
1 From Arithmetic to Algebra

1.1 INTRODUCTION

Numbers are symbols used for counting and measuring. Hindu–Arabic numerals 0, 1, 2,

3, . . . . . ., 9 are grouped systematically in units, tens, hundreds, and so on, to solve problems

containing numerical information. This is the subject of Arithmetic. It also involves an

understanding of the structure of the number system and the facility to change numbers from

one form to another; for example, the changing of fractions to decimals and vice versa.

Adetailed discussion about theRealNumber System is given inChapter 3.However, it would be

instructive to recall some important subsets of real numbers, known to us.

Numbers, which are used in counting, are called natural numbers or positive integers. The

set of natural numbers is denoted by

N ¼ f1; 2; 3; 4; 5; . . .g

1.2 THE SET OF WHOLE NUMBERS

The set of natural numbers alongwith the number “0”makes the set ofwhole numbers, denoted

by W. Thus,

W ¼ f0; 1; 2; 3; 4; . . .g
Note: “0” is a whole number but it is not a natural number.

1.3 THE SET OF INTEGERS

All natural numbers, their negatives and zero when considered together, form the set of

integers denoted by Z. Thus,

Z ¼ f. . . ;�3;�2;�1; 0; 1; 2; 3; . . .g

1.4 THE SET OF RATIONAL NUMBERS

The numbers of the form p/qwhere p and q are integers, and the denominator q 6¼ 0, form the set

of rational numbers, denoted by Q.

Examples: 3
5
; �7

9
; 8

�15
; 0

15
; 9

1
; �121

�12
; 16

2
and so on, are all rational numbers.
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Remarks:

(a) Zero is a rational number, but division by zero is not defined. Thus, 5=0 and 0=0 are

meaningless expressions.

(b) All integers are rational numbers, but the converse is not true.

(c) Positive rational numbers are called fractions.

Let us discuss more about fractions.

Generally, “fractions” are used to represent the parts of a given quantity, under consider-

ation. Thus, 3/7 tells us that a given quantity or an object is divided into seven equal parts and

three parts are under consideration. A fraction is also used to express a ratio. Thus, 2:5 is also

written as 2/5 and similarly 12:5 iswritten as 12/5. Since the ratio of two natural numbers can be

greater than 1, all positive rational numbers are called fractions. This definition suggests that

fractions could be classified more meaningfully as follows:

. When both numerator and denominator are positive integers, the fraction is known as a

simple, common, or vulgar fraction (Examples: 1/2, 3/5, 9/7).

. A complex fraction is one in which either the numerator or the denominator or both are

fractions (Examples: 3/(7/5), (5/9)/2, (7/3)/(11/4)).

. If the numerator is less than the denominator, the fraction is called a proper fraction

(Examples: 4/7, 3/5, 1/4).

. If the numerator is greater than the denominator, the fraction is called an improper

fraction (Examples: 7/4, 5/3, 9/2).

. A unit fraction is a special proper fraction, whose numerator is 1 (Examples: 1/7, 1/100).

Note (1): A fraction is said to be in lowest terms, if the only common factor of the numerator

and denominator is 1. Thus, 3/4 is in lowest terms, but 6/8 is not in lowest terms since 6 and

8 have a common factor 2, other than 1. We say that a/b, 2a/2b, 3a/3b, . . . all belong to the

same family of fractions, described by a/b.

In fact, we use the fraction in lowest terms to describe the family of fractions. We define the

set of all fractions by F ¼ a=bja; b 2 Nf g

1.5 THE SET OF IRRATIONAL NUMBERS

There are numbers that cannot be expressed in the form p/q, where p and q are integers. They are

called irrationalnumbers, and theset isdenotedbyQ0 orQc. (MoredetailsaregiveninChapter3.)

Examples:

ffiffiffi
2

p
;
ffiffiffi
5

p
; 6

ffiffiffi
3

p
; 7

ffiffiffiffiffi
11

p
; e; p; 1:101001 . . . ; 5:71071007100071; . . . and so on:

1.6 THE SET OF REAL NUMBERS

The set of rational numbers together with the set of irrational numbers, form the set of real

numbers, denoted by R.(1)

(1) The square roots of negative numbers (i.e.,
ffiffiffiffiffiffiffi�1

p
or

ffiffiffiffiffiffiffi�7
p

, etc.) do not represent real numbers, hencewe shall not discuss

about such numbers at this stage.
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1.6.1 Arithmetic and Algebra

In arithmetic, there are four fundamental operations, namely, addition, subtraction, multiplica-

tion, and division, which are performed on the set of natural numbers to make new numbers,

namely, the number zero, negative integers, and rational numbers. For the formation of irrational

numbers, we have to go beyond the four fundamental arithmetic operations given above.

The subject of algebra involves the study of equations and a number of other problems that

developed out of the theory of equations. It is in connection with the solution of algebraic

equations that negative numbers, fractions, and rational numberswere developed. The number

“0” could enter the family of numbers only after negative numbers were developed.

