1
Introduction: Why Mixed Models?

Big ideas have many names and applications. Sometimes the mixed model is called
the modei for repeated measurements, sometimes a hierarchical model. Sometimes
the mixed model is used to analyze clustered or panel data, sometimes longitudinal
data.

Mixed model methodology brings statistics to the next level. In classical statistics
a typical assumption is that observations are drawn from the same general popula-
tion and are independent and identically distributed. Mixed model data have a more
complex, multilevel, hierarchical structure. Observations between levels or clusters
are independent, but observations within each cluster are dependent because they
belong to the same subpopulation. Consequently, we speak of two sources of varia-
tion: between clusters and within clusters.

Mixed model is also well suited for the analysis of longitudinal data, where each
time series constitutes an individual curve, a cluster. Mixed model is well suited
for biolegical and medical data, which display notorious heterogeneity of responses
to stimuli and treatment. An advantage of the mixed model is the ability to gen-
uinely combine the data by introducing multilevel random effects. Mixed model is
8 nonlinear statistical model, due mainly to the presence of variance parameters,
and thus it requires special theoretical treatment. The goal of this book is to pro-
vide systematic coverage and development of all spectra of mixed models: linear,
generalized linear, and nonlinear.

The aim of this chapter is to show the variety of applications for which the
mixed model methodology can be useful, or even a breakthrough. For example,
application of mixed modeling methodology to shape and image analysis seems
especially exciting and challenging.

Mixed models can be used for the following purposes:

» To model complex clustered or longitudinal data.
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o To model data with multiple sources of variation.

¢ To model biological variety and heterogeneity.

e As a compromise between the freguentist and Bayesian approaches,
e As a statistical model for the penalized log-likelihood.

e To provide a theoretical basis for the Healthy Akaike Information Criterion
(HAIC).

¢ To cope with parameter multidimensionality.

s As a statistical model to solve ill-posed problems, including image reconstruc-
tion problems.

e To model shapes and images.

An important feature of this book is that it provides numerical algorithms as
a realization of statistical methods that it develops. We sirongly believe that an
approach is not valuable without an appropriate efficient algorithm. Fach chapter
ends with a summary points section that may help the reader to quickly grasp the
chapter’s major points.

1.1 Mixed effects for clustered data

The mixed effects approach copes with clustered data that can be viewed as a sample
of samples. To illustrate, tet us consider the relationship between price (x) and sales
(y). Let {(zx, ),k = 1,...,K} be the sample of observations collected on price
and sales for several commodities. Plotting ¢ versus x reveals that the relationship
is close to linear with a negative slope; see the left-hand panel in Figure 1.1. In
classical statistics it is assumed that pairs (z,yx) are independent and identically
distributed (iid} with the regression line F{y|z) = o+ Sz. However, one may argue
that we deal with clustered data, where each cluster is a commodity. In the right-
hand panel, we connect observation points for each commodity and obtain a reverse
picture—increase in price leads to increase in sales. A paradox?
Classical statistics assumes the model

yp =0+ PBxy +ex, k=1,.,K, (1.1)

where the {¢z} are independent and identically distributed random variables with
zero mean and constant variance o2, In other words, it is assumed that the data are
collected from similar, homogeneous commodities. As follows from the right panel,
the commodities are not homogeneous and vary substantially in terms of price
and sales. An adequate model for the sales problem would be to assume that each
commodity has its own commodity-specific sales {in statistical language, intercept};
namely,

Wi =C£,;+,833,;j +eg4, €= 1,..,.N, i=1,..,n; (1.2}
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Note that we use a double index now because we are dealing with clustered/panel
/tabular data: ¢ corresponds to the ¢th commodity, j corresponds to the jth observa-
tion of the ith commeodity, n; is the number of observations for the ¢th commodity,
and o is the commodity-specific intercept. The total number of cbservations is
K = Ziil n;. Regarding the error terms {e;; }, we assume that, as previously, they

are iid with the variance o?.
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FIGURE 1.1. Classical and mixed efects approaches lead to reverse conclusions. Left: In
the classical approach, it is assumed that observations are independent and identically
distributed, resulting in a negative relationship. The straight line shows simple regression
estimated by ordinary least squares. Right: In the mixed effects approach, it is assumed
that each commodity represenis a cluster and therefore that an increase in price for s
specific commodity leads to an increase in sales. The straight line shows the linear mived
effects model with populstion-averaged slope and commodity-specific intercept.

Obviously, model (1.2) is more complex than the classical regression model (1.1),
and in a special case, oy = e, we come to (1.1). The central assumption of the
mixed effects model is that intercepts {ay,¢ = 1,..., N} are random and belong to
a general population that can be expressed in the second equation as

a; = o+ by, (13)

where « is the population-averaged sale (intercept) and b; is the random effect, or
deviation of the commodity-specific sale from the population-averaged sale. Thus,
on the one hand, we allow commodity-specific sales, but on the other hand, we
assume that commodities represent the country market economy, and therefore one
can speak of how an increase in price affects sales across all commodities. Coupled
models (1.2} and (1.3) define a linear mixed effects model, parameters a and 8 are
fixed effects (population-averaged parameters), and b; is the random effect with zero
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mean and variance o} independent of {¢;;}. This is a hierarchical modet or a model
with random coefficients. The model defined by equations (1.2) and (1.3) can be
combined into one as

yig =a+ Bty i=1L0, N, i=1,,n (1.4)

where 7,; = &;; + b; is the composite random error. As follows from (1.4), obser-
vations on the same commodity (within a cluster) correlate with the correlation

coeflicient:

var(b;) o}

var(h; +&i5) o2 +o?’

(1.5)

but observations on different commodiiies {from different clusters) do not correlate.
In a mixed effects model, there are two sources of variation: the within {or intra)
-cluster variation, o2, and the between (or inter) -cluster variation, ¢Z. Recall that
classical regression assumes one variation. As follows from (1.5), the larger the
variation between commodities, the higher the correlation within each cluster. If
o2 = 0, the correlation is zero and ¢; = @, ordinary linear regression. For the data
in Figure 1.1, p = 0.99, so the major source of variation is the variation between
commodities. That is why the slope has different signs in the two approaches.

Observations {¥;1, %2, ..., Yi,n, } €an also be interpreted as repeated measurements.
Therefore, model {1.4) is sometimes called the model for repeated measurements.
An important example of clustered data is that of longitudinal data when subjects
are observed over time. In fact, the pioneering work by Laird and Ware (1982)
on the linear mixed effects model was concerned with this kind of data. Model
(1.4) belongs to the family of linear mixed effects (LME) models and is studied
extensively in Chaplers 2 through 4. Specifically, model (1.4) is called the LME
model with random intercepts, and it has many nice properties (see Section 2.4}.
There is more on ignoring random effects in the LME model in Section 3.9.

Summing up, ignoring clustered structure may lead to false analysis. The linear
mixed effects model is an adequate model for clustered (repeated) data that involve
two sources of variation, within and between clusters.

1.2 ANOVA, variance components, and the mixed model

The mixed model may be viewed as a combination of analysis of variance {ANOVA),
variance component (VARCOMP), and regression models. For example, the sim-
plest, one-way ANOVA model deals with tabular data:

Yis = )8?1 + £ifs 1= 1‘1 "':N7 j = 11 P L) (1-6)

where N is the number of units {subjects or clusters), n; is the number of obser-
vations per umit, and {&;;} are independent and identically distributed (iid) errors
with zero mean and variance 2. An important, sometimes not well emphasized
assumption of the ANOVA model is that {5, ..., 8y} are fixed parameters. Con-
sequently, for each unit, observations {y;1, ¥iz, .., ¥in, | Can be treated as replicates
because they are iid with the mean 53;. A traditional hypothesis in the framework
of the ANOVA model is that the units are the same, or Hy : 3, = ... = 8y,
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The ANOVA model is a special case of the linear regression model,
y=XpB+e¢, (1.7)

where ¥ is a K x 1 vector of observations, X is a K x m design matrix, and 3 is an
m X 1 vector of parameters. For example, the one-way ANOVA model (1.6) can be
expressed in the regression form (1.7) if the {y;;} are arranged in the vector y so
that K = 3. | 7, the elements of the design matrix X are 0 or 1, and m = N. A
classic reference, where various ANOVA models are represented as a linear model,
is Searle (1971a). All ANOVA models have two important features: (a) parameters
{B;,t =1,...,m} are estimated by ordinary least squares, and (b) the F-test is the
workhorse for linear hypothesis testing. Models (1.68) and (1.7) can also be called
fixed effects models.

We come to a different statistical model when the {3,;} are assumed random, say
iid normally distributed (independent of ;;) with the common mean 8 and variance
o%. Representing 8, = B + b;, we arrive at the variance components (VARCOMP)
model:

Yi; = B4 by + 45, (1.8)
where b; is called a random effect. The ANOVA is a fixed effects model and VAR-
COMP is a random effects model. Although models (1.6) and (1.8) seem similar,
they have different statistical properties. In ANOVA, observations do not correlate;
in VARCOMP, observations correlate within each unit and the correlation coefli-
cient is equal to ¢3/(0® +0%). According to the Gauss-Markov theorem, for model
(1.6) the ordinary least squares coincides with the MLE and is efficient, but this
does not hold for model (1.8). Moreover, if n; are different, there is no closed-form
solution for the MLE. The null hypothesis Hy : 8; = ... = 8y for the ANOVA
model transforms into Hy : ¢4 = 0 and the F-test cannot be applied directly, as
it requires substantial modification (see Section 3.5). When the number of units
is relatively small (say, N < minn;), the ANOVA model is preferable. When the
number of units is relatively large (say, N > maxmn,;), the VARCOMP model may
be better. The VARCOMYP model has a long history {Rao, 1973; Harville, 1977;
Searle et al., 1992).

The mixed model may be viewed as a combination of the ANOVA and VARCOMP
models. For example, consider the problem of measuring the blood pressure for
i=1,...,N people at time points t;1,%;2, ..., tin,. If yi; denotes the blood pressure
of the ith person at time ¢;;, the VARCOMP model (1.8) may be adequate because
it reflects the fact that the blood pressure changes from person to person, but for
the same time, one can speak of the population-averaged blood pressure, 8. Now
we realize that besides blood pressure for each person, we have information about
gender, age, and so on. Also, to reflect the fact that measurements are made over a
fairly long period of time, we incorporate #;; into the vector of complete covariates
X;j. Then the expanded VARCOMP model transforms into the mixed effects model,

Yij = X308+ bi + €45 (1.9)

The similarity with the regression model (1.7) becomes evident.
In general, the linear mixed effects (LME) model is written as

¥i inﬁ+zébi+€¢, t=1,..., ¥V, (1.10)
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where by is a vector of random effects such that cov(b;) = 6D and Z; is the design
matrix. For example, for model {1.9), the random effect is scalar and Z; = 1. The
variance parameters, 02 and D, are unknown and are subject to estimation along
with the population-averaged parameter 3.

