CHAPTER 1

INTRODUCTION

Machine learning has experienced explosive growth in the last few decades, It
has achieved sufficient maturity to provide efticient technigues for a number of re-
search and engineering fields including machine perception, computer vision, nawral
language processing, syntactic pattern recognition, and search engines. Machine
leamning provides a firmn theoretical basis upon which to propose new techniques
that leverage existing data to extract interesting information or to synthesize more
data. It has been widely used in computer animation and related fields, e.g. ren-
dering, modeling, geometry processing, and coloring. Based on these techniques,
users can efficiently utilize graphical materials, such as models, images, and motion
capture data to generate animations in practice, including virtual reality, video games,
animation films, and sport simulations.

In this chapter, we introduce the uses of machine learning methods and concepts
in contemporary computer animation and its associated fields, We also provide
novel insights by categorizing many existing computer animation techniques into a
common learning framework. This not only illuminates how these techniques are
related, but also reveals possible ways in which they may be improved. The detaits
of these potential improvements are presented in subsequent chapters,
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1.1 PERCEPTION

Computer animation has become a prevalent medium for science, art, education,
communication, and entertainment. The production of computer animation invelves
multidisciplinary skills, and the special effects for film are generated by the collabo-
ration of animators, excellent artists, and engineers.

Generally, in animation production, the time-consurning and tedious work is artis-
tic, not technical [H11, 244]. This means that the efficiency of the artists is the
bottleneck in animation production, due to the fact that computer animation algo-
rithms are eminently reusable, but the data they operate on are often customized and
highly stylized. This bottleneck is exemplified by computer-generated film produc-
tion where the human workload is usually more than 80% artistic (e.g., modeling,
texturing, animating, etc.) [79].

To remove the bottleneck in arimation data generation, data transformation and
modeling techniques have been adopted to synthesize or generalize data. Machine
learning techniques are utilized based on the existing data because of two specific
merits: structural information extraction and new data synthesizing. Thus, time can
be saved in animation production by using machining learning techniques to reuse
existing data. Atlen et al. {16] proposed a novel technique which generates meshes
of new human bodies based on a smali set of example meshes through regression.

Even when the computation workload is more important than the human workload,
clever synthesis and reuse of data can still often be beneficial. Schddl et al. [245]
provided a new type of video preduction technique which synthesizes videos from a
finite set of images. This allows for the rapid generation of convincing videos that do
not exhibit discernible noise. Tang [279] et al. proposed a framework for generating
video narrative from existing videos in which the user only needs to conduct two
steps: selecting the background videc and avatars, and setting up the movement
and trajectory of avatars. By using this approach, realistic video narratives can he
generated from the chosen video clips and the results will be visually pleasing.

In this chapter, recent uses of machine learning techniques in computer animation
are presented. Techniques such as manifold learning and regression are reviewed,
and we introduce important and popular topics in computer animation and related
fields, discussing how machine learning has been leveraged in each. We also provide
suggestions for future work on enhancing computer animation through machine
learning.

1.2 OVERVIEW OF MACHINE LEARNING TECHNIQUES

In this section, we provide an overview of modern machine learning techniques.
A more therough introduction to machine learning is provided in Ref. [190, 199].
Machine learning [266] is concerned with the problem of how to build computer
programs that acquire and utilize information to effectively perform tasks. One
successful example is the field of computer vision {2661, Many vision techniques rely
on, and are even designed atound, machine learning. For example, machine learning
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threugh Bayesian inference has proven extremely powerful at analyzing surveillance
video to automatically track humans [357, 352] and label human activities [185].

Untortunately, the computer animation community has not utilized machine learn-
ing as widely as computer vision. Nevertheless, we can expect that integrating ma-
chine learning techniques into the computer animation field may create more effective
methods, Suppose that users wish to simulate life on the streets of Bei Jing in ancient
China, or in a mysterious alien society. They have to generate all the 3D models
and textures for the world, the behaviorg of animations for the characters. Although
tools exist for all of these tasks, the scale of even the most prosaic world can require
months or years of labor. An alternative approach is to create these models from
existing data, either designed by artists or captured from the world. In this section,
we introduce the idea that fitting models from data can be very useful for computer
graphics, along with the idea that machine learning can provide powerful tools.

To consider the problem of generating motions for a character in a movie, it is
important to realize that the motions can be created procedurally, i.e. by designing
algorithms that synthesize motion. The animations can be created "by hand” or
captured from an actor in a studio. These "pure data” approaches give the highest-
quality motions, but at substantial cost in time and effort of artists or actors. Moreover,
there is little flexibility: If it is discovered that the right motions were not captured
in the studio, it is necessary to retrack and capture more, The situation is worse for a
video game, where all the motions that might conceivably be needed must be captured.
To solve this probiem, machine learning techniques can be adopted to promise the
best of both worlds: Starting with an amount of captured data, we can procedurally
synthesize more data in the style of the original. Moreover, we can constrain the
synthetic data, for example, according to the requirements of an artist. For such
problems, machine learning offers an attractive set of tools for modeling the patterns
of data. These data-driven techniques have gained a steadily increasing presence in
graphics research. Principal components analysis and basic clustering algorithms
are commonly used in SIGGRAPH, the world’s premier conference on computer
graphics and interactive techniques. Most gignificantly, the recent preliferation of
papers on cartoon and motion synthesis suggests a growing acceptance of learning
techniques. In this section, we introduce modern machine learning techniques from
which the animations can deeply benefit. Furthermore, we introduce the applications
of these techniques in computer animation.

1.2.1 Manifold Learning

Techniques of manifold learning are important and have been popularly applied in
computer animation [49, 16, 131, 183]. Manifold learning [313] can be defined
as the process of transforming measurements from a high-dimensional space 10 a
low-dimensional subspace through the spectral analysis on specially constructed
matrices. It aims to reveat the intrinsic structure of the distribution of measurements
in the original high-dimensional space.

Manifold learning has a close relationship with computer animation research.
For example, Principal Components Analysis (PCA) [116] is an extremely simple,
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linear manifold learning method which is primarily used as a preprocess for high-
dimengional problems. PCA has been used as a preprocess in "Style Machines”
[49] which addresses the problem of stylistic motion synthesis by learning motion
patterns from a highly varied set of motion capture sequences. The human body pose
data typically contain 30-40 degrees of-freedom (DOFs);, however, the proposed
method would learn very slowly on such a large number of DOFs, Applying linear
manifold learning is very fast, and the resulting 10-dimensional space maintains the
important underlying structure of the motion data. More sophisticated non-linear
manifold learning approaches [241, 287, 31, 353] have been developed and applied
in the computer animation field. For example, Shin and Lee [253] proposed a
low-dimensional motion space constructed by ISOMAP, in which high-dimensional
human motion can be effectively visualized, synthesized, edited, parameterized, and
interpolated in both spatial and temporal domains, This system allows users o create
and edit the motion of animated characters in several ways: The user can sketch and
edit a curve on low-dimensicnal motion space, directty manipulate the character’s
pose in three-dimensional object space, or specity key poses to create inbetween
motions.

Representative manifold learning can be classified into linear and nonlinear man-
ifold learning groups. Principal Component Analysis (PCA) [116] and Linear
Discriminant Analysis{LIDA) [83] are two typical linear manifold learming tech-
niques. PCA, which is unsupervised, maximizes the mutual information between
original high-dimensional Gaussian distributed measurements and projected low-
dimensional measurements. DA finds a projection matrix that maximizes the trace
of the between-class scatter matrix and minimizes the trace of the within-class scat-
ter matrix in the projected subspace simultaneously. LDA is supervised because it
utilizes class label information, Representative nonlinear manifold learning includes
Locally Linear Embedding {(LLE) [241], ISOMAP [287], Laplacian Eigenmaps (LE)
f31], Hessian Eigenmaps (HLLE) [78], and Local Tangent Space Alignment (LTSA)
[353}]. Locally Linear Embedding (LLE) [241] uses linear coefficients, which re-
construct a given measurement by its neighbors, to represent the local geometry, and
then seeks a low-dimensional embedding in which these coefficients are still suitable
for reconstruction. ISOMAP, a variant of MDS5, preserves glebal geodesic distances
of all pairs of measurements. LE preserves proximity relationships by manipulations
on an undirected weighted graph, which indicates neighbour relations of pairwise
measurements. LTSA exploits the local tangent information as a representation of
the local geometry, and this local tangent information is then aligned to provide
a global coordinate. HLLE obtains the final low-dimensional representations by
applying eigen-analysis to a matrix which is built by estimating the Hessian over
neighbourhood. All of these algorithms suffer from the out-of-sample problem. One
common response (o this problem is to apply a linearization procedure to construct
explicit maps over new measurements. Examples of this approach inclede Locality
Preserving Projections (LPP) {108}, a linearization of LE; neighborhood preserving
embedding (NPE) [107], a linearization of LLE; orthogeonal neighborheod preserving
projections (ONPP) [142], a linearization of LLE with the orthogonal constraint over
the projection matrix; and linear local tangent space alignment (LLTSA) [351], a lin-
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earization of LTSA. The above analysis shows that all the aforementioned algorithms
are designed according to specific intuitions, and solutions are given by optimizing
intuitive and pragmatic objectives. That is, these algorithms have been developed
based on the experience and knowledge of field experts for their own purposes. As
a result, the common properties and intrinsic differences of these algorithms are
not completely clear. The framework of "Patch Alignment" [350, 99] is therefore
proposed for better understanding the common properties and intrinsic differences
in algorithms. This framework consists of two stages: part optimization and whole
alignment. The details of this framework will be introduced in Chapter 2.

1.2.2 Semi-supervised Learning

In compuier animation, the interaction between computer and artist has already been
demonsirated to be an efficient way [120]. Some researchers have explored the close
relationship between SSL and computer animation; for example, in character ani-
mation, Tkemoto [120] has found what the artist would like for given inputs. Using
these observations as training data, the input output mapping functions can be fitted
to generalize the training data to novel input. The artist can provide feedback by
editing the output. The system uses this feedback to refine its mapping function, and
this iterative process continues until the artist is satisfied. This framework has been
applied to address important character animation problems. First, sliding foot plants
are a common artifact resulting from almost any attempt to modify character motion,
Using an artist-trained oracle, it can be demonstrated that the animation sequences
can be accurately annotated with foot plant markers. Second, all motion synthesis al-
gorithms sometimes produce character animation that looks unnatural (i.e., contains
artifacts or is otherwise distinguishable as synthesized motion by a human observer).
It can be demonstrated that these methods can be successfully adopted as the testing
parts of hypothesize-and-test motion synthesis algorithms. Furthermore, artists can
create compelling character animations by manipulating the details of a character’s
motion. This process is labor-intensive and repetitive. It has been found that the
character animation can be made efficient by generalizing the edits an animator makes
on short sequences of training data to other sequences. Another typical example is
in cartoon animation. Correspondence construction of objects in keyframes is the
pre-condition for inbetweening and coloring in cartoon animation production. Since
each frame of an animation consists of multiple layers, objects are complex in terms
of shape and structure; therefore, existing shape-matching algorithms, specifically
designed for simple structures such as a single closed contour, cannot perform well an
objects constructed by multiple contours with an openshape. Yuetal. [338] proposed
a semi-supervised learning method for complex object correspondence construction.
In particular, the new method constructs local patches for each point on an object
and aligns these patches in a new feature space, in which correspondences between
objects can be detected by the subsequent clustering. For local patch construction,
pairwise constraints, which indicate the corresponding points (must link) or unfitting
points (cannot link}, are introduced by users to improve the performance of the cor-
respondence construction. This kind of input is conveniently available to animation
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software users via user friendly interfaces. Furthermore, the feedback [280, 285]
provided by users can enhance the results of correspondence construction.

Based on the above analysis, semi-supervised learning (SSL) [365, 303, 304,
305, 307] could be an appropriate technique for designing novel tools for computer
animation. SSL is halfway between supervised and unsupervised learning [306].
Based on the unlabeled data, the algorithm is enhanced by supervision information,
Generally, this information will be the targets associated with some of the examples.

In this case, the data set X = [xq,...,%,] will be divided into two parts: The data
points X; = [xy,...,%| with labels Y; = [y,,...,¥,] are provided, and the data
points X,, = [Xi41,...,Xi4,] Whose labels are not known. Other forms of partial

supervision are possible. For example, there may be constraints such as "these
points have (or do not have) the same target.” The different setting corresponds to a
different view of semi-supervised learning, in which SSL is perceived as unsupervised
learning guided by constraints. By contrast, in most other approaches, SSL is
assumed to be supervised learning with additional information on the distribution of
the data samples. A problem related to SSL is transductive learning [296], which
was introduced by Vapnik. In this preblem, there is a (labeled) training set and an
{unlabeled) test set. The idea of transduction is to perform predictions only for the
test points. This is in contrast to inductive learning, where the goal is to output a
prediction function which is defined on the entire space. Next, we will intreduce
several semi-supervised learning methods in detail.

Self-training is a commonly used technique for semi-supervised learning. In self-
training, a classifier is first trained with a small amount of labeled data. The classifier
is then used to classify the unlabeled data. Typically, the most confident unlabeled
points, together with their predicted labels, are added to the training set. Then, the
classifier is re-trained and the procedure repeated. This procedure is also called
self-teaching or bootstrapping. Yarowsky [332] adopts self-tratning for word sense
disambiguation. Riloff et al. [236] use it to identify subjective nouns. Magireizo
et al. [188) classify dialogues as "emotional’ or 'non-emotional’ with a procedure
involving two classifiers.

