
CHAPTER 1

INTRODUCTION TO
STATISTICAL SCIENCE

Statistics is the science that relates data to specific questions of interest. This
includes devising methods to gather data relevant to the question, methods to
summarize and display the data to shed light on the question, and methods
that enable us to draw answers to the question that are supported by the data.
Data almost always contain uncertainty. This uncertainty may arise from
selection of the items to be measured, or it may arise from variability of the
measurement process. Drawing general conclusions from data is the basis for
increasing knowledge about the world, and is the basis for all rational scientific
inquiry. Statistical inference gives us methods and tools for doing this despite
the uncertainty in the data. The methods used for analysis depend on the
way the data were gathered. It is vitally important that there is a probability
model explaining how the uncertainty gets into the data.

Showing a Causal Relationship from Data

Suppose we have observed two variables X and Y . Variable X appears to have
an association with variable Y . If high values of X occur with high values of
variable Y and low values of X occur with low values of Y , then we say the
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X Y

Figure 1.1 Association between two variables.

X Y

Figure 1.2 Association due to causal relationship.

association is positive. On the other hand, the association could be negative
in which high values of variable X occur in with low values of variable Y .
Figure 1.1 shows a schematic diagram where the association is indicated by
the dashed curve connecting X and Y . The unshaded area indicates that X
and Y are observed variables. The shaded area indicates that there may be
additional variables that have not been observed.

We would like to determine why the two variables are associated. There
are several possible explanations. The association might be a causal one. For
example, X might be the cause of Y . This is shown in Figure 1.2, where the
causal relationship is indicated by the arrow from X to Y .

On the other hand, there could be an unidentified third variable Z that
has a causal effect on both X and Y . They are not related in a direct causal
relationship. The association between them is due to the effect of Z. Z is
called a lurking variable, since it is hiding in the background and it affects
the data. This is shown in Figure 1.3.
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Figure 1.3 Association due to lurking variable.
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Figure 1.4 Confounded causal and lurking variable effects.

It is possible that both a causal effect and a lurking variable may both be
contributing to the association. This is shown in Figure 1.4. We say that the
causal effect and the effect of the lurking variable are confounded . This means
that both effects are included in the association.

Our first goal is to determine which of the possible reasons for the associa-
tion holds. If we conclude that it is due to a causal effect, then our next goal
is to determine the size of the effect. If we conclude that the association is
due to causal effect confounded with the effect of a lurking variable, then our
next goal becomes determining the sizes of both the effects.

1.1 The Scientific Method: A Process for Learning

In the Middle Ages, science was deduced from principles set down many cen-
turies earlier by authorities such as Aristotle. The idea that scientific theories
should be tested against real world data revolutionized thinking. This way of
thinking known as the scientific method sparked the Renaissance.
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The scientific method rests on the following premises:

A scientific hypothesis can never be shown to be absolutely true.

However, it must potentially be disprovable.

It is a useful model until it is established that it is not true.

Always go for the simplest hypothesis, unless it can be shown to be false.

This last principle, elaborated by William of Ockham in the 13th century, is
now known as Ockham’s razor and is firmly embedded in science. It keeps
science from developing fanciful overly elaborate theories. Thus the scientific
method directs us through an improving sequence of models, as previous ones
get falsified. The scientific method generally follows the following procedure:

1. Ask a question or pose a problem in terms of the current scientific hypoth-
esis.

2. Gather all the relevant information that is currently available. This in-
cludes the current knowledge about parameters of the model.

3. Design an investigation or experiment that addresses the question from
step 1. The predicted outcome of the experiment should be one thing if
the current hypothesis is true, and something else if the hypothesis is false.

4. Gather data from the experiment.

5. Draw conclusions given the experimental results. Revise the knowledge
about the parameters to take the current results into account.