By combining vectors {y;} and matrices {X;} into 3_ n; x I vector y and 3 n; xm
matrix X, and letting Z =diag(Z,,...,Zy), model (1.10) can be written as one
equation, y = X3 + Zb + . Although some authors prefer to work with this one-
equation LME model, such representation is excessive because observations across
t are independent.

Although model (1.10) looks like a linear model, the fact that the variance para-
meters are unknown makes it a nonlinear statistical mode! with elaborated estima-
tion methodology. Usually, we assume that the random effects and the error term
have a normal distribution, so that model (1.10) can be written more compactly as

yi ~ N(X;8,0*(1+ Z,DZ))), i=1,..,N, (1.11)

meaning that y; has a multivariate normal distribution with mean X;3 and covari-
ance matrix o2(I + Z;DZ}). If D were known, as follows from the Gauss—Markov
theorem, the generalized least squares estimator,

N 1w
B = (Z X’(I + ZiDZ;)_IXi) (Z X’(I + Zgng)_ly.j) s

i=1 i=1

would be efficient. But the variance-covariance matrix of the random effects is un-
known, and its estimation becomes a central theme in the framework of the mixed
effects model. Two families of estimators for the variance parameters are consid-
ered: maximum likelihood (Chapter 2} and quadratic noniterative distribution-free
estimators, including MINQUE, variance least squares, and method of moments
(Chapter 3).

The LME model and its generalizations are studied in the first three chapters
of the book. In the first chapter we discuss computational aspects of maximum
likelihood, the second chapter is about statistical properties, and in the third chapter
we consider several generalizations and important special cases of the LME model.
In Chapter 5, meta-analysis, a very special case of the mixed model, is studied; this
model is not covered by (1.10} and therefore requires special treatment.

1.3 Other special cases of the mixed effects model

Another important special case of linear mixed effects model {1.10} is the regression
mode] with random coefficienis,

Yi =X;a;+e, a;= ;6+bt-, i = 1,...,N. (112)

For example, Swamy (1971) studied this model in connection with the analysis of
cross-sectional (panel} data where y; is a time series of length n and 4 is an index
economic sector. One comes to (1.12) letting Z; = X; in the LME model (1.10). An
interesting special case of model (1.12} is when the data are balanced, X; = Z. For
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balanced data, the ordinary and generalized least squares lead to the same estimate.
This model is studied in Section 2.3. In Chapter 4 we study the growth curve model,
where a; = A;8 + b; and A; is the design matrix. Sometimes only a subvector a;
can be specified, so that other coefficients may be anything. For example, in model
(1.9), only the intercept is random; this models is studied in Section 2.4, while a
more general family of growth curve models is studied in Section 4.2.

Another special case of the LME model is when n; = 1, which leads to a linear
regression with heteroscedastic errors, y; = B'x; + 7;, where n; has zero mean
and variance var(n;) = o2(1 + dz?) and d is the parameter to estimate. Many
examples and treatments of the regression model with heteroscedastic errors may
be found in the book by Carroll and Ruppert (1988). A nonlinear regression model
with heteroscedastic errors and a nonlinear variance function defined as var(n,) =
o2w;{3,0) can be studied in the framework of the nonlinear marginal mixed model
of Chapter 6.

1.4 Compromise between Bayesian and frequentist
approaches

The goal of this section is to convince the reader that the mixed model may serve
as a compromnise between the frequentist (classical) and Bayesian approaches. Both
the Bayesian and mixed model approaches are based on a hierarchical statistical
model, but in the former the values for all parameters must be specified, whereas
in the latter, parameters are estimated from the data.

Specifically, let ¥ be the data observed. In the Bayesian approach, the model is
specified in hierarchical fashion as

yi@ ~ L{yl6), (1.13)
6 ~ GO (1.14)

Equation (1.13} defines the conditional distribution of y given & through density L.
The second equation, (1.14), defines a prieri the distribution of @ through density
‘G. Since # is usually a member of a family of distributions, the parameter that
specifies G is called the hyperparameter. Thus, unlike the frequentist approach, the
Bayesian approach assumes that parameter & is random and densities L and &G must
be specified completely. The main computational concern in the Bayesian framewark
is calculation of the normalization constant

A= f L(y|0)G(8)d8 (1.15)

in the posterior density )
p(8ly) = L(y|0)G(6). (1.16)

Obviously, computation of A is required to ensure thai the area under the sur-
face defined by (1.16) is 1. Much effort has heen spent on developing integration
techniques for {1.15). In particular, one of the most popular approaches, based on
the Markov Chain Monte Carlo (MCMC) technique, is realized in BUGS software
(http://www.mrc-bsu.cam.ac.uk/bugs).
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The major criticism of Bayesian theory is the requirement for complete specifica-
tion of the prior distribution G. It is worthwhile to note that & directly affects the
posterior dengity {1.16) because it acts as a factor. Consequently, sensitivity to the
choice of the prior distribution in the Bayesian approach is substantial.

In the mixed model approach, the model is also specified as a hierarchical model,
{1.13) and (1.14), but it is ailowed to have nonrandom parameters, 7, namely,

vie ~ L{yl8,7), (1.17)
6 ~ G(8,71). (1.18)

In the Bayesian framework, 7 is known and is the hyperparameter. When 7 is
unknown we come to the frequentist model, where 7T is estimated, for example,
by maximum likelihood. As in Bayesian theory, integration becomes a technical
problem because ML maximizes the marginal likelihood,

Lir) = / L(yl8, T)G(8,7)db. (1.19)

In the framework of the mixed model, we call @ random (or subject-specific) and =
fixed effects (or population-averaged) parameters. Random effects are unobservable
and are integrated out in {1.19), but 7 is estimated. Thus, the normalizing constant,
{1.15), plays the role of the likelihood in the mixed model. After 7 is computed,
we apply standard Bayesian formulas, such as posterior density, posterior mean,
and so on. In the language of the mixed model, the posterior mean is called the
estimate of the randem effect. We refer the reader to Sections 3.7 and 8.15, where
these quantities are estimated.

In summary, a mixed model combines major features of the frequentist and
Bayesian approaches. Symbolically,

mixed model = Bayesian + frequentist.

On the one hand, as in the Bayesian approach, mixed model assumes a hierarchical
{conditional) model where the parameter is treated as random. On the other hand,
the hyperparameter, 7, is not specified arbitrarily as in the Bayesian approach,
but is estimated from the data. As such, a mixed model is more flexible than the
Bayesian approach.

We illustrate the difference between the Bayesian and mixed model approaches
by a linear model under a normal distribution,

yIB ~ N(XB,oL), (1.20)
B ~ N(003Ln) (1.21)

(Lindley and Smith, 1972; Smith, 1973). These equations are special cases of the
general Bayesian model (1.13) and (1.14). In words, if the vector of regression coef-
ficients 3 were known, y would have a multivariate normal distribution with mean
X3 and variance ¢2. As follows from (1.21), the prior distribution for 3 is also nor-
mal with zero mean and variance crf;. To complete the Bayesian specification, one
needs to provide distributions for the variance parameters, o2 and 0’%‘ Typically,
a gamma distribution with the density T'"1(a)A*t®~le~* is used for this purpose,
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where « and A are the known positive (hyper-) parameters. The idea behind the
choice of o and X is to obtain a noninformative prior. When the hyperparameter
belongs to a bounded set, the noninformative prior is constant. For example, if
a probability p is the hyperparameter, it is reasonable to assume that the prior
density of p is 1 on (0, 1). Things are complicated when the hyperparameter is not
bounded, such as variance. For example, in BUGS the default values are A = 1/1000
and o = 1/1000. Since for the gamma distribution, E = o/ and var= a/A*, this
choice implies that the a priori mean equals I and the variance equals 1000. In
terms of the variance parameters for our linear model, such a choice would mean
that 02 = 0'% = 1000. Apparently, this choice of the hyperparameters is arbitrary.

Now we turn our attention to the mixed model approach. kt uses the same hierar-
chical models (1.20) and (1.21) but the variance parameters are assumed unknown.
We can estimate 0% and o} either by maximum likelihood (ML) or by nonitera-
tively using unbiased quadratic estimators {Chapter 3}. For example, using the ML
approach, the pair of models (1.20) and (1.21) imply the model

y ~N(0,6%(1 + dXX')),

where d = cr% /o2 is the scaled variance parameter. In the Bayesian approach, pa-
rameters o and d have to be specified through known distributions. In the mixed
model approach, we treat them as unknown parameters to be estimated from max-
imum likelihood. The log-likelihood, up to a constant —pIn /27, takes the form

(o?,d) = —05nlne? — 0.5In [I+dXX'| — 0.50" 2y (I + dXX) "y

Differentiating with respect to %, we obtain ¢2 = n 1y'(I + dXX")'y. Plugging
it back into [, the variance-profile log-likelihood function simplifies to a function of
one argument,

(d) = —0.5nlny'(I, + dXX') 'y — 0.5In |I+dXX'|.

A number of algorithms may be used to maximize this function and to obtain the
MLE, d. So the hyperparameters in the Bayesian approach are estimated in the
mixed model. After parameter values are determined, we compute the posterior
distribution, which is also normal with mean B8=dX'(IL,+dXX')~ly. Using the
dimension-reduction formula of Section 2.2.3 or Appendix 13.2, we can express
B=(X"X+d"1,)" X'y, as in Lindley and Smith (1972) but with the estimate
instead of an arbitrary d.

1.5 Penalized likelihood and mixed effects

Penalized likelihood is encountered in many applications as a way to make a prob-
lem solvable by replacing an ill-posed problem with a well-posed problem. This
methodology has to be proven to make a great deal of improvement in a variety of
applications, from applied mathermatics and computer science to engineering. How-
ever, a substantial drawback of the penalized likelihood approach is the need to
know the penalty coefficient (sometimes called a regularization parameter). Strictly
speaking, an ill-posed problem is merely reduced to another problem of choosing the
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penalty coefficient. Qur aim in this section is to show how the penalized likelihood
may be derived from a hierarchical statistical model so that the penalty coefficient
term may be estimated along with the parameter of interest. Here we suggest the
solution in general terms, and in the following sections we illustrate it by varicus
examples.

Let y be an n-dimensional vector of observations with the density function L
dependent on a k-dimensional parameter b, where k may be large. Denote i(b;y)
as the log-likelihood and L(b;¥) as the likelihood. If  is close to &, the maximum
likelihood solution

maxI(lb; y) (1.22)

turns into an ill-posed problem. To improve (1.22) a penalty term is introduced, so
instead one maximizes the penalized log-tikelihood,

max ({{b; y)+pg(b)], (1.23)

where p is a nonnegative penalty coefficient and g(b) is a penalty function. Typically,
a quadratic term is used, g(b) = — ||b||?, so the penalized log-likelihood reduces to
minimization of

~l(b;y)+plbjl*. (1.24)

Sometimes, the penalized log-likelihood is used not in a statistical but in an ap-
plied mathematics framework as a regularization technique (Tikhonov and Arsenin,
1977). For example, let y be an n x 1 normally distributed vector and X an n x k
matrix such that y = Xb + £, where £ is the error term with independent iden-
tically distributed (iid} components &; ~ A(0,o?). For this linear model we have
I(b;y) = —(262)~1 ly — Xb||*, up to a constant term. If matrix X'X is singular
{e.g., when k > n), {1.22) is an ill-posed problem becanse b is not unique. On the
other hand, if p is a fixed positive number, the penalized negative log-likelihood
yields a unique solution, b = (X' X—i—vI)_lX’y, where v = 20%p.

