
for every v € X. Finally, the set X is called strongly closed with respect to  if X
is closed with respect to ¢ and {f) # p(f’) for every two distinct colored edges
L% '€ dc (X }

Let o, B € {1,...,k} be two distinct colors. For a vertex v of G, we denote by
Py(e, 8, ¢) the unique (@, 3)-chain of G — F with respect to i that contains the
vertex v. If it is clear that we refer to the coloring ¢, then we just write P, {a, 8}
rather than P, (o, 3, ). I exactly one of the two colors o or 8 belongs to F(v}, then
P, {e, B) is a path, where one endvertex is v and the other endvertex is some vertex
1 # v such that @(u) contains either o or 8. For two vertices v, w € V(G), the two
chains P, {a, §) and P, («, ) are ecither equal or vertex digjoint. For the coloring
@' = ¢/ Pola, B,p), we have o' € C*¥(G — F), since ¢ € C*(G — F). Furthermore,
if z is not an endvertex of Py(a, 8, ), then F'(x) = B(x), else F'(x) is obtained
from () by interchanging o and 3. We shall use these simple facts quite often
without explicit mention.

Figure 1.1 shows the graph G obtained from the Petersen graph (see Fig. 1.2)
by deleting one vertex as well as a 3-edge-coloring ¢ of G — e, where the three
colors are o, 5,~. The graph (7 itself has chromatic index 4. Furthermore, #{z) =
{a, v} By = {8}, 7(u) = B(v) = B(w) = P(2) = B, and Py (e, B) is a path of
length 4 with vertex set X = {z, v, w,u,y}. The set X is elementary with respect
0 ¢, but not closed.

If the condition y(e) # w(e’) for any two adjacent edges e, e’ € E((F) is dropped
from the definition of edge coloring, then  is called an improper edge coloring of
G. Accordingly, the term proper edge coloring is used in the graph theory literature
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Figure 1.2 Three drawings of the Petersen graph.

in order to emphasize that the condition hotds. In Chap. 8 we shall discuss some
results about improper edge colorings.

A k-vertex-coloring of a graph & is an assignment of & colors to its vertices in
such a way that adjacent vertices receive different colors. The minimum & for which
a graph G has a k-vertex-coloring is called its chromatic number, denoted x(G).
A trivial lower bound for the chromatic number of a graph ( is its clique number
w(@G), that is, the maximum p for which (7 contains a complete graph on p vertices
as a subgraph. On the other hand, every graph G satisfies x(G) < A(G) + 1.

A graph with chromatic number at most % is also called a k-partite graph, where
a 2-partite graph is also called a bipartite graph. The complete bipartite graph on
two sets of o and m vertices is denoted K, ..

Clearly, a graph has chromatic number 0 if it has no vertices and chromatic number
1 if it has vertices, but no edges. A well-known result of Konig [174] states that a
graph G is bipartite if and only if G’ contains no odd cycle.

For a graph G, the line graph of G, denoted L{(G), is the simple graph whose
vertex set corresponds to the edge set of & and in which two vertices are adjacent if the
comesponding edges of ¢ have a common endvertex. Evidently, every edge coloring
of (3 is a vertex coloring of L{(7), and vice versa; in particular, x (G} = x(L{G)).

1.3 CRITICAL GRAPHS

By a graph parameter we mean a function p that assigns to each graph G a real
number p(G} such that p{G) = p(H) whenever G and H are isomorphic graphs. A
graph parameter p is called monotone if o{ H) < p(G) whenever H is a subgraph of
. Clearly, the set of all graph parameters form a real vector space with respect to
the addition of functions and the multiplication of a function by a real number. Let
p and p’ be two graph parameters. If p'(G) = ¢ for every graph G, then instead of
g+ p we also write p + ¢. If p(GG) < p’(G) holds for every graph G, then we say
that p’ is an upper bound for p and p is a lower bound for p'.

Criticality is a general concept in graph theory and can be defined with respect to
various graph parameters. The importance of the notion of criticality is that problems
for graphs in general may often be reduced to problems for critical graphs whose
structure is more restricted. Critical graphs (w. 1. t. the chromatic number) were first
defined and used by Dirac in 1951, in his Ph.D. thesis [71] and in Dirac [72].
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Let p be a monotone graph parameter. A graph G is called p-eritical if p(H) <
p(G) for every proper subgraph H of (7. We say that e € E((G) is a p-critical edge
if p{G — e) < p(G). Evidently, in a p-critical graph every edge is p-critical.

Proposition 1.1 Let p and p’ be two monotone graph parameters. Then the following
statements hold:

(a) Every graph (G contains a p-critical subgraph H with p(H) = p(G).

(b) If every p-critical graph H satisfies p(H) < p'(H), then p(G) < p'(G) for
all graphs G.