The scientific method searches for cause-and-effect relationships between an
experimental variable and an outcome variable. In other words, how changing
the experimental variable results in a change to the outcome variable. Sci-
entific modeling develops mathematical models of these relationships. Both
of them need to isolate the experiment from outside factors that could affect
the experimental results. All outside factors that can be identified as possibly
affecting the results must be controlled. It is no coincidence that the earliest
successes for the method were in physics and chemistry where the few out-
side factors could be identified and controlled. Thus there were no lurking
variables. All other relevant variables could be identified and could then be
physically controlled by being held constant. That way they would not af-
fect results of the experiment, and the effect of the experimental variable on
the outcome variable could be determined. In biology, medicine, engineering,
technology, and the social sciences it is not that easy to identify the relevant
factors that must be controlled. In those fields a different way to control
outside factors is needed, because they cannot be identified beforehand and
physically controlled.
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1.2 The Role of Statistics in the Scientific Method

Statistical methods of inference can be used when there is random variability
in the data. The probability model for the data is justified by the design of
the investigation or experiment. This can extend the scientific method into
situations where the relevant outside factors cannot even be identified. Since
we cannot identify these outside factors, we cannot control them directly.
The lack of direct control means the outside factors will be affecting the
data. There is a danger that the wrong conclusions could be drawn from the
experiment due to these uncontrolled outside factors.

The important statistical idea of randomization has been developed to deal
with this possibility. The unidentified outside factors can be “averaged out”
by randomly assigning each unit to either treatment or control group. This
contributes variability to the data. Statistical conclusions always have some
uncertainty or error due to variability in the data. We can develop a prob-
ability model of the data variability based on the randomization used. Ran-
domization not only reduces this uncertainty due to outside factors, it also
allows us to measure the amount of uncertainty that remains using the prob-
ability model. Randomization lets us control the outside factors statistically,
by averaging out their effects.

Underlying this is the idea of a statistical population, consisting of all possi-
ble values of the observations that could be made. The data consists of obser-
vations taken from a sample of the population. For valid inferences about the
population parameters from the sample statistics, the sample must be “rep-
resentative” of the population. Amazingly, choosing the sample randomly is
the most effective way to get representative samples!

1.3 Main Approaches to Statistics

There are two main philosophical approaches to statistics. The first is often
referred to as the frequentist approach. Sometimes it is called the classical
approach. Procedures are developed by looking at how they perform over all
possible random samples. The probabilities do not relate to the particular
random sample that was obtained. In many ways this indirect method places
the “cart before the horse.”

The alternative approach that we take in this book is the Bayesian ap-
proach. It applies the laws of probability directly to the problem. This offers
many fundamental advantages over the more commonly used frequentist ap-
proach. We will show these advantages over the course of the book.

Frequentist Approach to Statistics

Most introductory statistics books take the frequentist approach to statistics,
which is based on the following ideas:
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Parameters, the numerical characteristics of the population, are fixed but
unknown constants.

Probabilities are always interpreted as long-run relative frequency.

Statistical procedures are judged by how well they perform in the long
run over an infinite number of hypothetical repetitions of the experiment.

Probability statements are only allowed for random quantities. The un-
known parameters are fixed, not random, so probability statements cannot be
made about their value. Instead, a sample is drawn from the population, and
a sample statistic is calculated. The probability distribution of the statistic
over all possible random samples from the population is determined and is
known as the sampling distribution of the statistic. A parameter of the popu-
lation will also be a parameter of the sampling distribution. The probability
statement that can be made about the statistic based on its sampling dis-
tribution is converted to a confidence statement about the parameter. The
confidence is based on the average behavior of the procedure over all possible
samples.

Bayesian Approach to Statistics

The Reverend Thomas Bayes first discovered the theorem that now bears his
name. It was written up in a paper An Essay Towards Solving a Problem
in the Doctrine of Chances. This paper was found after his death by his
friend Richard Price, who had it published posthumously in the Philosophical
Transactions of the Royal Society in 1763 (1763). Bayes showed how inverse
probability could be used to calculate probability of antecedent events from
the occurrence of the consequent event. His methods were adopted by Laplace
and other scientists in the 19th century, but had largely fallen from favor by
the early 20th century. By the middle of the 20th century, interest in Bayesian
methods had been renewed by de Finetti, Jeffreys, Savage, and Lindley, among
others. They developed a complete method of statistical inference based on
Bayes’ theorem.

This book introduces the Bayesian approach to statistics. The ideas that
form the basis of the this approach are:

Since we are uncertain about the true value of the parameters, we will
consider them to be random variables.

The rules of probability are used directly to make inferences about the
parameters.