In arithmetic, we deal with numbers that have one (single) definite value. On the other hand,

in algebra we deal with symbols such as x, y, z, . . ., and so on, which represent variable

quantities and those like a, b, c, . . ., and so on, which may have any value we chose to assign to

them. These symbols represent variable quantities and are hence called variables. We may

operate with all these symbols as numbers without assigning to them any particular numerical

value. Note that, both numbers and letters are symbols, which were developed to solve various

problems.

In fact, traditional algebra is a generalization of arithmetic. Hence, the symbols used in

arithmetic have the same meaning in algebra. Thus, we use þ (plus for addition), � (minus

for subtraction),� and � (cross and dot for multiplication), / (slash for division), ¼ (equals for

equality), > (for greater than), < (for less than) and so on, in algebra also.

Before we enter the true realm of algebra, it is useful to recall some more subsets of real

numbers, which will be needed in various discussions.

1.7 EVEN AND ODD NUMBERS

Every integer that is exactly divisible by 2, is called an even number, otherwise it is odd. Thus, an

even number is of the form 2n, where n is an integer.

An odd number is of the form (2n� 1). If number “a” is even, then (a� 1) is odd and vice

versa. It follows that 0 is an even integer.

1.8 FACTORS

Natural numbers that exactly divide a given integer are called the factors of that number. For

example, the factors of 12 are 1, 2, 3, 4, 6, and 12.We also say that 12 is amultiple of 1, 2, 3, 4, 6,

and 12. Similarly, the factors of 6 are 1, 2, 3, and 6, and the factors of zero are all the natural

numbers.

Remark: The number “0” is not a factor of any number.(2)

1.9 PRIME AND COMPOSITE NUMBERS

A natural number that has exactly two unique factors (namely the number itself and 1) is

called a prime number. A natural number that has three or more factors is called a composite

number.

(2) Factors are considered from natural numbers only. Besides, note that division by zero is not permitted in mathematics.

This is explained at the end of this chapter.
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Some examples of prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, . . .. . ., and so on.

. Each prime number, except 2, is odd.

. The number 1 is neither prime nor composite. Six is a composite number since it has four

factors, namely 1, 2, 3, and 6.

A given natural number can be uniquely expressed as a product of primes.

1.10 COPRIME NUMBERS

Two natural numbers are said to be coprime (or relatively prime) to each other if they have no

common factor except 1. For example, 8 and 25 are coprime to one another. Obviously, all prime

numbers are coprime to each other.

Remark: Coprime numbers need not be prime numbers.(3)

1.11 HIGHEST COMMON FACTOR (H.C.F.)

The highest common factor (H.C.F.) of two or more (natural) numbers is the greatest number

which divides each of them exactly. It is also known as the greatest common divisor (G.C.D.).

[The H.C.F. of any two prime numbers (or coprime numbers) is always 1.]

1.12 LEAST COMMON MULTIPLE (L.C.M.)

The least common multiple (L.C.M.) of two or more (natural) numbers is the smallest number

which is exactly divisible by each of them. To find the L.C.M. of two (ormore) natural numbers,

we find prime factors. If two (ormore) numbers have a factor in common,we select it once. This

is done for each such common factor and the remaining factors from each number are taken as

they are. The product of all these factors taken together, gives the L.C.M. of the given numbers.

ðProduct of two numbers ¼ their H:C:F:� their L:C:M:Þ

1.12.1 Continuous Variables and Arbitrary Constants

A changing quantity, usually denoted by a letter (i.e., x, y, z, etc.), which takes on any one of the

possible values, in an interval, is called a variable. On the other hand, the set of letters a, b, c, d,

and so on are used to denote arbitrary constants.

In the case of arbitrary constants, though there is no restriction to the numerical values a

letter may represent, it is understood that in the same piece of work, it keeps the same value

throughout. For example, in the expression, f(x) ¼ ax2 þ bx þ c, (0� x� 5), x is a contin-

uous variable in the interval [0,5] and a, b, c are arbitrary constants. (The concept of an interval

is discussed in Chapter 3.)

(3) There is one more term used in connection with prime numbers. A pair of prime numbers which differ by 2, are called

twin-primes (Examples: 3 and 5, 5 and 7, 11 and 13, 17 and 19, and so on).

Remark: It is proved that the number of primes is infinite, but it is not yet proved whether the number of twin-primes is

finite or infinite. This is because of the fact that, so far there is no formula that can generate all primes.
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1.13 THE LANGUAGE OF ALGEBRA

Let us now recall the terminology used in algebra:

. an algebraic expression;

. factors, coefficients, index/exponent (or power) of a quantity;

. positive and negative terms;

. like and unlike terms;

. processes involving addition, subtraction, multiplication, and division among algebraic

expressions;

. removal and insertion of brackets;

. simplification of an algebraic expression;

. polynomials and related concepts.

It is assumed that all these terms and processes are known to the reader. However, it is proposed

to extend the terminology and concepts related to polynomials, since the samewill be useful to

us, in our discussions to follow.

1.13.1 Polynomials

A polynomial in x is an expression of the form

pðxÞ ¼ an � xn þ an�1 � xn�1 þ . . . þ a1 � xþ a0

where a0, a1, a2, . . ., an are real numbers called the coefficients of p(x) and n in xn is a non-

negative integer.(4)

Usually, we write a polynomial in either descending powers of x or ascending powers of x.

