
PART I

CASE STUDY METHODOLOGY

CO
PYRIG

HTED
 M

ATERIA
L





CHAPTER 1

INTRODUCTION

1.1 WHAT IS A CASE STUDY?

The term “case study” appears every now and then in the title of software engineering
research papers. These papers have in common that they study a specific case, in
contrast to a sample from a specified population. However, the presented studies
range from very ambitious and well-organized studies in the field of operations
(in vivo) to small toy examples in a university lab (in vitro) that claim to be case
studies. This variation creates confusion, which should be addressed by increased
knowledge about case study methodology.

Case study is a commonly used research strategy in areas such as psychology,
sociology, political science, social work, business, and community planning
(e.g., [162, 196, 217]). In these areas, case studies are conducted with the objec-
tives of not only increasing knowledge (e.g., knowledge about individuals, groups,
and organizations and about social, political, and related phenomena) but also bring-
ing about change in the phenomenon being studied (e.g. improving education or social
care). Software engineering research has similar high-level objectives, that is, to bet-
ter understand how and why software engineering should be undertaken and, with
this knowledge, to seek to improve the software engineering process and the resultant
software products.

There are different taxonomies used to classify research in software engineering.
The term case study is used in parallel with terms like field study and observational
study, each focusing on a particular aspect of the research methodology. For example,

Case Study Research in Software Engineering: Guidelines and Examples, First Edition.
Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

3



4 INTRODUCTION

Lethbridge et al. use the term field studies as the most general term [118], while
Easterbrook et al. call case studies one of the five “classes of research methods” [47].
Zelkowitz and Wallace propose a terminology that is somewhat different from what
is used in other fields, and categorize project monitoring, case study, and field study
as observational methods [218]. Studies involving change are sometimes denoted
action research [119, 162, pp. 215–220]. This plethora of terms causes confusion and
problems when trying to aggregate multiple empirical studies and to reuse research
methodology guidelines from other fields of research.

Yin defines case study as

an empirical enquiry that investigates a contemporary phenomenon within its real-
life context, especially when the boundaries between phenomenon and context
are not clearly evident. [217, p. 13]

This fits particularly well in software engineering. Experimentation in software
engineering has clearly shown that there are many factors impacting on the outcome
of a software engineering activity, for example, when trying to replicate studies [182].
One of Kitchenham et al.’s [105] preliminary guidelines for empirical research in
software engineering states

Be sure to specify as much of the industrial context as possible. In particular,
clearly define the entities, attributes, and measures that are capturing the contex-
tual information.

On the subject of observational studies, which would include case studies,
Kitchenham et al. write

There is an immense variety to be found in development procedures, organiza-
tional culture, and products. This breadth implies that empirical studies based
on observing or measuring some aspect of software development in a particular
company must report a great deal of contextual information if any results and
their implications are to be properly understood. Researchers need to identify the
particular factors that might affect the generality and utility of the conclusions.
[105, p. 723]

Case studies offer an approach that does not require a strict boundary between the
object of study and its environment. Case studies do not generate the same results
on, for example, causal relationships, as controlled experiments do, but they provide
a deeper understanding of the phenomena under study. As they are different from
analytical and controlled empirical studies, case studies have been criticized for being
of less value, being impossible to generalize from, being biased by researchers, and so
on. This critique can be met by applying proper research methodology practices and
by reconsidering that knowledge is more than statistical significance [56, 115, 128].
However, the research community has to learn more about the case study methodology
in order to conduct, report, review, and judge it properly.



A BRIEF HISTORY OF CASE STUDIES IN SOFTWARE ENGINEERING 5

1.2 A BRIEF HISTORY OF CASE STUDIES IN SOFTWARE
ENGINEERING

The term case study first appeared in software engineering journal papers in the
late 1970s. At that time, a case study was typically a demonstration case, that
is, a case that demonstrated the implementation of some software technology or
programming concept.

In the mid- to late-1980s, papers started to report case studies of a broader range
of software development phenomena, for example, Alexander and Potter’s [3] study
of formal specifications and rapid prototying. For these types of papers, the term case
study refers to a self-experienced and self-reported investigation. Throughout the
1990s the scale of these “self investigations” increased and there were, for example, a
series of papers reporting case studies of software process improvement in large and
multinational organizations such as Boeing, Hughes, Motorola, NASA, and Siemens.

