
CHAPTER 1

CLASSICAL FORMULAS

The historical backdrop to this book is the search for methods of solving
polynomial equations by radicals, a challenge embraced by many of the greatest
mathematicians of the past. There are polynomial equations of any given degree
n that can be solved in this way. For example, xn − 2 = 0 has such a solution,
usually denoted by the symbol n

√
2. The question that arises is whether there is

a solution by radicals of the so-called general equation of degree n ,

anxn + an−1xn−1 + · · · + a1x + a0 = 0

where the coefficients a0, a1, . . . , an are indeterminates. When a solution exists,
it provides a “formula” into which numeric coefficients can be substituted for
specific cases. The quadratic formula for second degree equations is no doubt
familiar to the reader (see the following discussion).

In fact, methods of solving quadratic equations were known to the Baby-
lonians as long ago as 2000 B.C. The book Al Kitab Al Jabr Wa’al Muqabelah by
the Persian mathematician Mohammad ibn Musa al-Khwarizmi appeared around
830 A.D. In this work, the title of which gives us the word “algebra,” techniques
available at that time for solving quadratic equations were systematized. Around
1079, the Persian mathematician and poet Omar Khayyam (of Rubaiyat fame)
presented a geometric method for solving certain cubic (third degree) equations.

An algebraic solution of a particular type of cubic equation was discovered
by the Italian mathematician Scipione del Ferro (1465–1526) around 1515, but
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2 CLASSICAL FORMULAS

this accomplishment was not published in his lifetime. About 1535, a more
complete set of solutions was developed by the Italian mathematician Niccolo
Fontana (ca 1500–1557), nicknamed “Tartaglia” (the “Stammerer”). These
results were further developed by another Italian mathematician, Girolamo
Cardano (1501–1576), who published them in his book Artis Magnae, Sive de
Regulis Algebraicis (The Great Art, or the Rules of Algebra), which appeared
in 1545. The solution of the quartic (fourth degree) equation was discovered
by yet another Italian mathematician, Ludovico Ferrari (1522–1565), a pupil of
Cardano.

The next challenge faced by the mathematical scholars of the Renaissance was
to find the solution of the quintic (fifth degree) equation. Since the quadratic,
cubic, and quartic equations had given up their secrets, there was every reason
to believe that with sufficient effort and ingenuity the same would be true of
the quintic. Yet, despite the efforts of some of the greatest mathematicians of
Europe over the ensuing two centuries, the quintic equation remained stubbornly
resistant. In 1770, the Italian mathematician Joseph-Louis Lagrange (1736–1813,
born Giussepe Lodovico Lagrangia) published his influential Réflexions sur la
résolution algébrique des équations. In this journal article of over 200 pages,
Lagrange methodically analyzed the known techniques of solving polynomial
equations. The principles uncovered by Lagrange, along with his introduction of
what would ultimately become group theory, opened up an entirely new approach
to the problem of solving polynomial equations by radicals.

Nevertheless, the methods developed by Lagrange did not lead to a solution of
the general quintic. In 1801, the eminent German mathematician and scientist Carl
Friedrich Gauss (1777–1855) published Disquisitiones Arithmeticae (Number
Research), a landmark in which he demonstrated, among other things, that for
any degree n , the roots of the polynomial equation xn − 1 = 0 can be expressed
in terms of radicals. Despite this success, it seems that Gauss was of the opinion
that the general quintic equation could not be solved by radicals.

This was certainly the view held by the Italian mathematician and physician
Paolo Ruffini (1765–1822), who published a treatise of over 500 pages on the
topic in 1799. An important feature of his work was the extensive use of group
theory, albeit in what would now be considered rudimentary form. Although spe-
cific objections to the proofs Ruffini presented were not forthcoming, there seems
to have been a reluctance on the part of the mathematical community to accept
his claims. Perhaps this was related to the novelty of his approach, or maybe it
was simply because his proofs were excessively complex, and therefore suspect.
Over the years, Ruffini greatly simplified his methods, but his arguments never
seemed to achieve widespread approval, at least not during his lifetime. A notable
exception was the French mathematician Augustin-Louis Cauchy (1789–1857),
who was supportive of Ruffini and an early contributor to the development of
group theory.

In any event, the matter was definitively settled by the Norwegian mathemati-
cian Niels Henrik Abel (1802–1829) with the publication in 1824 of a succinct
and accessible proof showing that it is impossible to solve the general quintic
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equation by radicals. This result, along with its various generalizations, will be
referred to here as the Impossibility Theorem . As remarkable as this achievement
was, the methods used by Abel shed relatively little light on why the quintic
equation is insolvable.