The formof a ploynomialwritten in thisway is called the standard form. From the definition of a

polynomial, it is clear that polynomials are special types of algebraic expressions involving

only finite number of terms and one variable.(5)

1.13.2 Degree of a Polynomial

The exponent, in the highest degree term of a nonzero polynomial is called the degree of the

polynomial. Thus, if an 6¼ 0, then n (in xn) is the degree of the polynomial. In particular, the

degree of 3x5 þ 2x3� x þ 7 is 5 and the degree of ð3=2Þy3 � ffiffiffi
2

p
y� 1 is 3.(6)

A polynomial having only one term is called “monomial ”.

(4) By definition, the power of x in each term of a polynomialmust be awhole number. If the power of any term is a negative

integer or a fraction, then such an expression is not called a polynomial. Note that the power of x in p(x) can be zero. Such a

polynomial is called a constant polynomial. Another way for getting a constant polynomial could be to make all the

coefficients (except a0) equal to zero, so that we get p(x) ¼ a0, a0 6¼ 0. If each of the coefficients a0, a1, a2, . . ., an in p(x) is

zero, then such a polynomial is called the zero polynomial.

Remark: The zero polynomial is included in the definition of a polynomial.
(5) A polynomial may have more than one variable but our interest lies in the polynomials involving only one variable.
(6) If n ¼ 1, it is a linear expression [Example: f(x) ¼ 2x þ 5].

If n ¼ 2, it is a quadratic expression [Example: f(x) ¼ x2 þ 3x þ 1].

If n ¼ 3, it is a cubic expression [Example: f(x) ¼ x3 þ 3x2 þ 2x þ 1].

If n ¼ 4, it is a quartic or biquadratic expression. If n ¼ 5, it is a quintic expression.
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1.13.3 The Zero Polynomial

We know that a polynomial having all coefficients as zero is called “the zero polynomial ”.

Zero polynomial is unique and it is denoted by the symbol “0”.(7)

The degree of “zero polynomial” is not defined. (Note that, 0 ¼ 0�x ¼ 0�x5 . . . ¼ 0�x107,
and so on.These are all zero polynomials and obviously, their degree cannot be defined.) Inwhat

follows, a polynomial will mean a nonzero polynomial (in a single variable) with real

coefficients.

1.13.4 Polynomials Behave Like Integers

Many properties possessed by integers are also possessed by the polynomials. Therefore, we

extend the terminology, used in the algebra of numbers, to the algebra of polynomials. Thus, if

p(x) and q(x) are two polynomials, then the expression pðxÞ=qðxÞ, where q(x) is a nonzero-
polynomial, is called a rational expression.(8)

A rational expression must be expressed in its lowest terms, by canceling the common

factors in the numerator and denominator. For this purpose, one has to learn the process of

factorization of a polynomial.

1.13.4.1 Factors of a Polynomial A polynomial g(x) is called a factor of polynomial p(x),

if g(x) divides p(x) exactly; that is, on dividing p(x) by g(x) we get zero as the remainder.

1.13.4.2 Division Algorithm (or Procedure) for Polynomials On dividing a polynomial

p(x) by a polynomial g(x), let the quotient be q(x) and the remainder be r(x), then we have

p(x) ¼ g(x) � q(x) þ r(x), where either r(x) ¼ 0 or degree of r(x)< degree of g(x).

Remark: When a polynomial p(x) is divided by a linear polynomial (x�a) then the

remainder is a constant, which may be zero or nonzero. The value of the remainder can be

obtained by applying the remainder theorem.

1.13.4.3 Remainder Theorem If a polynomial p(x) is divided by a linear polynomial

(x�a), then the remainder is p(a). (This theorem can be easily proved using the division

algorithm.)

Remark: If p(x) is divided by (x þ a), then the remainder ¼ p(�a). Similarly, when p(x) is

divided by (ax þ b) then the remainder ¼ p(� b/a).

It is sometimes possible to express a polynomial as a product of other polynomials, each of

degree � 1. For example, x3� x2 þ 9x� 9 ¼ (x� 1)�(x2 þ 9) and 3x2� 6x� 9 ¼
3(x2� 2x� 3) ¼ 3(x� 3)(x þ 1).

1.13.5 Value of a Polynomial and Zeros of a Polynomial

We know that for every real value of x, a polynomial has a real value. For example, let

p(x) ¼ 3x4� 2x3 þ x þ 5. Then, for x ¼ 1, we have p(1) ¼ 7 and for x ¼ 0, p(0) ¼ 5.

(7) The role of zero polynomial can be compared with that of number “0”, in arithmetic. The symbol “0”, in polynomial

algebra represents the zero polynomial whereas in arithmetic it represents the real number “0”.
(8) Every polynomial may be regarded as a rational expression but the converse is not true. Note that ðxþ 3Þ=ðx� ffiffiffi

x
p Þ is

not a rational expression. It is an irrational algebraic expression.
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An important aspect of the study of a polynomial is to determine those values of x for which

p(x) ¼ 0. Such values of x are called zeros of the polynomial p(x). Consider the quadratic

polynomial q(x) ¼ x2� x� 6. It may be seen that q(3) ¼ 0 and q(� 2) ¼ 0. If x ¼ a is a zero

of the polynomial p(x) then (x� a) is a factor of p(x). This is known as the factor theorem

of algebra.