In co-training, several assumptions are made: (1) Features can be classified into
two sets; (2) each subfeature set is sufficient to train a good classifier; (3) the two
sets are conditionally independent given the class. Initially, two separate classifiers
are trained with the labeled data on the two sub-feature sets respectively. Each
classifier then classifies the unlabeled data and “teaches’ the other classifier with
the few unlabeled examples (and the predicted labels) about which they feel most
confident. Each classifier is retrained with the additional training examples given by
the other classifier, and the process repeats. Nigam and Ghani [213] perform extensive
empirical experiments to compare co-training with generative mixture models and
EM. The result shows that co-training gives excellent performance if the conditional
independence assumption indeed holds. Jones [128] also wsed co-training, co-EM
and other related methods for information extraction from text. Balcan and Blum
|27] show that co-training can be quite effective in an extreme case where only one
labeled point is needed to learn the classifier. Zhou et al. [363] give a co-training
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algorithm using Canenical Correlation Analysis, which alse needs only one labeled
point.

In graph-based semi-supervised learning, the nodes in the graph are labeled and
unlabeled samples in the dataset, and the edges in the graph represent the similarity
of samples. These methods usuvally assume label smoothness over the graph. In
general, graph-based methods can be seen as estimation of a function £ ¢n the graph,
Two issues of f should be satisfied: it should be close to y; on the labeled data and
it should be smooth on the whole graph. Thus, these two issues can be represented
in a regularization framework where the first term is a loss function and the second
term is a regularizer. It is more important to construct a good graph than to choose
among the methods. Blum and Chawla [45] adopt the graph mincut problem to
solve semi-supervised learning. In this method, the positive labels act as sources
and the negative labels act as sinks. The objective is to find a minimum set of edges
whose removal blocks all Alow from the sources to the sinks. The nodes connecting
to the sources are then labeled positive, and those to the sinks are labeled negative.
The Gaussian random fields and harmonic function method [366] is a continuous
relaxation to the difficulty of discrete Markov random fields. It can be viewed as
having a quadratic loss function with infinity weight, so that the labeled data are
clamped, and a regularizer based on the graph combinatorial Laplacian /. can be
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where f; € R is the key relaxation to Mincut. Zhou et al. [361] proposed the local
and global consistency method where the loss function is %, (f; — y;)?, and the
normalized Laplacian D1 2AD /2 = I — D~Y/2WD~ Y2 |n the regularizer as
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The manifold regularization framework [32] employs two regularization terms

i
Z (%, 70, £) + A% + BYEY (1.3)

t-.,|.—n

where V is an arbitrary loss function, K is a "base kernel", e.g., a linear or RBF
kernel, [ is a regularization term induced by the labeled and untabeled data.

In general, there are no explicit rules for choosing hyperparameters for graph-based
semi-supetvised learning, because it is nontrivial to define an objective function to
obtain these hyperparameters. Usually, cross-validation is utilized for parameter se-
lection. However, this grid-search technigue tries to select parameters from discrete
states in the parameter space, and lacks the ability to approximate the optimal solution.
To deal with the parameter configuration problem, an ensemble manifold regular-
ization (EMR) framework [87. 86] is proposed to combine the antomatic intrinsic
manifold approximation and the semi-supervised classifier learning. By providing a
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series of initial guesses of graph Laplacian, the framework learns to combine them
to approximate the intrinsic manifold.

Besides, Yu et al. [341] adopt hypergraph [362] to address the problem of pa-
rameters selection in graph-based semi-supervised learning. Unlike a graph that
has an edge between two vertices, a set of vertices is connected by a hyperedge in
a hypergraph. Each hyperedge is assigned a weight. In hypergraph learning, the
weights of the hyperedges are empirically set according to certain rules. In practice,
a large number of hyperedges will usually be generated, and these hyperedges have
different effects. In Ref.[341], an adaptive hypergraph learning method is proposed.
For hypergraph construction, the hyperedges are generated based on data samples
and their nearest neighbors. Specifically, the size of the neighborheod is varied to
produce multiple hyperedges for each sample. Thus, a large set of hyperedges will be
generated in this process. This makes the approach much more robust, because the
neighborhood size dose not need to be tuned. Since it is difficult to choose a suitable
strategy to heuristically weight hyperedges, a principled approach, termed regular-
ized loss minimization, is considered based on statistical learning theory. The loss
minimization ensures that the learned weights are optimal for the training set. Since
the size of the training set is not large in practice, the regularization item ensures that
the learned weights do not overfit to the training samples. This scheme essentially
achieves improved classification performance compared to the scheme that uses fixed
weights for different hyperedges.

1.2.3 Multiview Learning

Multiview learning has a leng history [242]. Tt has been applied to semi-supervised
regression [239, 50, 343] and the more challenging structured output spaces [51].
In computer animation, it is normal to use multiple features from different views to
describe the character. For instance, to describe a character well in cartoons, it is
elementary to extract a set of visual features to define its color, texture, motion and
shape information. A set of vectors can be obtained in different spaces to represent
the character. In this case, one possible method is to concatenate these vectors as a
new vector. This concatenation is not physically meaningful because each feature
has a specific statistical property.

Long et al. [181] proposed a distributed spectral embedding (DSE) to construct a
subspace learning with multiple views, To give a multiview datum with n objects hav-
ing m views, i.., a set of matrices X = {X® € R™:*"}, each representation X (*)
is a feature matrix from view 7. DSE assumes that the low-dimensional representation
of each view X is already known, ie., A = {Af € Rk & < my(1 <
i < m). DSE aims to learn a consensus low-dimensional subspace B € R™** based
on A; the cbjective function of DSE can be formulated as

2
s.t. BTB =1, (1.4)

minpp 3 |a® -BP®
i=1
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where P = {P{) ¢ RF*%}™ s a set of mapping matrices. The optimal so-
lution to DSE is given by performing eigendecomposition of the matrix CCT,
C = [AW, ..., A™)]. Furthermore, a novel multiview subspace learning method
[324] is proposed based on the patch alignment framework. The details are presented
in Chapter 2.

1.2.4 Learning-based Optimization

In this section, we present an overview of mathematical optimization, which will be
used in the subsequent contents of this book,
The form of a mathematical optimization problem can be written as

min fo(x), s.t. fi(x) <b;, i=1,...,m, (1.5)

where the vector x = (x1,...,X,) is the optimization variable for the problem. The
function fy : R — R is the objective function, and the function f; : R* - R, i =
1,...,m, are the constraint functions, The constants by, ..., b, are the bounds for
the constraints, A vector X is called a solution of the problem in Eq. (1.5), if it
has the smallest objective value among all vectors which satisfy the constraints. In
general, the optimization problems can be characterized by particular forms of the
objective and constraint functions. Next, we present the optimization methods of
leasi-squares, linear programming and convex optimization.

Least-Squares Problems: The least-squares problem can be formulated as an
optimization problem with nc constraints and the objective function is formulated by
summing the squares of terms of the form alx — b;:

k
min fo(x) = |Ax - b| = > _(af ~by)? (1.6)

=1

where A € RF*" (with & > n), a;-_r is the rows of A, and the vector x € R" is the
optimization variable. The solution of the least-squares problem, Eq. (1.6), can be
reduced to solving a set of linear equations

(ATA) = ATh. (1.7)

Thus, the analytical solution is x = {ATA)"1ATb, The least-squares problem
can be solved in a time approximately proportional to n?k with a known constant.
In many cases, the least-squares problem can be solved by exploiting some special
structure in the coefficient matrix A. For instance, by investigating sparsity, we can
usually solve the least-squares problem much faster than order nk.

The least-squares problem is the basis for regression analysis, optimal control, and
many parameter estimation and data fitting methods. It has a number of statistical
interpretations, e.g., as the maximum likelthood estimation of a vector x. It is
straightforward to recognize the optimization problem as a least-squares problem. We
only need to verify whether the objective function is a quadratic function. Recently,
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several standard technigues have been used to increase the flexibility of least-squares
in applications, For example, the weighted least-squares cost can be formulated as

k
- T 2
3 wilafx — by)?, (1.8)
i=1
where w1y, ..., Wy are positive. In a statistical setting, weighted least-squares arise in

estimation of a vector x, given linear measurements corrupted by errors with unequal
variances.

Another technique in least-squares is regularization, in which extra terms are
added to the cost function. In the simplest case, a positive multiple of the sum of
squares of the variables is added to the cost function:

ke

Zwi(a}rx—bi)Q—l—aix?, (1.9)

where o > (. Here, the extra terms penalize large values of x, and result in a sensible
solution in cases when minimizing the first sum only does not. The parameter c is
selected by the user to provide the right trade-off.

Linear Programming: Another important group of optimization methods is
linear programming, in which the objective function and all constraints are linear.

‘F

min ¢ X s.i. afxgb.i,izl,..‘,m, (1.10)

where the vectors ¢, ai1,...,a, € R™ and scalars by,..., by, € R are problem
parameters which specify the objective and constraint functions.

There is no simple analytical formula for the solution of a linear program. How-
ever, there is a variety of very effective methods for solving them, including Dantzig’s
simplex methed [235]. We can easily solve problems with hundreds of variables and
thousands of constraints on a small desktop computer. If the problem is sparse, or has
some other exploitable structure, we can often solve problems with tens or hundreds
of thousands of variables and constraints, as shown in Ref. [364].

Convex Optimization: The convex optimization problem [267, 127] can be
formulated as

min fo(z)st. fi{(x)<b;, i=1,...,m, (1.11)
where the functions fy, ..., fr : B™ - R are convex, and satisfy
filax + 8y) < afi(x) + 8fily). (1.12)

forallx,y c R*andallo,3 € Rwitha+ 3=1,a>0,3> 0.

The use of convex optimization is very much like using least-squares or linear
programming. If a problem can be described as a convex optimization problem, it can
be selved efficiently, like solving the least-squares problem, but there are also some
important differences. The recognition of a least-squares problem is straightforward,
but recognizing a convex function is more difficult. Additionally, there are many
more tricks for transferming convex problems than for transforming linear programs.
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1.3 RECENT DEVELOPMENTS IN COMPUTER ANIMATION

In this section, we introduce the application of machine learning techniques into
computer animation and its related fields. It can be seen that animation has thus
far benefited considerably from the application of machine learning [22]. Excellent
introductions to the field of computer animation are presented by Parent [218] and
Pina et al. [231]. Computer animation is a time-intensive process, and this is true
for both the 3D virtual character and 2D cartoon character. As a result, there has
long been interest in partially automating animation [218, 231]. Some well-known
approaches include keyframing and inverse kinematics, but these techniques still
require significant animator input. In the following content, we will present some
efficient and effective techniques in automatic animation generation.

1.3.1 Example-Based Motlon Reuse

An efficient approach to motion synthesis is to create novel motions using some
example motion data, as shown in Figure 1.1 and Figure 1.2. Intuitively, example-
based motion synthesis can more easily produce realistic motion than entirely artificial
approaches.
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Figure 1.1 Example-based motion synthesis guided by annotations.

1.3.1.1 Introduction of Motion Capture Systems The prerequisite of example-
based motion synthesis is obtaining the motion data using specified techniques. These
techniques were first proposed in the 1970s. In general, the motion capture can be
achieved by adopting specific equipment to record the 3D motion data in real time.
In the 1990s, a number of typical motion capture systems have been proposed, the
details of which are presented in Table 1.1.

Motion capture systems to date can be classified into the following categories:

¢ FElectronic mechanical system: The advantage of this system is the uncon-
strained motion capture place, and the avoidance of self-occlusion in the mo-
tion capture procedure. The Gypsy5 system from the Animazoo Company [2]
can be bought in the market (as shown in Figure 1.3(a)).

¢ Electromagnetic system: This system adopts multiple sensors to record the
joint positions and angles of real objects (as shown in Figure 1.3(b)). The
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Figure 1.2 Slide show of example-based motion synthesis. The character transitions from
walking to jogging t¢ locking over her shoulder. Example-based techniques have proven quite
effective because they synthesize motion that complies with real example motion.

Table 1.1 Motion Capture Systems

Date Name of Systems

1980-1983 Goniometers [58]

1982-1983 Graphical marionette [88]

1988 Mike the Talking Head [198]

1988 Waldo C. Graphic [300, 301]

1989 Dozo [139]
1991 Mat the Ghost [286]
1992 Mario [238}

deficiencies can be summarized as: First, this system is sensitive to metal
objects in a motion capture scene; second, because the sensors are fastened
to the actors, some complicated actions cannot be performed; third, the low
sampling rates of this system cannot meet the requirements of sports analysis,
besides which the cost of the system is very high.

Optical system: This kind of system has been widely adopted in motion capture.
Representative products are Hawk, Eagle {3] from MotionAnalysis and Vicon
MX system from the Vicon Company [4]. These systems record motion
by sticking markers onto the human body’s joints. A group of specialized
cameras are adopted to take videos and human motions are then extracted from
the videos. In general, this system requires 4-6 cameras. This technique can
provide high sampling rates, which can record the motion data for tracking and
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3D modeling reconstruction in computer vision. The optical systems are also
very expensive.

Figure 1.3 () Electronic mechanical motion capture system (b) Electromagnetic motion
capture system.

Based on the above elaborations, the available motion capture systems have the
disadvantages of high price, complicated operating procedure, and more. In recent
vears, therefore, scientists and engineers have been exploring novel motion capture
devices which are cheap and easy to operate. The video-based motion capture system
is an emergent topic, which we will discuss below.

In terms of motion capture devices, video-based motion capture systems can be
divided into the single camera system and multiple camera systermn. The techniques
of feature tracking, modeling matching, statistical learning, and silhouette analysis
are widely used in videc-based motion capture. The following paragraphs offer more
detail on these techniques.