This question was answered in a spectacular manner by the French mathe-
matician Évariste Galois (1811–1832). In fact, his approach encompasses not
only general polynomial equations but also the more complicated case where
the coefficients of the polynomial are numeric. In the manuscript Mémoire sur
les conditions de résolubilité des équations par radicaux, submitted to the Paris
Academy of Sciences when he was just 18 years of age, and published posthu-
mously 14 years after his tragic death, Galois provides the foundations for what
would become the mathematical discipline with which his name has become
synonymous.

This book presents an introduction to Galois theory along both classical and
modern lines, with a focus on questions related to the solvability of polynomial
equations by radicals. The classical content includes theorems on polynomials,
fields, and groups due to such luminaries as Gauss, Kronecker, Lagrange, Ruffini,
and, of course, Galois. These results figured prominently in earlier expositions of
Galois theory but seem to have gone out of fashion. This is unfortunate because,
aside from being of intrinsic mathematical interest, such material provides pow-
erful motivation for the more modern treatment of Galois theory presented later
in this book.

Over the course of the book, three versions of the Impossibility Theorem
are presented. The first relies entirely on polynomials and fields, the second
incorporates a limited amount of group theory, and the third takes full advantage
of modern Galois theory. This progression through methods that involve more
and more group theory characterizes the first part of the book. The latter part
of the book is devoted to topics that illustrate the power of Galois theory as
a theoretical and computational tool, but again in the context of solvability of
polynomial equations by radicals.

In this chapter, we derive the classical formulas for solving quadratic, cubic,
and quartic polynomial equations by radicals. It is assumed that the polynomials
have coefficients in Q, the field of rational numbers. This choice of underlying
field is made for the sake of concreteness, but the arguments to follow apply
equally to “general” polynomials as defined in Chapter 7. The discussion pre-
sented here is somewhat informal. In Chapter 2 and later in the book, we introduce
concepts that allow the material given below to be made more rigorous. Sugges-
tions for further reading on the material in this chapter, and other portions of the
book devoted to classical topics, can be found in Appendix F.

1.1 QUADRATIC POLYNOMIALS

Let

f (x) = x2 − ax + b (1.1)
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be a quadratic polynomial with coefficients in Q. A root of f (x) is an element
α (in some field) such that f (α) = 0. It is a fundamental result that, since f (x)

has degree 2, there are precisely two such roots, which we denote by α1 and α2.
Consequently, f (x) can be expressed as

f (x) = (x − α1)(x − α2). (1.2)

The roots of f (x) are given by the quadratic formula:

α1, α2 = a ± √
a2 − 4b

2
. (1.3)

Here and throughout, the notation ± is to be interpreted as follows: α1 corre-
sponds to the + sign and α2 to the − sign. Accordingly, (1.3) is equivalent
to

α1 = a + √
a2 − 4b

2
and α2 = a − √

a2 − 4b

2
.

A corresponding interpretation is given to the notation ∓.
To derive (1.3), we substitute x = y + a/2 into (1.1), producing the so-called

reduced quadratic polynomial

g(y) = y2 + p

where

p = −a2

4
+ b.

The roots of g(y) are

β1, β2 = ±√−p = ±√
a2 − 4b

2
.

Setting βi = αi − a/2 for i = 1, 2, gives (1.3). It is readily verified that (1.2)
holds:

f (x) =
(

x − a + √
a2 − 4b

2

)(
x − a − √

a2 − 4b

2

)
. (1.4)

When α1 = α2, we say that f (x) has a repeated root . The preceding statement
that f (x) has two roots remains true, provided that we take the repetition of roots
into account.
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The quantity a2 − 4b is referred to as the discriminant of f (x) and is denoted
by disc(f ). We have from (1.3) that

disc(f ) = a2 − 4b = (α1 − α2)
2. (1.5)

Thus, f (x) has a repeated root if and only if disc(f ) = 0. In this case, the repeated
root is α1 = α2 = a/2, and (1.4) becomes

f (x) =
(

x − a

2

)2
. (1.6)

This gives us a way of deciding whether a quadratic polynomial has a repeated
root based solely on its coefficients. We will see a significant generalization of
this finding in Chapter 3.

