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1.1 INTRODUCTION TO SPASERS AND SPASING

Not just a promise anymore [1], nanoplasmonics has delivered a number of important
applications: ultrasensing [2], scanning near-field optical microscopy [3, 4], surface
plasmon (SP)-enhanced photodetectors [5], thermally assisted magnetic recording
[6], generation of extreme UV (EUV) [7], biomedical tests [2,8], SP-assisted thermal
cancer treatment [9], plasmonic-enhanced generation of EUV pulses [7] and extreme
ultraviolet to soft x-ray (XUV) pulses [10], and many others—see also Reference 11
and 12.

To continue its vigorous development, nanoplasmonics needs an active device—
near-field generator and amplifier of nanolocalized optical fields, which has until
recently been absent. A nanoscale amplifier in microelectronics is the metal-oxide-
semiconductor field effect transistor (MOSFET) [13,14], which has enabled all con-
temporary digital electronics, including computers and communications, and the
present-day technology as we know it. However, the MOSFET is limited by fre-
quency and bandwidth to � 100 GHz, which is already a limiting factor in further
technological development. Another limitation of the MOSFET is its high sensitivity
to temperature, electric fields, and ionizing radiation, which limits its use in extreme
environmental conditions and nuclear technology and warfare.

An active element of nanoplasmonics is the spaser (Surface Plasmon Amplification
by Stimulated Emission of Radiation), which was proposed [15, 16] as a nanoscale
quantum generator of nanolocalized coherent and intense optical fields. The idea of
spaser has been further developed theoretically [17–26]. Spaser effect has recently
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been observed experimentally [27]. Also a number of surface plasmon polariton
(SPP) spasers (also called nanolasers) have been experimentally observed [28–33],
see also References 34–37. Closely related to the spaser are nanolasers built on deep
subwavelength metal nanocavities [38, 39].

1.2 SPASER FUNDAMENTALS

Spaser is a nanoplasmonic counterpart of laser [15,17]: It is a quantum generator and
nanoamplifier where photons as the participating quanta are replaced by SPs. Spaser
consists of a metal nanoparticle, which plays the role of a laser cavity (resonator),
and the gain medium. Figure 1.1 schematically illustrates the geometry of a spaser as
introduced in the original article [15], which contains a V-shaped metal nanoparticle
surrounded by a layer of semiconductor nanocrystal quantum dots (QDs).

The laser has two principal elements: resonator (or cavity) that supports photonic
mode(s) and the gain (or active) medium that is population-inverted and supplies
energy to the lasing mode(s). An inherent limitation of the laser is that the size of the
laser cavity in the propagation direction is at least half the wavelength and practically
more than that even for the smallest lasers developed [28, 29, 40].

In a true spaser [15, 18], this limitation is overcome. The spasing modes are
SPs whose localization length is on the nanoscale [41] and is only limited by the
minimum inhomogeneity scale of the plasmonic metal and the nonlocality radius [42]
lnl ∼ 1 nm. This nonlocality length is the distance that an electron with the Fermi
velocity vF moves in space during a characteristic period of the optical field:

lnl ∼ vF /ω ∼ 1 nm, (1.1)

where ω is the optical frequency, and the estimate is shown for the optical spectral
region. So, the spaser is truly nanoscopic—its minimum total size can be just a few
nanometers.
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FIGURE 1.1 Schematic of the spaser as originally proposed in Reference 15. The resonator of the spaser
is a metal nanoparticle shown as a gold V-shape. It is covered by the gain medium depicted as nanocrystal
quantum dots. This active medium is supported by a neutral substrate.
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The resonator of a spaser can be any plasmonic metal nanoparticle whose total size
R is much less than the wavelength λ and whose metal thickness is between lnl and ls ,
which supports an SP mode with required frequency ωn. Here ls is the skin depth:

ls = λ̄

[
Re

( −ε2
m

εm + εd

)1/2
]−1

, (1.2)

where λ̄ = λ/(2π ) = ω/c is the reduced vacuum wavelength, εm is the dielectric
function (or, permittivity) of the metal, and εd is that of the embedding dielectric. For
single-valence plasmonic metals (silver, gold, copper, alkaline metals) ls ≈ 25 nm in
the entire optical region.

This metal nanoparticle should be surrounded by the gain medium that overlaps
with the spasing SP eigenmode spatially and whose emission line overlaps with this
eigenmode spectrally [15]. As an example, we consider in more detail a model of
a nanoshell spaser [17, 18, 43], which is illustrated in Figure 1.2. Panel (a) shows a
silver nanoshell carrying a single SP (plasmon population number Nn = 1) in the
dipole eigenmode. It is characterized by a uniform field inside the core and hot spots
at the poles outside the shell with the maximum field reaching ∼ 106 V/cm. Similarly,
Figure 1.2b shows the quadrupole mode in the same nanoshell. In this case, the mode
electric field is nonuniform, exhibiting hot spots of ∼ 1.5 × 106 V/cm of the modal
electric field at the poles. These high values of the modal fields, which are related
to the small modal volume, are the underlying physical reason for a very strong
feedback in the spaser. Under our conditions, the electromagnetic retardation within
the spaser volume can be safely neglected. Also, the radiation of such a spaser is a
weak effect: The decay rate of plasmonic eigenmodes is dominated by the internal
loss in the metal. Therefore, it is sufficient to consider only quasistatic eigenmodes
[41, 44] and not their full electrodynamic counterparts [45].

For the sake of numerical illustrations of our theory, we will use the dipole
eigenmode (Fig. 1.2a). There are two basic ways to place the gain medium: (i)
outside the nanoshell, as shown in panel (c), and (ii) in the core, as in panel (d), which
was originally proposed in Reference 43. As we have verified, these two designs
lead to comparable characteristics of the spaser. However, the placement of the gain
medium inside the core illustrated in Figure 1.2d has a significant advantage because
the hot spots of the local field are not covered by the gain medium and are sterically
available for applications.

Note that any l-multipole mode of a spherical particle is, indeed, 2l + 1-times
degenerate. This may make the spasing mode to be polarization unstable, like in
lasers without polarizing elements. In reality, the polarization may be clamped and
become stable due to deviations from the perfect spherical symmetry, which exist
naturally or can be introduced deliberately. More practical shape for a spaser may be
a nanorod [24], which has a mode with the stable polarization along the major axis.
However, a nanorod is a more complicated geometry for theoretical treatment.

The level diagram of the spaser gain medium and the plasmonic metal nanoparticle
is displayed in Figure 1.2e along with a schematic of the relevant energy transitions in
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FIGURE 1.2 Schematic of spaser geometry, local fields, and fundamental processes leading to spasing.
(a) Nanoshell geometry and the local optical field distribution for one SP in an axially symmetric dipole
mode. The nanoshell has aspect ratio η = 0.95. The local-field magnitude is color-coded by the scale bar
in the right-hand side of the panel. (b) The same as (a) but for a quadrupole mode. (c) Schematic of a
nanoshell spaser where the gain medium is outside of the shell, on the background of the dipole-mode
field. (d) The same as (c) but for the gain medium inside the shell. (e) Schematic of the spasing process.
The gain medium is excited and population-inverted by an external source, as depicted by the black arrow,
which produces electron–hole pairs in it. These pairs relax, as shown by the green arrow, to form the
excitons. The excitons undergo decay to the ground state emitting SPs into the nanoshell. The plasmonic
oscillations of the nanoshell stimulate this emission, supplying the feedback for the spaser action. Adapted
from Reference 18.
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the system. The gain medium chromophores may be semiconductor nanocrystal QDs
[15, 46], dye molecules [47, 48], rare-earth ions [43], or electron–hole excitations of
an unstructured semiconductor [28, 40]. For certainty, we will use a semiconductor-
science language of electrons and holes in QDs.

The pump excites electron–hole pairs in the chromophores (Fig. 1.2e), as indicated
by the vertical black arrow, which relax to form excitons. The excitons constitute the
two-level systems that are the donors of energy for the SP emission into the spasing
mode. In vacuum, the excitons would recombine emitting photons. However, in the
spaser geometry, the photoemission is strongly quenched due to the resonance energy
transfer to the SP modes, as indicated by the red arrows in the panel. The probability
of the radiativeless energy transfer to the SPs relative to that of the radiative decay
(photon emission) is given by the so-called Purcell factor

∼ λ̄3Q

R3
� 1, (1.3)

where R is a characteristic size of the spaser metal core and Q is the plasmonic
quality factor [12], and Q ∼ 100 for a good plasmonic metal such as silver. Thus,
this radiativeless energy transfer to the spaser mode is the dominant process whose
probability is by orders of magnitude greater than that of the free-space (far-field)
emission.

The plasmons already in the spaser mode create the high local fields that excite
the gain medium and stimulate more emission to this mode, which is the feedback
mechanism. If this feedback is strong enough, and the lifetime of the spaser SP
mode is long enough, then an instability develops leading to the avalanche of the
SP emission in the spasing mode and spontaneous symmetry breaking, establishing
the phase coherence of the spasing state. Thus the establishment of spasing is a
nonequilibrium phase transition, as in the physics of lasers.

1.2.1 Brief Overview of the Latest Progress in Spasers

After the original theoretical proposal and prediction of the spaser [15], there has
been an active development in this field, both theoretical [17–26] and experimental
[27–33]; see also [11, 12]. There has also been a US patent issued on spaser [16].

Among theoretical developments, a nanolens spaser has been proposed [49], which
possesses a nanofocus (“the hottest spot”) of the local fields. In References 15 and
49, the necessary condition of spasing has been established on the basis of the
perturbation theory.