What is the value of p? The answer is important because if p = 0, we come to
the previous ill-pesed problem. If ¢ — co, we have b = 0. Thus, by varying p, one
obtains a variety of solutions, from unstable MLE to trivial 0.

To estimate p we assume that b is random, so that L(b;y) is the conditional
likelihood. Let G be a density, so the density of b is w™*G{(w™'b), where w is a pos-
itive scale parameter. Symbolically, this scheme may be expressed as a hierarchical

statistical model,
yvib~L, b~G. (1.25)

Since only observations on y are available, we need to deal with the marginal dis-

tribution
/ L{b; y)w™*G(w™b)db,
R}e

where random b is integrated out. Letting g = In(, the marginal log-likelihood
takes the form
{w)=-kInw+ ln/ gllb)+a(w™ Bl g, (1.26}
Rk
The MLE, & turns ! into a maximum. Now the Laplace approximation comes into
play to show the link between maximum and penalized likelihood (see Section 7.7.1
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for more details),

82h -1/2

52 , (1.27)

f B gy ~ (2m)k/2hemex | —
R

b=brax

where fnax = {bmax) and |H| is the determinant of the negative Hesslan at the
maximum, H = —9%k/8b?. Applying this approximation to (1.26), one obtains

l(w) = —klnw + i(b;y) + g(w 'b)=0.51n |H].

Finally, assuming that In |H| changes little with b, the marginal log-likelihood (1.26)
can be approximated as

Hw) ~ —klnw +I(b;y) + glw™h). (1.28)

In the particular case when w is known, maximization of the marginal log-likelihood
is almost equivalent to maximization of

i(b;y) + g(w™'b). (1.29)

In an important special case, when the marginal distribution of b is normal (G = A)
with zero mean, we have g(w=1b) = —0.5w=2[|b||?, so the maximum likelihood
estimation of the hierarchical statistical model (1.25) is almost equivalent to the
minimization of the penalized log-likelihood (1.24) with p = 1/(2w?). Finally, to
estimate b and w simultaneously, we maximize the right-hand side of {1.28), which
is a well-posed problem. In the literature on mixed models, (1.28) is called quasi-
likelihood (Breslow and Clayton, 1993). This likelihood approximation plays an
important role in estimation in the generalized linear mixed models of Chapters 7
and 8, respectively. Typically, besides random effects b, we have fixed effects (or
population-averaged) parameters 8, but their presence does not alter the reasoning,
described above.

Generally, any penalized log-likelihood may be derived through a mixed model.
For a linear model, the penalized log-likelihood is exact; for a nonlinear model,
the penalized log-likelihood is an approximation of the original log-likelihood. The
Laplace approximation is the key to proving this link.

In the following sections we show some applications of this general result.

1.6 Healthy Akaike information criterion

The Akaike (1974) information criterion {AIC) became very popular as a criterion
for model selection. The rationale behind this eriterion ig the divergence between
the true distribution and a candidate measured in terms of the Kullback—Leibler
information criterion, Kullback (1968). It was shown that based on this criterion,
the model should be chosen such that

AIC = —2lppe + 2k (1.30)

reaches a minimum, where {5,y is the log-likelihood maximum and % is the number
of unknown parameters. The smaller the AIC, the better the model. The AIC is
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especially useful for nonnested models; if the models are nested, standard statistical
hypothesis techniques are applied. It is worthwhile to notice that (1.30) has the
form of a penalized negative log-likelihood. For example, consider a linear regression
model,

y=XpB+¢, (1.31)

where 3 is the k-dimensional parameter vector, components ¢&; are independent
normally distributed random variables with zero mean and variance o2, and i =
1,2, ..., . Assuming that all candidate models use the same number of observations
(n =const), it is elementary to check that up to a constant,

AIC = nIn&? + 2k, (1.32)

- 2 ~
where 5 = =1 Hy —XBrs H is the regression variance and B; g is the least squares
estimate.

Several researchers noted that there can be appreciable bias in the AIC estimate.
For example, Hurvich and Tsai (1991) suggested using the term k-+{k-+1)(k+2)/(n—
k—2)} instead of 2k. Sclove (1987) and Dayton (1998} consider a generalization of the
Akaike information criterion expressed as —2l,ax + a(n)k, where a(n) is a function
of the sample size.

Although many researchers demonstrated that the AIC is a useful guantity to
characterize the information property of a statistical model, Ishiguro et al. (1997)
and Mittelhammer et al. (2000), among others, pointed out a weakness of this
criterion. In particular, the AIC works poorly in the case of multicollinearity. To
illustrate, let us consider the problem of finding the right linear regression model
using a set of independent (explanatory) variables or covariates {z;,j = 1,...,J},
where the number of candidate covariates, J, is quite large (perhaps even larger than
the number of observations, n). Assume that an analyst has come to a satisfactory
set of k — 1 explanatory variables 1, ..., £x—1 and wants to try to add new variables
% or v, one at a time. Consider the situation when both sets, {z1, ..., zx—1, %} and
{Z1,...;Tk—1, v}, yield the same, or a very close, residual sum of squares and conse-
quently, 52, Then, in terms of the AIC, the two models are indistinguishable because
as follows from (1.32}, they produce the same AIC value. For example, due to the
multicollinearity between zy,...,zr—1 and u, the first model yields large standard
errors and low ¢-statistics for the least squares estimates and assume that the second
model still has satisfactory t-statistics. Clearly, the second model would be better,
but the AIC fails to identify it, especially when the design matrix is ill-conditioned.
The model selection criterion developed below is free of this drawback.

We turn our attention to the penalized log-likelihood (1.28). Assuming that the
prior distribution of parameters is normal, we obtain

k o . 1 o
b _thw +'{(b:y) 202 ”b" '

The maximum of the log-likelihood function over the variance is attained at w? =
|bl\* /%, so the healthy Akaike information criterion takes the form

HAIC = H— 2 +2k (1.33)
H + AIC,
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where .
H=k (m("BML” Jk) — 1) . (1.34)

The AIC works well when two models are compared with different numbers of
estimated parameters, k, but it fails to discriminate models with the same % and
quality of fit when the models are ill-conditioned (ill-posed problems). To illustrate,
let us come back to our linear regression example. Consider a linear regression with
the number of explanatory variables equals k and the variance 5°. Now add a new
variable, which is highly correlated with the other variables. The result of such
addition in terms of the AIC may not be well reflected becanse 5° will not change,
due to multicollinearity. To the contrary, due to |[X'X| = 0, the QLS estimate

T
after addition becomes unstable, which would lead to a large value, H,@Ls” . The
instability will be picked up immediately by HAIC because H becomes large. Now
it is clear why the term healthy is used to reflect that HAIC works well for ill-posed
estimation problems as well.

The healthy AIC works in both directions: when the number of parameters, k,
increases and when k is constant. In the latter situation, between two models with
the same log-likelihood value, the healthy AIC chooses the model with the shorter
estimate length.

1.7 Penalized smoothing

Several authors have pointed out a close relationship between penalized smoothing
and the mixed model (Zeger and Diggle, 1994; Wang, 1998; Zhang et al., 1998;
Ruppert. et al., 2003). To illustrate the connection, we start with the following
simplified problem: Let 1,42, ..., ¥n be time series data as observations at time
i =1,2,...,n (in fact, y may be any equidistant data). We want to find g, 2q, ..., i1,
such that

v =M+, t=1,..,n, (1.35)

where the {&;} are iid random variables with zero mean and constant variance a2.
Clearly, without any restriction on {g,}, this problem has a trivial solution, p; = y;.
To restrict {g;}, several cost functions have been suggested. The most popular is
the bending energy cost function {(for further discussion see, e.g., Chalmond, 2003).
Then total criterion takes the form

n n—1
D e ) 40D (i — 2+ ), (1.36)
=1 =

where p is a positive parameter, the penalty coefficient. The first term in {1.36) is the
usual sum of squares, and the second term is the penalty on the curvature of {;}.
Indeed, if the second term is zero, then g, = 2u; — p;_,, and by induction we ex-
press {4, ¢ = 3,...,n} through p, and g as pyyy = dpy — (i—1hpy = 6(py — iy )+ 01
But this is a linear function of ¢, so the second term puts a penalty on the non-
linearity of {y;}. From calculus, u;,; — 2p; + p;_; can be viewed as a discrete
approximation of the second derivative, so the second term may be viewed as a dis-
cretization of the commonly used function [[”(z)]2dz to penalize the nonlinearity.
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Several different terminologies are used in the literature for the problem specified
by equations (1.35) and (1.36), such as scatter plot smoothing and spline regression.

FIGURE 1.2. Penslized smoothing (1.40) with two values of the penalty coeflicient, p. The
larger the penalty coefficient, the smoother the average curve.

Since (1.36) is a quadratic function, its minimization can be expressed through
matrix inverse. Indeed, introduce an n x (n — 2) matrix €} with elements 1 and -2
paralle] to the main diagonal; for example,

1 0 0 0

-2 1 0 0

1 -2 1 0

Q= 0 1 -2 1

o 0 1 -2
¢ ¢ 0 1

for n = 6. Then it is elementary to see thai the ith element of vector Qe is

t4; — 21501 + f;, o, and therefore the second term in sum (1.36) can be represented
! / . - .

as ¢’ QQ 1, so that the function to minimize takes the form

Iy — £ll* + o1’ QQ 2. (1.37)

Let X be the n x 2 matrix with the first column 1 and the second column 1, 2, ..., 7.
It is elementary to see that Q'X =0, so in (1.37) we can make a substitution
pu=XF+b,_ and come to an equivalent minimization problem,

ly — X8 - b, |* + pb,QQ'by, (1.38)

over 3 and b, a n x 1 vector. Differentiating with respect to 8, we obtain B =
(X'X) ' X'y and

o

By = (14+pQQ) "y ~ XP). (1.39)
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Equivalently, in terms of (1.39), one can show that the solution to penalized amooth-
ing (1.36) is given by R

fi= XB+b, = (I+,QQ) y. (1.40)
As follows from (1.40), if p = 0, we come to the trivial solution i = y. When p — oo
we obtain the least squares prediction fi= X3.In Figure 1.2 we show data generated
with a penalized smoothing with ¢ = 1000 and p = 10. Clearly, the first value is more
satisfactory. The choice of the penalty coefficient is crucial. Several ad hoc methods
are available to choose g, such as cross-validation or Akaike information (Hurvich,
1998; Jacqmin-Gadda et al., 2002; Ruppert et al., 2003). Below we illustrate how
this parameter may be chosen based on a linear mixed effects model.