Proof: Since p is monotone, every graph G contains a minimal subgraph A with
p(H) = p{(). Obviously, H is p-critical. This proves (a). For the proofof (b), let
be an arbitrary graph. By (a), (& contains a p-critical subgraph H with p{H) = p(G).

hen p{ H) < p'(H); and since p’ is monotone, we obtain p(G) = p(H) < p'(H) <
(@), a

For convenience, we allow a graph G to be empty !, ie, V{G} = E(G) = 0. In
this case we also write G = . For the empty graph G, define x'(G) = é(G) =
A(G) = u(G) = 0. So the empty graph is r-regular only for»r = 0. If pis a
monotone graph parameter, then the empty graph is p-critical; it is the only p-critical
graph H with p(H) = p(8).

By a critical graph we always mean a )’-critical graph, and by a eritical edge
we always mean a x’-critical edge. Clearly, an edge e of (5 is critical if and only if
X' (G —e) = X' (G) — 1. For k = 1,2, a graph G with x'(G) = k is critical if and
only if G is connected and has exactly k edges. It is also easy to show that a graph G
with x'(G) = 3 is critical if and enly if G is an odd cycle or (F is 2 connected graph
consisting of three edges that are all incident to the same vertex & of G. Furthermore,
ifa graph G satisfies x'(G) > A(G) + 1, then [V(G)| > 3 and A(G) > 2.

1.4 LOWER BOUNDS AND ELEMENTARY GRAPHS

Since, in an edge coloring, no two edges incident to the same vertex can have the
same color, every graph G satisfies x'{G) > A(G). Fora fat triangle of multiplicity
i, that is, a graph T' = K5 consisting of three vertices pairwise joined by p parallel
edges, we obtain x’(T') = 3u and A({T") = 2u. This shows that the gap between the
chromatic index and the maximum degree can be arbitrarily large.

Apart from the maximum degree there is another trivial lower bound for the
chromatic index, sometimes called the density of G, written as w{G). Consider a
k-edge-coloring  of G and a subgraph H of G with |V (H)| > 2. For every color
a, the restricted color class E,, = E, o N E(H) is a matching of 7. Coensequently,
|Ea| < [|V(H)|/2] for every color a and, therefore, |E(H)| < k||V(H)|/2].

! The empty graph is also called the nuli-graph.
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This observation leads to the following definition of a parameter for graphs G with
[V{(G)| > 2, namely,

w(G

£
L%IV(H)IJ}' (9

For a graph G with |V{G)| < 1, define w(G) = 0. Then, clearly, w is monotone
and every graph  satisfies

}= max
HCGAVH)=2

X (G) 2 w(G). (1.5)

As Scheinerman and Ullman [276] proved, the maximum in (1.4) can always be
achieved for an induced subgraph H of G having odd order, provided that |V (G)| >
3. To sce this, suppose that the maximum in (1.4) is achieved for a graph H C
G having even order. If [V(H)| = 2 this gives W(G) = |E{H)|, and hence
w(G) = [2|E(HN|/{|V(H")| — 1)] for any subgraph H' of 7 with three vertices
such that H C H’, Otherwise, |V (H)| > 4 and we argue as follows. Let v be a
vertex of minimum degree in H and let H' = H — v. Then [V {H")| is odd and
dr(v) < 2/E(EDI/|V(H)| < [2BE)/|VHE)]] = w(G) and, thercfore,

21E(H")| T _ [20EH) — da(v)) 2JE(H) ] _
©2 [y = [ vamres | > || =
which proves the claim. Hence, for a graph & with |V(G)| = 3, we have
_ 2|E(CIX])]
M) = v a0 [ |X1-1 1 (0

Clearly, any graph G with |V()| < 2 satisfies w{G) = A(G) = x'(G). To see
that the gap between w((G) and x’(G) can be arbitrarily large, consider the simple
graph G = K , consisting of » + 1 vertices and n edges all incident to the same
vertex. Then, for n > 2, we have w(K ) ) = 2 and x'(K, ») = A{K1,,) = n. For
the Petersen graph P, we have x'(P) = 4 and A{P) = w(P) = 3. However, the
situation seems to be different for graphs with x'(G) > A(G) + 1.

A graph G is called an elementary graph if ¥'{G) = w{(G). The significance
of this equation is that the chromatic index is characterized by a min—max equality.
The following conjecture seems to have been thought of first by Goldberg [110, 114]
around 1970 and, independently, by Seymour [280, 281].

Conjecture 1.2 (Goldberg [110] 1973, Seymour [281) 1979) Every graph G such
that ¥'(G) = A(G) + 2 is elementary, ie, X' (G) = w(G).

In this book, we will refer to Conjecture 1.2 briefly as Goldberg’s conjecture. For
a preof of this conjecture, it is sufficient to consider critical graphs. To see why,
fet & be an arbitrary graph with x'(G) > A(G) + 2. Clearly, G contains a critical
graph H with x'(H) = x/(@). This implies that x'{H} > A{H) + 2. If the graph
H is known to be elementary, then also G is elementary, since in this case we have
w(G) < X' (@) = x/(H) = w(H) < w(G) and, therefore, x'(G) = w(G).
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Proposition 1.3 Let G be a graph with X' (G) = k + 1 for an integer k > A(G). If
G is critical and elementary, then the following statements hold:

(@ x'(G) = w(G) = [|E@G)I/ [3IV(G)!]] and [V (G)| is odd.