Feature Tracking-Based Motion Capture Techniques: Most video-based mo-
tion capture techniques are based on a single camera which takes a series of frames for
human characters and adopts feature tracking methods to extract the motions. Here,
the adopted features are feature points and motion patches. Segen and Pingali [248]
proposed a contour-based motion capture system. They adopt the points’ position
and curvature to match two successive frames’ feature points and to estimate the
motion parameters. Bregler and Malik [54] proposed a novel vision-based motion
capture technique which can recover human motion from single-view video frames
with complicated backgrounds. Pekelny and Gotsman [226] proposed a novel motion
capture system which acquires the motion of a dynamic piecewise-rigid object using
a single depth video camera. This system identifies and tracks the rigid components
in each frame while accumulating the geometric information acquired over time,
possibly from different viewpoints. The algorithm also reconstructs the dynamic
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skeleton of the object and thus can be used for markerless motion capture. Fossati
et al. [84] proposed a motion capture approach which combines detection and track-
ing techniques to achieve robust 3D motion recovery of people seen from arbitrary
viewpoints by a single and potentially moving camera. This approach depends on
detecting key postures and can be done reliably, using a motion model to infer 3D
poses between consecutive detections, finally refining them over the whole sequence
using a generative model. Wang et al. [312] proposed a motion capture system
built from commadity components, as shown in Figure 1.4. This approach uses one
or more webcams and a color shirt to track the upper-body at interactive rates. In
their system, a robust color calibration procedure is described to enable color-based
tracking to work against cluttered backgrounds and under multiple illuminants.
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Figure 1.4 (a) A lightweight color-based motion capture system that uses cne or two
commodity webcams and a color shirt (b) Performance capture in 2 variety of natural lighting
environments, such as the squash court (c) Application of motion capture data in video games.

Model Matching and Silthouette Analysis-based motion capture techmiques:
In the field of motion capture research, some scientists adopt model matching and
silhouette analysis to recover the human motion parameters from the images/videos.
The basic idea is to fix a search space for human gesture [281] and build the comre-
spondence between the extracted image features (feature points, silhouette) and the
3D human model. Normally, this procedure is conducted by selving an optimization
problem. The details of this procedure are shown in Figure 1.5,

Zhao and Li [354] adopted Genetic Algorithm to match the feature points from
the 2D image with an optimal 3D gesture retrieved from 3D human gesture space.
However, the matching accuracy of this method depends heavily on the tracking
accuracy of the 2D feature points. Thus, satisfactory results cannot be achieved in
videos with complicated backgrounds and self-occlusions. Chen et al. (68] pro-
posed a novel method to recover 3D human motion. First, the 3D human gestures
are parameterized and projected onto a 2D plane by using different configurations.
Then, the silhouette of the character in the video frame is input into the system and
its correspending optimal 3D human gesture can be retrieved. The major deficiency
of this approach is that the adopted 3D human model is general and simple, thus it
cannct be perfectly matched to the silhouetted extracted from the videos. Micilotta
et al. [196] proposed an upper body motion capture system which extracts motion
by building correspondence between silhouette and Edge Map; however, this ap-
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proach can only captore upper body motion. Agarwal and Triggs [10] presented a
learming-based method for recovering a 3D human body pose from single images
and monocular image series. This approach does not require an explicit body model
and prior labeling of the body parts in the image. Instead, it recovers the pose by
direct nonlinear regression against shape descriptor vectors extracted automatically
from image silhouettes. For robustness against local silhouette segmentation errors,
the sithouette shape is encoded by a histogram-of-shape-contexts descriptors. To
handle the problems of depth and labeling information loss, this methed is inlegrated
into a novel regressive tracking framework, using dynamics from the previous state
estimate together with a learned regression value to disambiguate the pose. Re-
cently, Aguiar et al. [13] proposed a new marker-less approach to capturing human
performances from multiview video (as shown in Figure 1.5). This algorithm can
Jjointly reconstruct spatio-temporaily coherent geometry, motion and textural surface
appearance of actors that perform complex and rapid moves. This algorithm is purely
mesh-based and makes as few prior assumptions as possible about the type of subject
being tracked; it can even capture performances of people wearing wide apparel, such
as a dancer wearing a skirt. In Figure 1.5(c) small-scale time-varying shape detail is
recovered by applying model-guided multiview stereo to refine the model surface., Xu
et al. [326] presented a method to synthesize plausible video sequences of humans
according to user-defined body motions and viewpoints. First, they captured a small
database of multiview video sequences of an actor performing various basic motions.
They applied a marker-less model-based performance capture approach to the entire
database to cobtain the pose and geometry of the actor in each database frame. To
create novel video sequences of the actor from the database, a user animates a 3D
human skeleton with novel motion and viewpoints. This technique then synthesizes
a realistic video sequence of the acior performing the specified motion, based only
on the initial database. Stoll et al. [269] presented a motion capture approach that
incorporates a physically based cloth model to reconstruct the real person tn loose
apparel from multiview video recordings. This algorithm requires little manual in-
teraction. Without the use of optical markers, this algorithm can reconstruct the
skeleton motion and detaited time-varying surface geometry of a real person from a
reference video sequence. Wei and Chai [316] provided a novel method to capture
physically realistic human motion from monocular video sequences. This approach
first computes camera parameters, human skeletal size, and a smatl number of 3D
key poses from video and then uses 2D image measurements at intermediate frames
to automatically calculate the "in between" poses. During reconstruction, Newtonian
physics, contact constraints, and 2D image measurements are leveraged to simulta-
neously reconstruct full-body poses, joint torques, and contact forces. Lietal. [171]
presented a framework and algorithms for robust geometry and motion reconstruc-
tion of complex deforming shapes. This method makes use of a smooth template
that provides a crude approximation of the scanned object and serves as a geomeitric
and topological prior for reconstruction. Large-scale motion of the acquired object
is recovered using a space-time adaptive, nonrigid registration method. Fine-scale
details such as wrinkles and folds can be successfully synthesized with an efficient
linear mesh deformation algorithm.
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Figure 1.5 {a} 3D correspondences are extracted from corresponding SIFT features in
respective input camera views at t and t+1. These 3D correspondences, two of them illustrated
by lines, are used to deform the model into a first pose estimate for t+1. (b) Modet (b-1) and
the silhouette overlap (b-2) after the refinement step; slight pose inaccuracies in the leg and the
arms appear black in the silhouette overlap image. {b-3) and (b-4) show that after key vertex
optimization, these pose inaccuracies are removed and the mode! strikes a correct pose. {¢)
First, deformation constraints from the silhouette contours, shown as red arrows, are estimated
in {¢-1). Additional deformation handles are extracted from a 3D point cloud that is computed
via model-guided multi-view stereo in (c-2). Together, both sets of constraints deform the
surface scan to the highly accurate pose shown in (c-3}.

Other Motion Capture Fechnigues: In general, motion capture techniques re-
quire the task to be performed in a specified lab or closed stage setting with controiled
lighting. Thus, the capture of motions is constrained by the outdoor setting or the
traversal of large areas. Recently, T. Shiratori et al. [254] adopted body-mounted
cameras ta reconstruct the motion of a subject, as shown in Figure 1.6. In this system,
outward-looking cameras are attached to the limbs of the subject, and the joint angles
and root pose are estimated through nonlinear optimization. The optimization ob-
jective function incorporates terms for image matching error and temporal continuity
of motion. Structure-from-motion is used to estimate the skeleton structure and to
provide initialization for the non-linear optimization procedure. Global motion is
estimated and drift is controlled by matching the captured set of videos to reference
imagery. For nonrigid object motion capture, Yan and Pellefeys [328] proposed an
approach which is based on the modeling of the articulated non-rigid motion as a set
of intersecting motion subspaces. Here, a motion subspace is the linear subspace of
the trajectories of an object. It can model a rigid or non-rigid metion. The inter-
section of two motion subspaces of linked parts models the motion of an articulated
joint or axis. Bradley et al. [47] described a marker-free approach to capturing
garment motion that avoids these downsides. Temporally coherent parameterizations
are established between incomplete geometries that are extracted at each timestep
with a multiview stereo algorithm. Holes in the geometry are then filled, using a tem-
plate. This methed allows users to capture the geometry and motion of unpatterned
off-the-shelf garments made from a range of different fabrics.

In this section, we present various kinds of motion capture systems capable of
capturing realistic motions. In the next section, we shall introduce the reuse of motion
data in the computer animation field. In general, motion reuse can be separated into
three categories: motion retargeting, motion editing and motion synthesis,
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Figure 1.6 A novel motion capture system which captures both relative and global motion
in nataral environmenis nsing cameras mounted on the body.

1.3.1.2 Motion Retargeting Motion retargeting can be defined as transferring
the captured motion data onto a new character with a different skeleton. This
procedure is presented in Figure 1.7.

New Characters with
Different Sizes

|

=—* Motion Retargeting —>

Original Character - ;{eéults

Figure 1.7 Motion of picking up an object is retargeted onto differently sized characters.

In 1997, Hodings and Pollard [1§3] proposed an automatic method which re-
targeted existing human motion onto a new character whose skeleton had different
length and mass, The presented algorithm adapts the control system to a new charac-
ter in two stages, First, the control system parameters are scaled based on the sizes,
masses, and moments of inertia of the new and original characters. A subset of the
parameters is then fine-tuned using a search process based on simulated annealing. In
addition to adapting a control system for a new model, this approach can also be used
to adapt the control system in an on-line fashion to produce a physically realistic
metamorphosis from the original to the new model while the morphing character
is performing the behavior. Similarly, Gleicher [91] proposed a constraint-based
motion retargeting algorithm. Their focus is on adapting the motion of one articu-
lated figure to another figure having identical structure but different segment lengths.
This approach creates adaptations that preserve the desirable qualities of the origi-
nal motion. In addition, specific features of the motion as constraints arc identified
and preserved in the retargeting procedure. A time constraints solver computes an
adapted motion that reestablishes these constraints while preserving the frequency
characteristics of the originat signal. To solve the motion retargeting problem be-
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tween characters that have different structures, Park and Shin [220] proposed a novel
example-based motion retargeting approach. Provided with a set of example motions,
this method automatically extracts a small number of representative postures called
source key-postures. The animator then creates the corresponding key-postures of
the target character, breathing his/ber imagination and creativity into the output ani-
mation. Exploiting this correspondence, each input posture is ¢loned frame by frame
to the target character to produce an initial animation, which is further adjusted in
space and time for retargeting and time warping and then finalized with interactive
fine tuning. Hecker ¢t al. [110] provided a real-time motion retargeting system for
animating characters whose morphologies are unknown at the time the animation is
created. The proposed technique allows describing the motion using familiar posing
and key-framing methods. The system records the data in a morphotogy-independent
form, preserving both the animation’s structural relationships and its stylistic infor-
mation. At runtime, the generalized data are applied to specific characters to yield
pose goals that are supplied to a robust and efficient inverse kinematics solver,

More complicated motion retargeting tasks have recently been achieved in the
research field. For example, Ho et al. {112] presented a novel motion retargeting
method which reused the motion involving close interactions between body parts
of single or multiple articulated characters, such as dancing, wresiling, and sword
fighting, or between characters and a restricted environment, such as getting into a
car. In such motions, the implicit spatial relationships between body parts/objects are
important for capturing the scene semantics. A simple structure called an interaction
mesh is adopted to represent the spatial relationships. The interaction mesh repre-
sentation is general and applicable to various kinds of close interactions. Yamane ct
al. [327] proposed an approach for producing animations of nonhumanoid characters
from human motion capture data. Characters considered in this work (as shown in
Figure 1.8) have propartion and/or topology significantly different from humans, but
are expected to convey expressions and emotions through body language that are un-
derstandable to human viewers. Keyframing is most commonly used to animate such
characters. This method provides an alternative for animating nonhumancid charac-
ters that leverages motion data from a human subject performing in the style of the
target character. The method consists of a statistical mapping function learned from
a small set of corresponding key poses, and a physics-based optimization process to
improve the physical realism.

1.3.1.3 Motion Editing Based on the existing motion capture data, the tech-
niques of motion editing allow users to modify the features of the motion to meet
their new requirements. In general, the input of the motion editing system is in
single motion clips. In the following section, we shall review these techniques. Mo-
tion Signal Processing: In 1995, Bruderlin and Williams [55] successfully applied
techniques from the image and signal processing domain to designing, modifying,
and adapting animated motion. In their opinion, the multiresolution motion filter-
ing, multitarget motion interpolation with dynamic timewarping, waveshaping and
motion displacement mapping are well suited to the reuse and adaptation of existing
motion data such as joint angles, joint coordinates or higher level motion parameters
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Figure 1.8 Nonhumanoid characters animated using human motion capture data,

of articulated figures with many degrees of freedom. Thus, existing motions can be
medified and combined interactively and at a higher level of abstraction than sup-
ported by conventional systems. Unuma et al. [295] presented a method for modeling
human figure locomotion. In this approach, Fourier expansions of experimental data
of actual buman behaviors serve as a basis from which the method can interpolate or
extrapolate human locomotion. This means, for instance, that transition from a walk
to a run is smoothly and realistically performed by the method. Moreover, an indi-
vidual’s character or mood appearing during the human behaviors is also extracted
by the method. For example, the method gets "briskness” from the experimental
data for a "normal" walk and a "brisk" walk. Then the "brisk” run is generated by
the method, using another Fourier expansion of the measured data of running. The
superimpaosition of these human behaviors is shown as an efficient technique for
generating rich variations of human locomotion. In addition, step-length, speed, and
hip position during locomotion are also modeled, and interactively controlled to get
a desired animation.