Now we construct a linear mixed effects (LME) model that leads to automatic
choice of the penalty coefficient. Since X is the fixed effects matrix, we may treat
b as a random effect with uncorrelated components, yielding the following LME
model:

y=X8+Zb+e,

where

Z= Q(Q}Q)_lr b NN(O:O'ZdIn—z), £ NN(O,JZIn).

This model is a special case of the general LME model (1.10) where ¥ = 1 and
D =dl,, {we use a subindex at the identity matrix to show iis size). In brief, this
model can be written as y ~AN(XB8,02(I+dZZ')). Several methods of estimation
may be suggested: ordinary or restricted maximum likelihood of Chapter 2 or
distribution-free quadratic estimation such as variance least squares, MINQUE, or
the method of moments of Chapter 3. As follows from Section 3.7, after d is esti-
mated, there are two equivalent ways to estimate 8 and b in LME model: using the
closed-form formulas

(X'(I+dZZ)~ X)X’ (I+dZZ') "y, (1.41)
d(In_2+dZ'Z) " 2! (y — XB) (1.42)

T W
I

or as the minimizers of the penalized function,
ly — X8 — Zb|” + a7 [bl*.

To show the equivalence among {1.41), (1.42), and {1.40), where p = 1/d, we use the
dimension-reduction formula of Section 2.2.3. Then, since Z'X = 0 (1.41) simplifies
to the OLS estimate and prediction from the LME model, X8 + Zb yields {1.40).
In a nonequidistant case, x1 < z2 < ... < zn instead of p, y — 20 + 1y = 45,
we have
Fivy —Hi M — Hia _ 5,
Lipl — &5 Ly — Ti-i

i=2..,n—1, (1.43)

where po and p,,y are fixed and unknown and & ~ N(0,62d). This model can
be applied in a more general setting of spline (or semiparametric) regression with
covariates U: for example, y = U3 + Zb + &, where components of vector u satisfy
(1.43). Again, introducing an appropriate band matrix Q, we reduce the model
to LME model y = X8 + Zb + ¢, where X is composed of two vectors, 1 and x,
augmented by matrix U. This method can be applied to a regression coefficient as
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well; for example, y; = B'w;+p;x; + €4, where the {p,;} satisfy (1.43) and u; is a
vector of adjustment covariates.

Other more complicated LME models may be suggested: for example, to account
for autocorrelation (see the literature cited at the beginning of this section).

1.8 Penalized polynomial fitting

One can apply a mixed model to any regression model where penalization is re-
quired. For example, here we use this approach for a fully parametric model with
a polynomial of high degree. More specifically, without loss of generality, let x; <
Ty < ... < Ty and

K

yi= AW+ bparfte, i=1,.,n (1.44)
k=2

where the {1;} are design (explanatory) variables and the {bx, k=1, ..., K — 1} are
unknown coefficients. For a reason to be explained later, we start from the second
degree; the linear part () can be represented in the fixed effects (u;). It is assumed
that maximum polynomial degree, K, may be sufficiently large but known. To avoid
multicollinearity, instead of z¥ we can use Legendre orthogonal polynomials Py (z;)
of the kth degree, so model (1.44) can be replaced by

K

yi=Bw+ Y be_1Pilwi) +ei (1.45)
k=2

By construction, Y o, Pe(z:)P;j(z:) = 0 for k # j and Y, P¥(z;} = 1, which
gimplifies further computation. Introducing a (K —1) x 1 vector p; = (Pa{xy), Pa{x;},
vy Prc(i3)Y, we come to a regression (conditional} model y;|b = F'u; + b'p; + <,
and in conjunction with the a prioré distribution for the polynomial coefficients,
treated as random effects, we arrive at the LME model,

yb=UB+Pb+e, b~N(0,°D). (1.46)

There may be several strategies to specify matrix D. First, we can assume that
D is proportional to the identity matrix. Second, DD may be unstructured, but this
would involve a large number of estimated parameters, K (X ~ 1)/2. Third, we can
penalize the high degree, in other words, nonlinearity, as we did in the penalized
smoothing model (1.36}. Let us take the latter approach. We note that the curvature
of the elementary polynomial 2% is associated with the second derivative. Since for
fixed 2 the second derivative of z* is proportional to k(k — 1), we can assume that
the diagonal elements of matrix D are reciprocals of the curvature. For instance,
assuming that {bx} do not correlate for K = 4, we have

[2(2 - 1)) 0 0
D=d 0 B(3—1)2 0 ,
0 0 [4(4 - 1))
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where d is the scaled unknown variance. This choice means that the variance of
{bg_1,k =2, ..., K} is decreasing with k and proportional to 1/[k{k —1)]?. Combin-
ing this into (1.46), we finally arrive at the LME model,

y~N{UB,c*(I+dPDP")). (1.47)
If the scaled variance d were known, we would estimate 3 and b from
ly —UB—Pbj’ +d*v'D b= mmin,

s0 1/d acts as the penalty coefficient. If the scaled variance is large, the contribution
of the penalty term is negligible and we come to an unconstrained least squares
estimation of model {1.45). Vice versa, if d — 0, we suppress the polynomial part
and simply estimate regressiony = US + e. Thus, the d estimation hecomes the
first priority of the penalized polynomial fitting.

o™
o e %

FIGURE 1.3. Two penalized polynomial fittings. The fitting is robust to the choice of the
highest degree, K.

Again, several methods are available to estimate d: ordinary or restricted max-
imum likelihood or noniterative quadratic estimation. In Figure 1.3 we show two
penalized polynomial fittings with the penalty coefficient, d, estimated from the
linear mixed model (1.47). Points in the left-hand panel were generated as y; =
2331 + 2}~ + &; and in the tight-hand panel as y; = sin(2.5z;) + 10 + &;,
where the {z;} are randomly distributed on the interval (0,1} and &; ~ N (0,0.1?),
=1, ...,500. For this model, the first column of matrix U is 1 and the second col-
wmn is {z;}. We can draw the following conclusions: (a) the penalized polynomial
fitting can adequately approximate nonpolynomial functions such as sin; and (b)
gince the higher degree is penalized more severely, the choice of K does not make
much difference. In particular, polynomials with the highest degree K = 5 and
K = 14 produce almost identical approximation (polynomial curves with K = 5
and K = 14 overlap).
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1.9 Restraining parameters, or what to eat

We have shown above how to restrain (penalize} coefficients in a linear model. In
this section we illustrate how a mixed maodel may be applied to cope with multidi-
mensionality in & nonlinear model: namely, logistic regression with a large number
of parameters.
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FIGURE 1.4. Coefficients in logistic regression as a function of @ priori variance ¢ in

the penalized log-likelihood (1.51). Cauliflower, raw oranges, and cereal protect against
adenoma, but eating peanuts and spinach increases rigk.

A problem with a large number of parameters emerges in nutritional epidemiology
{Willett, 1990). To be concrete, let us consider the effect of diet on the health status
represented by a binary variable y: If the health status is satisfactory we say that

= (; otherwise, ¥ = 1. Let z;1, 242, ..., Zimy indicate how much the jth food item
was consumed monthly by the i¢th person, ¢ = 1, ...,n. Then, to determine the diet
effect, one may relate y; to {2;,7 = 1,...,m} through logistic regression as

oy exp(Bg + Brzi + o+ Brazim)
Pr(yi =1) = { + exp(By + B2t + - + BrnZim)’

i=1,..,0 (1.48)

It a food item increases the probability, # > 0 (“bad” food); otherwise, 3 < 0
(“good” food). Typically, ¥ codes the presence of a disease and quantities z are
obtained from a questionnaire. If the number of food items is large (e.g., so large
that it exceeds the number of observations), one obtains a wide range of coefficient
values with high standard errors. Thus, to obtain meaningful estimates, the food
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coefficients should be restrained or penalized. A popular idea in epidemiology to
reduce the number of food items is to consider food agglomerates, such as calories,
fat, fiber, folate, and so on. This approach is realized in a special DIETSYS program
developed under the National Institutes of Health, which replaces a list of original
food items with a linear combination representing those agglomerates. Another
approach is based on the energy adjustment method (Brown et al., 1994). A big
disadvantage of those approaches is that the endpoint recommendation of what
to eat is expressed in the agglomerate form, such as “eat less fat food and more
vegetables” and therefore is not specific. The approach we discuss here is designed
to answer the question: Exactly which food items help to improve health status?
To restrain the large number of parameters, a nonlinear mixed model is used.

As an example, we consider a nutritional questionnaire study to reduce the recur-
rence of colorectal adenoma (Baron et al., 1998). A multicenter study was aimed to
investigate the possible beneficial effects of folate intake {mostly from vegetables)
based on a questionnaire of patients with at least one recent large-bowel adenoma.
It was found that neither cigarette smoking nor folate intake was associated with
increased risk of adenoma recurrence. The dependent variable is y; = 1 if for the ith
person there was adenoma recurrence and y; = 0 otherwise for i = 1,2,...,n = 751
people. Thus, according to the logistic regression model (1.48), a large positive co-
efficient would indicate a risk-increasing food (bad) and a negative coefficient would
indicate a risk-preventive food (good). We do not aim to provide a comprehengive
statistical analysis but illustrate how the mixed effects methodology can help to
cope with a large number of parameters. Therefore, only m = 11 food items were
taken into consideration.

Basically, the mixed model is a Bayesian model with unknown food variance,
o? as in Section 1.4. More precisely, we treat (1.48) as a conditional model: If
B8 = (84, .-, B,,)’ were known, then the probability of having an adenoma recurrence
is expressed by equation (1.48). A priori, we assume that food does not affect
recurrence, so0 we can write

B ~N(0,0°I). (1.49)

This means that the mean of regression coefficients is zero and that, they are inde-
pendent and have variation o2. Equations (1.48) and (1.49) define the generalized
linear mixed model (GLMM), to be studied in Chapter 7. To estimate 2, we obtain
the marginal likelihood with @ integrated out as

B, 0%) = (2mo?)—m/2 / (lPoB)-050~2 817 g3 (1.50)

where {(3,, 3) is the ordinary log-likelihood for model (1.48). Direct integration is
prohibitive because dimension m is large (in our case, m = 11). Therefore, approxi-
mate methods for integral (1.50), such as Laplace approximation or quasi-likelihood,

should be used. After estimates 32 and B, are obtained, we derive the posterior
means for B that maximize the penalized log-likelihood,

1(Bo, B)—0.552(18]1*. (1.51)

Note that in the Bayesian approach we need to define values for 3, and ¢, but in
mixed model we obtain them from the data.
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In Figure 1.4 we plot posterior regression coefficients as a function of @ priori
variance, o2. When the variance is zero, all coefficients are zero. Indeed, the second
term in the penalized log-likelihood funetion (1.51) then prevails, yielding 8= 10.
Larger ¢? implies less penalty and more variation in the regression coefficients.
When 0% — oo, GLMM converges to ordinary logistic regression. Interestingly,
cereal, raw oranges, and cauliflower prevent adenoma, but peanuts and spinach
increase the risk.