(b) For every edge e € E(G) and every coloring ¢ € C*{(G — ¢), we have
My.e = 1forall colors a € {1,...,k}. ie, the color o is missing at exactly
one vertex of G.

() |E(GY =k |HV(G)|] +1.

Proof: Since x'(G) = A(G) + 1, we have |[V{G)| = 3 and E(G) £ 0. Since
the graph & is both critical and elementary, every proper subgraph H of G satisfies
w(H) < x'(H) < x'(G) = w(G). Clearly, this implies that

eon _ | _IB(G)]
X' (G) =w(G) = ’VL%|V(G)|J“

Consequently, |V (G)| is odd, since otherwise
X'(G) = RIBG)/IVG < AG),

a contradiction. This proves (a). For the proof of (b),lete € E(G)andp € C *{(G—e).
By (a)and (1.2), we have m,, o = |V(G)| = 1 mod 2. Hence, if m, o % 1 for some
color o, then (1.3) implies that 3, . (oy{k ~ da(v)) + 2 2 k + 2. Since |V(G)] is
odd, this yields [|E(G)|/[|V(G)|/2]] € k = x'(G) — 1, a contradiction to (a). For
the proof of (c), choose an edge e € FE(G). Since ( is critical, there is a coloring
@ € C*(G—e). Then we deduce from (b) and (1.3) that 2eviaylk—da(v))+2 =k
Since |V(G)| is odd, this implies that |[EF{G)| = k[|V(G)|/2] + 1. This completes
the proof. ]

The following result shows that elementary graphs and elementary sets are closely
related to each other. This result is implicitly contained in the papers by Andersen
[5] and Goldberg [114].

Theorem 1.4 Let G be a graph with x'(G) =k + 1 for an integer k > A(G). If G
is critical, then the following conditions are equivalent:

(a) G is elementary.

(b) For every edge e € E(G) and every coloring o € C¥(G — €), the set V{G)} is
elementary with respect to .

{c) There is an edge e € E(G) and a coloring ¢ € C*¥(G — &) such that V(G) is
elementary with respect to .

(d) There is an edge e € E(G), a coloring p € C¥(G —¢) andaset X C V(G)
such that X contains the two endvertices of e and X is elementary as well as
strongly closed with respect to .
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Proof: That(a) implies (b) follows from Proposition 1.3(b). Evidently, (b) implies
(¢} and (c) implies (d) with X = V{{}. To prove that (d) implies (a), suppose that,
for some edge ¢ € E(G) and some coloring i» € C*(G — e), there is a subset X
of V{G) such that both endvertices of e are contained in X and X is elementary
as well as strongly closed with respect te . Let H = G[X] and, for each color
ac{l... .k} let E, = E, N E{H). Since the edge e is uncolored and both
endvertices of e belong to X, the set {X) is nonempty and | X | > 2.

First, consider an arbitrary color ¢ € B(X). Since X is elementary with respect
to i, color & is missing at exactly one vertex of H. Furthermore, since X is closed,
no edge in @z (X)) is colored with . Since E, is a matching of H, this implies that
| X| = |V(H)| is odd and |E.| = [|V(H}|/2]. Now, consider an arbitrary color
a ¢ P(X). Then, clearly, color o is present at every vertex of X = V(H). Since
X is strongly closed, at most one edge of (X'} is colored with a. Since E,, is a
matching of H and |V (H)| is odd, this implies that exactly one edge of 8¢{X) is
colored with o and, moreover, |E,| = ||V({H)|/2], too. This proves that

1
B =14k | gIve].
Since H is a subgraph of G with |V {H)| > 2, we then deduce that

e _ | _1EEH)]

Therefore, (7 is an elementary graph. This shows that (d) implies (a). Hence the
proof of Theorem 1.4 is complete. [ ]

Combining Proposition 1.3 and Theorem 1.4 together with the equations (1.2) and
(1.3), we obtain the following result,

Corollary 1.5 Let G be acritical graphwith ' (G) = k+1 for anintegerk > A(G).
F\VI(G)| is odd, then 3 oy (k — dg(v}) + 2 = k. where equality holds if and
only if G is elementary. Furthermore, G is elementary if and only if |V (G)| is odd
andy. ey oylk —da(v)} =k — 2.

Since it suffices to verify Goldberg’s conjecture for the class of critical graphs, it
follows from Corollary 1.5 that Goldberg’s conjecture is equivalent to the following
conjecture.

Conjecture 1.6 (Critical Multigraph Conjecture} Every critical graph G with
K (G) = A(G) + 2 is of odd order and satisfies

21B(G)| = (X(G) - D(IV(G)| - 1) + 2.

We conclude this section with some basic facts about elementary sets that are
useful for our further investigations.
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Proposition 1.7 Let G be a graph with A(GY = A > 2, lete € Eglz,y) be an
edge, and let ¢ € CF(G — €) be a coloring for an integer k > A. If X C V(G) is
an elementary set with respect to @ such that both endvertices of e are contained in
X, then the following statements hold:

(a) |X| < M— < ;;“ %, provided thatk > A + 1.

b} 3exdelv) 2 k(X[ 1) +2.