Thus, the factor theorem helps in finding the linear factors of a polynomial, provided such

factors exist. There are no standard methods available for finding linear factors of polynomials

of higher degrees, except in some very special cases.

Every quadratic polynomial can have at most two zeros, a cubic polynomial at most three

zeros, and so on. Some polynomials do not have any real zero. In other words, there may be no

real number “x” for which the value of the polynomial becomes zero. For example, there is no

real number “x” for which x2 þ 3 will be zero.

Now the following question arises: How do we determine the zeros of a given

polynomial pðxÞ?
This leads us to the question: How to solve the equation p(x) ¼ 0?

1.13.6 Polynomial Equations and Their Solutions (or Roots)

If p(x) is a quadratic polynomial, then the equation p(x) ¼ 0 is called a quadratic equation. If

p(x) is a cubic polynomial, then the corresponding equation p(x) ¼ 0 is called a cubic equation,

and so on. If the numbers a and b are two zeros of the quadratic polynomial p(x), we say that a

and b are the roots of the corresponding quadratic equation p(x) ¼ 0.(9)

Note: The fundamental theorem of algebra states that a nonzero nth degree polynomial

equation has at most n roots, in which some roots may be repeated roots.

Thus, starting from the concept of an algebraic expression we have revised the concepts of

polynomials, zeros of a polynomial, and the solution of simple polynomial equations.

1.14 ALGEBRA AS A LANGUAGE FOR THINKING

We know that algebra has a set of rules; but we should not feel satisfied to have learnt algebra

merely as a set of rules. It is more important to have some understanding of:What is algebra all

about? How does it grow out of arithmetic? And how is it used to convey concepts of

arithmetic? For instance, the following statements belong to arithmetic:

32 is 1 bigger than 2� 4

42 is 1 bigger than 3� 5

52 is 1 bigger than 4� 6

(9) It is easy to solve equations of degree one and two. Thus, we get from ax þ b ¼ 0, (a 6¼ 0), x ¼ � b/a and from a

x2 þ bx þ c ¼ 0, x ¼ �b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb2 � 4acÞp� �
=2a. Mathematicians also solved a number of particular equations of

degree three but were finding it difficult to express x in terms of general coefficients a, b, c, and d. This problemwas finally

solved by the Italian mathematician Tartaglia (1499–1557). Later Lodovico Ferari (1522–1565) solved the general fourth

degree equation. It seemed almost certain to the mathematicians that the general fifth degree equation and still higher

degree equations could also be solved. For 300 years this problem was a classic one. The Frenchman Evariste Galois

(1811–1832) showed that the general equation of degree higher than the fourth cannot be solved by algebraic operations

including radicals such as square root, cube root, and so on. To establish this result Galois created the Theory of Groups, a

subject that is now at the base of modern abstract algebra and that transformed algebra from a series of elementary

techniques to a broad, abstract, and basic branch of mathematics. [Mathematics and the Physical World by Morris Kline

(pp. 71–72).]
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These results suggest that “the square of any natural number is 1 bigger than the result of

multiplying two numbers ofwhich one is less by one and the other ismore by one, than the given

number”. Thus, we should guess that 872 would be 1 bigger than 86 � 88.

Thegeneral result is statedmost conveniently in the language of algebra. Let n be anynatural

number. Then “the number before n” will be written as (n� 1) and “the number after n” is

(n þ 1). We shall now say, n2 is 1 bigger than (n� 1)(n þ 1), or, completely in symbols,

n2 ¼ 1þðn� 1Þðnþ 1Þ ð1Þ

Note that, the above equation holds not only for natural numbers but also for all numbers. It

expresses what we guessed at by looking at particular results in arithmetic. The beauty of

algebra lies in its utility. Here, it enables us to prove that our guess is correct. By the usual

procedures of algebra, we can simplify the expression on the right-hand side of Equation (1) and

see that it equals the left-hand side.

In algebra itself, we often pass from particular results to more general ones. For example,

we get from Equation (1)

n2 � 1 ¼ ðn� 1Þðnþ 1Þ
but we know that n2 � 1 ¼ n2 � 12 ¼ ðn� 1Þðnþ 1Þ
In general; we have a2 � b2 ¼ ða� bÞðaþ bÞ

or a2 ¼ ða� bÞðaþ bÞþ b2 ð2Þ
This result is more general than the one expressed by Equation (1).

We can make use of Equation (2) in simple calculations. For example,

272 ¼ ð27� 3Þð27þ 3Þþ 32

¼ ð24� 30Þþ 9

¼ 720þ 9 ¼ 729

Similarly, 103� 97 ¼ (100 þ 3)(100� 3)

¼ ð100Þ2 � 32 ¼ 10000� 9

¼ 9991

Now consider the following products:

ðxþ 3Þðxþ 4Þ ¼ x2 þ 7xþ 12

¼ x2 þð3þ 4Þxþ 3 � 4
ðxþ 5Þðxþ 3Þ ¼ x2 þ 8xþ 15

¼ x2 þð5þ 3Þxþ 5 � 3
In algebraic symbols, we guess that:

ðxþ aÞðxþ bÞ ¼ x2 þðaþ bÞxþ a � b

We can easily prove that our guess is correct. This type of thinking is very useful in the study of

mathematics.
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1.14.1 Algebra is the Best Language for Thinking About Laws

Consider the following table

x: 0 1 2 3 4 5 . . .

y: 0 2 4 6 8 10 . . .