There have been theories published describing the SPP spasers (or “nanolasers” as
sometimes they are called) phenomenologically, on the basis of classic linear electro-
dynamics by considering the gain medium as a dielectric with a negative imaginary
part of the permittivity (e.g., [43]). Very close fundamentally and technically are works
on the loss compensation in metamaterials [50–53]. Such linear-response approaches
do not take into account the nature of the spasing as a nonequilibrium phase transition,
at the foundation of which is spontaneous symmetry breaking: establishing coherence
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with an arbitrary but sustained phase of the SP quanta in the system [18]. Spaser is
necessarily a deeply nonlinear (nonperturbative) phenomenon where the coherent SP
field always saturates the gain medium, which eventually brings about establishment
of the stationary [or continuous wave (CW)] regime of the spasing [18]. This leads
to principal differences of the linear-response results from the microscopic quantum-
mechanical theory in the region of spasing, as we discuss below in conjunction with
Figure 1.4.

There has also been a theoretical publication on a bow tie spaser (nanolaser) with
electrical pumping [54]. It is based on balance equations and only the CW spasing
generation intensity is described. Yet another theoretical development has been a
proposal of the lasing spaser [55], which is made of a plane array of spasers.

There has also been a theoretical proposal of a spaser (“nanolaser”) consisting of
a metal nanoparticle coupled to a single chromophore [56]. In this paper, a dipole–
dipole interaction is illegitimately used at very small distances r where it has a
singularity (diverging for r → 0), leading to a dramatically overestimated coupling
with the SP mode. As a result, a completely unphysical prediction of CW spasing
due to single chromophore has been obtained [56]. In contrast, our theory [18] is
based on the full (exact) field of the spasing SP mode without the dipole (or any
multipole) approximation. As our results of Section 1.3.4 below show, hundreds of
chromophores per metal nanoparticle are realistically required for the spasing even
under the most favorable conditions.

There has been a vigorous experimental investigation of the spaser and the con-
cepts of spaser. Stimulated emission of SPPs has been observed in a proof-of-principle
experiment using pumped dye molecules as an active (gain) medium [47]. There have
also been later experiments that demonstrated strong stimulated emission compensat-
ing a significant part of the SPP loss [48, 57–61]. As a step toward the lasing spaser,
the first experimental demonstration has been reported of a partial compensation of
the Joule losses in a metallic photonic metamaterial using optically pumped PbS
semiconductor QDs [46]. There have also been experimental investigations reporting
the stimulated emission effects of SPs in plasmonic metal nanoparticles surrounded
by gain media with dye molecules [62, 63]. The full loss compensation and amplifi-
cation of the long-range SPPs at λ = 882 nm in a gold nanostrip waveguide with a
dye solution as a gain medium has been observed [64].

At the present time, there have been a considerable number of successful exper-
imental observations of spasers and SPP spasers (also called nanolasers). An elec-
trically pumped nanolaser with semiconductor gain medium has been demonstrated
[28] where the lasing modes are SPPs with a one-dimensional (1d) confinement to
a ∼ 50 nm size. A nanolaser with an optically pumped semiconductor gain medium
and a hybrid semiconductor/metal (CdS/Ag) SPP waveguide has been demonstrated
with an extremely tight transverse (2d) mode confinement to ∼ 10 nm size [29]. This
has been followed by the development of a CdS/Ag nanolaser generating a visible
single mode at room temperature with a tight 1d confinement (∼ 20 nm) and a 2d
confinement in the plane of the structure to an area ∼ 1 μm2 [30]. A highly efficient
SPP spaser in the communication range (λ = 1.46 μm) with an optical pumping
based on a gold film and an InGaAs semiconductor quantum-well gain medium has
recently been reported [31]. Another nanolaser (spaser) has been reported based on
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gold as a plasmonic metal and InGaN/GaN nanorods as gain medium [32]. This
spaser generates in the green optical range. Also a promising type of spasers has been
introduced [33] based on distributed feedback (DFB). The nanolaser demonstrated
in Reference 33 generates at room temperature and has lower threshold than other
spasers—see also the corresponding discussion in Section 1.4.6.

There has been an observation published of a nanoparticle spaser [27]. This spaser
is a chemically synthesized gold nanosphere of radius 7 nm surrounded by a dielectric
shell of 21 nm outer radius containing immobilized dye molecules. Under nanosecond
optical pumping in the absorption band of the dye, this spaser develops a relatively
narrow-spectrum and intense visible emission that exhibits a pronounced threshold
in pumping intensity. The observed characteristics of this spaser are in an excellent
qualitative agreement and can be fully understood on the basis of the corresponding
theoretical results described in Section 1.3.4.

1.3 QUANTUM THEORY OF SPASER

1.3.1 Surface Plasmon Eigenmodes and Their Quantization

Here we will follow References 41, 65, and 66 to introduce SPs as eigenmodes
and Reference 15 to quantize them. Assuming that a nanoplasmonic system is
small enough, R � λ̄, R � ls , we employ the so-called quasistatic approximation
where the Maxwell equations reduce to the continuity equation for the electrostatic
potential ϕ(r):

∂

∂r
ε(r)

∂

∂r
ϕ(r) = 0. (1.4)

The systems permittivity (dielectric function) varying in space and frequency-
dependent is expressed as

ε(r, ω) = εm(ω)	(r) + εd [1 − 	(r)] = εd

[
1 − 	(r)

s(ω)

]
. (1.5)

Here 	(r) is the so-called characteristic function of the nanosystem, which is equal
to 1 when r belongs to the metal and 0 otherwise. We have also introduced Bergman’s
spectral parameter [44]:

s(ω) = εd

εd − εm(ω)
. (1.6)

A classical-field SP eigenmode ϕn(r) is defined by the following generalized
eigenproblem, which is obtained from Equation (1.4) by substituting Equations (1.5)
and (1.6):

∂

∂r
	(r)

∂

∂r
ϕn(r) − sn

∂2

∂r2
ϕn(r) = 0, (1.7)
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where ωn is the corresponding eigenfrequency and sn = s(ωn) is the corresponding
eigenvalue.

To be able to carry out the quantization procedure, we must neglect losses, that
is, consider a purely Hamiltonian system. This requires that we neglect Im εm, which
we do only in this subsection. Then the eigenvalues sn and the corresponding SP
wave functions ϕn, as defined by Equation (1.7), are all real. Note that for good
metals in the plasmonic region, Im εm � |Re εm|, cf. Reference 12, so this procedure
is meaningful.

The eigenfunctions ϕn(r) satisfy the homogeneous Dirichlet–Neumann boundary
conditions on a surface S surrounding the system. These we set as

ϕ1(r)|r∈S = 0, or n(r)
∂

∂r
ϕ1(r)

∣∣∣∣
r∈S

= 0, (1.8)

with n(r) denoting a normal to the surface S at a point of r.
From Equations (1.4), (1.5), (1.6), (1.7), and (1.8) it is straightforward to obtain

that ∫
V

ε(r, ω) |∇ϕn(r)|2 dV = εd

[
1 − sn

s(ω)

]
, (1.9)

where V is the volume of the system.
To quantize the SPs, we write the operator of the electric field of an SP eigenmode

as a sum over the eigenmodes:

Ê(r) = −
∑

n

An∇ϕn(r)(ân + â†
n), (1.10)

where â
†
n and ân are the SP creation and annihilation operators, −∇ϕn(r) = En(r) is

the modal field of an nth mode, and An is an unknown normalization constant. Note
that â

†
n and ân satisfy the Bose–Einstein canonical commutation relations,

[
ân, â

†
m

] = δmn, (1.11)

where δmn is the Kronecker symbol.
To find normalization constant An, we invoke Brillouin’s expression [67] for the

average energy 〈ĤSP 〉 of SPs as a frequency-dispersive system:

〈
ĤSP

〉 = 1

8π

∫
V

∂

∂ω
[ωε(r, ω)]

∑
n

〈
Ê†

n(r)Ên(r)
〉
dV, (1.12)

where

ĤSP =
∑

n

�ωn

(
â†

nân + 1

2

)
(1.13)

is the SP Hamiltonian in the second quantization.
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Finally, we substitute the field expansion (1.10) into Equation (1.12) and take
into account Equation (1.9) to carry out the integration. Comparing the result with
Equation (1.13), we immediately obtain an expression for the quantization constant:

An =
(

4π�sn

εds ′
n

)1/2

, s ′
n ≡ Re

ds(ω)

dω

∣∣∣∣
ω = ωn

(1.14)

Note that we have corrected a misprint in Reference 15 by replacing the coefficient
2π by 4π .

1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations)
for Spaser

Here we follow Reference 18. The spaser Hamiltonian has the form

Ĥ = Ĥg + ĤSP −
∑

p

Ê(rp)d̂(p), (1.15)

where Ĥg is the Hamiltonian of the gain medium, p is a number (label) of a gain
medium chromophore, rp is its coordinate vector, and d̂(p) is its dipole-moment
operator. In this theory, we treat the gain medium quantum mechanically but the
SPs quasi-classically, considering ân as a classical quantity (c-number) an with time
dependence as an = a0n exp(−iωt), where a0n is a slowly varying amplitude. The
number of coherent SPs per spasing mode is then given by Np = |a0n|2. This approxi-
mation neglects quantum fluctuations of the SP amplitudes. However, when necessary,
we will take into account these quantum fluctuations, in particular, to describe the
spectrum of the spaser.