{c) Suppose that

m— 3

m—1

Jor an integer m > 3. Then | X| < m — 1 and, moreover, |5(X)| 2 A+ 1,
provided that | X| =m — 1.

ktl> 2 _ A4
m—1

Proof: Since the set X is elementary with respect to € C¥{(G — e), we deduce

that
3 @) = [B(X)| < k.
wEX

The edge e € Eg(z, y) being uncolored, for a vertex v € V(G), we have

o [ k—delv)+1 ifve {z,y},
}‘P(v)"{ k_d,g(:) :)t;:emisxe.y

Then, since x,y € X, we obtain

241Xk~ A) <2+ Y (k—da()) =2+kX| - Y da(v) = [B(X)] < k,

veX vEX

which implies (a) and (b). To prove (c), we first deduce from the hypothesis that
k—A>{(A-2)/(m-1). Since A > 2andm > 3, this implies that & > A 4+ 1.
By (a), we then obtain

k—2 A-2
< - _
| X P 1+k A<1—|—{m 1) =
and, therefore, |X| < m — 1. Now, assume that |X| = m — 1. Then, by (a),
we have |B(X)| > (K — A)[X]|+ 2 = (k — A){(m — 1) + 2 > A and, therefore,
[@(X)| > A + 1. This completes the proof of {c). ]

Let & be a critical graph with maximum degree A, and let m > 3 be an integer.
Suppose that (7 satisfies
e s " ap™m=3
m—1 m—1
Then x'(G) = k + 1 = A + 2 > 4. Consequently, Goldberg’s conjecture (that G is
elementary) implies that |V{G}| < m—1(Theorem 1.4, Proposition 1.7), respectively
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V(G| < m — 2ifm is odd (Proposition 1.3). Thus the following conjecture, first
posed by Jakobsen [156], may be seen as a weaker form of Goldberg’s conjecture.

Conjecture 1.8 (Jakobsen [156] 1975) Let G be a critical graph, and let

m m—3

X' (G} > A(G) +

m—1 m—1

for an odd integer m > 3. Then \V(G)| < m — 2.

Thus for fixed A(G), or for fixed x'((7), there are only finitely many critical
graphs G with x'(G) > A(G) + 2, assuming Goldberg’s conjecture is true,
A fat odd cycle, ie., a graph & = uC,, for an odd integer m > 3, has for
¢t =1mod (re — 1)/2
. _ _m m—3
X(6) = W(G) = "= AG) + o
and it is critical with m vertices. Thus Conjecture 1.8 is in this sense best possible.
To see why (G is elementary and critical, note first that |[E{G)| = my, A(G) =
2u(G) = 2y and, by (1.5),

@3 wiey s [2E9)] [ 200 _ [n2(6)]

m—-1 m—1 m-1

By assumption, there are integers £ > 1 and p > 0 such that m = 2£ 4+ 1 and
i =1+ pt Then |E{G)| = my = £(2pf + p+ 2} + 1 and there is an integer & > 2
such that

m&(G).‘= m A{G)+2_j=2p€+p+3'

k+1=
+ [m—l m—1

If e is an arbitrary edge of G, then it is easy to check that the remaining edge set of
G can be partitioned into k = 2pf + p + 2 matchings, each having £ edges implying
that ' (G — e) < k. Since G is connected and x'(G) > w(G) > k+ 1, this implies
that 7 is critical and X' (G) = w(G) =k + 1.

1.5 UPPER BOUNDS AND COLORING ALGORITHMS

The Edge Color Problem asks for an optimal edge coloring of a graph G, that is, an
edge coloring with x’{(} colors. Holyer [150) proved that the determination of the
chromatic index is NP-hard, even for 3-regular simple graphs, where the chromatic
index is either 3 or 4. Hence it is reasonable to search for upper bounds for the
chromatic index, in particular for those bounds that are efficiently realized by a
coloring algorithm. A graph parameter p is said to be an efficiently realizable upper
bound for ' if there exists an algorithm that computes, for every graph G = (V, E},
an edge coloring using at most p((5) colors, where the algorithm has time complexity
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t bounded from above by a polynomial in |V| and | E|, that is, ¢{(G) < p(|E|,|V])
for some polynomial p = p{(z, y) over the real numbers in two variables.

Note that edge coloring algorithms may have an execution time polynomial in | E],
but being only pseudopolynomial in the number of bits needed to describe the graph,
since edge multiplicities may be encoded as binary numbers, and the size of the input
graph therefore may be of order less than the order of E.

A typical algorithm colors the edges of the input graph sequentially. Such an
algorithm first fixes an edge order of the input graph, either an arbitrary order or
one that satisfies a certain property. The core of the algorithm is a subroutine Ext
that extends a given partial coloring of the input graph. The input of Ext is a
tuple {G, e, z,y, k, ), where G is the graph consisting of all edges that are already
colored as well as the next uncolored edge ¢ € Eg(z,y) with respect to the given
edge order, and a coloring ¢ € C*{G — e). The output of Ext is a pair (£, '),
where k' € {k,k+ 1} and ¢’ € C¥(G).