Keyframe Editing and Motien Deformation: The basic idea of keyframe editing
is to put constraints on the keyframes from original motion data. The gestures of
these characters in keyframes are deformed according to the specification of users,
and the inbetween frames are generated by using an interpotation algorithm. In using
these techniques, the results of motion editing are affected by the keyframe selection.
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I sufficient and appropriate keyframes are selected, smooth and natural motions can
be generated. The motion editing technique proposed in [44] is based on the idea of
keyframe editing. In real application, it might be not easy to edit the keyframes; thus,
Witkin and Popovic [322] proposed a novel technique called motion warping. Unlike
the technique of keyframe editing, motion warping conducts interpolation between
the difference of the task motion and the source motion. One typical procedure of
the motion warping system can be divided into two steps [221]: First, the inverse
kinematics is adopted to achicve the constrained optimization of the keyframes,
and interpolation is conducted to obtain the variance. In recent years, Sok et al.
[260] proposed an integrated framework for interactive editing of the momentum and
external forces in a motion capture sequence. This framework allows users to control
the momentum and forces, which provides a powerful and intuitive editing tool for
dynamic motions. Neff and Kim [209] proposed a system for editing motion data
that is particularly well suited to making stylistic changes. This approach trangforms
the joint angle representation of animation data into a set of pose parameters more
suitable for editing. These motion drives include position data for the wrists, ankles,
and center of mass, as well as the rotation of the pelvis. In this system, an animator
can interactively edit the motion by performing linear operations on the motion drives
or extracted correlations, or by layering additional correlations.

Motion Path Editing: The motion capture data have a specified trajectory (motion
path), and path modification is a necessary step for animation production. Michael
Gleicher [92] introduced the motion path editing algorithm, which records the tra-
jectory of the skeleton’s joints as the character’s motion path and adopts B-spline to
describe it. After the user has interactively changed the formation of the path, the
parameters of the original path curve are adopted to resample and recalculate the tran-
sition and rotation parameters for each frame, Thus, the spatial-time constraint of the
original motion data can be preserved; meanwhile, the purpose of changing the path
formation can be achieved. Recently, Lockwood and Singh { 180] presented a system
for interactive kinematic editing of motion paths and timing that employs various
biomechanical observations to augment and restrict the edited motion. Realistic path
manipulations are enforced by restricting user interaction to handles identified along
a motion path using motion extrema. An as-rigid-as-possible deformation technique
modified specifically for use on motion paths is used to deform the path to satisfy
the user-manipulated bandle positions. After all motion poses have been adjusted to
satisfy the new path, an automatic time-warping step modifies the timing of the new
motien to preserve the timing qualities of the original motion.

Spatial-Time-Constraint-Based Motion Editing: The difference between spatial-
time-constraint-based motion editing and other motion editing techniques is that this
method does not handle isolated frames. Here, the spatial-time constraint means
that a group of motion frames are simultaneousty processed. In early research work,
the spatial-time constraints were initially used to denote the positions of characters
in the specified time. The optimal postures of the characters were then obtained in
these positions. In the early research work {321, 71], the physical rules are used
as constraints of the motion, and the objective function of changing the character’s
mation is constructed to take the consumption of energy into consideration. Finally,
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the minimization of the objective function is conducted to obtain the new motion. In
Ref. [93], Gleicher and Litwinowicz made improvements in spatial-time constraint-
based motion editing by using a novel objection function, and they provided real-time
interactive editing functions in this approach. In recent years, novel motion editing
techniques have been proposed to achieve complex motion reuse. Complex acrobatic
stunts, such as double or triple flips, can be performed only by highly skilled athletes.
On the other hand, simpler tricks, such as single-flip jumps, are relatively easy to
master. Majkowska and Faloutsos [189] presented a method for creating complex,
multi-flip ballistic motions from simple, single-flip jumps. This approach allows an
animator to interact with the system by iniroducing modifications to a ballistic phase
of a motion. This method automatically adjusts motion trajectories to ensure the
physical validity of the motion after the modifications. The presented technique is
efficient and produces physically valid results without resorting to computationally
expensive optimization. Hsu et al. [117] provided a time-warping technique which
allows users to modify timing without affecting poses. This technique has many
motion editing applications in animation systems, such as refining motions to meet
new timing constraints or modifying the action of animated characters. The proposed
approach simplifies the whole process by allowing time warps to be guided by a pro-
vided reference maotion. Given few timing constraints, it computes a warp that both
satisfies these constraints and maximizes local timing similarities to the reference.
Compared with existing methods, this algorithm is fast enough to incorporate into
standard animation workflows. Similar ideas of using time constraints in motion
editing can be found in Ref. [168, 121, 205].

1.3.1.4 Motion synthesis The task of motion synthesis is to combine multiple
motion clips into novel motion. It is very challenging because it is not obvious
how many data may be generalized. For example, an unrealistic animation may be
generated by blending two motion clips. In this case, researchers have tried (o apply
machine Jearning to make example-based motion synthesis possible.

Motion Transition and Metion Blending: Motion transition seamlessly inte-
grates two motion clips into one long motion. The typical technique for motion
transition is verbs and adverbs {240]. Based on machine learning theory, this tech-
nique is proposed to create a generative model of motion through regression. The
motion clips representing a class of motion (e.g., walking, waving, etc.) are collected
by users. These clips are then manually placed in an #-dimensional parameter space
determined by the user, and the technique of scattered data interpolation is adopted
to synthesize the novel motions.

In such an approach of motion transition, the location of good transition points in
the motion stream is critical. Wang and Bodenheimer [308] proposed a method to
evaluate the cost function for determining such transition points. A set of optimal
weights for the cost function is compared using a constrained least-squares technique.
The weights are then evaluated in two ways: first, through a cross-validation study
and second, through a mediuvm-scale user study. The cross-validation shows that the
optimized weights are robust and work for a wide variety of behaviors. The user
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study demonstrates that the optimized weights select more appealing transition points
than the original weights,

Motion blending can be defined as averaging multiple motion clips to obtain
the novel motion data. The importance of motion blending is that it achieves time
registration of the motion ¢lips. The techniques of time warping [222, 223] have been
cominonly used. In motion transition, the technique of motion blending has been
used. Menardais et al. [194] proposed a real-time motion blending algorithm, which
achieves smooth motion blending by averaging multiple motions. Furthermore, Wang
and Bodenheimer [309] adopted linear blending to determine visually appealing
motion transitions.

Motion-Graph-based Motion Synthesis: Motion graph modeling, initially pro-
posed in Ref.[145], consists both of pieces of original motion and automatically
generated transitions. Motion can be generated simply by building walks on the
graph. A general framework for extracting particular graph walks is presented to
meet a user’s specification. Details of motion graph are presented in Figure 1.9, In
recent years, a group of novel motion synthesis methods have been proposed based
on this technique. Gleicher et al, {94] applied this technique to virtual environments
and games. In their research, an approach called Snap-Together Motion (STM)
preprocesses a corpus of motion capture examples into a set of short clips which
can be concatenated fo make continuous streams of motion. The result process is
a simple graph structure that facilitates efficient planning of character motions. A
user-guided process selects "common” character poses and the system automatically
synthesizes multiway transitions that connect through these poses. In this manner,
well-connected graphs can be constructed to suit a panticular application, allowing
for practical interactive control without the effort of manually specifying all transi-
tions. Li et al. [336] adopted a statistical technique called a linear dynamic system
(LDS) to perform linear function approximation. A graph is constructed to model
the transitions that can occur between the LDS's.
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Figure 1.9 (a) Motion graph built frame with two initial clips. A node can be trivially
inserted to divide an initial clip into two smaller clips. (b} An example error function for two
motions, The eniry at (i, j) contains the error for making a transition from the ith frame of the
first motion to the jth frame of the second. White values correspond to lower errors and black
values 1o higher errors. The dots represent local minima.
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Motion-graph-based methods are popularly used to synthesize long motions by
playing back a sequence of existing motion ¢lips, However, motion graphs only sup-
port {ransitions between similar frames. In Ref.[234], an optimization-based graph
was introduced to combine continuous constrained optimization with motion-graph-
based motion synthesis, The constrained optimization is used to create a vast number
of complex realistic-looking transitions in the graph. The graph can then be used to
synthesize long motions with nontrivial transitions that for example allow the char-
acter to switch its behavior abruptly while retaining motion naturalness. Beaudoin et
al. [30] presented a technique called motion-motif graph, which represents clusters
of similar motions. Together with their encompassing motion graph, they lend under-
standable structure to the contents and connectivity of large motion datasets. They
can be used in support of motion compression, the removal of redundant motions,
and the creation of blend spaces. This research develops a string-based motif-finding
algorithm which allows for a user-controlled compromise between metif length and
the number of motions in a motif.

The above motion-graph-based approaches have shown great promise for novice
users due (e their ability to generate long motions and the fully antomatic process
of motion synthesis. The performance of motion-graph-based approaches, however,
relies heavily on selecting a good set of motions to build the graph. The motion set
needs to contain encugh motions o achieve good connectivity and smooth transitions,
At the same time, the motion sel needs to be small enough for fast motion synthesis.
Manually selecting a geod motion set that achieves these requirements is difficult;
hence, Zhao et al. [355] proposed an automatic approach to select a good motion
set. Here, the motion selection problem is presented as a search for a minimum-
size subgraph from a large motion graph representing the motion capture database.
This approach especially benefits novice vsers who desire simple and fully autornatic
motion synthesis tools. To obtain better motion graphs, Reitsma and Pollard [217]
described a method for using task-based metrics to evaluate the capability of a
motion graph to create the set of animations required by a particular application.
This capability is ¢xamined for typical motion graphs across a range of tasks and
environments. The resuits of this approach can be used to evaluate the extent to which
a motion graph will fuifill the requirements of a particular application, lessening the
risk of the data structure performing poorly at an inoppertune moment. The method
can also be used to characterize the deficiencies of this technique whose performance
will not be sufficient, as well as to evaluate the relative effectiveness of different
options for improving those techniques. A similar idea has been applied in Ref.[356].

Subspace Learning-Based Motion Synthesis: The basis of subspace-learning-
based motion synthesis is to project the original high-dimensional motion data into a
simple low-dimensional subspace. Motion editing and synthesis are conducted in this
new space, and the results are projected back to the high-dimensional space. Itis a
typical integration of machine learning techniques and computer animation. Alex and
Muller [15] adopted principle component to represent the animation frames, while
Mori and Hoshino [201] used the Independent Component Analysis (ICA) to obtain
the sparse gesture subspace for realistic human motion synthesis. First, independent
motion features are extracted from the original high-dimensional motion capture data
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to construct the ICA subspace. Then, the new human motion data are generated
through interpolation in the ICA subspace. Similarly, Glardon et al. [90, 89} adopted
PCA to project the motion data into the low-dimensional space. The operations of
interpolation/extrapolation are conducted in this new space to obtain new motions
with different speed. It can also be reused in new characters with different skeletons.
Safonova et al. [243] utilized manifold learning and regression to combine motor
controller-based motion synthests and data-driven synthesis (as shown in Figure
1,103, In this method, a small number of similar motion clips are connected by the
user, and dimensionality reduction is then performed on the data using PCA. The
synthesis ig guided through optimization, seeking useful paths on the manifold. A
similar idea can be found in [61].

PCA MDS Isomap

{a) Dimensionality Reduction of
Motion Data

{(c) Results of Motion Synthesis

Figure 1,10 Projection of walking motion into low-dimensicnal space (a) Dimensionality
reduction of motion data through PCA, MDS, and Isomap (b) Entire motion construction {c}
Results of motion synthesis.
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Parameterization-Based Motion Synthesis: Parameterization methods have
been adopted by some researchers to represent human gestures. In motion syn-
thesis, the new motions are generated by assigning parameter values. Rose et al.
[240] provided an interesting technique which builds on verbs and adverbs. In this
method, an unstructured motion data library is automatically processed, segmented,
and classified into similar motion classes. Finally, motion synthesis is conducted by
scattered data interpolation, Kovar and Gleicher [144] provide an automated method
for identifying logically similar motions in a data set and use thern to build a continu-
ous and intuitively parameterized space of motions, To find logically similar motions
that are numerically dissimilar, this method employs a novel distance metric to find
"close” motions and then uses them as intermediaries to find more distant motions.
Once a set of related motions has been extracted, they are automatically registered
and blending techniques are applied to generate a continuous motion space. This
algorithm extends previous work by explicitly constraining blend weights to reason-
able values and having a runtime cost that is almost independent of the number of
example motions, The scheme of this method is presented in Figure 1,11,

L [ | N
. ¥ AN + [ 4 | -
s \ ~ ’ : ";\ ? — ¥ —_— § b[ E
£id « EEd s A | [,
Automatlc‘Motlon Motion Searching Mom." .
Sampling Parameterization

Figure 1.11  Visnalization of the accessible locations for varied motions. In the left and right
blocks, large red cubes show parameters of example motions; small gray cubes are sampled
parameters,

Mukai and Kuriyama [204] proposed a common motion interpolation technique
for realistic hurman animation, which is achieved by blending similar motion samples
with weighting functions whose parameiers are embedded in an abstract space. This
method treats motion interpolations as statistical predictions of missing data in an
arbitrarily definable parametric space. A practical technique is then introduced for
statistically estimating the correlations between the dissimilarity of motions and the
distance in the parametric space. Ahlimed et al. [14] presented the employment
of motien blending with time-warping for realistic parametric motion generation.
This approach allows the animator to define the desired motion using its natural
parameters, such as speed. Analysis has also been carried out to investigate the
relationship between the walking speed and blending factor to remove the burden of
tria) and errors from the animator. As a result, a realistic walking motion with the
speed specified by the user can be generated. The approaches proposed in Ref.[109]
[302] integrated the control of the motion parameters in the motion graph techniques;
thus, users can obtain motion data according to the input parameters. A similar idea
can be found in Ref.[187] and [179].