Introducing ρ(p) as the density matrix of a pth chromophore, we can find its
equation of motion in a conventional way by commutating it with the Hamiltonian
(1.15) as

i�ρ̇(p) = [ρ(p), Ĥ ], (1.16)

where the dot denotes temporal derivative. We use the standard rotating wave approx-
imation (RWA), which only takes into account the resonant interaction between the
optical field and chromophores. We denote |1〉 and |2〉 as the ground and excited states
of a chromophore, with the transition |2〉 � |1〉 resonant to the spasing plasmon mode
n. In this approximation, the time dependence of the nondiagonal elements of the
density matrix is (ρ(p))12 = ρ̄

(p)
12 exp(iωt) and (ρ(p))21 = ρ̄

(p)∗
12 exp(−iωt), where ρ̄

(p)
12

is an amplitude slowly varying in time, which defines the coherence (polarization)
for the |2〉 � |1〉 spasing transition in a pth chromophore of the gain medium.

Introducing a rate constant �12 to describe the polarization relaxation and a dif-
ference n

(p)
21 = ρ

(p)
22 − ρ

(p)
11 as the population inversion for this spasing transition, we

derive an equation of motion for the nondiagonal element of the density matrix as

˙̄ρ(p)
12 = − [i (ω − ω12) + �12] ρ̄

(p)
12 + ia0nn

(p)
21 ̃

(p)∗
12 , (1.17)
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where

̃
(p)
12 = −And(p)

12 ∇ϕn(rp)/� (1.18)

is the one-plasmon Rabi frequency for the spasing transition in a pth chromophore
and d(p)

12 is the corresponding transitional dipole element. Note that always d(p)
12 is

either real or can be made real by a proper choice of the quantum state phases,
making the Rabi frequency ̃

(p)
12 also a real quantity.

An equation of motion for n
p

21 can be found in a standard way by commutating
it with Ĥ and adding the corresponding decay and excitation rates. To provide
conditions for the population inversion (np

21 > 0), we imply existence of a third level.
For simplicity, we assume that it very rapidly decays into the excited state |2〉 of the
chromophore, so its own population is negligible. It is pumped by an external source
from the ground state (optically or electrically) with some rate that we will denote g.
In this way, we obtain the following equation of motion:

˙̄n(p)
21 = −4Im

[
a0nρ̄

(p)
12 ̃

(p)
21

]
− γ2

(
1 + n

(p)
21

)
+ g

(
1 − n

(p)
21

)
, (1.19)

where γ2 is the decay rate |2〉 → |1〉.
The stimulated emission of the SPs is described as their excitation by the local field

created by the coherent polarization of the gain medium. The corresponding equation
of motion can be obtained using Hamiltonian (1.15) and adding the SP relaxation
with a rate of γn as

ȧ0n = [i (ω − ωn) − γn] a0n + ia0n

∑
p

ρ
(p)∗
12 ̃

(p)
12 . (1.20)

As an important general remark, the system of Equations (1.17), (1.19), and
(1.20) is highly nonlinear: Each of these equations contains a quadratic nonlinearity:
a product of the plasmon-field amplitude a0n by the density matrix element ρ12 or
population inversion n21. Altogether, this is a six-order nonlinearity. This nonlinearity
is a fundamental property of the spaser equations, which makes the spaser generation
always a fundamentally nonlinear process. This process involves a nonequilibrium
phase transition and a spontaneous symmetry breaking: establishment of an arbitrary
but sustained phase of the coherent SP oscillations.

A relevant process is spontaneous emission of SPs by a chromophore into a spasing
SP mode. The corresponding rate γ

(p)
2 for a chromophore at a point rp can be found

in a standard way using the quantized field (1.10) as

γ
(p)
2 = 2

A2
n

�γn

∣∣d12∇ϕn(rp)
∣∣2 (�12 + γn)2

(ω12 − ωn)2 + (�12 + γn)2 . (1.21)
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As in Schawlow-Townes theory of laser-line width [68], this spontaneous emission
of SPs leads to the diffusion of the phase of the spasing state. This defines width γs

of the spasing line as

γs =
∑

p

(
1 + n

(p)
21

)
γ

(p)
2

2(2Np + 1)
. (1.22)

This width is small for a case of developed spasing when Np � 1. However, for
Np ∼ 1, the predicted width may be too high because the spectral diffusion the-
ory assumes that γs � γn. To take into account this limitation in a simplified way,
we will interpolate to find the resulting spectral width �s of the spasing line as
�s = (γ −2

n + γ −2
s )−1/2.

We will also examine the spaser as a bistable (logical) amplifier. One of the ways
to set the spaser in such a mode is to add a saturable absorber. This is described by the
same Equations (1.17), (1.18), (1.19), and (1.20) where the chromophores belonging
to the absorber are not pumped by the external source directly, that is, for them in
Equation (1.19) one has to set g = 0.

Numerical examples are given for a silver nanoshell where the core and the
external dielectric have the same permittivity of εd = 2; the permittivity of silver is
adopted from Reference 69. The following realistic parameters of the gain medium
are used (unless indicated otherwise): d12 = 1.5 × 10−17 esu, ��12 = 10 meV,
γ2 = 4 × 1012 s−1 (this value takes into account the spontaneous decay into SPs),
and density of the gain medium chromophores is nc = 2.4 × 1020 cm−3, which is
realistic for dye molecules but may be somewhat high for semiconductor QDs that
were proposed as the chromophores [15] and used in experiments [46]. We will
assume a dipole SP mode and chromophores situated in the core of the nanoshell as
shown in Figure 1.2d. This configuration is of advantage both functionally (because
the region of the high local fields outside the shell is accessible for various applica-
tions) and computationally (the uniformity of the modal fields makes the summation
of the chromophores trivial, thus greatly facilitating numerical procedures).

1.3.3 Equations for CW Regime

Physically, the spaser action is a result of spontaneous symmetry breaking when the
phase of the coherent SP field is established from the spontaneous noise. Mathemat-
ically, the spaser is described by homogeneous differential Equations (1.17), (1.18),
(1.19), and (1.20). These equations become homogeneous algebraic equations for the
CW case. They always have a trivial, zero solution. However, they may also possess
a nontrivial solution describing spasing. An existence condition of such a nontrivial
solution is

(ωs − ωn + iγn)−1 × (1.23)

(ωs − ω21 + i�12)−1
∑

p

∣∣∣̃(p)
12

∣∣∣2
n

(p)
21 = −1,
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where ωs is the generation (spasing) frequency. Here, the population inversion of a
pth chromophore n

(p)
21 is explicitly expressed as

n
(p)
21 = (g − γ2) × (1.24){
g + γ2 + 4Nn

∣∣∣̃(p)
12

∣∣∣2
/
[
(ωs − ω21)2 + �2

12

]}−1

.

From the imaginary part of Equation (1.24) we immediately find the spasing
frequency ωs ,

ωs = (γnω21 + �12ωn) / (γn + �12) , (1.25)

which generally does not coincide with either the gain transition frequency ω21

or the SP frequency ωn, but is between them. Note that this is a frequency walk-off
phenomenon similar to that well known in laser physics. Substituting Equation (1.25)
back into Equations (1.24) and (1.25), we obtain a system of equations:

(γn + �12)2

γn�12
[
(ω21 − ωn)2 + (�12 + γn)2

] ×

∑
p

∣∣∣̃(p)
12

∣∣∣2
n

(p)
21 = 1, (1.26)

n
(p)
21 = (g − γ2) ×⎡

⎢⎣g + γ2 +
4Nn

∣∣∣̃(p)
12

∣∣∣2
(�12 + γn)

(ω12 − ωn)2 + (�12 + γn)2

⎤
⎥⎦

−1

. (1.27)

This system defines the stationary (for the CW generation) number of SPs per spasing
mode, Nn.

Since n
(p)
21 ≤ 1, from Equations (1.26) and (1.27) we immediately obtain a neces-

sary condition of the existence of spasing:

(γn + �12)2

γn�12
[
(ω21 − ωn)2 + (�12 + γn)2

] ∑
p

∣∣∣̃(p)
12

∣∣∣2
≥ 1. (1.28)

This expression is fully consistent with Reference 15. The following order of magni-
tude estimate of this spasing condition has a transparent physical meaning and is of
heuristic value:

d2
12QNc

��12Vn

� 1, (1.29)
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where Q = ω/γn is the quality factor of SPs, Vn is the volume of the spasing SP
mode, and Nc is the number of gain medium chromophores within this volume.
Deriving this estimate, we have neglected the detuning, that is, set ω21 − ωn = 0.
We also used the definitions of An of Equation (1.10) and ̃

(p)
12 given by Equa-

tion (1.18) and the estimate |∇ϕn(r)|2 ∼ 1/V following from the normalization of
the SP eigenmodes

∫ |∇ϕn(r)|2d3r = 1 of Reference 41. The result of Equation
(1.29) is, indeed, in agreement with Reference 15 where it was obtained in different
notations.

It follows from Equation (1.29) that for the existence of spasing it is beneficial
to have a high quality factor Q, a high density of the chromophores, and a large
transition dipole (oscillator strength) of the chromophore transition. The small modal
volume Vn (at a given number of the chromophores Nc) is beneficial for this spasing
condition: Physically, it implies strong feedback in the spaser. Note that for the given
density of the chromophores nc = Nc/Vn, this spasing condition does not explicitly
depend on the spaser size, which opens up a possibility of spasers of a very small
size limited from the bottom by only the nonlocality radius lnl ∼ 1 nm. Another
important property of Equation (1.29) is that it implies the quantum-mechanical
nature of spasing and spaser amplification: This condition fundamentally contains
the Planck constant � and, thus, does not have a classical counterpart. Note that in
contrast to lasers, the spaser theory and Equations (1.28) and (1.29) in particular do
not contain speed of light, that is, they are quasistatic.