The symbol
√

a2 − 4b deserves a comment. In the absence of further con-
ditions,

√
a2 − 4b represents either of the two roots of x2 − (a2 − 4b). When

a2 − 4b > 0,
√

a2 − 4b is a real number, and it is common practice to take√
a2 − 4b to be the positive square root of a2 − 4b. To take a simpler example,√
2 is typically regarded as the positive square root of 2, that is,

√
2 = 1.414 . . .

The negative square root of 2 is then −√
2 = −1.414 . . . The distinction between

the positive and negative square roots of 2 rests on metric properties of real
numbers. In this book, we are focused almost exclusively on algebraic matters.
Accordingly, unless otherwise indicated,

√
2 stands for either the positive or neg-

ative square root of 2. Expressed differently but more algebraically,
√

2 represents
either of the roots of x2 − 2. As such, we are not obligated to specify whether√

2 equals 1.414 . . . or −1.414 . . ., only that it is one of these two quantities;
by default, −√

2 is the other. Returning to
√

a2 − 4b, we observe that switching
from one root of x2 − (a2 − 4b) to the other merely interchanges the values of
α1 and α2, leaving us with the same two roots of f (x).

1.2 CUBIC POLYNOMIALS

Let

f (x) = x3 − ax2 + bx − c (1.7)

be a cubic polynomial with coefficients in Q. Consistent with the quadratic case,
f (x) has three roots, which we denote by α1, α2, and α3. To find formulas for
these roots, we resort to a series of ad hoc devices. First, we eliminate the
quadratic term in (1.7) by making the substitution x = y + a/3. This produces
the reduced cubic polynomial

g(y) = y3 + py + q (1.8)
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where

p = −a2

3
+ b and q = −2a3

27
+ ab

3
− c.

Denote the roots of g(y) by β1, β2, and β3, where βi = αi − a/3 for i =
1, 2, 3. Next, substitute

y = 1

3

(
z − 3p

z

)
(1.9)

into (1.8) and obtain

z 6 + 27qz 3 − 27p3

z 6

where z is assumed to be nonzero. The roots of g(y) can be determined by first
finding the roots of

r(z ) = z 6 + 27qz 3 − 27p3 (1.10)

and then reversing the substitution (1.9). Observing that r(z ) is a quadratic poly-
nomial in z 3, it follows that the roots of r(z ) are the same as the roots of

z 3 − 27

(
−q

2
±

√
p3

27
+ q2

4

)
.

Let

λ1, λ2 = 3
3

p

−q

2
±

√
p3

27
+ q2

4
(1.11)

where, in keeping with (1.9), λ1 and λ2 are chosen so that

λ1λ2 = −3p. (1.12)

By definition, the cube roots of unity are the roots of the polynomial

x 3 − 1 = (x − 1)(x2 + x + 1).

In particular, the roots of x2 + x + 1 are

ω, ω2 = −1 ± i
√

3

2
(1.13)
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where, as usual, i = √−1. In (1.13), we take
√

3 to be the positive square root
of 3. The notation ω will be reserved for (−1 + i

√
3)/2 for the rest of the book.

We note in passing that

ω2 + ω + 1 = 0. (1.14)

It follows that the roots of r(z ) are

λ1 ωλ1 ω2λ1 λ2 ωλ2 and ω2λ2.

At first glance, it appears that the cubic polynomial g(y) also has six roots, which
is impossible. However, because of (1.12), the following identities hold:

1

3

(
λ1 − 3p

λ1

)
= λ1 + λ2

3
= 1

3

(
λ2 − 3p

λ2

)

1

3

(
ω2λ1 − 3p

ω2λ1

)
= ω2λ1 + ωλ2

3
= 1

3

(
ωλ2 − 3p

ωλ2

)

1

3

(
ωλ1 − 3p

ωλ1

)
= ωλ1 + ω2λ2

3
= 1

3

(
ω2λ2 − 3p

ω2λ2

)
.

The three roots of g(x) are therefore

β1 = λ1 + λ2

3

β2 = ω2λ1 + ωλ2

3

β3 = ωλ1 + ω2λ2

3
.

(1.15)

Substituting from (1.11), we obtain

β1 = 3

p

−q

2
+

√
p3

27
+ q2

4
+ 3

p

−q

2
−

√
p3

27
+ q2

4

β2 = ω2 3

p

−q

2
+

√
p3

27
+ q2

4
+ ω

3

p

−q

2
−

√
p3

27
+ q2

4

β3 = ω
3

p

−q

2
+

√
p3

27
+ q2

4
+ ω2 3

p

−q

2
−

√
p3

27
+ q2

4

(1.16)

which are known as Cardan’s formulas .
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Example 1.1. Setting p = 3 and q = 4, we have

g(y) = y3 + 3y + 4.