Probability statements about parameters must be interpreted as “degree
of belief.” The prior distribution must be subjective. Each person can
have his/her own prior, which contains the relative weights that person
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gives to every possible parameter value. It measures how “plausible” the
person considers each parameter value to be before observing the data.

We revise our beliefs about parameters after getting the data by using
Bayes’ theorem. This gives our posterior distribution which gives the
relative weights we give to each parameter value after analyzing the data.
The posterior distribution comes from two sources: the prior distribution
and the observed data.

This has a number of advantages over the conventional frequentist approach.
Bayes’ theorem is the only consistent way to modify our beliefs about the
parameters given the data that actually occurred. This means that the in-
ference is based on the actual occurring data, not all possible data sets that
might have occurred but did not! Allowing the parameter to be a random
variable lets us make probability statements about it, posterior to the data.
This contrasts with the conventional approach where inference probabilities
are based on all possible data sets that could have occurred for the fixed pa-
rameter value. Given the actual data, there is nothing random left with a
fixed parameter value, so one can only make confidence statements, based on
what could have occurred. Bayesian statistics also has a general way of deal-
ing with a nuisance parameter . A nuisance parameter is one which we do not
want to make inference about, but we do not want them to interfere with the
inferences we are making about the main parameters. Frequentist statistics
does not have a general procedure for dealing with them. Bayesian statistics
is predictive, unlike conventional frequentist statistics. This means that we
can easily find the conditional probability distribution of the next observation
given the sample data.

Monte Carlo Studies

In frequentist statistics, the parameter is considered a fixed, but unknown,
constant. A statistical procedure such as a particular estimator for the pa-
rameter cannot be judged from the value it gives. The parameter is unknown,
so we can not know the value the estimator should be giving. If we knew the
value of the parameter, we would not be using an estimator.

Instead, statistical procedures are evaluated by looking how they perform
in the long run over all possible samples of data, for fixed parameter values
over some range. For instance, we fix the parameter at some value. The
estimator depends on the random sample, so it is considered a random variable
having a probability distribution. This distribution is called the sampling
distribution of the estimator, since its probability distribution comes from
taking all possible random samples. Then we look at how the estimator is
distributed around the parameter value. This is called sample space averaging.
Essentially it compares the performance of procedures before we take any data.

Bayesian procedures consider the parameter to be a random variable, and
its posterior distribution is conditional on the sample data that actually oc-
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curred, not all those samples that were possible but did not occur. However,
before the experiment, we might want to know how well the Bayesian proce-
dure works at some specific parameter values in the range.

To evaluate the Bayesian procedure using sample space averaging, we have
to consider the parameter to be both a random variable and a fixed but
unknown value at the same time. We can get past the apparent contradiction
in the nature of the parameter because the probability distribution we put on
the parameter measures our uncertainty about the true value. It shows the
relative belief weights we give to the possible values of the unknown parameter!
After looking at the data, our belief distribution over the parameter values has
changed. This way we can think of the parameter as a fixed, but unknown,
value at the same time as we think of it being a random variable. This allows
us to evaluate the Bayesian procedure using sample space averaging. This is
called pre-posterior analysis because it can be done before we obtain the data.

In Chapter 4, we will find out that the laws of probability are the best way
to model uncertainty. Because of this, Bayesian procedures will be optimal in
the post-data setting, given the data that actually occurred. In Chapters 9
and 11, we will see that Bayesian procedures perform very well in the pre-data
setting when evaluated using pre-posterior analysis. In fact, it is often the
case that Bayesian procedures outperform the usual frequentist procedures
even in the pre-data setting.

Monte Carlo studies are a useful way to perform sample space averaging.
We draw a large number of samples randomly using the computer and cal-
culate the statistic (frequentist or Bayesian) for each sample. The empirical
distribution of the statistic (over the large number of random samples) ap-
proximates its sampling distribution (over all possible random samples). We
can calculate statistics such as mean and standard deviation on this Monte
Carlo sample to approximate the mean and standard deviation of the sampling
distribution. Some small-scale Monte Carlo studies are included as exercises.

1.4 Purpose and Organization of This Text

A very large proportion of undergraduates are required to take a service course
in statistics. Almost all of these courses are based on frequentist ideas. Most
of them do not even mention Bayesian ideas. As a statistician, I know that
Bayesian methods have great theoretical advantages. I think we should be
introducing our best students to Bayesian ideas, from the beginning. There
are not many introductory statistics text books based on the Bayesian ideas.
Some other texts include Berry (1996), Press (1989), and Lee (1989).