1.10 Ill-posed problems, Tikhonov regularization, and
mixed effects

Mixed models may be considered a tool for solving ill-posed problems. Let 84,69, ...,8,,
be system inputs and let f1, fa, ..., frn be a system output. For example, consider an
image reconstruction problem based on the Near-Infra Red (NIR) technique. The
light goes through a semitransparent body with the absorption density 8; at loca-
tion (%, v;) within the body. More details may be found in a recent book by Barrett
and Myers (2004). Due to the law of optics, if {#;,7 = 1,...,m} were known, the
light intensity f; at detector ¢ on the periphery of the body would be known exactly
as a funection of {#;}, or in vector form, f; = f;(8), where @ is the m-dimensional
unknown vector. Vector @ is called the system vector parameter or, in statistical lan-
guage, simply the parameter. Having n measurements on the periphery, {#1,...,%n},
we want to reconstruct the optical properties within the body (absorption coefli-
cients), {61, ..., 05}, at as many points as possible—this is an inverse problem. An
interested reader may read more about statistical aspects of inverse problems in a
review paper by Evans and Stark (2002).

Often, inverse problems are ill-posed. In our example we would like to have as few
detectors and as many points as possible, so dimensions n and m are close. Besides,
the system is usually noisy, leading to a nonlinear regression problem,

vi = fi(0)+ei, i=1,2,..n. (1.52)

To obtain estimates of @, the least squares criterion is generally used, ¥ © , (y; —
£:(6))* = min . However, since m & n and functions f;(8) are nonlinear, estimation
(reconstruction) of @ becomes problematic. Therefore, the problem is called ill-posed.
A Russian mathematician, Tikhonov (Tikhonov and Arsenin, 1977), suggested aug-
menting the sum of squares by a quadratic term that leads to the functional

ki3

T(0) =Y (v — £i(8)) + o |01, (1.53)

i=1

where p is called the regularization parameter (p > 0). The original ill-posed prob-
lem becomes a well-posed problem. Tikhonov regularization became very popular in
applied mathematics and engineering, with a variety of applications: solution of an
ill-conditioned linear system, integral equations, density estimation, image recon-
struction, and so on. Although several heuristic techniques are available {0 assess
the regularization parameter, such as cross-validation, there is no unified approach
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to the selection of p {Vogel, 2002). However, selection of the value of the regulariza-
tion parameter is crucial: If p is close to 0, we come again to an ill-posed problem;
if p is too large, the solution degenerates to 8= 0. Strictly speaking, the problem of
ill-posedness is just reduced to another problem: the selection of p.

Tikhonov regularization may be treated from a statistical point of view, inter-
preting the inverse problem as a mixed model written in a hierarchical (two-stage)
fashion. Indeed, following the line of the Bayesian approach, we assume that @ is
random and (1.52) is treated as a conditional equation, where the {¢;} are normally
distributed with zero mean and constant (system) variance o?. Assume that our
prior experience says that the component values of vector & are expected to be in
the neighborhood of zero with certain variance O'g; or more precisely, 8; ~ N{0, ag).
This is called the prior distribution for the parameters. Let us assume for awhile
that the system variance, o2, and parameter variance, g3, are known. After obser-
vations {y;} are collected, we may ask how our prior distribution changes to become
a posterior distribution with the density f(8ly) =C x f(y]|8)f(8), where C is the
normalizing constant, f(y|@) is the conditional density, and f(8) is the parameter
density (see Section 1.4). Since we assume normal distribution,

_a 2
F(y18) = (2r0) e~ TON - £(6) = (3rg5) /% T

Note that the posterior distribution, f(#]y), is not a normal distribution of @, and
the “center” of the distribution would give an idea of where the posterior values
are concentrated. Let us take the mode of the distribution, where the density takes
its maximum. In image processing and reconstruction literature the model is called
MAximum a Posteriori (MAP) estimation ( Geman and Geman, 1984; Besag, 1986,
1989). Since the variances are known, the MAP estimator for 8 reduces to the
minimization problem,

1 1 .
=5 Iy ~ £O)I* + — 1611* = min. (159
g

But this is the Tikhonov functional (1.53) with p = o?/02.
Summing up:

1. The Tikhonov regularization procedure can be derived through the Bayesian
approach with known variances of the system error and o priori parameters
assuming a normal distribution.

2. The regularization (penalty) coefficient is the ratio of the system to the para-
meter variance.

3. The Tikhonov solution is the mode of the posterior distribution, the MAP
estimator.

4. The Tikhonov solution assumes that the e priori value of the parameter is
ZEro.

We make several comments. First, if the system is not too noisy but there is
substantial ¢ prioré variation in 8, the regularization parameter should be small.
Second, the assumption that the a priors value of the parameter is zero may be
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inadequate. For example, in the NIR problem this would mean that the absorption
is zero, which is equivalent to assuming that the body is absolutely transparent (as
a vacuum). It would be better to assume that 8; ~ N {8, 03), so that the modified
Tikhonov functional takes the form

> (v - £i(6)* + 0 |0-60]” (1.55)

i=1

where #y is the background absorption coefficient. Although the Bayesian interpre-
tation gives Tikhonov regularization a nice statistical interpretation, the problem
of selection of the regularization parameter remains. Now we shall show that using
a mized effects approach, p can be obtained along with 8. The following reasoning
follows the line of penalized likelihood of Section 1.5, the only difference being that
now we apply it to reducing an ill-posed problem to a well-posed problem. '

In the mixed effects approach, we change nothing in the Bayesian approach except
for the assumption that ¢ and o7 are unknown along with 8. Thus, the mixed model
is written in hierarchical fashion as

¥|0 ~N(£(8),0°L.), 8 ~N(8o,05Ln), (1.56)

where I is an identity matrix of the appropriate size and &g is known. Model (1.56)
belongs to the family of nonlinear mixed effects model studied in Chapter 8. Since
only the observations {y;} are available to estimate the parameters, we need to find
the marginal distribution with the likelihood expressed via an integral as

e o7 IIy—f(E')IIE—;‘g l8—6oi*

L{o?,03) = (27r02}'“/2(27rcr§)_m"2f de.

One could maximize L over the unknown parameters o° and o3 to obtain the max-
imum likelihood (ML) estimation that involves a multidimensional integration. The
core of the approximation methods to the ML solution is the Laplace approxima-
tion (1.27), implemented in Section 8.8; we also refer the reader to Section 8.15.
The easiest way to estimate the variance parameters is to approximate f by a linear
function about @, see Section 8.6. Then model (1.56) simplifies to a LME model
e ~N(0,0*(1+dZZ")), where d = a3 /o® and Z = 0 /98 is evaluated at @ = 6. The
maximumn likelihood algorithm for estimation of ¢* and d is described in the next
section. When the variance parameters are known, estimation of a posterior: 8, as
follows from the Laplace approximation (1.27), is almost equivalent to minimization
of (1.55), where p = 1/d. Symbolically,

MAP estimator = mixed model ML estimator,

but unlike MAP, we do not require values for o and o3 (specifically for their
ratio}, which are estimated from maximization of L. The appropriate methods are
to be studied extensively in Chapter 8, In fact, the choice of p based on our mixed
model has much in commeoen with what other authors suggested based on the noise
level, o2 (Kirsch, 1996; Kress, 1999; Colton et al., 2000). Notice that model (1.56)
allows a combination of repeated measurements of y, leading to a multilevel mixed
model. This nonlinear mixed model technique has been applied to breast image
reconstruction by microwave, with promising results {Meaney et al., 2001).
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Application of the mixed model methodology to a linear image reconstruction
is described in Section 1.11. We provide a constructive procedure to estimate the
regularization parameter, p in the penalized least squares (1.54) from the data.

1.11 Computerized tomography and linear image
reconstruction

Computerized (sometimes called computed) tomography (CT)} reconstructs an im-
age from projections. Thus, by measuring signals on the periphery of the body, CT
reconstructs what is inside the body. This technique has many applications in ra-
diology, and the interested reader can learn more from Andrews and Hunt (1977),
Hall (1979), Herman {1980), Parker {1990), Seeram (1994}, and Kak and Slaney
(2001) among others. Epstein (2003) provides a comprehensive aceount of mathe-
matical aspects of image reconstruction with medical applications. An up-to-date

and complete discussion of image analysis is given in a book by Barrett and Myers
(2004).

Side A, Sources (i)

0% 1 2 3 r 50

Side B, Sources (j)

FIGURE 1.5. Principal idea of CT image reconstruction from projections. Beams penetrate
the body so that the initial signal intensity is reduced. Measuring the exit intensities at
several locations, CT reconstructs the attenuation coeflicient in each box. Plotting these
attenuation coefficients results in an image.

A CT device consists of several sources and detectors located on the periphery of a
square or circle—we refer the reader to Figure 1.5, where the principal idea of a CT
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scan is represented schematically. Beams of x-rays or light come out of the source at
a given angle, penetrate the body, and are received at detectors on an opposite side.
If Iy is the initial intensity of the beam, which comes in at one end of a homogeneous
bar of length = and comes out at the other end with intensity I, with a certain
degree of approximation we have I} = Ipe=%, where 0 is called the attenuation
coefficient. If a nonhomogeneous bar is composed of m homogeneous bars of length
z; and attenuation coefficient #;, the intensity at the end is I; = Ipe~ Zi=1 8% or
on the log scale, y = >_i7, 8;2;, where y = In(Jp/11). This simple formula gives
rise to the CT image reconstruction. Imagine that the body is divided into 2 small
boxes {dotted lines in Figure 1.5) and within each box the attenuation coefficient
8; is constant, § = 1,...,m. If the beam comes cut from the source at a given
angle, we can compute the length of the ray within each box so that the following
representation takes place:

m
W= injgj + &5, 1= ]-) aag Ty (1'57)
=1

where ¢ is the number of beams, z;; is the length of the ith beam within the jth box,
and ¢; is the iid random term (see Figure 1.5). Since beam angles are predefined,
{zs5,2 =1,...,n,5 = 1,...,m} are fixed numbers and can be derived from the CT
hardware specification. Having n measurements {y;}, we reconstruct (estimate in
statistical terminology) m attenuation coefficients {8;}. Plotting {6;} at appropriate
locations yields a CT image, so the set of attenuation coefficients {#;} is called an
image. The larger ¢;, the denser the image. This is a linear image reconstruction
because it reduces to a linear problem. Special features of this problem are: (a)
since we want to see as many pixels ag possible, m and n are close; and (b) the
mumber of estimated coefficients, m, is large; for example, to see a 64 x 64 image,
we have m = 62?2 = 3844 unknown parameters. This makes the CT problem ill-
posed. To improve the least squares solution, several approaches have been put
forward, such as Tikhenov regularization and the Bayesian approach. The former
requires knowledge of the regularization parameter, and the latter requires complete
specification of an « priori image.