Now we will examine the spasing condition and reduce it to a requirement for the
gain medium. First, we substitute into Equation (1.28) all the definitions and assume
perfect resonance between the generating SP mode and the gain medium, that is,
ωn = ω21. As a result, we obtain from Equation (1.28),

4π

3

sn |d12|2
�γn�12εds ′

n

∫
V

[1 − 	(r)] |En(r)|2 d3r ≥ 1, (1.30)

where the integral is extended over the volume V of the system, and the 	-function
takes into account a simplifying realistic assumption that the gain medium occupies
the entire space free from the core’s metal. We also assume that the orientations of
the transition dipoles d(p)

12 are random and average over them, which results in the
factor of 3 in the denominator in Equation (1.30).

From Equations (1.7) or (1.9) it can be obtained that

∫
V

[1 − 	(r)] |En(r)|2 d3r = 1 − sn. (1.31)

Next, we give approximate expressions for the spectral parameter (1.6), which are
very accurate for the realistic case of Q � 1:

Im s(ω) = s2
n

εd

Im εm(ω) = 1

Q
sn (1 − sn) . (1.32)
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Taking into account Equations (1.31) and (1.32), we obtain from Equation (1.30) a
necessary condition of spasing at a frequency ω as

4π

3

|d12|2 nc [1 − Re s(ω)]

��12Re s(ω)Im εm(ω)
≥ 1. (1.33)

This condition can also be given an alternative form conventional in laser physics
in the following way. For the sake of comparison, consider a continuous gain medium
comprised of the same chromophores as the gain shell of the spaser. Its gain g (it is
the linear gain whose dimensionality is cm−1) is given by a standard expression

g = 4π

3

ω

c

√
εd |d12|2 nc

��12
. (1.34)

Taking this into account, from Equation (1.33), we obtain the spasing criterion in
terms of the gain as

g ≥ gth, gth = ω

c
√

εd

Re s(ω)

1 − Re s(ω)
Im εm(ω) (1.35)

where gth has a meaning of the threshold gain needed for spasing. Importantly, this
gain depends only on the dielectric properties of the system and spasing frequency
but not on the geometry of the system or the distribution of the local fields of the
spasing mode (hot spots, etc.) explicitly. However, note that the system’s geometry
(along with the permittivities) does define the spasing frequency.

In Figures 1.3a and 1.3b, we illustrate the analytical expression (1.35) for gold
and silver, correspondingly, embedded in a dielectric with εd = 2 (simulating a
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FIGURE 1.3 Threshold gain for spasing gth for silver and gold, as indicated in the graphs, as a function
of the spasing frequency ω. The red line separates the area gth < 3 × 103 cm−1, which can relatively easily
be achieved with direct band-gap semiconductors (DBGSs). The real part of the gain medium permittivity
is denoted in the corresponding panels as εd .
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light glass) and εd = 10 (simulating a semiconductor), correspondingly. These are
computed from Equation (1.35) assuming that the metal core is embedded into the
gain medium with the real part of the dielectric function equal to εd . As we see
from Figure 1.3, the spasing is possible for silver in the near-IR communication
range and the adjacent red portion of the visible spectrum for a gain g < 3000 cm−1

(regions below the red line in Figure 1.3), which is realistically achievable with direct
band-gap semiconductors (DBGSs).

1.3.4 Spaser operation in CW Mode

The “spasing curve” (a counterpart of the light–light curve, or L–L curve, for lasers),
which is the dependence of the coherent SP population Nn on the excitation rate g,
obtained by solving Equations (1.26) and (1.27), is shown in Figure 1.4a for four types
of the silver nanoshells with the frequencies of the spasing dipole modes as indicated,
which are in the range from near-IR (�ωs = 1.2 eV) to mid-visible (�ωs = 2.2 eV).
In all cases, there is a pronounced threshold of the spasing at an excitation rate
gth ∼ 1012 s−1. Soon above the threshold, the dependence Nn(g) becomes linear,
which means that every quantum of excitation added to the active medium with a
high probability is stimulated to be emitted as an SP, adding to the coherent SP
population, or is dissipated to the heat due to the metal loss with a constant branching
ratio between these two processes.

While this is similar to conventional lasers, there is a dramatic difference for
the spaser. In lasers, a similar relative rate of the stimulated emission is achieved
at a photon population of ∼ 1018 − 1020, while in the spaser the SP population is
Nn � 100. This is due to the much stronger feedback in spasers because of the
much smaller modal volume Vn—see discussion of Equation (1.29). The shape of
the spasing curves of Figure 1.4a (the well-pronounced threshold with the linear
dependence almost immediately above the threshold) is in a qualitative agreement
with the experiment [27].

The population inversion number n21 as a function of the excitation rate g is
displayed in Figure 1.4b for the same set of frequencies (and with the same color
coding) as in panel (a). Before the spasing threshold, n21 increases with g to become
positive with the onset of the population inversion just before the spasing threshold.
For higher g, after the spasing threshold is exceeded, the inversion n21 becomes
constant (the inversion clamping). The clamped levels of the inversion are very low,
n21 ∼ 0.01, which again is due to the very strong feedback in the spaser.

The spectral width �s of the spaser generation is due to the phase diffusion of
the quantum SP state caused by the noise of the spontaneous emission of the SPs
into the spasing mode, as described by Equation (1.22). This width is displayed in
Figure 1.4c as a function of the pumping rate g. At the threshold, �s is that of the
SP line γn but for stronger pumping, as the SPs accumulate in the spasing mode,
it decreases ∝ N−1

n , as given by Equation (1.22). This decrease of �s reflects the
higher coherence of the spasing state with the increased number of SP quanta and,
correspondingly, lower quantum fluctuations. As we have already mentioned, this is
similar to the lasers as described by the Schawlow–Townes theory [68].
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FIGURE 1.4 Spaser SP population and spectral characteristics in the stationary state. The computations
are done for a silver nanoshell with the external radius R2 = 12 nm; the detuning of the gain medium
from the spasing SP mode is �(ω21 − ωn) = −0.02 eV. The other parameters are indicated in the text in
Section 1.3.2. (a) Number Nn of plasmons per spasing mode as a function of the excitation rate g (per
one chromophore of the gain medium). Computations are done for the dipole eigenmode with the spasing
frequencies ωs as indicated, which were chosen by the corresponding adjustment of the nanoshell aspect
ratio. (b) Population inversion n12 as a function of the pumping rate g. The color coding of the lines is the
same as in panel (a). (c) The spectral width �s of the spasing line (expressed as ��s in meV) as a function
of the pumping rate g. The color coding of the lines is the same as in panel (a). (d)–(f) Spectra of the
spaser for the pumping rates g expressed in the units of the threshold rate gth, as indicated in the panels.
The curves are color-coded and scaled as indicated.

The developed spasing in a dipole SP mode will show itself in the far field as
an anomalously narrow and intense radiation line. The shape and intensity of this
line in relation to the lines of the spontaneous fluorescence of the isolated gain
medium and its SP-enhanced fluorescence line in the spaser is illustrated in Figures
1.4d–1.4f. Note that for the system under consideration, there is a 20 meV red shift
of the gain medium fluorescence with respect to the SP line center. It is chosen
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so as to illustrate the spectral walk-off of the spaser line. For 1% in the excitation
rate above the threshold of the spasing [panel (d)], a broad spasing line (red color)
appears comparable in intensity to the SP-enhanced spontaneous fluorescence line
(blue color). The width of this spasing line is approximately the same as of the
fluorescence, but its position is shifted appreciably (spectral walk-off) toward the
isolated gain medium line (green color). For the pumping twice more intense [panel
(e)], the spaser-line radiation dominates, but its width is still close to that of the SP
line due to significant quantum fluctuations of the spasing state phase. Only when the
pumping rate is an order of magnitude above the threshold, the spaser line strongly
narrows [panel (f)], and it also completely dominates the spectrum of the radiation.
This is a regime of small quantum fluctuations, which is desired in applications.

These results in the spasing region are different in the most dramatic way from
previous phenomenological models [43, 51]. For instance, in a “toy model” [51],
the width of the resonance line tends to zero at the threshold of spasing and then
broadens up again. This distinction of the present theory is due to the nature of the
spasing as a spontaneous symmetry breaking (nonequilibrium phase transition with a
randomly established but sustained phase) leading to the establishment of a coherent
SP state. This nonequilibrium phase transition to spasing and the spasing itself are
contained in the present theory due to the fact that the fundamental equations of the
spasing (1.17), (1.19), and (1.20) are nonlinear, as we have already discussed above
in conjunction with these equations—see the text after Equation (1.20). The previous
publications on gain compensation by loss [43,51,53] based on linear electrodynamic
equations do not contain spasing. Therefore, they are not applicable in the region of
the complete loss compensation and spasing.

1.3.5 Spaser as Ultrafast Quantum Nanoamplifier

As we have already mentioned in Section 1.1, a fundamental and formidable problem
is that, in contrast to the conventional lasers and amplifiers in quantum electronics,
the spaser has an inherent feedback, which is due to the localization of SP modes,
which fundamentally cannot be removed. Such a spaser will develop generation and
accumulation of the macroscopic number of coherent SPs in the spasing mode. This
leads to the population inversion clamping in the CW regime at a very low level—cf.
Figure 1.4b. This CW regime corresponds to the net amplification equals zero, which
means that the gain exactly compensates the loss, whose condition is expressed by
Equation (1.26). This is a consequence of the nonlinear gain saturation. This holds
for any stable CW generator in the CW regime (including any spaser or laser) and
precludes using them as amplifiers.