The graph of g(y) is shown below.

–2

–5

5

10

15

–10

0–1 1 2
y

Clearly, g(y) has one real root, hence two nonreal complex roots. As suggested
by the graph, the real root is −1. We have from (1.16) that

β1 = 3
√

−2 +
√

5 + 3
√

−2 −
√

5

β2 = ω2 3
√

−2 +
√

5 + ω
3
√

−2 −
√

5

β3 = ω
3
√

−2 +
√

5 + ω2 3
√

−2 −
√

5.

(1.17)

The roots of x2 − 5 are
√

5 and −√
5, and the three roots of x3 + 2 − √

5 are

3
√

−2 +
√

5 ω
3
√

−2 +
√

5 and ω2 3
√

−2 +
√

5.

We now take
√

5 and
3
√

−2 + √
5 to be positive real numbers. For (1.12) to be

satisfied,
3
√

−2 − √
5 = − 3

√
2 + √

5 must be a negative real number. It can be
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shown that

3
√

−2 +
√

5 = −1 + √
5

2
and

3
√

2 +
√

5 = 1 + √
5

2
.

Using (1.13) and (1.14), we can simplify (1.17) to

β1 = −1 and β2, β3 = 1 ∓ i
√

15

2
. (1.18)

Alternatively, since −1 is a root of g(y), we have

g(y) = (y + 1)(y2 − y + 4)

which again leads to (1.18). ♦

Example 1.2. Setting p = −6 and q = −4, we have

g(y) = y3 − 6y − 4.

The graph of g(y) is shown below.
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Evidently, g(y) has three real roots, and as suggested by the graph, one of
them is −2. Then (1.16) yields

β1 = 3
√

2 + 2i + 3
√

2 − 2i

β2 = ω2 3
√

2 + 2i + ω
3
√

2 − 2i

β3 = ω
3
√

2 + 2i + ω2 3
√

2 − 2i .

(1.19)

The appearance of (1.19) is surprising, given that each of β1, β2, and β3 is a real
number. However, it can be shown that

3
√

2 + 2i = −1 + i and 3
√

2 − 2i = −1 − i .

This makes it possible to simplify (1.19) to

β1 = −2 and β2, β3 = 1 ±
√

3. (1.20)

Alternatively, since −2 is a root of g(y), we have

g(y) = (y + 2)(y2 − 2y − 2)

from which (1.20) results. ♦

Example 1.3. Setting p = −6 and q = 2, we have

g(y) = y3 − 6y + 2.

The graph of g(y) is shown below.
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We see that g(y) has three real roots, but this time the numerical value of a
root is not empirically obvious. According to (1.16),

β1 = 3
√

−1 + i
√

7 + 3
√

−1 − i
√

7

β2 = ω2 3
√

−1 + i
√

7 + ω
3
√

−1 − i
√

7

β3 = ω
3
√

−1 + i
√

7 + ω2 3
√

−1 − i
√

7.

It is reasonable to expect that, just as in Example 1.2, we should be able to
express β1, β2, and β3 entirely in terms of real numbers. Surprisingly, it is not
possible to do so, as will follow from Theorem 6.21. This counterintuitive result
is an example of a classical problem called the Casus Irreducibilis (Irreducible
Case). ♦

1.3 QUARTIC POLYNOMIALS

Let

f (x) = x4 − ax3 + bx2 − cx + d (1.21)

be a quartic polynomial with coefficients in Q, and denote its roots by α1, α2,
α3, and α4. Analogous to the approach used to solve the quadratic and cubic
polynomials, we begin by substituting x = y + a/4 into (1.21) and obtain the
reduced quartic polynomial

g(y) = y4 + py2 + qy + r

where

p = −3a2

8
+ b q = −a3

8
+ ab

2
− c

and

r = −3a4

256
+ a2b

16
− ac

4
+ d .