Certain techniques {21, 94], based on machine learning techniques, concatenate
disjointed segments of motion data to create novel motions. For instance, Arikan
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and Forsyth [21] adopted a support vector machine (SVM) to classify motion frames
into behavior classes defined by the user, and Lee et al. [158] performed clustering
of motion data to speed up motion synthesis. A totally different approach is taken
by Lim and Thalmann [174}. An existing motion clip is interactively evolved intc a
new motion through the guidance of a user; no fitness function is required. In other
words, the system produces candidate motion clips and the user specifies those he/she
does and does not like. The genetic algorithm uses this feedback to produce the next
generation of candidate motions, Through this technique, the user can easily modify
the style of an existing animation (e.g., change the moed of a walking motion).

1.3.2 Physically based Computer Animation

Physically based computer animation is about simulating the physics of a system for
graphical purposes. The techniques of physically based animation have been widely
used in fluid simulations, including water anitnation, sinoke animation, and explosion
animation, as well as being successfully applied to character animation. Physically
based methods have been used in other interesting fields, such as sound simulation
and cloth animation. In this section, the research work of physically based animation
is presented according to these three categories,

1.3.2.1 Physically Based Fluid Simulation Pighin et al. [229] proposed
a method for modeling incompressible fluid flows in which massless particles are
advected through the fluid, and their paths are recorded. The entire fluid volume
may then be reconstructed by interpolating these RBFs at a given time. Zheng
et al. [360] proposed a fast dual-domain multiple boundary-integral solver, with
linear complexity in the fluid domain’s boundary. Enhancements are proposed for
robust evaluation, noise elimination, acceleration, and parallelization. Wicke et al.
[320] proposed a finite element simulation method that addresses the full range of
material behavior, from purely elastic to highly plastic, for physical domains that
are substantially reshaped by plastic flow, fracture, or large elastic deformations. By
using this method, a dynamic meshing algorithm refines the drop while maintaining
high-quality tetrahedra. At the narrowest part of the tendril, the mesher creates small,
anisotropic tetrahedral where the strain gradient is anisotropic, s that a modest
number is adequate. Work hardening causes the tendril to become brittle, whereupon
it fractures.

Thurey et al. {292] presented a multiscale appreach to mesh-based surface tension
flows. In this approach, surface tension fiows are simulated using a mesh-based
surface representation. Lentine et al. [165] provided a novel algorithm for incom-
pressible flow using only a coarse grid projection. This algorithm scales well to
very large grids and large numbers of processors, allowing for high-fidelity simu-
lations that would otherwise be intractable. Yu and Turk [344] proposed a novel
surface reconstruction method for particle-based fluid simulators such as Smoothed
Particle Hydrodynamics. In particle-based simulations, fluid surfaces are usually
defined as a level set of an implicit function. Ando and Tsuruno [17] preposed a
particle-based algorithm that preserves thin fluid sheets. This algorithm is effective
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in creating thin liquid animations and is capable of producing visvally complex thin
liquid animations. The scheme of this approach is presented in Figure 1.12.

s e

Visualized Splash Newly Inserted Particles Results of Surface
with Particles with Pink Points Generation

Figure 1.12  Water splash by the particle-based algorithm. The first and second diagrams:
A visualized splash with particles. The pink points indicate newly inserted particles. The third
diagram: A thin surface generated by anisotropic kernels.

Hong et al. [114] proposed a hybrid of Eulerian grid-based simulation and La-
grangian SPH for the realistic simulation of multiphase fluids, focusing on bubbles.
Using this heuristic bubble model, they generated natural-locking computer gener-
ated bubbly water and formable objects, as well as both volumetric objects and thin
shells. Zhao et al. [359] provided a framework to integrate turbulence to an exist-
ingfongoing flow suitable for graphical controls. Compared to direct field addition,
this framework avoids artificial and complex coupling by solving integration inside
the NS solvers. Other techniques have been proposed for liquid simulation. Brochu
et al. [251] provided a Eulerian liquid simulation framework based on the Voronoi
diagram of a potentially unorganized collection of pressure, and they presented a
simplified Voronoi Delaunay mesh velocity interpolation scheme and a direct exten-
sion of embedded free surfaces and solid boundaries to Voronoi meshes. Wojtan et
al. [323] proposed a mesh-based surface tracking method for fluid animation that
both preserves fine surface detail and robustly adjusts the topology of the surface in
the presence of arbitrarily thin features such as sheets and strands. The interaction
between objects and liquid has also been studied in fluid simulation. For example,
Mihalef et al. [197] proposed a new Eulerian-Lagrangian methed for physics-based
simulation of fluid flow, which includes automatic generation of subscale spray and
bubbles. The Marker Level Set method is used to provide a simple geometric cri-
terion for free marker generation. Mosher et al. [202] proposed a novel solid/fluid
coupling method that treats the coupled system in a fully implicit manner, making
it stable for arbitrary time steps, large density ratios, and so on. The procedure is
presented in Figure 1.13. Kim et al. [137] provided a novel wavelet method for
the simulation of fluids at high spatial resolution. The algorithm enables large- and
small-scale detail to be edited separately, allowing high-resolution detail to be added
as a post-processing step.

Lenaerts et al. [163] proposed an SPH method for simulating the interesting fluid
flowing through a porous material. Rigid and deformable objects are sampled by par-
ticles which represent local porosity and permeability distributions at a macroscopic
scale, Figure 1.14 shows the simulation results.
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Rigid Balls in a pool Water splashes out Cloth Pulled Out
of water of an cloth bag of Water

Figure 1L.E3  Left: Many rigid balls with varying densities plunge into a pool of water.
Center: Water splashes out of an elastic cloth bag. Right: Cloth pulled out of water.

Result of Fluid Flow Caused
by Twisting a Wet Cloth against a Dry Cubic Sponge

Result of Pouring Water

Figure 1,14 Eeft: Resull of fluid flow caused by twisting a wet cloth. Right: Result of
pouring water against a dry cubic sponge.

Another popular application of fluid simulation is smoke animation. Robinson-
Mosher et al. [239] proposed a novel method for obtaining more accurate tangential
velocities for solid fluid coupling. This method works for both rigid and deformable
objects as well as both volumetric objects and thin shells.

Narain et al. [208] proposed a novel technique for the animation of turbulent
smoke by coupling a procedural turbulence model with a numerical fluid solver
to introduce subgrid-scale flow detail. From the large-scale flow simulated by the
solver, this models the production and behavior of turbulent energy using a physically
motivated energy model, as shown in Figure .15,

Nielsen et al. [212] proposed a novel approach to guiding Eulerian-based smoke
animations coupled simulations at different grid resolutions. They present a vati-
ational formulation that allows smoke animations to adopt low-frequency features
from a lower resolution simulation (or nonphysical synthesis) while simultancously
developing higher frequencies. Lentine et al. [164] proposed a novel algerithm
(shown in Figure 1.16) for mass and momentum conservation in incompressible flow
and designed a new advection method using the basic building blocks used in semni-
Lagrangian advection, which is known to work well for inviscid flows, coarse grids,
and large time steps, a scenario common in computer graphics.

Nielsen and Christensen [211] proposed an improved mathematical model for
Eulerian-based simulations which is better suited to dynamic, time-dependent guid-
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Figure 1.15  The framework of producing turbulent energy using a physically motivated
energy model.

Results of Smoke Injected Results of Smoke Injected from
from Below Below with Static Sphere

Figure 1,16  Left: Results of smoke injected from below. Right: Results of smoke injecied
from below with static sphere.

ance of smoke animations through a novel variational coupling of low-and high-
resolution simulations. The procedure is shown in Figure 1.17.
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e

Guiding Simulations Time Dependent Guiding Simulation Results

Figure 1.17 The framework of guiding simulations with a user-created flow.

Apart from water and smoke simulation, the flow effects of explosion have been
explered in recent researches. Kwatra et al. [147] proposed a novel approach incor-
porating the ability to handle both the initial states of an explosion (including shock
waves) along with the long time behavior of rolling plumes and other incompressible
flow effects (as shown in Figure 1.18). In addition, Kawada and Kanai [ 135] provided
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another novel method to procedurally model explosion phenomena by considering
physical properties along control paths specified by the user. The intention of the user
can be taken into account by this method, and at the same time explosion flows with
complex behaviors can be realized by considering the propagations of the pressure
and density flow, the fuel combustion and the detonation state to represent the drastic
pressure change.

F T - N AN
Result 1: A planar shock enters  Result 2: A shock interacts with twe | Result 3: The development of
an enclosed domain different wails respectively smoke plume at varied times

Figure 1.18  Left: A planar shock enters an enclosed domain. Middle: A shock interacts
with two different walls respectively. Right: The development of smoke plume at varied times.

1.3.2.2 Physically Based Character Animation Over the decades, phys-
ically based techmiques have been widely used in character animation. A typical
example is NeurcAnimator [97], in which an artificial neural network performs func-
tion approximation of a physics system. James and Fatahalian [124] proposed a
technique for the animation of deformable objects, as shown in Figure 1.19, This
technigue takes a tabulated approach to function approximation, The state is repre-
sented as the shape of an object, and then » distinct paths through the state space are
sampled and stored without medification.

Step 1: Precompute Step 2: Modelraducton on Stap 3: Sampling of Step 4: Simulation
dynamics dynamic defarmations deformed state geometries tesults

-

Figure 1.1% Accelerated physically based animation throngh precomputation.

In motion synthesis and reuse, the physical property provides some specific and
useful constraints. Though some physical properties can be used as spatial con-
straints, more properties are neglected to improve the algorithm's performance. One
typical example is that Newton's laws are always neglected. Nevertheless, these
properties are important in moticn synthesis; for example, Popovic and Witkin [232]
proposed a system of physically based motion transformation which preserves the
essential physical properties of the motion. By using the spacetime constraints
dynamics formulation, this algorithm maintains the realism of the original motion
sequence without sacrificing full user control of the editing process. Recenily, some
researchers have proposed dynamic-based realistic motion synthesis methods; for
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example, based on motion capture data, Zordan et al. [367] introduced a novel tech-
nique for incorporating unexpected impacts into a motion-capture-driven anirnation
system through the combination of a physical simulation which responds to contact
forces and a specialized search routine. Using an actuated dynamic model, this sys-
tem generates a physics-based response while connecting motion capture segments.
This method allows characters to respond to unexpected changes in the environment
based on the specific dynamic effects of a given contact while also taking advantage
of the realistic movement made available through motion capture. To solve the prob-
lem of synthesizing the movements of a responsive virtual character in the event of
unexpected perturbations, Ye and Liu [334] devised a fully automatic method which
learns a nonlinear probabilistic model of dynamic responses from very few perturbed
walking sequences. This model is able to synthesize responses and recovery motions
under new perturbations different from those in the training examples. When pertur-
bations occur, a physics-based method is adopted to initiate motion transitions to the
most probable response example based on the dynamic states of the character. The
effect of the proposed approach is shown in Figure 1.20.
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Figure 1.20 The framework of perturbations of motion in different cases. The directions
are indicated by the arrows, and the motion of the body is modified by the perturbations.

More related methods have been put forward. Ye and Liu |333] proposed a
technique fo enhance a kinematically controlled virtual character with a generic
class of dynamic responses to small perturbations. This method re-parameterizes
the motion degrees of freedom based on joint actuations in the input motion and
can create physically responsive motion based on kinematic pose control without
explicitly computing the joint actuations (as shown in Figure 1.21). Muico et al.
[203] proposed algorithms that construct composite controllers to track multiple
trajectories in parallel instead of sequentially switching from one control to another,
The composite controllers can blend or transition between different path controllers
at arbitrary times according to the current system state. Kwon and Hodgins [149]
provided a balancing control algorithim based on a simplified dynamic model: an
inverted pendulum on a cart. At runtime, the controller plans a desired motion at
every frame based on the current estimate of the pendulum state and a predicted
pendulum trajectory. Lee et al. [161] proposed a dynamic controller to physically
simulate underactuated three-dimensional full-bedy biped locomotion. The data-
driven controller takes motion capture reference data to reproduce realistic human
locomotion through real-time physically based simulation. Lasaetal. [154] presented
an approach to the control of physics-based characters based on high-level features
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of movement, such as center of mass, angular momentum, and end-effectors. More
similar ideas of using the physical properties in motion synthesis can be found in
Ref.[177,9, 178, 252, 162, 148, 310, 123, 182, 122].
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Figure 1.2t  The framework of controlling virtual character with a generic class of dynamic
responses to small periurbations.

1.3.2.3 Other Physically-Based Animation Systems Physically based meth-
ods have also been implemented in other interesting research fields. For instance,
Cordier and Magnenat-Thalmann [73] proposed a technique in precomputing cloth
animation. In this technique, cloth is simutated offline and analyzed with respect to
the underlying humanoid. Velino et al. {298] proposed a simple approach to non-
linear tensile stiffness for accurate cloth simulation (as shown in Figure 1.22). This
approach proposes a new simulation model that accurately reproduces the nonlinear
tensile behavior of cloth materials which remains accurate and robust for very large
deformations, while offering a very simple and streamlined computation process
suitable for a high-performance simulation system. Kaldor et al. [132] presented
a method for approximating penalty-based contact forces in yarn-yarn collisions by
computing the exact contact response at one time step, then using a rotated linear
force model to approximate forces in nearby deformed configurations. Aguiar et al.
[12] proposed a technique for learning clothing models that enables the simultaneous
animation of thousands of detailed garments in real time. This surprisingly simple
conditional model learns and preserves the key dynamic properties of cloth motion
along with folding details. Ozgen et al. [216] proposed a particle-based cloth model
where half-derivative viscoelastic elements are included for describing both the in-
ternal and external dynamics of the cloth. These elements model the cloth responses
to ftuid stresses and are also able to emulate the memory-laden behavior of particles
in a viscous fluid. The results are shown in Figure 1.23.