There are several ways to set a spaser as a quantum amplifier. One of them is to
reduce the feedback, that is, to allow some or most of the SP energy in the spaser
to escape from the active region, so the spaser will not generate in the region of
amplification. Such a root has successfully been employed to build an SPP plasmonic
amplifier on the long-range plasmon polaritons [64]. A similar root for the SP spasers
would be to allow some optical energy to escape either by a near-field coupling or
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by a radiative coupling to far-field radiation. The near-field coupling approach is
promising for building integrated active circuits of the spasers.

Following Reference 18, we consider here two distinct approaches for setting the
spasers as quantum nanoamplifiers. The first is a transient regime based on the fact
that the establishment of the CW regime and the consequent inversion clamping and
the total gain vanishing require some time that is determined mainly by the rate of
the quantum feedback and depends also on the relaxation rates of the SPs and the
gain medium. After the population inversion is created by the onset of pumping and
before the spasing spontaneously develops, as we show below in this section, there
is a time interval of approximately 250 fs, during which the spaser provides usable
(and as predicted, quite high) amplification—see Section 1.3.6 below.

The second approach to set the spaser as a logical quantum nanoamplifier is a
bistable regime that is achieved by introducing a saturable absorber into the active
region, which prevents the spontaneous spasing. Then injection of a certain above-
threshold number of SP quanta will saturate the absorber and initiate the spasing.
Such a bistable quantum amplifier will be considered below in Section 1.3.6.1.

The temporal behavior of the spaser has been found by direct numerical solution
of Equations (1.17), (1.18), (1.19), and (1.20). This solution is facilitated by the
fact that in the model under consideration all the chromophores experience the same
local field inside the nanoshell, and there are only two types of such chromophores:
belonging to the gain medium and the saturable absorber, if it is present.

1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime

Here we consider a monostable spaser in a transient regime. This implies that no
saturable absorber is present. We will consider two pumping regimes: stationary
and pulse.

Starting with the stationary regime, we assume that the pumping at a rate (per
one chromophore) of g = 5 × 1012 s−1 starts at a moment of time t = 0 and stays
constant after that. Immediately at t = 0, a certain number of SPs are injected into
the spaser. We are interested in its temporal dynamics from this moment on.

The dynamical behavior of the spaser under this pumping regime is illustrated in
Figures 1.5a and 1.5b. As we see, the spaser, which starts from an arbitrary initial
population Nn, rather rapidly, within a few hundred femtoseconds approaches the
same stationary (“logical”) level. At this level, an SP population of Nn = 67 is
established, while the inversion is clamped at a low level of n21 = 0.02. On the way
to this stationary state, the spaser experiences relaxation oscillations in both the SP
numbers and inversion, which have a trend to oscillate out of phase [compare panels
(a) and (b)]. This temporal dynamics of the spaser is quite complicated and highly
nonlinear (unharmonic). It is controlled not by a single relaxation time but by a set
of relaxation rates. Clearly, among these are the energy transfer rate from the gain
medium to the SPs and the relaxation rates of the SPs and the chromophores.

In this mode, the main effect of the initial injection of the SPs (described theoreti-
cally as different initial values of Nn) is in the interval of time required for the spaser
to reach the final (CW) state. For very small Nn, which in practice can be supplied by
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FIGURE 1.5 Ultrafast dynamics of spaser. (a) For monostable spaser (without a saturable absorber),
dependence of SP population in the spasing mode Nn on time t . The spaser is stationary pumped at a
rate of g = 5 × 1012 s−1. The color-coded curves correspond to the initial conditions with the different
initial SP populations, as shown in the graph. (b) The same as (a) but for the temporal behavior of the
population inversion n21. (c) Dynamics of a monostable spaser (no saturable absorber) with the pulse
pumping described as the initial inversion n21 = 0.65. Coherent SP population Nn is displayed as a
function of time t . Different initial populations are indicated by color-coded curves. (d) The same as
(c) but for the corresponding population inversion n21. (e) The same as (a) but for bistable spaser with
the saturable absorber in concentration na = 0.66nc . (f) The same as (b) but for the bistable spaser.
(g) The same as (e) but for the pulse pumping with the initial inversion n21 = 0.65. (h) The same as (g)
but for the corresponding population inversion n21.
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the noise of the spontaneous SP emission into the mode, this time is approximately
250 fs (cf. the corresponding SP relaxation time is less than 50 fs). In contrast, for
the initial values of Nn = 1 − 5, this time shortens to 150 fs.

Now consider the second regime: pulse pumping. The gain medium population of
the spaser is inverted at t = 0 to saturation with a short (much shorter than 100 fs)
pump pulse. Simultaneously, at t = 0, some number of plasmons are injected (say,
by an external nanoplasmonic circuitry). In response, the spaser should produce an
amplified pulse of the SP excitation. Such a function of the spaser is illustrated in
Figures 1.5c and 1.5d.

As we see from panel (c), independent of the initial number of SPs, the spaser
always generates a series of SP pulses, of which only the first pulse is large (at
or above the logical level of Nn ∼ 100). (An exception is a case of little practical
importance when the initial Nn = 120 exceeds this logical level, when two large
pulses are produced.) The underlying mechanism of such a response is the rapid
depletion of the inversion seen in panel (d), where energy is dissipated in the metal
of the spaser. The characteristic duration of the SP pulse ∼ 100 fs is defined by this
depletion, controlled by the energy transfer and SP relaxation rates. This time is much
shorter than the spontaneous decay time of the gain medium. This acceleration is due
to the stimulated emission of the SPs into the spasing mode (which can be called a
“stimulated Purcell effect”). There is also a pronounced trend: The lower is the initial
SP population Nn, the later the spaser produces the amplified pulse. In a sense, this
spaser functions as a pulse-amplitude to time-delay converter.

Now let us consider a bistable spaser as a quantum threshold (or logical) nanoam-
plifier. Such a spaser contains a saturable absorber mixed with the gain medium with
parameters indicated at the end of Section 1.3.2 and the concentration of the saturable
absorber na = 0.66nc. This case of a bistable spaser amplifier is of particular interest
because in this regime the spaser comes as close as possible in its functioning to
the semiconductor-based (mostly MOSFET-based) digital nanoamplifiers. As in the
previous section, we will consider two cases: stationary and short-pulse pumping.

We again start with the case of the stationary pumping at a rate of g = 5 × 1012 s−1.
We show in Figures 1.5e and 1.5f the dynamics of such a spaser. For a small initial
population Nn = 5 × 10−3 simulating the spontaneous noise, the spaser is rapidly
(faster than in 50 fs) relaxing to the zero population [panel (e)], while its gain
medium population is equally rapidly approaching a high level [panel (f)] n21 = 0.65
that is defined by the competition of the pumping and the enhanced decay into the
SP mode (the purple curves). This level is so high because the spasing SP mode
population vanishes and the stimulated emission is absent. After reaching this stable
state (which one can call, say, “logical zero”), the spaser stays in it indefinitely long
despite the continuing pumping.

In contrast, for initial values Nn of the SP population large enough (for instance,
for Nn = 5, as shown by the blue curves in Figs. 1.5e and 1.5f), the spaser tends
to the “logical one” state where the stationary SP population reaches the value of
Nn ≈ 60. Due to the relaxation oscillations, it actually exceeds this level within a
short time of � 100 fs after the seeding with the initial SPs. As the SP population Nn
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reaches its stationary (CW) level, the gain medium inversion n21 is clamped down at
a low level of a few percent, as typical for the CW regime of the spaser. This “logical
one” state also persists indefinitely, as long as the inversion is supported by the
pumping.

There is a critical curve (separatrix) that divides the two stable dynamics types
(leading to the logical levels of zero and one). For the present set of parameters this
separatrix starts with the initial population of Nn ≈ 1. For a value of the initial Nn

slightly below 1, the SP population Nn experiences a slow (hundreds of femtoseconds
in time) relaxation oscillation but eventually relaxes to zero (Fig. 1.5e, black curve),
while the corresponding chromophore population inversion n21 relaxes to the high
value n21 = 0.65 [panel (f), black curve]. In contrast, for a value of Nn slightly higher
than 1 [light blue curves in panels (e) and (f)], the dynamics is initially close to the
separatrix but eventually the initial slow dynamics tends to the high SP population
and low chromophore inversion through a series of the relaxation oscillations. The
dynamics close to the separatrix is characterized by a wide range of oscillation times
due to its highly nonlinear character. The initial dynamics is slowest (the “decision
stage” of the bistable spaser that lasts � 1 ps). The “decision time” is diverging
infinitesimally close to the separatrix, as is characteristic of any threshold (logical)
amplifier.

The gain (amplification coefficient) of the spaser as a logical amplifier is the ratio
of the high CW level to the threshold level of the SP population Nn. For this specific
spaser with the chosen set of parameters, this gain is ≈ 60, which is more than
sufficient for the digital information processing. Thus this spaser can make a high
gain, ∼ 10 THz bandwidth logical amplifier or dynamical memory cell with excellent
prospects of applications.

The last but not the least regime to consider is that of the pulse pumping in the
bistable spaser. In this case, the population inversion (n21 = 0.65) is created by a
short pulse at t = 0 and simultaneously initial SP population Nn is created. Both are
simulated as the initial conditions in Equations (1.17), (1.18), (1.19), and (1.20). The
corresponding results are displayed in Figures 1.5g and 1.5h.

When the initial SP population exceeds the critical one of Nn = 1 (the blue,
green, and red curves), the spaser responds with generating a short (duration less than
100 fs) pulse of the SP population (and the corresponding local fields) within a
time � 100 fs [panel (g)]. Simultaneously, the inversion is rapidly (within ∼ 100 fs)
exhausted [panel (h)].