Denote the roots of g(y) by β1, β2, β3, and β4, where βi = αi − a/4 for i =
1, 2, 3, 4. To find the roots of g(y), we again resort to a series of contrivances.
First, rewrite g(y) = 0 as

y4 = −py2 − qy − r . (1.22)
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Let θ1 be a “quantity,” as yet unspecified, and add θ1y2 + θ2
1 /4 to both sides of

(1.22) to obtain(
y2 + θ1

2

)2

= (θ1 − p)

[
y2 −

(
q

θ1 − p

)
y + θ2

1 − 4r

4(θ1 − p)

]
. (1.23)

We assume for the moment that θ1 �= p and view the expression in square
brackets in (1.23) as a polynomial in y . As remarked in Section 1.1, this poly-
nomial will be a square if its discriminant(

q

θ1 − p

)2

− 4

[
θ2

1 − 4r

4(θ1 − p)

]
= −(θ3

1 − pθ2
1 − 4rθ1 + 4pr − q2)

(θ1 − p)2

equals 0. Accordingly, we now require θ1 to be an arbitrary but fixed root of

s(z ) = z 3 − pz 2 − 4rz + 4pr − q2. (1.24)

Cardan’s formulas can be used to find an explicit expression for θ1. In view of
(1.6), we can now rewrite (1.23) as(

y2 + θ1

2

)2

= (θ1 − p)

[
y − q

2(θ1 − p)

]2

. (1.25)

Define φ1 by setting

φ2
1 = 4(θ1 − p). (1.26)

Then (1.25) becomes[
y2 +

(
φ2

1

8
+ p

2

)]2

=
[(

φ1

2

)
y − q

φ1

]2

.

This is equivalent to the pair of quadratic equations

y2 +
(

φ2
1

8
+ p

2

)
=

(
φ1

2

)
y − q

φ1

y2 +
(

φ2
1

8
+ p

2

)
= −

(
φ1

2

)
y + q

φ1

which we rewrite as

y2 −
(

φ1

2

)
y +

(
φ2

1

8
+ p

2
+ q

φ1

)
= 0

y2 +
(

φ1

2

)
y +

(
φ2

1

8
+ p

2
− q

φ1

)
= 0

(1.27)

respectively.
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Denote the roots of the first equation in (1.27) by β1 and β2, and those of the
second by β3 and β4. We then have

β1, β2 = φ1

4
± 1

2

√
−φ2

1

4
− 2p − 4q

φ1

β3, β4 = −φ1

4
± 1

2

√
−φ2

1

4
− 2p + 4q

φ1

(1.28)

which will be referred to as Ferrari’s formulas . Note that if we replace φ1 with
−φ1 in (1.28), we obtain the same roots for g(y) but with the rows of (1.28)
reversed.

It remains to consider the case θ1 = p. In this situation, (1.24) becomes

s(z ) = z 3 − θ1z 2 − 4rz + 4θ1r − q2.

Then s(θ1) = 0 implies that q = 0, hence g(y) = y4 + py2 + r . This is a
quadratic polynomial in y2, the roots of which are easily found.

Example 1.4 (5th root of unity). Consider the polynomial

�5(x) = x4 + x3 + x2 + x + 1.

The reason for the choice of notation will be made clear in Chapter 5. We
return to �5(x) several times later in the book. To give �5(x) a more familiar
interpretation, observe that

x5 − 1 = (x − 1)�5(x).

In the terminology of Chapter 5, the roots of x5 − 1 are the 5th roots of unity.
More specifically, the roots of �5(x) are ζ5, ζ 2

5 , ζ 3
5 , and ζ 4

5 , where

ζ5 = cos

(
2π

5

)
+ i sin

(
2π

5

)
.

The reduced polynomial corresponding to �5(x) is

g(y) = y4 +
(

5

8

)
y2 +

(
5

8

)
y + 205

256
.

In the above notation,

s(z ) = z 3 −
(

5

8

)
z 2 −

(
205

64

)
z + 825

512
.
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The reduced polynomial corresponding to s(z ) is

h(y) = y3 −
(

10

3

)
y + 25

27
.

Using Cardan’s formulas, we find that h(y) has the roots

5

3
and − 5

6
±

√
5

2
.

It follows that the roots of s(z ) are

15

8
and − 5

8
±

√
5

2
.

The respective values of φ1 are

√
5 and

√
−5 ± 2

√
5.

Choosing φ1 = √
5 and taking all square roots to be positive, we find from

Ferrari’s formulas that the roots of �5(x) are

ζ5, ζ 4
5 = −1 + √

5 ± i
√

10 + 2
√

5

4

ζ 2
5 , ζ 3

5 = −1 − √
5 ± i

√
10 − 2

√
5

4
.

(1.29)

In (1.29), the assignment of the powers of ζ5 to their expressions in terms of
radicals was made on the basis of their respective numerical values. ♦