Triangulation
of Mesh Jacobian Computation Simulation Results

Figure 1.22  The accurate simulation of nonlinear anisotropic cloth materials is required for
garment prototyping applications.
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Cloth Input Wave Propagation Simulation Resuits

Figure 1.23  The cloth model based on fractional derivatives is able to achieve realistic
underwater deformation behavior.

Fire synthesis is another interesting application of physically based simulation.
Chadwick and James [64] proposed a practical method for synthesizing plausible
fire sounds that are synchronized with physically based fire animations (as shown in
Figure 1.24).

Sound Pressure
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Simulation Results Fire Sound Synthesis

Figure 124 The framework of fire sound synthesis which produces the familiar sound
of roaring flames synchronized with an underlying low-frequency physically based flame
simulation.

1.3.3 Computer-Assisted Cartoon Animation

Cartoon animation is a popular and successful media form in contemporary life. Its
creation is usually high-cost and labor-intensive, especially in traditicnal 2D cartoon
production which includes many steps, e.g., keyframing, inbetweening, and painting.
On the other hand, given the relatively long history of animation, there is a large-
scale "cartoon library" that consists of various animation materials including character
design, story board, scenes, and episodes, which is useful for animators and cartoon
enthusiasts for effectively creating new animations by reusing and synthesizing.



34 INTRODUCTION

Many attempts have been made in computer-aided animation, video-based cartoon
generation and data driven-based cartoon synthesis to face these opportunities and
challenges [67, 143, 131, 105, 195]. The following content examines these three
aspects.

1.3.3.1 Computer-Aided Cartoon Animation In a traditional computer-
aided cartoon animation systern, high-quality auto-inbetweening and auto-coloring is
achieved by constructing accurate correspondences between keyframe objects, with
which inbetween frames can be generated by interpolating corresponding objects and
colors can thus be propagated. Early work on correspondence construction-based
inbetweening was proposed in Ref.[82], where a manual correspondence setting for
a vectorization process which digitizes traditional animation production to build a
"paperless” system was mentioned. Subsequently, Kort [143] provided an interactive
cartoon system for avtomatic inbetweening with a possible selution for the "unde-
tectable” parts noticed in Ref, [82]). Whited et al. [319] proposed the "BetweenIT"
system for the user-guided automation of tight inbetweening. They designed a set of
user-guided semi-automatic techniques that fit well with current practice and mini-
mize the number of required artist gestures. The performance of this system is shown
in Figure 1,25, Baxter et al. [29] proposed a set of algorithms for the compatible
embedding of 2D shapes. Such embeddings offer a convenient way to interpolate
shapes with complicated structures and detailed features. This system has the advan-
tages of less user input with faster and more robust implementation, which make it
ideal for interactive use in practical applications.

Keyframes input Stroking Matching Stroke Deformation

|

Results 2 Results 1 Interpolation

Figure 1.25 The framework for the user-guided auntomation of tight inbetweening.

Apart from these traditional interpolation-based systems, other computer-aided
systems with novel ideas have been proposed for complicated cartoon animation
production. Rivers et al. [237] proposed a method to bring cartoon objects and
characters into the third dimension by giving them the ability to rotate and be viewed
from any angle. Figure .26 shows how 2D vector art drawings of a cartoon from
different views can be used to generate a novel structure, the 2.5D cartoon model,
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which can be used to simulate 3D rotations and generate plausible renderings of the
cartoon from any view,
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Figure 1.26 The framework of a 2.5D cartoon.{a} Taking the vector art drawings of a cartoon
from different views. (b) Parameterizing orientation space with different views. (c) Generating
a 2.3D cartoon automatically, which associates each stroke with a 3D position.

In recent years, Sykora and his colleagues have proposed a group of novel tech-
niques [276, 275, 277] to enhance automatic 2D cartoon generation. In automatic
depth generation, they proposed a novel interactive approach to cartoon pop-up that
enables artists to quickly annotate their hand-made drawings and animations with ad-
ditional depth information {276]. The scheme of this method is shown in Figure 1.27.
In automatic coloring, they provided a novel color-by-example technique [275] which
combines image segmentation, patch-based sampling, and probabilistic reasoning.
This method is able to automate colorization when new color information is applied
on the already designed black-and-white cartoon. The results are shown in Figure
1.28. A "LazyBrush" [277] is provided by their research group. "LazyBrush” is a
new interactive tool which is used for painting hand-made cartoon drawings, based
on an optimization framework that tries to mimic the behavior of an ideal paint-
ing tool as proposed by professional illustrators. In the field of automatic cartoon
character generation, the researchers presented a new approach [274] to deformable
image registration based on an approach analogous to the dynamic simulation of
deformable objects. They adopted a novel geometrically motivated iterative scheme
in which point movements are decoupled from shape consistency. By combining
lecally optimal block matching with as-rigid-as-possible shape regularization, this
algorithm allows users to register images undergoing large free-form deformations
and appearance variations,

Barnes et al. [28] proposed a novel interface for creating cutout style animations
by manipulating paper puppets. The system relies on easy to use componenis for
creating puppets, combined with a natural interface for controlling them. This system
is presented in Figure 1.29.

Some researchers are focusing on the effects of light, shade, and smoke. McGuire
and Fein [193] proposed an algorithm for rendering animated smoke particle sys-
tems in a cartoon style which includes outlines and cel-shading., They combine the
renderer with a fast simulator that generates the phenomenology of real smoke but
has artistically contrellable parameters. Together they produce real-time interactive
smoke animations at over 30 fps, Selle etal. [249] proposed a technique for rendering
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Figure 127 Examples of a pop-ups cartoon generating system.
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Figure 1.28 The framework of automatic colorization applied on the already designed black
and white cartoon.
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Figure 1.29 The framework of manipulating cutout paper puppets tracked in real time o
control an animation.

stylized smoke. The underlying dynamics of the smoke are generated with a standard
Navier-Stokes fluid simulator and output in the form of advected marker particles.
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The results are shown in Figure 1.30. Anjyo [19] proposed a direct manipulation
method that allows users to create and edit stylized highlights and cartoon-shaded
areas in realtime, essentially with only click-and-drag operations. This method pro-
vides intuitive click-and drag operations for translating and deforming the shaded
areas, including rotation, directional scaling, splitting, and squaring of highlights, all
without tedious parameter tuning. The results can be found in Figure 1.31.

Step 1: Simulator for Step 2: Rendering System Step 3: Interface Jayer
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Fignre 1.30 The framework of rendering stylized smoke.
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Figure 1.31 Direct manipulation of stylized shading.

1.3.3.2 Video-Based Cartoon Generation The computer-aided systems dis-
cussed above are designed to reduce the time cost of cartoon production; however,
many skillful interactions are required due to the lack of effective cartoon repre-
sentation. The quality of the obtained animation mainly relies on traditional manual
preduction methods; therefore, these systems are specifically designed for profession-
als rather than nonprofessional users who produce cartoons for different purposes,
such as fun and education. These drawbacks prompt researchers to provide novel
systems which will allow users to quickly and efficiently generate cartoons from
existing videos,

Liang et al. [173] proposed a prototype system for generating 3D cartoons from
breadcast soccer video. This system takes advantage of computer vision and computer
graphics techniques to provide users with a new experience which cannot be obtained
from the original video. Collomosse et al. [72] proposed a novel NPR framework
for synthesizing nonphotorealistic animations from video sequences. The spatio-
temporal appreach adopted by the framework enables the users to smoothly vary
attributes, such as region or stroke color over time, and to create improved motion
estimates of objects in the video. The generated results are presented in Figure 1.32.

Wang et al. [311] proposed a system for transforming an input video into a highty
abstracted, spatio-temporally coherent cartoon animation with a range of styles,
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Figure 1,32 Scme of the available artistic effects. Top, left to right: Cartoon flat and gradient
shaded animaticns from the BOUNCE sequence. Mixed reality effect where original footage
has been selectively matted in to a skeichy line animation. Bottom, left 1o right: Water color
wash effect and cartoon flat shaded bears with sketchy and thick stroke outlines.

In this system, the user simply outlines objects on keyframes. A mean-shift-guided
interpolation algorithm is then employed to create three dimensional semantic regions
by interpoiation between the keyframes while maintaining smooth trajectories along
the time dimension, A variety of rendering styles is shown in Figure 1,33,
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Figure 1.33 Examples created by Video Tooning with different styles.
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Hays et al. [106] proposed a technique for transforming images and videos into
painterly animations with different artistic styles. They determine and apply mation
information from different user-specified sources to static and moving images. These
properties that encode the spatio-temporal variations are then nsed to render (or paint)
effects of selected styles to generate images and videos with a painted look. Painterly
animations are generated using a mesh of brush stroke objects with dynamic spatio-
temporal propertics. The rendering results are shown in Figure 1.34.
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Figure 1.34  The framework of transforming images and videos into painterly animations
with different artistic styles.

Lin et al. [175] provided an interactive system that stylizes an input video into a
painterly animation. The system consists of two phases. The first is a Video Parsing
phase that extracts and labels semantic objects with different material properties
(skin, hair, cloth, and so on) in the video, and then establishes robust correspondence
between frames for discriminative image features inside each object. The second
Painterly Rendering phase performs the stylization based on video semantics and
feature correspondence. This system can efficiently generate oil painting animations
from the video clips. Similarly, Agarwala [11] proposed an interactive system that
allows children and others untrained in cel animation to create two-dimensional
cartoons from video streams and images. A cartoon is created in a dialogue with the
system. After recording video material, the user sketches contours directly onto the
first frame of the video. These sketches initialize a set of spline-based active contours
which are relaxed to best fit the image and other aesthetic constraints. Small gaps are
closed, and the vser can choose colors for the cartoon. The system then uses motion
estimation techniques to track these contours through the image sequence. The user
remains in the process to edit the cartoon as it progresses. Some results are shown in
Figure 1.35.

1.3.3.3 Data-Driven-Based Carfoon Synthesis Datadriven approaches have
been widely used in cartoon animation; for instance, motion data are applied to drive
the cartoon characters to move. Bregleret al. [533] proposed a new technique that cap-
tures the motion style of cartoons and retargets the same style to a different domain.



40 INTRODUCTION
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Figure 1.35 Creating cartoon images of toys. (a) The original photographs. {(b) The user’s
tracing. (c) The finished. colored cartoons.

This is done by tracking affine motion and key-shape-based interpolation weights.
Figure 1.36 shows how the motion extracted from the original character is retargeted
to a new character. Li et al. [172] proposed a system to animate cartoon faces from
speech with emotions. This system consists of two components: emotion-driven
cartoon animation and speech-driven cartoon animation.
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Figure 1.36 Motion of walking cartoon character retargeted to 3D model.

Another group of data-driven approaches in cartoon animation is to reuse the
existing cartoon frames (342, 347] to synthesize novel animations. De Juan and
Bodenheimer [131] proposed a Cartoon Clip Synthesis system which creates novel
cartoon clips from existing cartoon data. This method combines sequences of similar-
locking cartoen data into a user-directed sequence. Starting with a small amount of
cartoon data, a nonlinear dimensionality reduction method is eroployed to discover
a lower-dimensional structure of the data. The user selects a start and end frame and
the system traverses this lower-dimensional manifold to re-sequence the data into a
new animation. The performance is presented in Figure 1.37. Haevre et al. [103]
proposed a novel method that facilitates the creation of endless animations or video
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loops for smaller-scale productions. This approach benefits from several ideas and
techniques from cartoon textures, computer-assisted animation, and motion graphs,
It combines the re-sequencing of existing material with the automatic generation of
new data. Furthermore, the animator can interfere with the animation process at any
arbitrary mement.
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Figure 1.37 The framework of cartoon synthesis using "Cartoon Texture.”

The method of cartoon texture performs well for simple cartoon characters, but
for characters with complex colors and motion patterns, it fails to generate smooth
clips becaunse the edges can encode neither the color information nor the motion
pattern. Therefore, Yu et al. [345] provided an efficient technique which combines
both the motion difference and edge difference in similarity estimation. This model
is controlled by a weight parameter.

In the linear combination method [345], it is not easy for users to determine the
weights. In this case, Yu and his colleagues proposed a semi-supervised multiview
subspace learning algorithm (semi-MSL) [339} to automatically combine multiple
features in cartoon synthesis by using alternative optimization. In this approach,
multiple features including color histogram, Hausdorff edge feature and skeleton
feawure, are adopted to representcartoon characters. Retrieval-based cartoon synthesis
is adopted which requires users to provide an initial character to start the retrieval.
The final cartoon synthesis is conducted as an iteration process in which a group of
similar cartoon characters is obtained to form new sequences. The results of cartoon
synthesis are shown in Figure 1,38. The details of this approach will be introduced
in the following chapters.