This book aims to introduce students with a good mathematics background
to Bayesian statistics. It covers the same topics as a standard introductory
statistics text, only from a Bayesian perspective. Students need reasonable
algebra skills to follow this book. Bayesian statistics uses the rules of prob-
ability, so competence in manipulating mathematical formulas is required.
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Students will find that general knowledge of calculus is helpful in reading this
book. Specifically they need to know that area under a curve is found by
integrating, and that a maximum or minimum of a continuous differentiable
function is found where the derivative of the function equals zero. However,
the actual calculus used is minimal. The book is self-contained with a calculus
appendix that students can refer to.

Chapter 2 introduces some fundamental principles of scientific data gath-
ering to control the effects of unidentified factors. These include the need
for drawing samples randomly, along with some random sampling techniques.
The reason why there is a difference between the conclusions we can draw
from data arising from an observational study and from data arising from a
randomized experiment is shown. Completely randomized designs and ran-
domized block designs are discussed.

Chapter 3 covers elementary methods for graphically displaying and sum-
marizing data. Often a good data display is all that is necessary. The princi-
ples of designing displays that are true to the data are emphasized.

Chapter 4 shows the difference between deduction and induction. Plausi-
ble reasoning is shown to be an extension of logic where there is uncertainty.
It turns out that plausible reasoning must follow the same rules as probabil-
ity. The axioms of probability are introduced and the rules of probability,
including conditional probability and Bayes’ theorem are developed.

Chapter 5 covers discrete random variables, including joint and marginal
discrete random variables. The binomial, hypergeometric, and Poisson distri-
butions are introduced, and the situations where they arise are characterized.

Chapter 6 covers Bayes’ theorem for discrete random variables using a
table. We see that two important consequences of the method are that multi-
plying the prior by a constant, or that multiplying the likelihood by a constant
do not affect the resulting posterior distribution. This gives us the “propor-
tional form” of Bayes’ theorem. We show that we get the same results when
we analyze the observations sequentially using the posterior after the previ-
ous observation as the prior for the next observation, as when we analyze the
observations all at once using the joint likelihood and the original prior. We
demonstrate Bayes’ theorem for binomial observations with a discrete prior
and for Poisson observations with a discrete prior.

Chapter 7 covers continuous random variables, including joint, marginal,
and conditional random variables. The beta, gamma, and normal distributions
are introduced in this chapter.

Chapter 8 covers Bayes’ theorem for the population proportion (binomial)
with a continuous prior. We show how to find the posterior distribution of
the population proportion using either a uniform prior or a beta prior. We
explain how to choose a suitable prior. We look at ways of summarizing the
posterior distribution.

Chapter 9 compares the Bayesian inferences with the frequentist inferences.
We show that the Bayesian estimator (posterior mean using a uniform prior)
has better performance than the frequentist estimator (sample proportion) in
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terms of mean squared error over most of the range of possible values. This
kind of frequentist analysis is useful before we perform our Bayesian analysis.
We see the Bayesian credible interval has a much more useful interpretation
than the frequentist confidence interval for the population proportion. One-
sided and two-sided hypothesis tests using Bayesian methods are introduced.

Chapter 10 covers Bayes’ theorem for the Poisson observations with a
continuous prior. The prior distributions used include the positive uniform,
the Jeffreys’ prior, and the gamma prior. Bayesian inference for the Poisson
parameter using the resulting posterior include Bayesian credible intervals and
two-sided tests of hypothesis, as well as one-sided tests of hypothesis.

Chapter 11 covers Bayes’ theorem for the mean of a normal distribution
with known variance. We show how to choose a normal prior. We discuss
dealing with nuisance parameters by marginalization. The predictive density
of the next observation is found by considering the population mean a nuisance
parameter and marginalizing it out.

Chapter 12 compares Bayesian inferences with the frequentist inferences
for the mean of a normal distribution. These comparisons include point and
interval estimation and involve hypothesis tests including both the one-sided
and the two-sided cases.

Chapter 13 shows how to perform Bayesian inferences for the difference be-
tween normal means and how to perform Bayesian inferences for the difference
between proportions using the normal approximation.