In contrast, when the initial SP population Nn is less than the critical one (i.e.,
Nn < 1 in this specific case), the spaser rapidly (within a time � 100 fs) relaxes
as Nn → 0 through a series of relaxation oscillations—see the black and magenta
curves in Figure 1.5g. The corresponding inversion decays in this case almost expo-
nentially with a characteristic time ∼ 1 ps determined by the enhanced energy transfer
to the SP mode in the metal—see the corresponding curves in panel (h). Note that
the SP population decays faster when the spaser is above the generation threshold
due to the stimulated SP emission leading to the higher local fields and enhanced
relaxation.
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1.4 COMPENSATION OF LOSS BY GAIN AND SPASING

1.4.1 Introduction to Loss Compensation by Gain

Here, we will mostly follow References 19 and 20. A problem for many applications
of plasmonics and metamaterials is posed by losses inherent in the interaction of light
with metals. There are several ways to bypass, mitigate, or overcome the detrimental
effects of these losses, which we briefly discuss below:

(i) The most common approach consists in employing effects where the losses
are not fundamentally damaging such as SPP propagation used in sensing [11],
ultramicroscopy [70,71], and solar energy conversion [72]. For realistic losses, there
are other effects and applications that are not prohibitively suppressed by the losses
and are useful, in particular, sensing based on SP resonances and surface-enhanced
Raman scattering (SERS) [2, 11, 73–75].

(ii) Another promising idea is to use superconducting plasmonics to dramatically
reduce losses [76–80]. However, this is only applicable for frequencies below the
superconducting gaps, that is, in the terahertz region.

(iii) Yet another proposed direction is using highly doped semiconductors where
the ohmic losses can be significantly lower due to much lower free carrier con-
centrations [81]. However, a problem with this approach may lie in the fact that the
usefulness of plasmonic modes depends not on the loss per se but on the quality factor
Q, which for doped semiconductors may not be higher than for the plasmonic metals.

(iv) One of the alternative approaches to low-loss plasmonic metamaterials is
based on our idea of the spaser: It is using a gain to compensate the dielectric (ohmic)
losses [82, 83]. In this case the gain medium is included into the metamaterials. It
surrounds the metal plasmonic component in the same manner as in the spasers. The
idea is that the gain will provide quantum amplification compensating the loss in the
metamaterials, which is quite analogous to the spaser.

We will consider the theory of the loss compensation in the plasmonic metamate-
rials containing gain [19,20]. Below we show analytically that the full compensation
or overcompensation of the optical loss in a dense resonant gain metamaterial leads
to an instability that is resolved by its spasing (i.e., by becoming a generating spaser).
We further show analytically that the conditions of the complete loss compensation
by gain and the threshold condition of spasing—see Equations (1.33) and (1.35)—
are identical. Thus the full compensation (overcompensation) of the loss by gain in
such a metamaterial will cause spasing. This spasing limits (clamps) the gain—see
Section 1.3.4—and, consequently, inhibits the complete loss compensation (over-
compensation) at any frequency.

1.4.2 Permittivity of Nanoplasmonic Metamaterial

We consider, for certainty, an isotropic and uniform metamaterial that, by definition,
in a range of frequencies ω can be described by the effective permittivity ε̄(ω) and
permeability μ̄(ω). We will concentrate below on the loss compensation for the
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optical electric responses; Similar consideration for the optical magnetic responses
is straightforward. Our theory is applicable for the true 3d metamaterials whose size
is much greater than the wavelength λ (ideally, an infinite metamaterial).

Consider a small slab of such a metamaterial with sizes much greater that the unit
cell but much smaller than λ. Such a piece is a metamaterial itself. Let us subject
this metamaterial to a uniform electric field E(ω) = −∇φ(r, ω) oscillating with
frequency ω. Note that E(ω) is the amplitude of the macroscopic electric field inside
the metamaterial. A true periodic metamaterial is a crystal where the eigenmodes
are Bloch states [84]. In such a state, the field magnitude is periodic on the lattice
in accord with the Bloch theorem. Consequently, the influx and outflow of energy
balance each other. Thus, selecting a metamaterial slab instead of an infinite crystal
will not affect the loss and its compensation.

We will denote the local field at a point r inside this metamaterial as e(r, ω) =
−∇ϕ(r, ω). We assume standard boundary conditions

ϕ(r, ω) = φ(r, ω), (1.36)

for r belonging to the surface S of the slab under consideration.
To present our results in a closed form, we first derive a homogenization formula

used in Reference 85 (see also references cited therein). By definition, the electric
displacement in the volume V of the metamaterial is given by a formula

D(r, ω) = 1

V

∫
V

ε(r, ω)e(r, ω)dV, (1.37)

where ε(r, ω) is a position-dependent permittivity. This can be identically expressed
(by multiplying and dividing by the conjugate of the macroscopic field E∗) and, using
the Gauss theorem, transformed to a surface integral as

D = 1

VE∗(ω)

∫
V

E∗(ω)ε(r, ω)e(r, ω)dV =

1

VE∗(ω)

∫
S

φ∗(r, ω)ε(r, ω)e(r, ω)dS, (1.38)

where we took into account the Maxwell continuity equation ∇[ε(r, ω)e(r, ω)] = 0.
Now, using the boundary conditions of Equation (1.36), we can transform it back to
the volume integral as

D = 1

VE∗(ω)

∫
S

ϕ∗(r)ε(r, ω)e(r, ω)dS =

1

VE∗(ω)

∫
V

ε(r, ω) |e(r, ω)|2 dV. (1.39)
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From the last equality, we obtain the required homogenization formula as an expres-
sion for the effective permittivity of the metamaterial:

ε̄(ω) = 1

V |E(ω)|2
∫

V

ε(r, ω) |e(r, ω)|2 dV. (1.40)

1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity
of Metamaterials

This piece of the metamaterial with the total size R � λ can be treated in the
quasistatic approximation. The local field inside the nanostructured volume V of the
metamaterial is given by the eigenmode expansion [41, 66, 86]

e(r, ω) = E(ω) −
∑

n

an

s(ω) − sn

En(r), (1.41)

an = E(ω)
∫

V

θ (r)En(r)dV,

where we remind that E(ω) is the macroscopic field. In the resonance, ω = ωn, only
one term at the pole in Equation (1.41) dominates, and it becomes

e(r, ω) = E(ω) + i
an

Im s(ωn)
En(r). (1.42)

The first term in this equation corresponds to the mean (macroscopic) field and the
second one describes the deviations of the local field from the mean field containing
contributions of the hot spots [87]. The mean root square ratio of the second term
(local field) to the first (mean field) is estimated as

∼ f

Im s(ωn)
= f Q

sn(1 − sn)
, (1.43)

where we took into account an estimate En ∼ V −1/2, which follows from the eigen-
mode field normalization

∫
V

|En|2dV = 1, and

f = 1

V

∫
V

θ (r)dV, (1.44)

where f is the metal fill factor of the system and Q is the plasmonic quality factor.
Deriving expression (1.43), we have also taken into account an equality Im s(ωn) =
sn(1 − sn)/Q, which is valid in the assumed limit of the high quality factor, Q � 1
(see the next paragraph).
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For a good plasmonic metal Q � 1. For most metal-containing metamaterials,
the metal fill factor is not small, typically f � 0.5. The eigenvalues sn are limited
[12, 41], 1 > sn > 0. Thus, it is very realistic to assume the following condition:

fQ

sn(1 − sn)
� 1. (1.45)

If so, the second (local) term of the field (1.42) dominates and, with a good precision,
the local field is approximately the eigenmode’s field:

e(r, ω) = i
an

Im s(ωn)
En(r). (1.46)

Substituting this into Equation (1.40), we obtain a homogenization formula

ε̄(ω) = bn

∫
V

ε(r, ω) [En(r)]2 dV, (1.47)

where bn > 0 is a real positive coefficient whose specific value is

bn = 1

3V

(
Q

∫
V

θ (r)En(r)dV

sn (1 − sn)

)2

. (1.48)

Using Equation (1.47), it is straightforward to show that the effective permittivity
(1.47) simplifies exactly to

ε̄(ω) = bn [snεm(ω) + (1 − sn)εh(ω)] . (1.49)

1.4.4 Conditions of Loss Compensation by Gain and Spasing

In the case of full inversion (maximum gain) and in exact resonance, the host medium
permittivity acquires the imaginary part describing the stimulated emission as given
by the standard expression

εh(ω) = εd − i
4π

3

|d12|2 nc

��12
, (1.50)

where εd = Re εh, d12 is a dipole matrix element of the gain transition in a chro-
mophore center of the gain medium, �12 is a spectral width of this transition, and nc

is the concentration of these centers (these notations are consistent with those used
above in Sections 1.3.2–1.3.6.1). Note that if the inversion is not maximum, then this
and subsequent equations are still applicable if one sets as the chromophore concen-
tration nc the inversion density: nc = n2 − n1, where n2 and n1 are the concentrations
of the chromophore centers of the gain medium in the upper and lower states of the
gain transition, respectively.
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The condition for the full electric loss compensation in the metamaterial and
amplification (overcompensation) at the resonant frequency ω = ωn is

Im ε̄(ω) ≤ 0. (1.51)

Taking Equation (1.49) into account, this reduces to

snIm εm(ω) − 4π

3

|d12|2 nc(1 − sn)

��12
≤ 0. (1.52)

Finally, taking into account that Im εm(ω) > 0, we obtain from Equation (1.52) the
condition of the loss (over)compensation as

4π

3

|d12|2 nc [1 − Re s(ω)]

��12Re s(ω)Im εm(ω)
≥ 1, (1.53)

where the strict inequality corresponds to the overcompensation and net amplification.
In Equation (1.50) we have assumed nonpolarized gain transitions. If these transitions
are all polarized along the excitation electric field, the concentration nc should be
multiplied by a factor of 3.