Now, to explain how Ext works, a well-defined set O(G, e, ) of so-called test
objects will be introduced. A test object T' € O(G, e, ) is usuaily a labeled
subgraph of G that fulfills a certain property with respect to the uncolored edge ¢ and
the coloring ¢ € C*(G — €). In most cases, we start with the test object that only
consists of the uncolored edge e. When a test object T € O(G, e, ) is investigated,
then, using an exhaustive case distinction, three basic ouicomes are possible. The
first possible outcome is that the vertex set V'(T') is not elementary with respect to ¢;
ie,acolora € {1,...,k} is missing at two distinet vertices of T" with respect to .
In this case Ext returns (k, '), where the coloring ' € C¥(G) is obtained from ¢
by Kempe changes, possibly involving more than one pair of colors in a small number
of successive Kempe changes. The second possible outcome is that the vertex set
V(T) is elementary with respect to i, but T cannot be enlarged. In that case ¢ is
colored with a new color resulting in a coloring o’ € C**+1(G). Then Ext returns
(k + 1,¢'). The third possible outcome is that the vertex set V(T') is elementary
with respect to , but T' can be enlarged. Then an exhaustive search for a larger test
object is needed. This process eventually terminates, because for sufficiently large
test objects T € (MG, e, o), one of the first two cases has to be applicable.

To ensure that the subroutine Exct, and hence the algorithm, works correctly, we
need a statement about the test objects of the following type.

(1) Let G be a graph with x'(G) = k + 1 for some integer k > A(Q), let
e € Egl(xz,y) be a critical edge of G, and let ¢ € C*¥(G — e) be a coloring.
Then the vertex set of each test object T € O(G, e, ) is elementary with
respect 1o .

This statement is equivalent to the statement that if ¢ € C*(G — ¢} is a coloring
and the vertex set of a test object T € O(G, e, 1) is not elementary with respect to
0, then x'(G) < k, i.., there is a coloring ¢’ € C*(G). For the comectness of the
algorithm it is, however, important that the proof of (1} is constructive and can be
transformed into an efficient procedure for obtaining such a coloring »’ € C*(G).

To control the mumber of colors used by a coloring algorithm of the above type, we
need some further information about maximal test objects, which means test objects
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T € O(G, e, ) that cannot be extended to some larger test object T/ € O(G, €, ).
For the proof of Goldberg’s conjecture a statement of the following type would be
sufficient.

(2) Let G be a graph with x'(G) = k + 1 for some infeger k > A{G) + 1,
let e € Eglax.y) be a critical edge of G, and let ¢ € C¥(G —¢) be a
coloring. Then the vertex set of each maximal test object T € O(G, e, ) is
both elementary and strongly closed with respect to .

Suppose our test objects satisfies (1) and (2) and we start our coloring algorithm
with k = A(G) + 1 colors. If the algorithm never uses a new color, then x’'(G) <
A(F) + 1. Otherwise, let us consider the last call of Ext where we use a new color.
Theinputisatuple (G’, e, z, ¥, k, »), where G’ isasubgraph of G, e € Eg: (2, y), and
© € C*¥(G' —e). Since Ext returns a coloring ¢’ € C*¥+}(G"), there exist a maximal
test object T € O, e, ) such that X = V(T') is elementary and strongly closed
both with respect to . Clearly, the coloring algorithm terminates with a (& + 1}~
edge-coloring of G implying x'(G) < k 4+ 1. Now, let H be the subgraph of G with
V(H) = X and E(H) = E{G[X]) " E(G"}. Then E{H) consists of the uncolored
edge e and all edges of (7 that are already colored and have both endvertices in X.
Since X is elementary and strongly closed both with respect to ¢ € C*(G' —e), it
then follows that | X| = |V(H)| > 3isoddand |[E{H)} = 1+ k||V(H)|/2] (sce the
proof of Theorem 1.4, the part where we show that {d) implies (a)). Consequently,
we have w(G) > w(H) > [[EED|/(IVE)|/2)] 2 k+1 2 X(G) 2 w(G)
and, therefore, x'(G) = w(G). Hence our algorithm colors the edges of G with at
most max{A(G) + 1, w(&)} colors.

Ciassical kinds of test objects are the fans, first used by Shannon [284] and by
Vizing [297], the critical chains introduced independently by Andersen [5] and by
Goldberg [111, 114], and the Kierstead paths introduced by Kierstead [166]. A more
recent kind of test objects, namely Tashkinov trees, were invented by Tashkinov
[291]. All these kinds of test objects satisfy (1), but up to now no test objects that
fulfill both conditions (1) and (2) are known. A possible way out of this situation is
to modify the subroutine Ext and to add further heuristics before using a new color.
If the vertex set X of a maximal test object T € O(G, e, ¢} is both elementary and
strongly closed with respect to ¢, then we just color e with a new color. However, if
X is elementary, but not strongly closed with respect to ¢, it might be reasonable to
use a small number of Kempe changes to obtain a better test object T/ € O(G, €', '}
and to continue with T instead of 7. We shall use this approach to get some partial
results related to Goldberg’s conjecture.