Case studies based on the external and independent observation of a software
engineering activity first appeared in the late 1980s, for example, Boehm and
Ross’s [23, p. 902] “extensive case study” of the introduction of new information
systems into a large industrial corporation in an emerging nation. These case studies,
however, did not direct attention at case study methodology that is, at the design,
conduct, and reporting of the case study.

The first case study papers that explicitly report the study methodology were
published in 1988: Curtis et al.’s [37] field study of software design activities and
Swanson and Beath’s [199] multiple case study of software maintenance. Given the
status of case study research in software engineering at the time, it is not surpris-
ing that Swanson and Beath were actually researchers in a school of management
in the United States, and were not software engineering researchers. Swanson and
Beath use their multiple case studies to illustrate a number of challenges that arise
when conducting case studies research, and they also present methodological lessons.
Their paper therefore appears to be the first of its kind in the software engineering
research community that explicitly discusses the challenge of designing, conducting,
and reporting case study research.

During the 1990s, both demonstration studies and genuine case studies (as we
define them here) were published, although only in small numbers. Glass et al.
analyzed software engineering publications in six major software engineering journals
for the period 1995–1999 and found that only 2.2% of these publications reported case
studies [61]. Much more recently, a sample of papers from Sjøberg et al.’s large sys-
tematic review of experimental studies in software engineering [195] were analyzed
by Holt [72]. She classified 12% of the sample as case studies. This compares to
1.9% of papers classified as formal experiments in the Sjøberg study. But differences
in the design of these reviews make it hard to properly compare the reviews and draw
firm conclusions.

The first recommendations, by software engineering researchers, regarding case
study methodology were published in the mid-1990s [109]. However, these recom-
mendations focus primarily on the use of quantitative data. In the late 1990s, Seaman
published guidelines on qualitative research [176]. Then, in the early twenty-first



6 INTRODUCTION

century, a broader set of guidelines on empirical research were published by Kitchen-
ham et al. [105]. Sim et al. arranged a workshop on the topic, which was summarized
in Empirical Software Engineering [189], Wohlin et al. provided a brief introduction
to case studies among other empirical methods [214], and Dittrich et al. edited a spe-
cial issue of Information and Software Technology on qualitative software engineering
research [43]. A wide range of aspects of empirical research issues for software engi-
neering are addressed in a book edited by Shull et al. [186]. But the first comprehensive
guides to case study research in software engineering were not published until 2009,
by Runeson and Höst [170] and Verner et al. [208]. Runeson and Höst’s paper was
published in the peer-reviewed journal Empirical Software Engineering and provides
the foundation for this book.

1.3 WHY A BOOK ON CASE STUDIES OF SOFTWARE ENGINEERING?

Case study methodology handbooks are superfluously available in, for example, social
sciences [162, 196, 217], which have also been used in software engineering. In the
field of information systems (IS) research, the case study methodology is also much
more mature than in software engineering. However, IS case studies mostly focus on
the information system in its usage context and less on the development and evolution
of information systems. Example sources on case study methodology in IS include
Benbasat et al. who provide a brief overview of case study research in information
systems [19]. Lee analyzes IS case studies from a positivistic perspective [115] and
Klein and Myers do the same from an interpretive perspective [111].

It is relevant to raise the question: what is specific for software engineering that
motivates specialized research methodology? In addition to the specifics of the exam-
ples, the characteristics of software engineering objects of study are different from
social sciences and also to some extent from information systems. The study objects
in software engineering have the following properties:

• They are private corporations or units of public agencies developing software
rather than public agencies or private corporations using software systems.

• They are project-oriented rather than line- or function-oriented organizations.
• The studied work is an advanced engineering work conducted by highly edu-

cated people, rather than a routine work [60].
• There is an aim to improve the engineering practices, which implies that there

is a component of design research [71] (i.e. prescriptive work).

Sjøberg et al. [194] write that in the typical software engineering situation
actors apply technologies in the performance of activities on an existing or planned
software-related product or interim products. So, for example, requirements analysts
(the actors) use requirements engineering tools (the technologies) during requirements
elicitation (an activity) to produce a requirements specification (an interim software-
related product). Like Pfleeger [139], we use a broad definition of technology: any



WHY A BOOK ON CASE STUDIES OF SOFTWARE ENGINEERING? 7

method, technique, tool, procedure, or paradigm used in software development or
maintenance. Sjøberg et al.’s use of the term actor is not restricted to mean individual
people, but can refer to levels of human behavior. For example, Curtis et al. [37] iden-
tified five layers of behavior: the individual, the team, the project, the organization,
and the business mileu.