Equation (1.53) is a fundamental condition, which is precise [assuming that the
requirement (1.45) is satisfied, which is very realistic for metamaterials] and general.
Moreover, it is fully analytical and, actually, very simple. Remarkably, it depends
only on the material characteristics and does not contain any geometric properties
of the metamaterial system or the local fields. (Note that the system’s geometry
does affect the eigenmode frequencies and thus enters the problem implicitly.) In
particular, the hot spots, which are prominent in the local fields of nanostructures
[41, 87], are completely averaged out due to the integrations in Equations (1.40)
and (1.47).

The condition (1.53) is completely nonrelativistic (quasistatic)—it does not con-
tain speed of light c, which is characteristic also of the spaser. It is useful to express
this condition also in terms of the total stimulated emission cross section σe(ω) (where
ω is the central resonance frequency) of a chromophore of the gain medium as

cσe(ω)
√

εdnc [1 − Re s(ω)]

ωRe s(ω)Im εm(ω)
≥ 1. (1.54)

We see that Equation (1.53) exactly coincides with a spasing condition expressed
by Equation (1.33). This brings us to an important conclusion: The full compensation
(overcompensation) of the optical losses in a metamaterial [which is resonant and
dense enough to satisfy condition (1.45)] and the spasing occur under precisely the
same conditions.

We have considered above in Section 1.3.3 the conditions of spasing, which are
equivalent to Equation (1.54). These are given by one of equivalent conditions of
Equations (1.33), (1.35), and (1.53). It is also illustrated in Figure 1.3. We stress that
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exactly the same conditions are for the full loss compensation (overcompensation) of
a dense resonant plasmonic metamaterial with gain.

We would also like to point out that the criterion given by the equivalent conditions
of Equations (1.33), (1.35), (1.53), and (1.54) is derived for localized SPs, which
are describable in the quasistatic approximation, and is not directly applicable to the
propagating SPP modes. However, we expect that very short wavelength SPPs, whose
wave vector k � ls , can be described by these conditions because they are, basically,
quasistatic. For instance, the SPPs on a thin metal wire of radius R � ls are described
by a dispersion relation [88]

k ≈ 1

R

[
− εm

2εd

(
ln

√
−4εm

εd

− γ

)]−1/2

, (1.55)

where γ ≈ 0.57721 is the Euler constant. This relation is obviously quasistatic
because it does not contain speed of light c.

1.4.5 Discussion of Spasing and Loss Compensation by Gain

This fact of the equivalence of the full loss compensation and spasing is intimately
related to the general criteria of the thermodynamic stability with respect to small
fluctuations of electric and magnetic fields—see Chapter IX of Reference 67:

Im ε̄(ω) > 0, Im μ̄(ω) > 0, (1.56)

which must be strict inequalities for all frequencies for electromagnetically stable sys-
tems. For systems in thermodynamic equilibrium, these conditions are automatically
satisfied.

However, for the systems with gain, the conditions (1.56) can be violated, which
means that such systems can be electromagnetically unstable. The first of conditions
(1.56) is opposite to Equations (1.51) and (1.53). This has a transparent meaning:
The electrical instability of the system is resolved by its spasing.

The significance of these stability conditions for gain systems can be elucidated by
the following gedanken experiment. Take a small isolated piece of such a metamaterial
(which is a metamaterial itself). Consider that it is excited at an optical frequency
ω by a weak external optical field E or acquires such a field due to fluctuations
(thermal or quantum). The energy density E of such a system is given by the Brillouin
formula [67]

E = 1

16π

∂ωRe ε̄

∂ω
|E|2 . (1.57)

Note that for the energy of the system to be definite, it is necessary to assume that the
loss is not too large, |Re ε̄| � Im ε̄. This condition is realistic for many metamaterials,
including all potentially useful ones.
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The internal optical energy-density loss per unit time Q (i.e., the rate of the
heat-density production in the system) is [67]

Q = ω

8π
Im ε̄ |E|2 . (1.58)

Assume that the internal (ohmic) loss dominates over other loss mechanisms such as
the radiative loss, which is also a realistic assumption since the ohmic loss is very
large for the experimentally studied systems and the system itself is very small (the
radiative loss rate is proportional to the volume of the system). In such a case of the
dominating ohmic losses, we have dE/dt = Q. Then Equations (1.57) and (1.58)
can be resolved together yielding the energy E and electric field |E| of this system to
evolve with time t exponentially as

|E| ∝
√
E ∝ e−�t , � = ωIm ε̄/

∂(ωRe ε̄)

∂ω
. (1.59)

We are interested in a resonant case when the metamaterial possesses a resonance
at some eigenfrequency ωn ≈ ω. For this to be true, the system’s behavior must
be plasmonic, that is, Re ε̄(ω) < 0. Then the dominating contribution to ε̄ comes
from a resonant SP eigenmode n with a frequency ωn ≈ ω. In such a case, the
dielectric function [41] ε̄(ω) has a simple pole at ω = ωn. As a result, ∂(ωRe ε̄)/∂ω ≈
ω∂Re ε̄/∂ω and, consequently, � = γn, where γn is the SP decay rate [12, 15]:

γn = Im εm(ω)
∂Reεm(ω)

∂ω

∣∣∣∣∣
ω = ωn

, (1.60)

and the metal dielectric function εm is replaced by the effective permittivity ε̄ of the
metamaterial. Thus, Equation (1.59) is fully consistent with the spectral theory of
SPs [12, 15].

If the losses are not very large so that the energy of the system is meaningful,
the Kramers–Kronig causality requires [67] that ∂(ωRe ε̄)/∂ω > 0. Thus, Im ε̄ < 0
in Equation (1.59) would lead to a negative decrement,

� < 0, (1.61)

implying that the initial small fluctuation starts to grow exponentially in time in its
field and energy, which is an instability. Such an instability is indeed not impossible:
It will result in spasing that will eventually stabilize |E| and E at finite stationary
(CW) levels of the spaser generation.

Note that the spasing limits (clamps) the gain and population inversion making
the net gain to be precisely zero [18] in the stationary (CW) regime; see Section 1.3.5
and Figure 1.4b. Above the threshold of the spasing, the population inversion of
the gain medium is clamped at a rather low level n21 ∼ 1%. The corresponding net
amplification in the CW spasing regime is exactly zero, which is a condition for the
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FIGURE 1.6 Spasing criterion as a function of optical frequency ω. The straight line (red line) represents
the threshold for the spasing and full loss compensation, which take place for the curve segments above it.
(a) Computations for silver. The chromophore concentration is nc = 6 × 1018 cm−3 for the lower curve
(black) and nc = 2.9 × 1019 cm−3 for the upper curve (blue line). The black diamond shows the value
of the spasing criterion for the conditions of Reference 48—see the text. (b) Computations for gold. The
chromophore concentration is nc = 3 × 1019 cm−3 for the lower curve (black) and nc = 2 × 1020 cm−3

for the upper curve (blue line).

CW regime. This makes the complete loss compensation and its overcompensation
impossible in a dense resonant metamaterial where the feedback is created by the
internal inhomogeneities (including its periodic structure) and the facets of the system.

Because the loss (over)compensation condition (1.53), which is also the spasing
condition, is geometry-independent, it is useful to illustrate it for commonly used
plasmonic metals, gold and silver whose permittivity we adopt from Reference 69.
For the gain medium chromophores, we will use a reasonable set of parameters: �12 =
5 × 1013 s−1 and d12 = 4.3 × 10−18 esu. The results of computations are shown in
Figure 1.6. (Note that this figure expresses a condition of spasing equivalent to that
of Fig. 1.3.) For silver as a metal and nc = 6 × 1018 cm−3, the corresponding lower
(black) curve in panel (a) does not reach the value of 1, implying that no full loss
compensation is achieved. In contrast, for a higher but still very realistic concentration
of nc = 2.9 × 1019 cm−3, the upper curve in Figure 1.6a does cross the threshold line
in the near-IR region. Above the threshold area, there will be the instability and the
onset of the spasing. As Figure 1.6b demonstrates, for gold the spasing occurs at
higher, but still realistic, chromophore concentrations.

1.4.6 Discussion of Published Research on Spasing and
Loss Compensations

Now let us discuss the implications of these results for the research published recently
on gain metamaterials. To carry out a quantitative comparison with Reference 53, we
turn to Figure 1.6a where the lower (black) curve corresponds to the nominal value
of nc = 6 × 1018 cm−3 used in Reference 53. There is no full loss compensation and
spasing. This is explained by the fact that Reference 53 uses, as a close inspection
shows, the gain dipoles parallel to the field (this is equivalent to increasing nc by a
factor of 3) and the local-field enhancement [this is equivalent to increasing nc by
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a factor of (εh + 2)/3]. Because the absorption cross section of dyes is measured
in the appropriate host media (liquid solvents or polymers), it already includes the
Lorentz local-field factor. To compare to the results of Reference 53, we increase in
our formulas the concentration nc of the chromophores by a factor of εh + 2 to nc =
2.9 × 1019 cm−3, which corresponds to the upper curve in Figure 1.6a. This curve
rises above the threshold line exactly in the same (infra)red region as in Reference 53.

This agreement of the threshold frequencies between our analytical theory and
numerical theory [53] is not accidental: Inside the region of stability (i.e., in the
absence of spasing) both theories should and do give close results, provided that the
gain medium transition alignment is taken into account and the local-field factor is
incorporated.