Cartoon character retrieval is critical for cartoonists to effectively and efficientty
make cartoons by reusing existing cartoon data. To successfully achieve these tasks, it
is essential to extract visual features to comprehensively represent cartoon characters
and accurately estimate dissimilarity between cartoon characters, However, due to the
semantic gap, the cartoon retrieval by vsing these visual features still cannot achieve
excellent performance. Since the labeling information has been proven effective
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to reduce the semantic gap, Yu et al. [337] introduce a labeling procedure called
Interactive Cartoon Labeling (ICL). The labeling information actually reflects userd*s
retrieval purpose. A dimension reduction tool, termed sparse transfer learning (SPA-
TL) [294], is adopted to effectively and efficiently encode userd”s search intention, In
particular, SPA-TL exploits two pieces of knowledge data, i.e., the labeling knowledge
contained in labeled data and the data distribution knowledge contained in all samples
(labeled and unlabeled). Experimental evaluations in cartoon synthesis suggest the
effectiveness of the visual features and SPA-TL. The framework is presented in Figure
1.39.
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Figure 1.38 The result of retrieval-based cartocn synthesis.

1.3.4 Crowd Animation

In simulation, it is critical to create an interactive, complex, and realistic virtual
world in which the user can have an immersive experience during their navigation
through the world. As the size and complexity of environments in the virtual werld
increase, it becomes more necessary to populate them with people, and this is the
reason why rendering crowds [37, 331, 76, 77, 24] in realtime is crucial. Generally,
crowd animation is composed of three important areas: the realism of group behavior
[291], the realism of individual behavior [157} and the integration of both. In the
following section, recent developments in this field is reviewed according to these
three categories.

1.3.4.1 Realism of Group Behavior Group behavioral realism is mainly tar-
geted for simple 2D visualizations because most of the attention is concentrated on
simulating the behavior of the group. The concept is to create virtual characters
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Figure 1.39  The framework of interactive cartoon reusing by sparse transfer learning (SPA-
TL).

that are autonomous agents and thus self-animating. A character makes its decisions
through a behavioral model: an executable model defining the character’s thought
process. Collision avoidance and path finding ave mainly considered in this research
field.

Ondrej et al. [214] proposed a novel vision-based approach of collision avoidance
between walkers that fits the requirements of interactive crowd simulation. In imita-
tion of humans, and based on cognitive science results, they detect future collisions as
well as their dangerousness from visual stimuli. The simulation results are presented
in Figure 1.40. Similarly, Gay et al. [101] proposed a robust algorithm for collision
avoidance among multiple agents. This approach extends the notion of velocity ob-
stacles from robotics and formulates the conditions for collision free navigation as a
quadratic optimization problem. A discrete optimization method is used efficiently
to compute the motion of each agent. It can robustly handle dense scenarios with
tens or hundreds of thousands of heterogeneous agents in a few milliseconds. Some
simulation resuls are presented in Figure 1.41. In addition, Lamarche and Donikian
[152] provided a real-time crowd model based on continuum dynamics. In this model,
a dynamic potential field simultaneously integrates global navigation with moving
obstacles such as other people, efficiently solving the motion of large crowds without
the need for explicit collision avoidance. Patil et al. [2253] proposed a novel approach
to direct and control virtual crowds using navigation fields. This method guides one
or more agents toward desired goals based on guidance fields., A similar idea can
be found in [256]. Paris et al. {219] proposed a method for selving interactions
between pedestrians and avoiding inter-collisions, This approach is agent-based and
predictive: Each agent perceives surrounding agents and extrapolates their {rajec-
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tory in order to react to potential collisions. Similar works can be found in Ref.
[100, 150, 278].
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Figure 1.40 Emergent self-organized patterns appear in real crowds of walkers. This
simulation displays similar effects by proposing an optic flow-based approach for steering
walkers inspired by cognitive science work on human locomaotion,

Guaranteed

- N'm'rdlﬂ—‘: Collision Avoidance
h 3
{“ % Relaxing Collision
e, L — N
35 Y ¢ of Constraints
y ¥ ol :Q L 4 rd | :
LS 3 2 B R L R )

Parallel Collision

Avoidance Simulation Results

Scene with Agents

Figure 1.41 Dense Circle Scenario: 1000 agents are arranged uniformly around a circle and
move towards their antipodal position. This simulation runs at over 1000 FPS on an Intel 3.14
GHz quad core, and over 8000 FPS on 32 Larrabee cores.

Apart from collision avoidance, path finding is another important issue in achieving
behavioral realism in crowd simulation. Lamarche et al. [152] proposed a suitable
topological structuring of the geometric environment to allow fast path finding as
well as an efficient reactive navigation algorithm for virtual humans evolving inside a
crowd. Putting together the high complexity of a realistic environment such as a city,
a large number of virtual humans and the real-time constraint requires optimization of
each aspect of the animation process. The objective of this work is to reproduce this
crucial human activity inside virtual environments. The results of path finding in an
indoor and outdoor scene are presented in Figure 1.42. Sung et al. [273] integrated
the motion capture data into the crowd simulation offering a highly efficient motion
synthesis algorithm that is well suited to animating large numbers of characters. Given
constraints that require characters to be in specific poses, positions, and orientations
in specified time intervals, this algorithm synthesizes motions that exactly satisfy
these constraints. To provide a good initial guess for the search, they adopt a fast
path planner based on probabilistic roadmaps to navigate characters through complex
environments. Similarly, Lai et al. [151] proposed Group Motion Graphs, a data-
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driven animation technique for groups of discrete agents, such as flocks, herds or
small crowds. Similar works can be found in Ref.[270].
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Figure 1.42 The framework of path finding for indoor and outdoor navigation.

Another interesting crowd simulation method imitates real human crowds by
video tracking. Lee et al. [160] proposed a novel approach for simulating a crowd of
virtual humans by recording the motion of a human crowd from an aerial view with
a camcorder. Their method extract the two-dimensional moving trajecteries of each
individual in the crowd, and learns an agent model from observed trajectories. The
agent model decides each agent’s actions based on features of the environment and the
motion of nearby agents in the crowd. Figure 1.43 shows the simulation results., Zhao
et al. [358] proposed a model-based approach to interpret the image observations
by multiple partially occluded human hypotheses in a Bayesian framework. Wang
et al. [314] proposed a novel unsupervised learning framework to model activities
and interactions in crowded and complicated scenes. In this framework, hierarchical
Bayesian models are used to conneci three elements in visual surveillance: low-
level visual features, simple "atomic™ activities, and interactions. A crowd synthesis
method [129] has also been proposed to blend existing crowd data for the generation
of a new crowd animation. The new animation includes an arbitrary number of
agents, extends for an arbitrary duration, and yields a natural locking mixture of the
input crowd data. Figure 1.44 illustrates the simulation results.

Additionally, Guy et al. [102] proposed a totally novel technique to generate
heterogeneous crowd behaviors using personality trait theory. This formulation is
based on adopting results of a user study to derive a mapping from crowd simula-
tion parameters to the perceived behaviors of agents in computer-generated crowd
simulations. The simulation results are shown in Figure 1.45.

1.3.4.2 Reallsm of Individual Behavior Creating rcalistic motion for ani-
mated characters in crowds is an important problem in achieving individual reatism.
The use of motion capture data for animating virtual characters has become a popular
technique in recent years. By capturing the movement of a real human and replaying
this movement on a virtual character, the resulting motion exhibits a high degree of
realism. Lau and Kuffner [157] presented a behavior planning approach to automati-
cally generate realistic motions for animated characters in a crowd. First, the motion
clips are organized into a finite-state machine (FSM) of behaviors. Each state of the
FSM includes a cotlection of motions representing a high-level behavior. Given this
behavior FSM and a pre-defined environment, this algorithm searches the FSM and
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Figure 1.43 Simulation results of learning group behavior from crowd videos.
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Figure 144 Morphable crowd models synthesize virtual crowds of any size and any length
from input crowd data. The synthesized crowds can be interpotated 10 produce a continuons
span of intervening crowd styles.

plans for a sequence of hehaviors that allows the character to reach a user-specified
goal. The simulation results are shown in Figure 1.46. Lerner et al. [167] proposed
a data-driven approach for fitting behaviors to simulated pedestrian crowds. This
method annotates agent trajectories, generated by any crowd simulator, with action-
tags. The aggregate eflect of animating the agents according to the tagged trajectories
enhances the impression that the agents are interacting with one another and with
the environment. Kim et al. [136] proposed a novel motion editing technique that
atlows the user to manipulate synchronized multiple character motions interactively.
This method formulates the interaction among multiple characters as a collection of
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Fignre 145  Lefi: Pass-through Scenario. Middle: Hallway Scenario. Right: Narrowing
Passage Scenario.

linear constraints and enforces the constraints, while the user directly manipulates the
motion of characters in both spatial and temporal domains. The synthesized multiple
character motions are presented in Figure 1.47.
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Figure 1.46  The framework of planning behaviors for animated characiers navigating in a
complex dynamic environment.

In addition to motion capture, the information from video tracking can be used
o directly drive the characters. Lerner et al. [166] proposed a novel example-based
crowd simulation technique. By learning from real-world examples contained in
videos, the autonomous agents in this system display complex natural behaviors that
are often missing in crowd simulations. Examples are created from tracked video
segments of real pedestrian crowds. During a simulation, autonomous agents search
for examples that closely match the situation that they are facing. Trajectories taken
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Figure 1.47 The characters carry boxes in relay. The user interactively manipulates the
synchronized multicharacter motion to shape a spiral.

by real people in similar situations are copied to the simulated agents, resulting in
seemingly natural behaviors. The simulation results are shown in Figure 1.48.
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Figure 1.48 Framework of example-based crowd simulation technique. The top row depicts
the construction of the database, which takes place during preprocessing: the input video
is manually tracked, generating a set of trajectorics which are encoded as examples and
stored in the database. At runtime {bottom row) the trajectories of the agents are synthesized
individually by encoding their surroundings (forming a query) and searching the database for
a similar example. The trajectory from the example is copied to the simulated agent,

Sung et al. [272] presented a new approach to controlling the behavior of agents
in a crowd. This method is scalable in the sense that increasingly complex crowd
behaviers can be created without a corresponding increase in the complexity of the
agents. Users can dynamically specify which crowd behaviors happen in various
parts of an environment. Ennis et al. [80] investigated the importance of matching
audio to body motion for virtual conversing characters. Yeh et al. [335] introduced
the concept of composite agents to effectively model complex agent interactions
for agent-based crowd simulation. Each composite agent consists of a basic agent
that is associated with one or more proxy agents. This formulation allows an agent
1o exercise influence over other agents greater than that implied by its physical
properties.

When simulating crowds, it is inevitable that the models and motions of many
virtual characters will be replicated. Therefore, the perceptual impact of this trade-off
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should be studied. McDonnell etal. [191] proposed an algorithm to consider the ways
in which an impression of variety can be created and the perceptual consequences
of certain design choices. They established that replicated models can be masked
by color variation, random orientation, and motion. Conversely, the perception of
cloned motions remains unaffected by the model on which they are displayed. Other
factors that influence the ability to detect clones were examined, such as proximity,
model type and characteristic motion. The results are shown in Figure 1.49. The
authors also investigated which body parts of virtual characters are most logked at in
scenes containing duplicate characters or clones [192].

T

Model Construction Motions Generation

Figure 1.49 Examples of a crowd used in the Appearance Variation Experiment with the
maximum nomber of clones.

1.3.4.3 Integration of Group Realism and Individual Realism Some re-
search works focus on achieving both group behavior realism and individual behavior
realism; for instance, large dense crowds show aggregate behavior with reduced indi-
vidual freedom of movement. Narain et al. [207] presented a novel, scalable approach
for simulating such crowds, using dual representation both as discrete agents and as
a single continuous system. In the continuous setting, they introduce a novel varia-
tional constraint called unilateral incompressibility to model the large-scale behavior
of the crowd and accelerate inter-agent colliston avoidance in dense scenarios. This
method makes it possible to simulate very large, dense crowds composed of up to a
hundred thousand agents at near-interactive rates on desktop computers. The sim-
ulation results are presented in Figure 1.50. Shao and Terzepoulos [250] proposed
another sophisticated human animation system that combines perceptual, behavioral,
and cognitive control components, whose major contribution is a comprehensive
mode] of pedestrians as highly-capable individuals. They address the difficult open
problem of emulating the rich complexity of real pedestrians in urban environments.
In their approach, the comprehensive model features innovations in these compo-
nents, as well as in their combination, vielding results of unprecedented fidelity and
complexity for fully autonomous multi-human simulation in a large urban environ-
ment. The experimental results are presented in Figure 1.51. Pelechano et al. [227)
proposed a novel system-HiDAC which focuses on the problem of simulating the
local motion and global pathfinding behaviors of crowds moving in a natural tanner
within dynamically changing virtual environments. By applying a combination of
psychological and geometrical rules with a social and physical forces model HIDAC
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exhibits a wide variety of emergent behaviors from agent line formation to pushing
behavior and its consequences.

Discrete Agents Agent-Level Planning

Figure 1.50 Some examples of large, dense crowds simulated with this technique.
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Figure 1.51 A large-scale simulation of a virtual train station populated by self-animated
virtual humans.

Recent advances in local methods have significantly improved the collision avoid-
ance behavior of virtual characters. However, existing methods fail to take into
account that in real-life pedestrians tend to walk in small groups, consisting mainly
of pairs or triples of individuals. Karamouzas and Overmars [133] proposed a
novel approach to simulate the walking behavior of such small groups. This model
describes how group members interact with each other, with other groups and indi-
viduals. In their approach, both the individual and group behavior are considered in
crowd simulation. The results are shown in Figure 1.52.

(@) ) C© @

Figure 1.52 Example test-case scenarios. (a) A group has to adapt its formation to pass
through a doorway; (b) Group interactions in a confined environment; (¢) A faster group
overtakes a slower moving group; (d) A group of three agents walking through a narrow
corridor,
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1.3.5 Facial Animation

Recent interest in facial modeling and animation is spurred by the increasingly
frequent appearance of virtual characters in film and video, inexpensive desktop pro-
cessing power, and the potential for a new 3D immersive communication metaphor
for human-computer interaction. According to the processed information and ren-
dering effects, facial animation can be separated into 2D face synthesis and 3D face
synthesis £176]. We review recent research developments in face animation from
these two aspects.