One obvious way to find an edge coloring of an arbitrary graph & with at least one
edge is the following greedy algorithm: Starting from a fixed edge ordere,...,em
of G, we consider the edges in turn and color each edge ¢; with the smallest positive
integer not already used to color any adjacent edge of e ; amonge;, ..., ;3. Sinceno
edge is adjacent to more than 2{A(G) — 1) other edges, this simple greedy algorithm
never uses more that 2A(G) ~ 1 colors. Hence, every graph G with E(G) # #
satisfies x'{G) < 2A(G) — 1. Observe that this greedy strategy is the simplest
version of a coloring algorithm that fits into our general approach; there is only one
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test object in O(G, e, ), namely the graph consisting of the uncolored edge e and its
two endvertices. As an immediate consequence, we obtain that 2A is an efficiently
realizable upper bound for x' (including the case E(G) = #). Since A is a lower
bound for x’, this implies that 2’ is an efficiently realizable upper bound for y’.
Goldberg’s conjecture supports the following suggestion by Hochbaum, Nishizeki,
and Shmoys [146).

Conjecture 1.9 ¥’ + 1 is an efficiently realizable upper bound for x'.

The upper bound 2A — 1 on the number of colors used by the greedy algorithm is
rather generous, and in most graphs there will be scope for an improvement of this
bound by choosing a particularly snitable edge order to start with. Let us say that an
edge order of a graph (7 is of depth p if each edge in this order is preceded by fewer
than p of its adiacent edges. Clearly, if we start the greedy algorithm with an edge
order of depth p, then the algorithm terminates with a p-edge-coloring. The least
number p > 1 such that G has an edge order of depth p is called the coloring index
col’{@) of G. Observe that the coloring index of a graph is nothing €lse than the so-
called coloring number of its line graph. Obviously, every graph G with at least one
edge satisfies col’ () < 2A(G) - 1. Foran edgeless graph G, we have col’ () = 1.
It is also known (see, e.g., Jensen and Toft [158]), that an edge ordereq,...,e5 of
depth col’{G) can be obtained by letting ¢; be an edge having a minimum number of
adjacent edges in the subgraph Gy = G — {€j41,...,em} fori=mym—1,...,1,
where G, = G. Hence, col’ is an efficiently realizable upper bound for x’, obviously
the best upper bound that can be realized by the greedy algorithm,

Finally, we discuss some implementation details. The time complexity ¢ of our
coloring algorithms has the form ¢ = ¢, + |E|tz, where ¢, is the time complexity
for computing the required edge order of the input graph G' = (V, E) and 5 is the
{worst case) time complexity for one call of the subroutine Ext.

The running time ¢9 depends on the manner in which the partial coloring is stored.
As long as we are satisfied with an overall running time ¢ that is polynomial in |£|
and |V, one can use the approach by Hochbaum, Nishizeki, and Shmoys [146}. The
idea is to combine the standard incidence lists for the vertices with the same-color
lists for the colors. An edge € € Eg(u,v) receiving color o is stored in the two
incidence lists for « and v, and in addition to that also in the same-color list for the
color a. The elements in the corresponding three lists are linked to each other by
pointers. Furthermore, a list of all uncolored edges is stored.

For the number of colors &, we may assume that k = O(A), where A = A{G).
Then, as explained in Hochbaum et al. [£46], each set P{x) can be found in time
O(A) and, therefore, one can decide in time O(A) whether two vertices have a
common missing color. Furthermeore, it takes time O(iV|) to find an (a, #)-chain
P = P,(a, 3, ). The colors of P can be interchanged in time O(|V]), and updating
the same-color list for the coloring ' = ¢/ P can be carried out in time O(|V |+ A).



NOTES 15
1.6 NOTES

Edge colorings of graphs were first considered in two short papers by Tait [290]
published in the same proceedings between 1878 and 1880. Tait proved a theorem
relating face colorings and edge colorings of plane graphs, i.e., graphs embedded
in the plane or sphere. Tait’s theorem deals with 3-regular graphs, which are also
referred to as cubic graphs. A cut-edge or a cut-vertex of a graph is an edge or vertex
whose deletion increases the number of components. A graph without cut-edges is
also said to be a bridgeless graph_ Tait’s theorem says that if ( is a bridgeless cubic
plane (simple) graph, then G admits a 3-edge-coloring if and only if the faces of
(; can be colored with four colors such that adjacent faces receive different colors.
Tait’s result implies that the following three statements are equivalent.

(A) The faces of any bridgeless plane graph can be colored with four colors such
that any two adjacent faces get different colors,

(B) Every bridgeless cubic planar simple graph G satisfies x'(G) = 3.
(C) Every bridgeless cubic planar graph G satisfies y/(G) = 3.