However, above the threshold (in the region of the overcompensation), there should
be spasing causing the population inversion clamping and zero net gain, and not a loss
compensation. To describe this effect, it is necessary to invoke Equation (1.20) for
coherent SP amplitude, which is absent in Reference 53. Also fundamentally impor-
tant, spasing, just like the conventional lasing, is a highly nonlinear phenomenon,
which is described by nonlinear equations—see the discussion after Equation (1.20).

The complete loss compensation is stated in a recent experimental paper [89],
where the system is actually a nanofilm rather than a 3d metamaterial, to which
our theory would have been applicable. For the Rhodamine 800 dye used with
extinction cross section [90] σ = 2 × 10−16 cm2 at 690 nm in concentration nc =
1.2 × 1019 cm−3, realistically assuming εd = 2.3, for frequency �ω = 1.7 eV, we cal-
culate from Equation (1.54) a point shown by the magenta solid circle in Figure 1.6a,
which is significantly above the threshold. Because in such a nanostructure the local
fields are very nonuniform and confined near the metal similar to the spaser, they
likewise cause a feedback. The condition of Equation (1.45) is likely to be well satis-
fied for Reference 89. Thus, the system may spase, which would cause the clamping
of inversion and loss of gain.

In contrast to these theoretical arguments, there is no evidence of spasing indicated
in the experiment—see Reference 89, which can be explained by various factors.
Among them, the system of Reference 89 is a gain-plasmonic nanofilm and not a true
3d material. This system is not isotropic. Also, the size of the unit cell a ≈ 280 nm
is significantly greater than the reduced wavelength λ̄, which violates the quasistatic
conditions and makes the possibility of homogenization and considering this system
as an optical metamaterial problematic. This circumstance may lead to an appreciable
spatial dispersion. It may also cause a significant radiative loss and prevent spasing
for some modes.

We would also like to point out that the fact that the unit cell of the negative-
refracting (or double-negative) metamaterial of Reference 89 is relatively large, a ≈
280 nm, is not accidental. As follows from theoretical consideration of Reference 91,
optical magnetism and, consequently, negative refraction for metals, is only possible
if the minimum scale of the conductor feature (the diameter d of the nanowire) is
greater than the skin depth, d � ls ≈ 25 nm, which allows one to circumvent Landau–
Lifshitz’s limitation on the existence of optical magnetism [67,91]. Thus, a ring-type
resonator structure would have a size � 2ls (two wires forming a loop) and still the
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same diameter for the hole in the center, which comes to the total of � 4ls ≈ 100 nm.
Leaving the same distance between the neighboring resonator wires, we arrive at an
estimate of the size of the unit cell a � 8ls = 200 nm, which is, indeed, the case
for Reference 89 and other negative-refraction “metamaterials” in the optical region.
This makes our theory not directly applicable to them. Nevertheless, if the spasing
condition (1.33) [or (1.35) or (1.54)] is satisfied, the system still may spase on the
hot-spot defect modes.

In an experimental study of the lasing spaser [46], a nanofilm of PbS QDs was
positioned over a 2d metamaterial consisting of an array of negative split ring res-
onators. When the QDs were optically pumped, the system exhibited an increase of
the transmitted light intensity on the background of a strong luminescence of the QDs
but apparently did not reach the lasing threshold. The polarization-dependent loss
compensation was only ∼ 1%. Similarly, for an array of split ring resonators over
a resonant quantum well, where the inverted electron–hole population was excited
optically [92], the loss compensation did not exceed ∼ 8%. The relatively low-loss
compensation in these papers may be due to random spasing and/or spontaneous or
amplified spontaneous emission enhanced by this plasmonic array, which reduces the
population inversion.

A dramatic example of possible random spasing is presented in Reference 48.
The system studied was a Kretschmann-geometry SPP setup [93] with an added
∼ 1 μm polymer film containing Rhodamine 6G dye in the nc = 1.2 × 1019 cm−3

concentration. When the dye was pumped, there was outcoupling of radiation in a
range of angles. This was a threshold phenomenon with the threshold increasing with
the Kretschmann angle. At the maximum of the pumping intensity, the widest range
of the outcoupling angles was observed, and the frequency spectrum at every angle
narrowed to a peak near a single frequency �ω ≈ 2.1 eV.

These observations of Reference 48 can be explained by the spasing where the
feedback is provided by the roughness of the metal. At high pumping, the local-
ized SPs (hot spots), which possess the highest threshold, start to spase in a nar-
row frequency range around the maximum of the spasing criterion—the left-hand
side of Equation (1.53). Because of the subwavelength size of these hot spots, the
Kretschmann phase-matching condition is relaxed, and the radiation is outcoupled
into a wide range of angles.

The SPPs of Reference 48 excited by the Kretschmann coupling are short-range
SPPs, very close to the antisymmetric SPPs. They are localized at subwavelength
distances from the surface, and their wavelength in the plane is much shorter the ω/c.
Thus they can be well described by the quasistatic approximation and the present
theory is applicable to them. Substituting the above given parameters of the dye
and the extinction cross section σe = 4 × 10−16 cm2 into Equation (1.54), we obtain
a point shown by the black diamond in Figure 1.6, which is clearly above the threshold,
supporting our assertion of the spasing. Likewise, the amplified spontaneous emission
and possibly spasing appear to have prevented the full loss compensation in an SPP
system of Reference 60.

Note that the long-range SPPs of Reference 64 are localized significantly weaker
(at distances ∼ λ) than those excited in Kretschmann geometry. Thus the long-range
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SPPs experience a much weaker feedback, and the amplification instead of the spasing
can be achieved. Generally, the long-range SPPs are fully electromagnetic (non-
quasistatic) and are not describable in the present theory.

As we have already discussed in conjunction with Figure 1.3, the spasing is
readily achievable with the gain medium containing common DBGSs or dyes. There
have been numerous experimental observations of the spaser—see, in particular,
References 27–33. Among them is a report of an SP spaser with a 7 nm gold
nanosphere as its core and a laser dye in the gain medium [27], observations of the
SPP spasers (also known as nanolasers) with silver as a plasmonic-core metal and
DBGS as the gain medium with a 1d confinement [28, 31], a tight 2d confinement
[29], and a 3d confinement [30]. There has also been a report on observation of an SPP
microcylinder spaser [94]. A high-efficiency room-temperature semiconductor spaser
with a DBGS InGaAS gain medium operating near 1.5 μm (i.e., in the communication
near-IR range) has been reported [31].

The research and development in the area of spasers as quantum nanogenerators
is very active and will undoubtedly lead to further rapid advances. The next in line is
the spaser as an ultrafast nanoamplifier, which is one of the most important tasks in
nanotechnology.

In contrast to this success and rapid development in the field of spasing and
spasers, there has so far been a comparatively limited progress in the field of loss
compensation by gain in metamaterials, which is based on the same principles of
quantum amplification as the spaser. This status exists despite a significant effort in
this direction and numerous theoretical publications (e.g., [53,95]). There has been so
far a single, not yet confirmed independent, observation of the full loss compensation
in a plasmonic metamaterial with gain [89].

In large periodic metamaterials, plasmonic modes are generally propagating waves
(SPPs) that satisfy the Bloch theorem [84] and are characterized by quasi-wave vector
k. These are propagating waves except for the band edges where ka = ±π , where
a is the lattice vector. At the band edges, the group velocity vg of these modes is zero,
and these modes are localized, that is, they are SPs. Their wave function is periodic
with period 2a, which may be understood as a result of the Bragg reflection from the
crystallographic planes. Within this 2a period, these band-edge modes can, indeed,
be treated quasistatically because 2a � ls , λ̄. If any of the band-edge frequencies is
within the range of compensation [where the condition (1.33) [or (1.35)] is satisfied],
the system will spase. The same is true for nonpropagating modes whose frequencies
are in the band gap. In fact, at the band edge or in the band gap, a metamaterial with
gain is similar to a DFB laser [96]—see also the next paragraph.

There has been a recent experimental observation [33] of an electrically pumped
DFB nanolaser (spaser) working in the communication frequency range at room
temperature. This spaser generates on a stop-band (nonpropagating) plasmonic mode,
that is, a mode with frequency within the band gap. The system is a 1d plasmonic-
crystal metamaterial with gain, containing a Bragg grating. There is a strong coupling
between the unit cells typical for DFB lasers. Because of the suppression of the
spontaneous emission and the strong coupling between the unit cells leading to
efficient feedback, this spaser has a significantly lower threshold, narrow spectral
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line, and higher efficiency of the generation than the ones working on SPP reflection
from the edges. This observation is in full agreement with our theoretical arguments
[97] and in direct contradiction with the contention of Reference 98 that coupling
between the unit cells increases the spasing threshold.

Moreover, the SPPs, which are at the band edge or in the band gap, will not just be
localized. Due to unavoidable disorder caused by fabrication defects in metamaterials,
there will be scattering of the SPPs from these defects. Close to the band edge, the
group velocity becomes small, vg → 0. Because the scattering cross section of any
wave is ∝ v−2

g , the corresponding SPPs experience Anderson localization [99]. Also,
there will always be SPs nanolocalized at the defects of the metamaterial, whose
local fields are hot spots [87, 100, 101]. Each of such hot spots within the bandwidth
of conditions (1.33) or (1.35) will be a generating spaser, which clamps the inversion
and precludes the full loss compensation.

Note that for a 2d metamaterial (metasurface), the amplification of the spontaneous
emission and spasing may occur in SPP modes propagating in plane of the structure,
unlike the signal that propagates normally to it as in Reference 89.
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