Chapter 14 introduces the simple linear regression model and shows how
to perform Bayesian inferences on the slope of the model. The predictive
distribution of the next observation is found by considering both the slope
and intercept to be nuisance parameters and marginalizing them out.

Chapter 15 introduces Bayesian inference for the standard deviation σ,
when we have a random sample of normal observations with known mean µ.
This chapter is at a somewhat higher level than the previous chapters and
requires the use of the change-of-variable formula for densities. Priors used
include positive uniform for standard deviation, positive uniform for variance,
Jeffreys’ prior, and the inverse chi-squared prior. We discuss how to choose
an inverse chi-squared prior that matches our prior belief about the median.
Bayesian inferences from the resulting posterior include point estimates, cred-
ible intervals, and hypothesis tests including both the one-sided and two-sided
cases.

Chapter 16 shows how we can make Bayesian inference robust against a
misspecified prior by using a mixture prior and marginalizing out the mixture
parameter. This chapter is also at a somewhat higher level than the others,
but it shows how one of the main dangers of Bayesian analysis can be avoided.

Chapter 17 returns to the problem we discussed in Chapter 11 — that is, of
making inferences about the mean of a normal distribution. In this chapter,
however, we explicitly model the unknown population standard deviation and
show how the approximations we suggested in Chapter 11 are exactly true.
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We also deal with the two sample cases so that inference can be performed
on the difference between two means.

Chapter 18 introduces the multivariate normal distribution and extends the
theory from Chapters 11 and 17 to the multivariate case. The multivariate
normal distribution is essential for the discussion of linear models and, in
particular, multiple regression.

Chapter 19 extends the material from 14 on simple linear regression to the
more familiar multiple regression setting. The methodology for making infer-
ence about the usefulness of explanatory variables in predicting the response
is given, and the posterior predictive distribution for a new observation is
derived.

Chapter 20 provides a brief introduction to modern computational Bayesian
statistics. Computational Bayesian statistics relies heavily on being able to
efficiently sample from potentially complex distributions. This chapter gives
an introduction to a number of techniques that are used. Readers might be
slightly disappointed that we did not cover popular computer programs such
as BUGS and JAGS, which have very efficient general implementations of
many computational Bayesian methods and tie in well to R. We felt that
these topics require almost an entire book in their own right, and as such we
could not do justice to them in such a short space.

Main Points

An association between two variables does not mean that one causes the
other. It may be due to a causal relationship, it may be due to the effect
of a third (lurking) variable on both the other variables, or it may be
due to a combination of a causal relationship and the effect of a lurking
variable.

Scientific method is a method for searching for cause-and-effect relation-
ships and measuring their strength. It uses controlled experiments, where
outside factors that may affect the measurements are controlled. This iso-
lates the relationship between the two variables from the outside factors,
so the relationship can be determined.

Statistical methods extend the scientific method to cases where the out-
side factors are not identified and hence cannot be controlled. The prin-
ciple of randomization is used to statistically control these unidentified
outside factors by averaging out their effects. This contributes to vari-
ability in the data.

We can use the probability model (based on the randomization method)
to measure the uncertainty.

The frequentist approach to statistics considers the parameter to be a
fixed but unknown constant. The only kind of probability allowed is long-
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run relative frequency. These probabilities are only for observations and
sample statistics, given the unknown parameters. Statistical procedures
are judged by how they perform in an infinite number of hypothetical
repetitions of the experiment.

The Bayesian approach to statistics allows the parameter to be considered
a random variable. Probabilities can be calculated for parameters as well
as observations and sample statistics. Probabilities calculated for param-
eters are interpreted as “degree of belief” and must be subjective. The
rules of probability are used to revise our beliefs about the parameters,
given the data.

A frequentist estimator is evaluated by looking at its sampling distribu-
tion for a fixed parameter value and seeing how it is distributed over all
possible repetitions of the experiment.

If we look at the sampling distribution of a Bayesian estimator for a fixed
parameter value, it is called pre-posterior analysis since it can be done
prior to taking the data.

A Monte Carlo study is where we perform the experiment a large number
of times and calculate the statistic for each experiment. We use the
empirical distribution of the statistic over all the samples we took in our
study instead of its sampling distribution over all possible repetitions.