1.3.5.1 2D Face Synthesis According to the 2D face animation application,
a variety of techniques including the statistical method, linear regression, support
vector regressor and data-driven method have been applied in 2D face synthesis. The
specific 2D face applications are natural face synthesis and cartoon face synthesis.
Abboud and Davoine [8] presented a statistical-based method for extracting appear-
ance parameters from a natural image or video sequence for natural face synthesis,
which allows reproduction of natural-looking, expressive synthetic faces. This tech-
nique was used to perform face synthesis and tracking in video sequences as well as
facial expression recognition {342, 264] and control. Leyvand et al. (170] proposed
a digital face beautification method based on the optimization of a beauty function
modeled by a support vector regressor. Given a new face, this method extracts a set
of distances between a variety of facial feature locations which define a point in a
high-dimensional "face space”. The face space is then searched for a nearby point
with a higher predicted attractiveness rating. Once such a point is found, the corre-
sponding facial distances are embedded in the plane and serve as a target to define a
2D warp field which maps the original facial features to their adjusted locations. The
simulation results are shown in Figure 1.53.
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Figure 1,53 The framework of digital face beautification method.



52 INTRODUCTION

Many systems have been proposed for cartoon face synthesis, Caricature Zone {1]
is a cartoon face making system, which has stored many components of human face,
such as hair, cheek, etc. Through this system, the user can select various cartoon style
components to construct the specified human. UDrawFace Pro [5] adopts one human
face and the user provides some interaction; the system then adopts edge detection to
extract the facial features and create the cartoon face. Hsu and Jain [118] proposed
semantic face graphs derived from a subset of vertices of a 3Dface model to construct
cartoon faces for face matching. The cartoon faces are generated in a coarse-to-fine
fashion; face detection results are used to coarsely align semantic face graphs with
detected faces and interacting snakes are used to finely align face graphs with sensed
face images. Chen et al. [66] presented a novel cartoon system called PicToon, which
can generate a personalized cartoon face from an input Picture. PicToon is convenient
to use and requires little vser interaction. It consists of three major components: an
image-based Cartoon Generator, an interactive Cartoon Editor for exaggeration, and
a speech-driven Cartoon Animator. The framework of this method is shown in Figure
1.54.

Wang et al. [315] propose a novel face photo-sketch synthesis and recognition
methed using a multiscale Markov Random Fields(MRF) model. This system has
three components: (1) given a face photo, synthesizing a sketch drawing; (2) given
a face sketch drawing, synthesizing a photo: (3) searching for face photes in the
database based on a query sketch drawn by an artist. It has useful applications
for both digital entertainment and law enforcement. It is assumed that faces to
be studied are in a frontal pose, with normal lighting and neutral expression, and
have no occlusions. To synthesize sketch/photo images, the face region is divided
into overlapping patches for learning. The size of the patches decides the scale of
local face structures to be learned. From a training set which contains photo-sketch
pairs, the joint photo-sketch model is learnt at multiple scales using a multiscale MRF
model. By transforming a face photo to a sketch (or transforming a sketch to a photo),
the difference between photos and sketches is significantly reduced, thus allowing
effective matching between the two in face sketch recognition. After the photo-sketch
transformation, in principle, most of the proposed face photo recognition approaches
can be applied to face sketch recognition in a straightforward way. The synthesized
results are presented in Figure 1.55.

Gao etal. [85] propose an automatic sketch photo synthesis and retrieval algorithm
based on sparse representation. The proposed sketch-photo synthesis method (SNS-
SRE} works at patch level and is composed of two steps: sparse neighbor selection
(SNS) for an initial estimate of the pseudo-image (pseudo-sketch or pseudo-photo)
and sparse-representation-based enhancement (SRE) for further improving the quality
of the synthesized image. SNS can find closely related neighbors adaptively and
then generate an initial estimate for the pseudo-image. In SRE, a coupled sparse
representation model is first constructed to learn the mapping between sketch patches
and photo patches, and a patch-derivative-based sparse representation method is
subsequently applied to enhance the quality of the synthesized photos and sketches.
Finally, four retrieval modes, namely sketch-based, photo-based, pseudo-sketch-
based, and pseudo-photo-based retrieval, are proposed, and a retrieval algorithm is
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developed by using sparse representation. The framework of synthesis is presented
in Figure 1.56.
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Fignure 1.54 Framework of the PicToon System.

A closely related task in facial animation is speech animation. Some notable
techniques are designed around machine learning. The goal is to learn how to properly
animate a face so that realistic animations can be produced automatically for arbitrary
speech. Ideally, the use of real-world examples should result in highly realistic
animation. Realism is critical because human observers can easily detect incorrect
speech animation, Some of the technigues in this area also propose integrated image-
based rendering schemes. Bregler et al. [52] proposed a novel technique which
can modify the movie sequence to synchronize the actor’s lip motions to the new
soundtrack. It uses computer-vision techniques to track points on the speaket’s
mouth in the training footage, and morphing techniques to combine these mouth
gestures into the final video sequence. The new video combines the dynamics of
the original actor’s articulations with the mannerisms and setting dictated by the
background footage. Ezzat et al. [81] provided a novel speech-driven method. It
first records a human subject using a video camera as he/she utters a predetermined
speech corpus. After processing the corpus automatically, a visual speech module
is learned from the data that is capable of synthesizing the human subject’s mouth
uttering entirely novel utterances that were not recorded in the original video. The
synthesized uiterance is re-composited onto a background sequence which contains
natural head and eye movement. At runtime, the input to the system can be either
real audio sequences or synthetic audic produced by a text-to-speech system, as long
as they have been phonetically aligned. Voice puppetry [48] is a fully automatic
technigue for creating novel speech animation from an example, Computer vision is
uttlized to track the facial features of a human demonstrator who reads a predefined
script. This motion data are then learned using a hidden Markov model or HMM
which represents the probabilities of transitions between different facial poses and
velocities. Cao and colleagues [59] have also presented a method for speech motion
editing through automatically discovered parameters. This is made possible through
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Figure 1.55 Face sketch synthesis results.

manifold learning. Independent compenent analysis or ICA (a popular technique in
machine learning and statistics [190]) is used to create parameters for the regression
of speech motion.

Motion capture data can also be applied to drive the human face. Zhang et al. [348]
proposed a geometry-driven facial expression synthesis system. Based on the point
positions of a facial expression, this system automatically synthesizes a corresponding
expression image that includes photorealistic and natural looking expression details.
A technique is developed 1o infer the missing feature point motions from the tracked
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Figure 1.56 Framework of the proposed SNS-SRE image synthesis algorithm.

subset by using an example-based approach. The details of the technique are shown
in Figure 1.57.

(a) (b)

Figure 1.57 (a) Feature points; {b) Face region subdivision.
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1.3.5.2 3D face synthesis Pighin et al. [230] presented a new technique
for creating photorealistic textured 3D facial models from photographs of a human
subject, and for creating smooth transitions between different facial expressions by
morphing between these different models. In this method, a scattered data interpola-
tion technique is used to deform a generic face mesh to fit the particular geometry of
the subject’s face. Similarly, interpolation methods have been applied in {224, 20].
The results of interpolation is presented in Figure 1.58. The Pose Space Deforma-
tion(PSD) method presented by Lewis et al.[169] provides a general framework for
example-based interpolation which can be used for blendshape facial animations. In
their work, the deformation of a surface (face) is treated as a function of a set of
abstract parameters, and a new surface is generated by scattered data interpolations.

Figure 1.58 Linear Interpclation is performed on blend shapes, Left: Neutral pose. Middle:
Interpolated shape. Right: "A" mouth shape.

Sifakis et al. [258] proposed an anatomically accurate face model controlled by
muscle activations and kinematic bone degrees of freedom. The tissues are endowed
with a highly nonlinear constitutive model including controllable anisotropic muscle
activations based on fiber directions. A viable solution is proposed to automatically
determine muscle activations which track a sparse set of surface landmarks. The
scheme of this method is shown in Figure 1.59. Tao et al. [283] proposed a decoupled
probabilistic algorithm calledBayesian tensor analysis (BTA), Theoretically, BTA can
automatically and suitably determine dimensionality for different modalities of tensor
data. With BTA, a collection of 3D faces can be well modeled. Empirical studies on
expression retargeting also justify the advantages of BTA. The representation of the
tensor face is shown in Figure 1.60.

Data-driven methods have also been widely applied in 3D face synthesis. King
and Parent [138] proposed a facial model designed primarily to support animated
speech. This facial model takes facial geometry as the input and transforms it into
a parametric deformable model. According to this approach, the facial and coartic-
ulation models must first be interactively initialized. The system then automatically
creates accurate real-time animated speech from the input text. It is capable of
cheaply producing tremendous amounts of animated speech with very low resource
requirements. The results are shown in Figure 1.61. Deng and Neumann [75] pro-
posed a novel data-driven animation system for expressive facial animation synthesis
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Figure 1,59  Facial expression created by the action of 32 transversely isotropic muscles and
simulated on a quasistatic finite element tetrahedral mesh. The original markers are colored
red, and the marker positions resulting from the simulation are depicted in green.

c»'bd
F
o ~t =7 J
) ) _‘J, 4
Expre;ion
— (- i - (_ o — (-— o —~

<« § &I/ \hn,:"“/j _ &) &)
g - /“}'l . > i \ ‘-‘\ f 7}
-

Figure 1.60 A collection of 3D facial data with different identities and different expressions.

and editing. Given novel phoneme-aligned speech input and its emotion modifiers
(specifications), this system automatically generates expressive facial animation by
concatenating captured motion data while animators establish constraints and goals.
Ju and Lee [130] proposed a technique for generating subtle expressive facial ges-
wres (facial expressions and head motion) semi-automatically from motion capture
data. This approach is based on Markov random fields that are simulated in two
levels. In the lower level, the coordinated movements of facial features are captured,
parameterized, and transferred to synthetic faces using basis shapes. The results are
shown in Figure 1.62, To achieve real-time motion retargeting, Weise et al. [318]
proposed a complete integrated system for live facial puppetry that enables high-
resolution real-time facial expression tracking with transfer to another person’s face.
The system utilizes a real-time structured light scanner that provides dense 3D data
and texture, The motion retargeting result is shown in Figure 1.63.
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Figure 1.61 The grafting process. {a} The geometry inputting. (b) Lip model fitting. (c}
Overlapping triangles removing. (d) The boundary of the lip medel and the boundary of the
removed triangles are retriangulated. (&) Adding new triangles. () The lip model geometry is
added to the input geometry.
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Figure 1.62 Expressive facial expressions and head motions are captured, parameterized,
and transferred to the synthetic face.

Lau et al. [156] proposed an intuitive and easy-to-use system for interactively
posing 3D facial expressions. The user can model and edit facial expressions by
drawing freeform strokes, by specifying distances between facial points, by incre-
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Figure 1.63  Accurate 3D facial cxpressions can be animated and transferred in real-time
from a tracked actor to a different tace.

mentally editing curves on the face, or by directly dragging facial points in 2D screen
space. This system is shown in Figure 1.64. Na and Jung [206] proposed a novel
technique for retargeting captured facial animation to new facial models. Dense
motion data are used to express fine motions such as wrinkles. A normal mesh,
which is a special multiresolution mesh, is then used to represent the source and
target models. A normal mesh is defined by the base mesh and the sequence of its
normal offsets. The retargeting consists of two steps: base mesh and detail mesh
retargeting. For base mesh retargeting, an example-based technique is used to take
advantage of the intuition of the user in specifying the similarity between the source
and target expressions. In detail mesh retargeting, the variations of normal offsets in
the source mesh are hierarchically computed and transferred to the target mesh.
Reconstruction of a 3D face model from a single 2D face image is fundamentally
important for face recognition and animation becanse the 3D face model is invariant
to changes of viewpoint, illumination, background clutter, and occlusions. Given
a coupled training set that contains pairs of 2D faces and the corresponding 3D
faces, Song et al. {263] train a novel coupled radial basis function network (C-RBF)
to recover the 3D face model from a single 2D face image. The C-RBF network
explores: () The intrinsic representations of 3D face models and those of 2D face
images; (2) mappings between a 3D face model and is intrinsic representation; and
(3) mappings between a 2D face image and its intrinsic representation. Since a
particular face can be reconstructed by its nearest neighbors, it can be assumed that
the linear combination coefficients for a particular 2D face image reconstruction are
identical to those for the corresponding 3D face model reconstruction. Therefore, a
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3D face model can be reconstructed by using a single 2D face image based on the
C-RBF network. The whole framework is presented in Figure 1.65.
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Figure 1.64 The face poser system allows intuitive modeling and editing of 3D facial
expressions in real time.

1.4 CHAPTER SUMMARY

Many computer animation techniques are both data and computationally intensive.
In this chapter, we have introduced how some machine learning methods or concepts
are utilized to help alleviate these bottlenecks in animation techniques. However,
machine learning has not as yet been used widely throughout the field of computer
animation. We discussed in this chapter how animation research can leverage the ma-
chine learning literature to underpin, validate, and develop their proposed methods. A
close relationship between computer animation and learning techniques is proposed,
which will result in the development of new and enhanced animation techniques. In
the following chapters, we shall introduce the emerging machine Jearning techniques
and their applications in computer animation fields.
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Figure 1.65 Framework of the C-RBF network.