Tait did not prove any of the statements in his papers since he did not consider this
necessary because of an already existing proof of (A) by Kempe [165].

The Four- Color Problem was first mentioned in writing in a letter from A. De
Morgan to W. R, Hamilton, written in 1852 on the same day as De Morgan first heard
about the problem from his student Frederic Guthrie, who had the problem from his
brother Francis Guthrie. A proposed solution of the problem by Kempe [165] stood
for more than a decade until it was refuted by Heawood {133]. Heawood proved,
using Kempe's method, the Five - Color Theorem for planar graphs.

Statement (A} is equivalent to the same statement { A) with the words faces replaced
by vertices, as already observed by A. B. Kempe:

(A) The vertices of any planar simple graph can be colored with four colors such
that any two adjacent vertices get different colors.

It was however first with the famous paper of Brooks [33] that vertex coloring of
general graphs became a topic of siudy. Brooks [33] proved that the complete graphs
and the odd cycles are the only connected simple graphs whose chromatic number is
larger than their maximum degree.

Even if Kempe’s 1879 paper contained a serious flaw, it contained the idea of
recoloring a connected component in the subgraph spanned by two colors, a so-
called Kempe chain, by simply interchanging the two colors on the vertices of the
component (we consider here veriex colorings rather than face colorings). This idea
has since been a main tool in graph coloring theory, and, as explained in Sect. 1.2,
also for edge colorings. Some recent results about Kempe changes and Kempe
equivalence of edge colorings can be found in references {11, 219, 225].

The Four - Color Theorem was proved by K. Appel, W. Haken, and J. Koch [9, 10]
in 1977, and later by Robertson, Sanders, Seymour, and Thomas [258] with an
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improved proof, essentially using the same approach as Appel, Haken, and Koch, but
the proofis shorter and clearer, avoiding the problematic details of the original proof.
In this way the Four - Color Problem has become the Four - Color Theorem.

In the 1890s there was some confusion about Tait’s theorem. Some believed that
Tait’s theorem asserted that every bridgeless cubic simple graph is 3-edge-colorable.
This motivated Petersen [242] to present, as a counterexample, the graph that has
became famous as the Petersen graph (see Fig. 1.2).

Petersen [241], collaborating with James Joseph Sylvester, was the first mathe-
matician who studied the problem of factorizing graphs in a general context. One
of his fundamental results says that every bridgeless cubic graph G has a perfect
matching M, i.e, M C E(() and every vertex z of (7 is incident with exactly one
edge of M. That Petersen’s result implies that every cubic graph has chromatic index
3 or 4 was pointed out by Sainte-Lagué [261] in 1926 (without a precise argument).
In particular, the Petersen graph has chromatic index 4. We shall apply the elegant
argument by Naserasr and Skrekovski [234] to prove the following slightly stronger
statement.

(a) Let P* be the Petersen graph with one veriex deleted. Then x'(P*) = 4.

Proofof (a): Obviously, x'(P*) < 4. Now, suppose there is a 3-edge-coloring of

Figure 1.3 The graph P*.

P*. Let a, 8,7 be the colors of the edges uz, xy, yv, respectively (see Fig. 1.3).
Then « and vy may be equal, but 8 # «,y. Obviously, at each vertex of degree 3
each color must appear. Since S cannot appear on 2z’ or yy’, color 3 appears on
two distinct edges of the inner eycle C' = {z/,v', v, ¢, w', 2’), one of which must
be '’ or y'u’. The same argument works for the colors « and «v. Since C'/ has only
five edges, this implies that @ = <. But then & has to appear on u’v’ and on two
mote edges of ¥, a contradiction. ]

If we delete an arbitrary edge of P, then it is easy to show that the resulting
subgraph has a 3-edge-coloring. Hence P* is a critical graph.

The basic problem in the theory of graph factorization is decomposing a regular
graph into other regular graphs on the same set of vertices. An r-factor of an
arbitrary graph G is a spanning subgraph H of G,ie, H C Gand V{H) = V{G),
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such that H is r-regular. Evidently, a graph has a I-factor if and only if it has a
perfect matching. Another result of Petersen’s fundamental paper [241] is his even
factor theorem, that every 2r-regular graph has a 2-factor. The statement that every
bridgeless cubic graph has a 1-factor should perhaps also be formulated as a 2-factor
theorem. As pointed out by Hanson, Loten, and Toft [129], every (2r + 1)-regular
graph with at most 2r bridges has a 2-factor, thus the general Petersen theorem is
about 2-factors rather than 1-factors.

As we know, every graph G satisfies A(G) < ¥/(G). In 1916 Kbnig [174]
proved that equality holds for the class of bipartite graphs, and he deduced as a
simple corollary that every regular bipartite graph has a perfect matching. K Onig’s
preof uses induction on the number of edges and a simple recoloring argument. In
particular, the proof yields an O{mn) algorithm to find a A(G)-edge-coloring for a
bipartite graph G with n vertices and m edges. The algorithm is a simplified version
of the coloring algorithm described in Sect. 1.5. The only test object in ({G, e, ) is
the graph consisting of the uncolored edge e and the two endvertices x, i of e. Since
we have k = A(G) colors, we can chose two colors o € P(z) and 8 € P(y). If
a = f3, then we color e with & and continue with the next uncolored edge. Otherwise,
we recolor P = Py{a, 3, ). Since G contains no odd cycle, y does not belong to P
and, therefore, for the coloring ' = /P we obtain o € @'{x) N @ {y). Hence we
can color e with ¢ and continue with the next uncolored edge.