We apply the mixed effects approach, in which the @ prieri image is not specified
completely but is up to some unknown parameters. Then the regularization parame-
ter is estimated from the CT data along with attenuation coefficients. Introducing
the n x m projection matrix X with elements ;;, we rewrite (1.57) in vector form
as

y=X#+¢, (1.58)

where & ~N(0,0%I,) and I, is the n x n» identity matrix. Model (1.58) is an
ordinary linear regression model with the efficient least squares (LS) estimator
Ors= (X'X)"'X'y. This estimator is valid if n > m. When m approaches n, the LS
estimator becomes unstable because matrix cov (@ 1s) = o2(X’X)™" becomes unsta-
ble as well. Consequently, a small perturbation in data leads to a large perturbation
in 8r5. To improve the solution, we use a priori information on the image to be
reconstructed. For example, we may know how the image may look from previous
experiments. Statistically, if 85 is the prior image, we write

8=6y+b, (1.59)
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where 8 is known and b is the deviation, a random vector. The reader will immedi-
ately recognize that b may be treated as the random effect, so that the couple (1.58)
and (1.59) specify a linear mixed effects model, or, more precisely, a linear model
with random coefficients. Tt is simplest to assume that b ~A(0,0%dL,,), where d is
the scaled variance.

A distinctive feature of the LME model from. the Bayesian standpoint is that we
do not specify variances ¢2 and d, but estimate them along with &. In the rest of
this section we provide a constructive algorithm to estimate @ and ¢ and d, which
becomes the reciprocal of the penalty coefficient in the Tikhonov regularization
(1.55).

The two equations (1.58) and (1.59) can be combined to produce a one-equation
statistical model )

y ~N(X8,, o (L, +dXX')). (1.60)

Our plan to estimate 2 and d is as follows. First we estimate o2 and d by maximum
likelihood. Second, we apply the penalized least squares with the regularization
parameter d~! to derive an improved a posteriori image. For details, we refer the
reader to Chapter 2. Another, pedagogical purpose of the following derivation is for
the reader to get a flavor of the statistical and matrix algebra techniques to be used
throughout the book.

Letting e = y — X8y, the log-likelihood, up to a constant term, can be written as

Uo?,d) = -0.5{nno? + In|I,+dXX'| + ¢ %' (I, +dXX') 'e}, (1.61)

where I, is the identity matrix of the order indicated. Using the dimension-reduction
formulas of Section 2.2.3, we obtain

L, +dXX'| = [Lpy+dX'X|, (I, +dXX) ! =1, - dX({I,, +dX'X)7'X".
Let Aq,..., A;p be the eigenvalues and py, ..., pm the corresponding eigenvectors of
matrix X'X. Then we can represent

2 m
I |in+dX'X] = > " In(1 +d)y),

j=1

w
&X(Ly, + dX'X) 1 X'e =
(I + dX'X)™ X'e = Zl ;'

where w; = ¢'Xp;. Then (1.61) simpliﬁes to

—0.5{n]n02+0 [S dZw2(1+d/\J -1 +Zln1+d)\)}

i=1 i=1
where § = e’e. When d is held fixed, the maximum over ¢? is computed exactly:
2

2 -1 - w;
= 5 —d, —_

When o2 is held fixed, we use the fixed-point iterations

ZJ 1w2(1 + de)j)2
ds-'rl 1!
o2y A1+ do)y)

s=0,1,2,..
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See Appendix 13.3.4 for a general discussion of optimization algorithms, includ-
ing the FP algorithm. We can start from of = (§ — 372, wi/)\;)/n and dy =
oies w?/X3/(mo}). At convergence, we obtain 62, and dagy.

To obtain the posterior image, &, after o* and d are determined, we can use a

ctosed-form formula or derive @ from the penalized least squares {PLS}; the equiv-
alence is proved in Section 3.7. The PLS takes the form

lly — %65 — X6||* + d/;, 0 — ol* = min. (1.62) -

Denoting 89 — 8 = b, we come to_the Tikhonov optimization criterion function
lly = Xb|> + p|Ib|®, where p = 1/dasz. This is a quadratic function of 8 and the
closed-form solution exists. Thus, the final mixed effects (ME} CT image is given
by

- e -1
6=0+ (XX+d3, 1) X'y. (1.63)

When the variance of the random effect is zero, we obtain 8 = 8,; when d — 0o, the
ME estimate converges to the LS estimate, 815. The covariance matrix, cov(8) =

~ -1
721 (X’X+d;}LI) , 18 well-conditioned, and therefore the ME image is stable.

As the reader may notice, (1.62) is the Tikhonov regularization {1.55) with the
penalty coefficient equal to the reciprocal of the scaled variance estimate.

We may put other restrictions on the reconstructed image. For example, one may
assume that the image is fairly smooth. Then, introducing the (m —1) xm difference
matrix,

i-1 0 ¢ 0 0
0 1 -1 0 0 0
o o 0 - - 0]’
o 0 0 0 1 -1

we come to the model y ~A (X8, 02 (1,+dW)), where W = XL'LX' is a fixed me-
trix. Then, nonsmoothed solutions will be penalized with PLS ”y -X¢-XL'¢ ||2 +
dyir (8 — 6).

It is straightforward to generalize a mixed model (1.60) to a multilevel clustered
model where, for example, repeated imaging data may he combined into one pool to
detect differences between visits to the doctor, or to determine a trend, differences
in gender, differences in age, and so on.

L= (1.64)

1.12 GLMM for PET

In this section we consider an image reconstruction method popular in medical
applications. The statistical solution involves two components: a statistical model
and an estimation algorithm. We emphasize that computational features become
integral to successful implementation.

Positron emission tomography (PET) is important in nuclear medicine and has
features common with %-ray computerized tomography. The difference with the
linear image reconstruction considered above is that the observations are not con-
tinuous but are photon counts that imply a nonlinear statistical model. Shepp and
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Vardi (1982) described PET as a probabilistic model based on the Poisson distrib-
ution. A current review of reconstruction methods for PET may be found in Lewitt
and Matej (2003). The idea of PET is as follows: A subject is administered & dose
of the molecules labeled with radioactive atoms. These atoms are unstable isotopes
leading to the emission of gamma-ray photons, which are detected outside the body
by a ring of surrounding detectors. To simplify, we consider a two-dimensional PET
system. By counting the number of photons in different directions, PET attempts to
reconstruct the decay rate, A, at each point within the body. The PET image is the
distribution of these rates. To make the problem solvable, instead of a continuum of
points, imagine that the body is divided into m disjoint boxes. The number of decay
events, n; occurring over a fixed time in box j is random and follows the Poisson
law with the rate A;, so that E(n;) = A;, § = 1,...,m. Numbers n; are unobserv-
able and A; are unknown. However, there is a ring of detectors around the body
which count the total number of decay events in n cross-section tubes. Let the total
number of decay events occurring in the ith tube be k;, i = 1, ...,n. There exists a
fixed n x m matrix A such that k; = 377, ai;n;. This matrix, called the projection
matrix, is derived from the geometry of the body: tube angle, size, etc. Assuming
that counts n; are independent, k; also has a Poisson distribution with the rate
E(k:) = 30, a;E(ng) = Y0, ai;A;. Further, assuming that {k;,4 = 1,...,n} are
independent, we come to the likelihood function

ks
LM, o Am) = T Me— T

i=1 kil

m s
1 @ij A

The log-likelihood, up to a constant term, is

n we mn
Iy dm) =3 [ B> aghi = ayh | - (1.65)
i=1 J=1 J=1

To find the maximum likelihood estimate, we need to solve m score equations,

N < hip
7 =) == ———-1=0, p=1,..,m, (1.66)
a)kp i=1 E;r;l a’“‘.?/\.? i
where by = ki and rp = 3 7 @4p. Usually, the EM algorithm is used to maximize
(1.85):
Aps e hip

Apstl = ——

- p=1,..,.m 1.67
T e Z;n:]_aij/\js, 3raey 78y ( )

n

with iterations s = 0,1, ... The iterations can be started from Apo = 751 30, @, ip.
At convergence, Ap 541 = Ags, satisfying the score equations (1.66) and meaning that
the EM algorithms converges to the maximum likelihood estimate (MLE}. More-
over, as follows from the general properties of the EM algorithm, iterations {1.67)
increase the log-likelihood value, { from iteration to iteration. For a general discus-
sion of the optimization algorithms used in statistics, including EM, see Appendix
13.3.4.
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An alternative maximization algorithm for ! is the Newton-Raphson (NR}, We
rewrite the estimating equations (1.66) in vector form, but first we need the first
and second derivatives,

A gk, Bk

N A L
where A = (Mg, ., ), 2 =(r1, yrm), wy = Z;’Ll aijAs, and a; is the ith row
vector of matrix A. Then the NR iterations are

—1
n k; n ki
Am:m(z@a@) (z;m) (L68)

i=1 ¢ =1 ¢

Noticing that E(k;) = w,, we obtain the expected NR or Fisher scoring algorithm:

-1
= 1 = ki
Ast1 = As + (Z 53;31) (Z o 1') . (1.69)
k] =1 T

i=1

At the final iteration, the inverse matrix is the covariance matrix for the MLE. This
matrix will be needed later for various statistical hypothesis testing. Note that the
EM algerithm does not produce this matrix, which may partially explain the fact
that little statistical testing has been reported in the PET literature.

Our practice shows that whereas the EM algorithm may be very slow (sometimes
it requires 1000 iterations) algorithms (1.68) and (1.69) are very fast and require
only four or five iterations to obtain the MLE with the same precision. However,
an advantage of the EM algorithm is that it does not require a matrix inverse.
Since the number of reconstructed nodes/pixels is typically large, a matrix inverse
at each iteration may become a limitation. We can modify the NR or FS to avoid
the matrix inverse by employing the idea of the Unit Step (US) algorithm (see
also Section 7.1.5). The idea of this algorithm is to obtain an approximation of the
matrix inverse from above. For example, for the FS algorithm, we have

kL3 k)
-1 -1 =17 =1 4/
E w; aa; S v E wy ‘ala; = v TA'A,

t=1 i=1

where v = minw;. Then the US algorithm, as an economical version of the FS
algorithm, takes the form

n
As+1 = A + s (AIA)_I (Z kiw;la'i - 1") 3 (170)

i=1

where (A’A)”" is computed once beforehand. Although the US algorithm is usually
slower than NR, or F8, it is faster than EM and requires a dozen iterations rather
than hundreds or even thousands.