There is a very wide range of activities in software engineering, such as devel-
opment, operation, and maintenance of software and related artifacts as well as the
management of these activities. A frequent aim of software engineering research is to
investigate how this development, operation, and maintenance is conducted, and also
managed, by software engineers and other stakeholders under different conditions.
With such a wide range of activities, and a wide range of software products being
developed, there is a very diverse range of skills and experience needed by the actors
undertaking these activities.

Software engineering is also distinctive in the combination of diverse topics that
make up the discipline. Glass et al. [60] describe software engineering as an intellectu-
ally intensive, nonroutine activity, and Walz et al. [212] describe software engineering
as a multiagent cognitive activity. Table 1.1 provides an indication of the topics in the
computing field, and therefore the expertise needed by practitioners and researchers.

Many of the interim products are produced either intentionally by the actors (e.g.,
the minutes of meetings) or automatically by technology (e.g., updates to a version
of control system). Therefore, one of the distinctive aspects of software engineering
is the raw data that are naturally, and often automatically, generated by the activities
and technologies.

There are clear overlaps with other disciplines, such as psychology, management,
business, and engineering, but software engineering brings these other disciplines
together in a unique way, a way that needs to be studied with research methods
tailored to the specifics of the discipline.

Case studies investigate phenomena in their real-world settings, for example, new
technologies, communication in global software development, project risk and failure
factors, and so on. Hence, the researcher needs to consider not only the practical
requirements and constraints from the researcher’s perspective, but also the objectives
and resource commitments of the stakeholders who are likely to be participating in,
or supporting, the case study. Also, practitioners may want to intervene in future
projects – that is, change the way things are done in future projects – on the basis
of the outcomes from the case studies, and often software engineering managers
are interested in technology interventions, such as adopting a new technology. This
includes both software process improvement (SPI) work [201] and design of solutions
[71]. There are, therefore, distinctive practical constraints on case study research in
software engineering.

In addition, the software engineering research community has a pragmatic and
result-oriented view on research methodology, rather than a philosophical stand, as
noticed by Seaman [176]. The community does not pay any larger attention to the in-
herent conflict between the positivistic foundation for experiments and the interpretive
foundation for case studies. This conflict has caused life-long battles in other fields
of research. As empirical software engineering has evolved from empirical studies in



8 INTRODUCTION

TABLE 1.1 Topics in Computing (from Glass et al. [59]).

Problem-solving concepts
Algorithms
Mathematics/computational science
Methodologies
Artificial intelligence

Computer Concepts
Computer/hardware principles/
architecture
Intercomputer communication
Operating systems
Machine/assembler-level
data/instructions

System/software concepts
System architecture/engineering
Software life cycle/engineering
Programming languages
Methods/techniques
Tools
Product quality
Human–computer interaction
System security

Data/information concepts
Data/file structures
Database/warehouse/mart organization
Information retrieval
Data analysis
Data security

Problem domain-specific concepts
Scientific/engineering
Information systems
Systems programming

Real-time
Edutainment

Systems/software management concepts
Project/product management
Process management
Measurement/metrics
Personnel issues
Acquisition of software

Organizational concepts
Organizational structure
Strategy
Alignment
Organizational learning/knowledge
management
Technology transfer
Change management
Information technology implementation
Information technology usage/operation
Management of “computing” function
IT Impact
Computing/information as a business
Legal/ethical/cultural/

Societal concepts
Cultural implications
Legal implications
Ethical implications
Political implications

Disciplinary issues
“Computing” research
“Computing” curriculum/teaching

a natural science context, experimentation and quantitative studies have been consid-
ered of higher value compared to case studies and qualitative studies. However, we
can observe a slowly growing acceptance for the the case study methodology as a
basis for high-quality research, in its contribution to understanding and change in the
complex industrial environment of software engineering.

Existing methodology guidelines specifically addressing case studies in software
engineering include several publications as presented in Section 1.2 [43, 109, 170,



CONCLUSION 9

176, 186, 189, 208, 214]. Still, a comprehensive handbook on case study research
in software engineering is missing, and that is what this book offers, with guidelines
and examples.

1.4 CONCLUSION

The term “case study” is used for a broad range of studies in software engineering.
There is a need to clarify and unify the understanding of what is meant by a case study,
and how a good case study is conducted and reported. There exist several guidelines
in other fields of research, but we see a need for guidelines, tailored to the field of
software engineering, which we provide in this book.