We can easily guess the law that lies behind this table. Each number in the bottom row is twice

the number that lies above it. The law behind the table is y ¼ 2x. In the same way, the law

behind the following table is y ¼ x2.

x: 0 1 2 3 4 5 . . .

y: 0 1 4 9 16 25 . . .

Incidentally, as a rule, there is little point in putting a law into words. It is far easier to see what

the formula y ¼ 2x2� 5x þ 7means (by preparing a table, as given above) than to understand

the same formula expressed in words.

1.15 INDUCTION

Inmathematics, it is not always wise to proceed by analogy and draw conclusions. The process

of reasoning from some particular results to general one is called “induction”.

As we know, induction begins by observation. We observe particular result(s) and use our

intuition to arrive at a tentative conclusion—tentative, because it is an educated guess or a

conjecture. It may be true or false. If the general result is proved by systematic deductive

reasoning, then it is accepted as true. On the other hand, the result will be considered false if we

are able to show a counter example where the conjecture fails.

Remember that, a conjecture remains a conjecture no matter how many examples we can

find to support it.Thegreat Frenchmathematician Pierre de Fermat (1601–1665) observed that:

ð221 þ 1Þ ¼ ð22 þ 1Þ ¼ 5 is a prime number.

ð222 þ 1Þ ¼ ð24 þ 1Þ ¼ 17 is a prime number.

ð223 þ 1Þ ¼ ð28 þ 1Þ ¼ 257 is a prime number.

Accordingly, he conjectured thatð22n þ 1Þis a prime number for every natural number n and had

challenged the mathematicians of his day to prove otherwise. It was several years later that the

Swiss mathematician Leonhard Euler (1707–1783) showed that ð225 þ 1Þ ¼ 4;294;967;297
is not a prime number since it is divisible by 641.Another interesting example is the following:

We observe that the absolute values of the coefficients of various terms in each of the following

factorization are equal to 1

x1 � 1 ¼ ðx� 1Þ; x2 � 1 ¼ ðx� 1Þðxþ 1Þ
x3 � 1 ¼ ðx� 1Þðx2 þ xþ 1Þ; x4 � 1 ¼ ðx� 1Þðxþ 1Þðx2 þ 1Þ
x5 � 1 ¼ ðx� 1Þðx4 þ x3 þ x2 þ xþ 1Þ

Therefore, it was conjectured that when xn� 1 (n, a natural number) is expressed into factors,

with integer coefficients, none of the coefficients is greater than 1, in absolute value.
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All attempts to prove this general statement failed, until 1941, when a Russian

mathematician, V. Ivanov came up with a counter-example. He found that one of the

factors of x105� 1 violates the conjecture. This factor is a polynomial of degree 48, as

given below.(10)

x48 þ x47 þ x46 � x43 � x42 � 2x41 � x40 � x39 þ x36 þ x35 þ x34 þ x33 þ x32

þx31 � x28 � x26 � x24 � x22 � x20 � x17 þ x16 þ x15 þ x14 þ x12 � x9 � x8

�2x7 � x6 � x5 þ x2 þ xþ 1:

9>>=
>>;

ð10Þ

Inmathematics, we have several such conjectures, which have remained conjectures for lack of

proof, even though literally thousands of examples have been found in support of them.Having

employed intuition and arrived at a conjecture, the very difficult task of proving the conjecture

begins. If the conjecture is in the form of a statement, say P(n), involving natural numbers, a

method of proof is provided by the principle of mathematical induction.(11) [For example, let

P(n) represent the statements: (i) n(n þ 1) is even or (ii) 3n> n, or (iii) n3 þ n is divisible by 3,

or (iv) 23n� 1 is divisible by 7, etc.]

1.16 AN IMPORTANT RESULT: THE NUMBER OF PRIMES IS INFINITE

There is no known formula that relates successive primes to successive integers. Therefore, it is

not possible to use the principle of mathematical induction to prove this result. Yet, algebra

provides a simple method to prove it. An indirect approach is needed.(12)

1.17 ALGEBRA AS THE SHORTHAND OF MATHEMATICS

Algebra can be compared to writing shorthand in ordinary life. It can be used either to make

statements or to give instructions in a concise form. Mathematical statements in ordinary

language can be translated into algebraic statements and similarly statements in algebra can be

translated into ordinary language. For example, consider the following instructions translated

into the language of algebra:

(10) A Textbook of Mathematics for Classes XI–XII (Book No. 1, p. 100) NCERT Publication, 1978.

(12) We assume that every natural number greater than 1, which is not prime can be represented by a product P1, P2, P3,

P4, . . ., Pn of prime integers Pi. This is known as the fundamental theorem of arithmetic.

Proof: Assume that there is but a finite number of primes and hence a last (largest) prime, P.

LetN be the product of all primes up to P: i.e.,N ¼ 2, 3, 5, 7, 11, . . .,P.Now considerN þ 1 ¼ (2, 3, 5, 7, 11, . . .,P) þ 1.