PET is, as are many image reconstruction problems, an ill-posed problem be-
cause we want to have the number of pixels as large as possible and the number of
measurements as small as possible, so that m is close to n. If no « prior: informa-
tion is available, the ML estimate is unstable. The Bayesian approach gained much
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popularity for PET image reconstruction (Hebert and Leahy, 1989; Kaufman, 1993;
Fessler, 1994; Qi and Huesman, 2001; De Pierro and Yamagishi, 2001; Nuyts and
Fessler, 2003). As mentioned above, under the Bayesian approach a priori image
does not allow unknown parameters, whereas the mixed model does.

In the following parameterization, we assume that the rate, A, is expressed through
an exponential function as A = €7, which is convenient because (a) one does not
have to care about the positiveness of the rate, and (b) it is easy to penalize -y us-
ing a normal distribution. Following the line of the generalized linear mixed model
(GLMM) technique of Chapter 7, we write the conditional log-likelihood in the form

n

{1y Ym) = k,lnz%ew,qz%e«j ,

i=1
where ¥y, ..., ¥y, are iid random rates specified in the second equation as

v~ N6, G=1,0m,

where v, is known and o? is unknown. To obtain a marginal likelihood, we need to
use integration,

1 — e L 2
L(’Yl!"':’Ym) =a 2?1-]”65(’?1;"-77“) E‘},'!'Ej=1(~f3 Yol d’]{l"'dpfm-

This mixed model belongs to the family of Poisson models with random intercepts
(see Section 7.3). Since m is large, exact integration is prohibitive. Several methods
were developed to avoid integration using approximate estimation. Importantly, to
obtain a posteriori rates, as follows from Laplace approximation (1.27), we maximize
the penalized log-llkehhood

T

Tm L3 Tt
P= Z kiln Z Qe — Zagje"“i -0 Z(% - 70)?
i=1 =1 j=1 =1
after 6% and -y, are estimated. If the image is close to the prior image, o2 is small
and the second term in P overshadows the first. If the image is far from the prior
image, the penalizing term is small. After o2 is estimated, one can maximize P
by the NR or FS algorithm. The inverse matrix at the final iteration gives the
covariance matrix of the mixed model MLE. Many o priori assumptions may be
realized in the mixed model. For example, if one wants to penalize nonsmoothness
7 ~ N(7p1,0%L'L), where L is the difference matrix defined in (1.64).

1.13 Maple leaf shape analysis

The mixed model is an adequate statistical model to describe individual variety
within a biological category. Indeed, the milestone concepts of the mixed model,
the within- and between-subject variation, exactly match the principles of biological
variety. Look at Figure 1.6: Nine maple leaves from the same tree have significant
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individual variation, but at the same time look similar. In the language of the mixed
model, population-averaged parameters specify the common biological type (such as
average maple leaf), and subject-specific parameters specify subject individuality.
In classical statistics, observations are assumed to be independent and identically
distributed; in the mixed effects approach, observations from the same individual
constitute a cluster and therefore are correlated,

Shape is perhaps the simplest characteristic of a biological subject. We apply
mixed model techniques to shape analysis in Chapter 11. Imporiantly, ordinary
shape analysis deals with one shape, whereas a mixed model processes a sample
{ensemble} of shapes simultaneously.

An important step in shape analysis is shape quantification, or in other terms,
representation of a two-dimensional geometrical object numerically as a sequence
of numbers. Typically, different quantification methods lead to different statistical
models.

For example, for this maple leaf analysis, we use the Random Fourier Descriptor
(RFD) model (see Section 11.7.2 for details). This model deals with pair coordinates,
{(®i5,9i5), 5 = 1,2, ...,n;} for each shape ¢ = 1,2,..., N : for example, the outlines
of maple leaf images in Figure 1.6. To obtain these coordinates, a characteristic
{original) point on each shape should be identified mamually, this point is shown by
the circle at the top of each maple leaf. Then a traverse technique is implemented.
Moving counterclockwise along the image outline, we record (z,y) coordinaies, so
that eventually we come to the same point/circle (Gonzalez and Woods, 2002). In
Figure 1.7 we plot z and y versus the point for each leaf—these are the data with
which the mixed model works.

by
s
L4

. 4

s

L

FIGURE 1.6. Nine maple leaf shapes. The circle on the top of each leaf is the starting
point where the traverse starts.
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An important feature of this shape quantification is that z and y are periodic
functions because moving along the shape, one comes to the original point. There-
fore, Fourier analysis is an adequate mathematical tool to describe z and y through
a linear combination of a finite number of harmonics (see Section 11.7). Oxdinarily,
such snalysis assumes that the Fourier coefficients {ai,k = 1,2,..., K} are fixed,
where K is the number of harmonics. According to the mixed model methodology,
the coefficients vary from shape to shape but stay constant within the population:
namely, o = ap + b, where ag is the kth Fourier coefficient for the ith shape
and ey, is the population-averaged coefficient. The RFD model for shape reduces to
a LME model with appropriate formulas and algorithms.

Shape analysis is complicated by the fact that shapes may have different sizes
and may be rotated arbitrarily. Fortunately, the traverse method is not affected by
rotation, but the size and the gpecific location of the original point should be taken
into account. Thus, hefore analyzing data in Figure 1.7, normalization and rescaling
are required.

Point index

FIGURE 1.7. Quantified maple leaf shapes; £ and y coordinates as a function of the
traverse point for each shape. Before doing the analysis, these curves must be properly
normalized and rescaled.

1.14 DNA Western blot analysis

Western blot analysis (or immunoblotting) is a popular DNA imaging analysis used
for the detection of specific proteins. In this technique DNA is electrophoresed
through a gel matrix to separate the individual fragments by size. The result of
this procedure is a bandiike image. T'wo typical Western blot images, for a normal
patient and a cancer patient, are shown in Figure 1.8.

Special interpretation skills are required to identify blocks and to detect the dif-
ference between two sample tissues. Besides general difficulties of interpretation
and identification, the variation between samples, laboratories, and patients be-
comes overwhelming. Needless to say, often the DNA analysis becomes imprecise
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FIGURE 1.8. Typical Western blot 45 x 327 image for normal- and cancer-patient DNA.

and subjective. Moreover, since the human eye cannot compare hundreds of im-
ages, the analysis is reduced to just a few comparisons—biased and false results are
unavoidable.

To address sample, laboratory, and patient heterogeneity, a multilevel mixed
model should be applied. We quantify the two images and show the result in Figure
1.9. The result of quantification is two matrices with integer values in the range
from 0 {absolute black) to 255 (absolute white). The reader may learn more about
image quantification in Chapter 12. The columns are interpreted as repeated mea-
surements, and therefore averaging is allowed. Assuming that values are normally
distributed (not integers), perhaps the simplest statistical model takes the form

Control: Yij1 = My1 + i41,
Patient: Yij2 = Mjo + €52, (1.71)

where p;; and p;, are the mean values ab the jth vertical readings and ey ~
N(0,5?) are iid random variables (k =1,2) andi=1,..,m=45and j=1,...,n=
327. The null hypothesis is Ho : ji1; = p1,2: 89,1 = Moo, M37,1 = Hazre- In
this setting, this hypothesis may be tested by the paired i-test applied to average
data, yj1 = Yieq iji/m and g = 3 1L, yijo/m. Several improvements may be
made to model (1.71}). First, one may assume that observations along the z-axis
are dependeni. A parsimonious correlation structure can be described by a Toeplitz
(band) matrix assuming that observations follow a stationary random process, see
Section 4.3.4. Second, one can address the curvature along the y-axis using the
model Y5 = pj; + Vi (i —m/2) +ap(i—m/2)? + e¢5x. Then vy and ay are nuisance
curvature coefficients. Again, we are concerned with the same null hypothesis, Hy-

More important, model (1.71) can be used as a building block to test Hy when
repeated measurements are available, such as from different laboratories, tissue
samples, etc. For example, if DNA analysis is available for M controls and M,
cancer patients, we introduce an additional index p so that yijpre = pj + bpk + &ijis
where by, is the subject-specific random effect. Moreover, one may be interested in
the dependence of DNA analysis on age, gender, or other covariates x,, leading to
a linear mixed effects model

Yigpk = Mjp, + B Xpie + bpie + Eipie-
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FIGURE 1.9. Quantified Western blot images with the difference. The average across
vertical readings is shown by the bold line. The paired ¢-test produced a p-value of 0.0001.

Obviously, it takes the form (1.10) after combining observations in vectors and
matrices. If the covariance matrix ;5px is modeled via a Toeplitz matrix, we come
to the LME model with linear covariance structure (see Section 4.3).

1.15 Where does the wind blow?

In this section we illustrate how a mixed model may be applied to analyze moving
objects. In Figure 1.10 four images of the same sky are taken at 15-second intervals
{(the camera position was held fixed). From an analysis of these images, we want
to determine where the wind blows, or in other words, in what direction/angle the
clouds move and with what speed. First, we solve this problem assuming that the
shape of the clouds does not change with time. Second, we show how to describe
this problem via a nonlinear mixed model under the more realistic assumption that
the moving clouds change.
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A grayscale image is a P x (Q matrix with integer entries from 0 (absolute black)
to 255 (absolute white). Let M;(p,q) be the intensity of the image at time ¢ a
pixel (p,q), where p = 1,2,..., P and ¢ = 1,2,...,Q. In our example, P = 576 and
Q@ =432,t=1,2,3,4 =T. See Chapter 12 for more discussion.
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FIGURE 1.10. Pictures of the sky taken at 15-second intervals. Where does the wind blow?
We apply the mixed modeling technique to answer this question.

To fix the idea, we consider the case when only two sky images, M7 and M, are
available. If pixel (p, g) moved to a new position {(p + a, ¢ + 5), we could identify o
and 8 from nonlinear least squarés by minimizing the mean squared error

S(e, 8) = ZZ[Ml(p, ~ Ma(p + a,q+ B))>
Q p=1g=1
Although M (p,q) and Mj(p,q) are discrete functions, actually matrices, we can
find the minimum of 5; we refer the reader to Section 12.7.7, where a derivative-
free algorithm is discussed. In image analysis, we treat elements as functions of p
and ¢, and therefore we use the notation M (p,g) rather than M.

Next we assume that there are ¢+ = 1,2,...,T images moving with a constant
speed. Let M(p,q) be the image of the moving object, which is unknown. Since
after time ¢, pixel (p,q) on image M moved to pixel (p + at, ¢ + 5t) on image M,
we find o and § which minimize the MSE,

S(a, B) =; | > [Milp+at,q+Bt) - M(p,g) |, (1.72)

(parem
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where M is the index set (p,g), sothat 1 <p+oat < Pand 1 < g+ ot £ Q; M|
is the number of pair elements in M, or in other words, the number of summation
terms. We use MSE rather than a simple sum of squares to account for the number
of summation terms; this technique is called affine image registration, see Section
12.7.1 for more details. From (1.72), we immediately obtain the fact that the optimal
M is the average,
— 1

Mp,q)=Mp,0) = 75 >, Milp+at,q+5t), (1.73)

TIMi (pa)eM

so M is replaced in {1.72) with (1.73} after each iteration for a and 3.
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FIGURE 1.11. Reconstructed sky and wind direction indicated by an arrow. The wind
blows at —60° with speed of 62 pixels per 15 seconds.