A simple, self-contained proof of K.émig’s theorem that does not use any altemating
path argument was given by Rizzi [256].

In 1949 Shannon [284] proved that every graph (& satisfies x '(G) < [3A(G)/21.
The fat triangles are graphs for which Shannon’s bound is attained. From Shannon’s
proof it also follows that 3A /2 is an efficiently realizable upper bound for '

Shannon’s proof uses induction and Kempe changes. He starts by remarking that
if A(G) = 2r then G is a subgraph of a 2r-regular graph. By Petersen’s even
factor theorem, this graph can be factorized into v 2-factors, each of which has a
3-edge-coloring. This immediately gives the desired result.

For A{G) = 2r + 1 Shannon explains that there is a conjecture by Petersen that a
{2r + 1)-regular bridgeless graph has a |-factor. If true for graphs with at most one
bridge this would imply the result like in the even case. But this conjecture is not
true! Shannon did not know, but it is easy to construct a counterexample, namely a
{27 + 1)-regutar bridgeless graph without a 1-factor (r > 2}, using Tutte’s 1-factor
criterion. For A{G) = 2r + 1 one may, however, use a different factorization result.
As explained above, it is now known that a (2r + 1)-regular graph with at most one
bridge has a 2-factor. From this Shannon’s theorem follows easily.

Shannon’s own proof for the case A(G) = 2r + 1 is by induction over the number
of vertices. He removes a vertex x of degree 2r + 1 from G, colors ¢ — z by induction
using 3r + 1 colors. Then he colors the edges incident at & one by one, using Kempe
changes as the main tool.

It would seem more appropriate to use induction on the number of edges. Let
e € Eg{x,y) be an edge of G and assume that G — ¢ is edge-colored with 3r + 1
colors by induction. We want to extend this coloring ¢ € C3"+1(G — €) by including
the remaining edge e.
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Figure 1.4 Shannon’s Kempe change.

Since at most 2r edges incident with x are colored, |@{x)| > r + 1. Similarly,
[B(y)] = r + 1. If B(x) and B(y) have a common color, then this color may be
given to ¢ and a (3r + 1)-edpe-coloring of G is obtained. Hence we may assume
that F(x) and By} are disjoint. Let o be a color in $(y). Then ¢ is present at x,
ie., a = ¢(e’) for an edge ¢’ € Eg(z, z), where z is different from y. If a color
8 € B(x) is missing at z, then e’ may be colored 5 and e may then be colored a.
Hence we may assume that all colors from P(x) are present at z. At z there are at
most 2r + 1 colors present, hence at most r colors from B(y) belong to ${z). This
means that there is a color v € P(y) NB(z). Let 3 be a color from &(x), see Fig. 1.4;
note that in Fig. 1.4, and from here on in this book, a bar above a color name means
that the color is missing at a particular vertex. Consider the chain P = P,(3,v). If
the chain does not end at y, recolor P and color e by . If the chain does not end at
z, recolor P, recolor e’ by +, and color e by ce. One of the two cases must oceur.

This proves Shannon’s theorem. The proof is essentially Shannon’s proof. He
formulates it using a (2n.4-1) x (3n+ 1) 0-1-matrix with 1-entries showing the colors
possible for the edges from @. He then rearranges columns and rows of the matrix
{changes the order of colors and of edges) and makes Kempe changes, corresponding
to the argaments above, to see that the matrix may be changed into one with a 1 in
all places (%, 7) of the matrix, thus showing that it is possible to extend a coloring of
G — z to include all edges from x also,

Following Tait, Kdnig, and Shannon, the next breakthrough was the thecrem of
Vizing [297, 298], obtained independently by Gupta [120]. This theorem, from 1964,
says that x'(G) < A(G) + u(G) for every graph G.

By Vizing’s result, the chromatic index of a simple graph G is either A(G) or
A(G) +1. Vizing’s proof yields a polynomial-time algorithm that colors the edges of
any simple graph G with A(G) + 1 colors. On the other hand, Holyer [150] proved
that it is NP-complete to decide whether a cubic simple graph has chromatic index
3. These two results answer the edge coloring problem for the class of simple graphs
— at least from an algorithmic point of view. Our knowledge about edge coloring
of (multi}graphs, however, remains unsatisfactory. Goldberg’s conjecture supports
the conjecture that there is a polynomial-time algorithm that cotors the edges of any
graph G with x'(G) + 1 colors. Furthermore, Goldberg’s conjecture implies that
the only difficulty in determining the chromatic index of an arbitrary graph G in
polynomial time is to distinguish between x'(G) = A(G) and }'{G) = A(G) + 1.