Let r be one of the prime numbers 2, 3, 5, . . ., P. If we divide (N þ 1) by r then we will always get the remainder 1.

Therefore,N þ 1 itself must be a prime, which is larger than P. This contradicts the assumption thatP is the largest prime.

[The largest known prime as of March 2011 is (243,112,609� 1). It has about 700 digits and a modern computer was used to

perform the necessary computation. Mathematics can be Fun by Yakov Perelman (p. 288), Mir Publishers, Moscow,

1985.]

(11) To prove that a statement P(n) is true for all natural numbers, we have to go through two steps.

Step (1): We must verify that P(1) is true.

Step (2): Assuming thatP(k) is true for some k2N, wemust prove thatP(k þ 1) is true. For this purpose, we obtain an

algebraic expression for P(k þ 1) and put it in desired form (if possible) to show that P(k þ 1) is true. If this is

achieved the result is proved to be true for all n.

Remark: If P(1) is not true, the principle of induction does not apply. [See Example (iii) above.]
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Statements in Ordinary Language Equivalent Statements in the Language of Algebra

(i) Think of a number,

add 7 to it and double the result.

2(x þ 7)

(ii) Choose a number, multiply it by 5, add 2,

square this expression, and divide the result by 8.

(5x þ 2)2/8

Algebra puts mathematical statements in a small space. The statement is shorter to write,

easier to read, quicker to say, and simpler to understand, than the corresponding sentence in

ordinary English.

Next, though it is easy to say that 2n (where n is a natural number) represents an even

number, it is not obvious that the number (n2� n) also represents an even number. Yet, algebra

tells us that (n2� n) ¼ n�(n� 1) must always be even (Why?).

When we say that algebra is a language, we mean that it has its own words and symbols for

expressing what might otherwise be expressed in ordinary language such as French or German.

However, we do not look at algebra from this point of view. For us, algebra is a special kind of

language for the following two reasons:

(a) Algebra is concerned primarily with statement(s) about numbers, items, symbols, or

quantities.

(b) The language of algebra uses symbols in place of words.

For example, to discuss about a class of numbers (say the class of natural numbers) a

mathematician may say: Let “a” be any natural number. Thereafter, in the entire discussion

whenever he wishes to refer to an arbitrary natural number, he will use the letter a and thus

save words and space. Of course, he will have to be careful because any statement(s) he makes

about a applies to all natural numbers.

1.18 NOTATIONS IN ALGEBRA

One important difference between the notation of arithmetic and algebra is as follows.

In arithmetic, the product of 3 and 5 is written as 3� 5, whereas in algebra, the product

of a and bmay bewritten in any of the forms a� b, a � b, or ab. The form ab is themost useful. In

arithmetic, this is not permitted since 35 means (3� 10) þ 5 and is read as “thirty-five”.

Acceptance of such notations in algebra may be treated as a special feature of algebra.

There are many notations in algebra with which the reader is familiar. For example,

. an ¼ a � a � a � a � a . . . (n times)

Example; 35 ¼ 3 � 3 � 3 � 3 � 3 ¼ 243

We know that; a7=a4 ¼ a7�4 ¼ a3

) an=an ¼ an�n ¼ a0 ¼ 1; ðprovided a 6¼ 0Þ
(a0 ¼ 1), a 6¼ 0, since, 00 is not defined.

. Product of first n natural numbers is given by

n! ¼ n � ðn� 1Þ � ðn� 2Þ � ðn ¼ 3Þ . . . 3 � 2 � 1
Example; 7! ¼ 7 � 6 � 5 � 4 � 3 � 2 � 1
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. Number of permutations (arrangements) of n different things taken r at a time is given by

npr ¼ n!

ðn� rÞ! Example; 5p3 ¼ 5!

ð5� 3Þ! ¼
5!

2!

¼ Product of first 5 natural numbers

Product of first 2 natural numbers

¼ 5 � 4 � 3 � 2 � 1
2 � 1 ¼ 60

npn ¼ n!

ðn� nÞ! ¼
n!

0!
¼ Product of first n natural numbers

Product of first “zero” natural numbers

¼ n!

It follows that 0! ¼ 1. (This is taken as the definition of 0!)

. Number of combinations of n different items taken r at a time; is given by
nCr ¼ n!

r!ðn�r!Þ.

Example: 7C3 ¼ 7!

3!ð7� 3Þ! ¼
7!

ð3!Þð4Þ! ¼
7:6:5:4:3:2:1

ð3:2:1Þð4:3:2:1Þ ¼ 35:

nCr ¼ nCðn�rÞ; nC0 ¼ 1; nCn ¼ 1

Note that in all these notations, n is a natural number and r is a whole number, with n � r.

Abeginnermay complain about somedifficulty in learning the language of algebra.However,

one who has mastered this language of mathematics and has grasped the ideas and reasoning,

does appreciate the mathematical symbolism. It is a relatively modern invention and math-

ematicians should be complimented for designing “symbols” and “notations”, out of necessity.

It is important to realize that, while all the languages of the world are quite different

from one another, the language of algebra is a common one (as is the language of mathematics)

and serves the purpose so well.