After a few iterations we get & = 31 and E = —54, so the angle at which the
wind blows is —60°, indicated by an arrow on the images in Figure 1.11. After «
and B are estimated, we estimate the speed as (&% + 32)1/ 2 = 62 pixels per 15
geconds. In Figure 1.11 we show four images My(p + &, ¢+ Bt) at ¢ = 0,15, 30,45,
the average image (1.73), and the contours for the mean squared error {1.72) in
coordinate system (a, 5).

Now we set up a nounlinear mixed effects model (studied in Chapter 8 in a general
form}. In the least squares criterion (1.72), it was assumed that the moving clouds
do not change, which clearly is not true. To account for change, we allow coefficients
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a and # to be random, leading us to a statistical model,

My(p + olp, @)t ¢ + B(p, Q)t) = M(p,q) +&(p, q), (1.74)

where afp, ¢) and S{p, ¢) are random variables with means o and 3, or more specif-
ically,

alp,q) = o+ ba{p,q), Blp.q) = B+bslp, q) (1.75)

In this model, £(p,q) is the iid error term with zero mean and variance o2, and
ba{p,q) and bg(p, q} are treated as random effects with zero mean and the 2 x 2
covariance matrix ¢2D. The stochastic equations (1.74) and (1.75) define a nonlinear
mixed effects model. When D = @, we come to an ordinary nonlinear regression
model and criterion (1.72): otherwise, the population-averaged parameters o and
J should be estimated using approximate methods from Chapter 8, such as those
based on the Laplace approximation.

1.16 Software and books

There are several statistical packages for linear and nonlinear mixed effects model
estimation. The most advanced are proc mized for SAS (SAS Institute, Inc.) and
library nime (or lme4) for R (R Development Core Team, 2011). Other relevant R
packages/libraries are gee and MASS (function glmmPQL); all these can be downloaded
from http://www.R-project.org. The documentation for R functions is usually too
succinct for immediate programming. For example, there is no explanation of how
to extract the variance-covariance matrix of random effects, D, = 2D, from 1ms
or lmed, or how to keep these functions running in the case of a failure during
simulations—we illustrate these features. However, providing details on the use of
this software is beyond the scope of this book. The relevant coverage of linear and
nonlinear mixed models within S-Plus is given in the book by Pinheiro and Bates
(2000}. For SAS users we recommend books by Verbeke and Molenberghs (2009)
and Vonesh (2012), which have numerous examples.

A number of books on mixed models have heen published. Below is a list arranged
in order of similarity to this book:

o McCulloch, C.E. and Searle, S.R. (2001). Generalized, Linear and Mized Mod-
els. New York: Wiley.

¢ Vonesh, E.F. and Chinchilli, V.M. (1997). Linear and Nonlinear Models for
the Analysis of Repeated Measurements. New York: Marcel Dekker.

e Vonesh, E.F. (2012). Generalized Linear and Nonlinear Models for Correlated
Data. Theory and Applications Using SAS. Cary, NC: SAS Institute.

o Davidian, M. and Giltinan, D.M. {1995}. Nonlinear Models for Repeated Mea-
surement Data. London: Chapman & Hall.

e Pan, J.X. and Fang, K.T. (2002). Growth Curve Models and Statistical Diag-
nostics. New York: Springer-Verlag.



1.17 Summary points a7

Davis, C.8. {2002). Statistical Methods for the Analysis of Repeated Measure-
ments. New York: Springer-Verlag.

¢ Diggle, P., Heagerty, P., Liang, K.-Y., and Zeger, 8. (2002). Analysis of Lon-
gitudinal Data. Oxford, UK: Oxford University Press.

e Fahrmeir, L. and Tutz, G. {2001). Multivariate Statistical Modelling Based on
Generalized Linear Models. New York: Springer-Verlag,

» Agresti, A. (2002). Categorical Data Analysis. New York: Wiley.

¢ Pinheiro, J.C. and Bates, D.M. (2000). Mized Effects Models in S-Plus. New
York: Springer-Verlag.

¢ Fitzmaurice, G.M., Laird, N.M., and Ware, J.H. (2011). Applied Longitudinal
Analysis. Hoboken, NJ: Wiley.

o Hedeker, D. and Gibbons, R.D. (2006). Longitudinal Data Analysis. Hoboken:
Wiley.

¢ Verbeke, G. and Molenberghs, G. (2009). Linear Mixed Models for Longitudi-
nal Data. New York: Springer-Verlag,

¢ Fitzmaurice, G., Davidian, M., Verbeke, G., and Molenberghs, G. (Eds.)
(2009). Longitudinal Data Analysis. Boca Raton, FL: CRC Press.

e Hsiao, C. (2003). Analysis of Panel Data. Cambridge, UK: Cambridge Uni-
versity Press.

o Searle, 3.R., Casella G., and McCulloch, C.M. {1992). Variance Components.
New York: Wiley.
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e Often, data have a clustered (panel or tabular) structure. Classical statistics
assumes that observations are independent and identically distributed (iid).
Applied to clustered data, this assumption may lead to false results. In con-
trast, the mixed effects model treats clustered data adequately and assumes
two sources of variation, within cluster and between clusters. Two types of
coefficients are distinguished in the mixed model: population-averaged and
cluster (or subject)-specific. The former have the same meaning as in classical
statistics, but the latter are random and are estimated as posteriori means.

e The linear mixed effects (LME) model may be viewed as a generalization of
the variance component (VARCOMP) and regression analysis models. When
the number of clusters is small and the number of ohservations per cluster is
large, we treat the cluster-specific coefficients as fixed, and ordinary regression
analysis with dummy variables applies, as in the ANOVA model. Such a model
is called a fixed effects model. Vice versa, when the number of clusters is
large but the number of observations per cluster is relatively small, a random
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effects model would be more adequate—then the cluster-specific coefficients
are random.

The mixed model technique is a child of the marriage of the frequentist and
Bayesian approaches. Similar to the Bayesian approach, a mixed model speci-
fies the model in a hierarchical fashion, assuming that parameters are random.
However, unlike the Bayesian approach, hyperparameters are estimated from
the data as in the frequentist approach. As in the Bayesian approach, one
has to make a decision as to the prior distribution, but that distribution may
contain unknown parameters that are estimated from the data, as in the fre-
quentist approach.

Penalized likelihood is frequently used to cope with parameter multidimen-
sionality. We show that the penalized likelihood may be derived from a mixed
model as an approximation of the marginal likelihood after applying the
Laplace approximation. Moreover, the penalty coefficient, often derived from
a heuristic procedure, is estimated by maximum likelihood as an ordinary
parameter,

The Akaike information criterion {AIC) is used to compare statistical models
and to choose the most informative. The AIC has the form of a penalized log-
likelihood with the penalty equal to the dimension of the parameter vector.
A drawback of the AIC is that it does not penalize ill-posed statistical prob-
lems, as in the case of multicollinearity among explanatory variables in linear
regression. We develop a healthy AIC that copes with ill-posedness as well
because the penalty term involves the average length of the parameter vector.
Consequently, among models with the same log-likelihood value and number
of parameters, HAIC will choose the model with the shortest parameter vector
length.

Since the mixed model naturally leads to penalized likelihood, it can be ap-
plied to penalized smoothing and polynomial fitting. Importantly, the difficult
problem of penalty coeflicient selection is solved using the mixed model tech-
nique by estimating this coefficient from the data. In penalized smoothing,
we restrain the parameters through the bending energy, in polynemial fitting
through the second derivative.

The mixed model copes with parameter multidimensionality. For example, if
a statistical model contains a large number of parameters, one may assume
that a prieri parameters have zero mean and unknown variance. Estimating
this variance from the data, after Laplace approximation we come to the
penalized log-likelihood. We illustrate this approach with a dietary problem in
conjunction with logistic regression where $he number of food items consumed
may be large.

Tikhonov regularization aims to replace an ill-posed problem with a well-
posed problem by adding a quadratic penalty term. However, selection of the
penalty coefficient is a problem. Although Tikhonov regularization receives a
nice statistical interpretation in the Bayesian framework, the problem. of the
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penalty coefficient remains. A nonlinear mixed model estimates the penalty
coefficient from the data along with the parameter of interest, 8.

Computerized tomography (CT) reconstructs an image from projections and
belongs to the family of linear image reconstruction. Since the number of im-
age pixels is close to the number of observations, CT leads to an ill-posed
problem. To obtain a well-posed problem, a priori assumptions on the recon-
structed image should be taken into account. We show that a mixed model
may accommodate various prior assumptions without complete specification
of the prior distribution.

Positron emission tomography (PET) uses the Poisson regression model for
image reconstruction and the EM algorithm for likelihood maximization. Little
statistical hypothesis testing has been reported, perhaps due to the fact that
the EM algorithm does not produce the covariance image matrix. The Fisher
scoring or Unit step algorithms are much faster and allow computation of the
covariance matrix needed for various hypothesis testing as if two images in the
area of interest are the same. To cope with ill-posedness, Bayesian methods
and methods of penalized likelihood have heen widely applied. The generalized
linear mixed model (GLMM), studied extensively in Chapter 7, also follows
the line of the Bayesian approach, but enables estimation of the regularization
parameter from PET data. A multilevel GLMM model can combine repeated
PET measurements and process them simultaneously, increasing statistical
power substantially.

The mixed model is well suited for the analysis of biological data when, on the
one hand, observations are of the same biological category (maple leaf), but
on the other hand, individuals differ. Consequently, there are two sources of
variation: variation between individuals (intersubject variance} and variation
within an individual (intrasubject variance). The common biological type cor-
responds to population-averaged parameters and individuality corresponds to
subject-specific parameters. Shape is the simplest biological characteristic, Its
analysis is complicated by the fact that shapes may be rotated and translated
arbitrarily. Several mixed models for shape analysis are discussed in Chapter
11.

Image science enables us to derive a large data set of repeated structure;
thus, application of the repeated-measurements model, such as a mixed model,
seems natural. Until now, image comparison in medicine has been subjective
and based on “eyeball” evaluation of a few images (often, just a couple).
Statistical thinking in image analysis is generally poor. For example, a proper
DNA Western blot image evaluation should be based on several tissue samples
analyzed by a multilevel mixed model.

Mixed models can be applied for statistical image analysis, particularly to
analyze an ensemble of images (see Chapter 12). As with shape analysis,
two sources of variation are considered, the within-image and between-images
vartation. Since an image may be described as a large malrix, we may treat the
element as a nonlinear function of the index and apply the nonlinear mixed
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effects model of Chapter 6. The mixed model can also be applied to study the
motion of fuzzy objects such as clouds.