1.19 EXPRESSIONS AND IDENTITIES IN ALGEBRA

The basic function of algebra is to convert expressions into more useful ones. For example,

the sum.

Xn
k¼ 1

k ¼
X

n ¼ 1þ 2þ 3þ 4þ . . . . . . þ n

was converted by Gauss to the more useful form ðnðnþ 1Þ=2Þ.
How do you prove this?

The method is not obvious and yet a simple idea does the trick, as follows:

Let S ¼ 1þ 2þ 3þ 4þ . . . . . . þðn� 1Þþ n ð3Þ

Also; S ¼ nþðn� 1Þþ ðn� 2Þþ . . . . . . þ 2þ 1 ð4Þ
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Adding corresponding terms in (3) and (4), we get

2S ¼ ðnþ 1Þþ ðnþ 1Þþ ðnþ 1Þ . . . . . . ðn timesÞ
¼ nðnþ 1Þ:Hence; S ¼ ðnðnþ 1Þ=2Þ

The ideas in this proof must arouse some excitement in the reader’s mind.Here, it is important

to realize that by simplemeanswe have converted the cumbersome expression to a simpler and

readily computable expression.

Similarly, using algebra, many such useful expressions can be obtained easily. For example,

.
P

n2 ¼ 12 þ 22 þ 32 þ 42 þ . . . þ n2

¼ nðnþ 1Þð2nþ 1Þ
6

.
P

n3 ¼ 13 þ 23 þ 33 þ 43 þ . . . þ n3

¼ n2ðnþ 1Þ2
4

Note that
X

n3 ¼
X

n
� �2� �

. aþ arþ ar2 þ ar3 þ . . . þ arn�1

¼ að1� rnÞ
ð1� rÞ ; ðr < 1Þ

¼ aðrn � 1Þ
ðr� 1Þ ; ðr > 1Þ

It is sometimes possible that a question may have two answers which at first sight appear

different, but which are actually the same. This can be checked by simplifying both the

algebraic expressions. An important part of algebra therefore consists in learning how to

express any result in the simplest form. Algebraic identities,(13) and methods available for

factorizing polynomials, are helpful in simplifying algebraic expressions.

Some important identities are given below:(14)

. ðxþ yÞðx� yÞ ¼ x2 � y2:

Thus; ðaþ bÞða� bÞ ¼ a2 � b2:

. ðxþ yÞ2 ¼ x2 þ y2 þ 2xy:

Thus; a2 þ b2 ¼ ðaþ bÞ2 � 2ab:

(13) An algebraic statement expressed in two (or more) forms with a symbol of equality (¼ ) between them is called an

algebraic identity. Obviously, an identity is true for all real value(s) of the variable(s) involved.
(14) For some purpose, the expression a2� b2 is useful as it stands, but for others it may be better towrite it in the equivalent

form (a þ b) (a� b). This statement is also applicable for other expressions to follow.
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. ðx� yÞ2 ¼ x2 þ y2 � 2xy:

Thus; a2 þ b2 ¼ ða� bÞ2 þ 2ab;

ðaþ bÞ2 þða� bÞ2 ¼ 2ða2 þ b2Þ;
and ðaþ bÞ2 � ða� bÞ2 ¼ 4ab:

. ðxþ yÞ3 ¼ x3 þ y3 þ 3xyðxþ yÞ:
Thus; a3 þ b3 ¼ ðaþ bÞ3 � 3abðaþ bÞ;
or a3 þ b3 ¼ ðaþ bÞða2 � abþ b2Þ:

. ðx� yÞ3 ¼ x3 � y3 � 3xyðx� yÞ:
Thus; a3 � b3 ¼ ða� bÞ3 þ 3abða� bÞ;
or a3 � b3 ¼ ða� bÞða2 þ abþ b2Þ:

From the expression(s) for (a� b)3 and (a� b)2 many useful identities can be obtained.

For example,

a3 þ b3

a2 þ b2 � ab
¼ ðaþ bÞ; a3 � b3

a2 þ b2 þ ab
¼ ða� bÞ

ðaþ bÞ2 þða� bÞ2
ða2 þ b2Þ ¼ 2ða2 þ b2Þ

ða2 þ b2Þ ¼ 2;

ðaþ bÞ2 � ða� bÞ2
ab

¼ 4ab

ab
¼ 4:

Next, observe that,

.

 
aþ 1

a

!2

¼ a2 þ 1

a2
þ 2

 
a� 1

a

!2

¼ a2 þ 1

a2
� 2

9>>>>>>=
>>>>>>;

) aþ 1

a

� �2

� a� 1

a

� �2

¼ 4

. ðaþ bþ cÞ2 ¼ a2 þ b2 þ c2 þ 2ðabþ bcþ caÞ

. a3 þ b3 þ c3 � 3abc ¼ ðaþ bþ cÞða2 þ b2 þ c2 � ab� bc� caÞ

. If aþ bþ c ¼ 0; then a3 þ b3 þ c3 ¼ 3abc:

.
1

a � b ¼ 1

b� a

1

a
� 1

b

� �
. If n is a natural number, then the expansion

ðxþ yÞn ¼ nC0x
n þ nC1x

n�1 � yþ nC2x
n�2 � y2 þ . . . þ nCny

n is called the binomial

expansion, where x and y can be any real numbers.

– This expansion has (n þ 1) terms.

– The general term is of the form nCrx
n�ryr and it is the (r þ 1)th term in the expansion.

– In each term, the sum of the indices of x and y, is n.

. If m is a negative integer or a rational number, then the binomial expansion is

ðbþ xÞm ¼ bm þmbm�1xþ mðm� 1Þ
2!

bm�2x2 þ . . .

þ mðm� 1Þðm� 2Þ . . . ðm� rþ 1Þ
r!

bm�rxr þ . . .

provided xj j < b

ð5Þ
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Remark (1): Note that the coefficientsm, ðmðm� 1Þ=2!Þ, and so on, look like combinatorial

coefficients (i.e., nC0;
nC1;

nC2; . . . ; nCr, and so on). However, recall that nCris defined for

natural number n and whole number r (with n� r), and as such has no meaning in other cases.

Remark (2): Whenm is a negative integer or a rational number, there are infinite number of

terms in the expansion of (b þ x)m.

Remark (3): The following results are very useful and can be easily obtained by using the

expansion in Equation (5).

.
1

1þ x
¼ ð1þ xÞ�1 ¼ 1� xþ x2 � x3 þ . . . ; xj j < 1

.
1

ð1þ xÞ2 ¼ ð1þ xÞ�2 ¼ 1� 2xþ 3x2 � 4x3 þ . . . ; xj j < 1

.
1

1� x
¼ ð1� xÞ�1 ¼ 1þ xþ x2 þ x3 þ . . . ; xj j < 1

.
1

ð1� xÞ2 ¼ ð1� xÞ�2 ¼ 1þ 2xþ 3x2 þ 4x3 þ . . . ; xj j < 1

1.20 OPERATIONS INVOLVING NEGATIVE NUMBERS

Agood deal of themachinery of elementary algebra is concernedwith the solution of equations

involving unknowns. However, we should note that this simple machinery can lead directly to

useful results in numerous other types of problems.

Themost difficult item in algebra is that devoted to operations involving negative numbers.

The difficulty is twofold:

(i) Why introduce negative numbers?

(ii) Why does multiplication of two negative numbers (or division of a negative number by

another negative number) yield a positive number?

In fact, it is in connection with the solution of equations, that both questions can be answered.

For example, note that if we do not accept negative numbers then even a simple equation, like

2x þ 5 ¼ 0 cannot be solved. Next, consider the equation

7x� 5 ¼ 10x� 11 ð6Þ

To solve this equation,we can transpose the terms in twoways so that the unknowns are on one

side and the knowns are on the other side. (Of course, we will expect that in both the cases the

solution should be same.)

Thus, we get

11� 5 ¼ 10x� 7x

or 6 ¼ 3x so x ¼ 2

Also, we get

7x� 10x ¼ �11þ 5

� 3x ¼ �6:
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x ¼ �6

�3
¼ ð�1Þ � 6

ð�1Þ � 3 ¼ ð�1Þ
ð�1Þ �

6

3
¼ ð�1Þ

ð�1Þ � 2 ð7Þ

Also;
�6

�3
¼ ð�1Þ � 6 � ð�1Þ

3

)1
�3

¼ 1

ð�1Þ3 ¼ ð�1Þ 1
3
¼ ð�1Þ

3

2
4

3
5

¼ ð�1Þ � ð�1Þ � 6
3
¼ ð�1Þ � ð�1Þ � 2

ð8Þ

Now in order that the solution of the Equation (6) should be same, it is necessary that (� 1)/

(� 1) ¼ 1 in (7) and (� 1)(� 1) ¼ 1 in (8).

1.21 DIVISION BY ZERO

The question, “Why is division by zero not permitted in mathematics?” is answered through

algebra.

In arithmetic (or more generally in algebra), the operation of division is defined in terms of

the operation of multiplication. Thus according to the existing rule, the division of an arbitrary

number “a” by another number “b” means to find a number x such that

a � 1
b
¼ x where b 6¼ 0

b � x ¼ a

or

Let us see what happens if division by zero is permitted. If b ¼ 0, then wemust consider the

following two cases.

(i) when a 6¼ 0, and

(ii) when a ¼ 0

Case (i): We try to solve the equation

b � x ¼ a; ðwhere b ¼ 0; but a 6¼ 0Þ
We get 0 � x ¼ a

It follows that a ¼ 0, which is against our assumption that a 6¼ 0. This situation arises because

there is no number x, which could be multiplied by “0” to get a fixed (nonzero) number “a”. It

follows that if a nonzero number is divided by zero than we get a meaningless result.

Case (ii): We try to solve the equation

b � x ¼ a; ðwhere b ¼ 0; and a ¼ 0Þ
We get 0 � x ¼ 0

Unfortunately, this is true. Here anynumberx satisfies this equation. Let us see the consequence

of this situation.

If division by zero is permitted, thenwe get from the equation 0�x ¼ 0, x ¼ 0/0. Similarly from

0�y ¼ 0, we get y ¼ 0/0, where x, y, . . . are all different (nonzero) numbers. From the above, it

follows that 0/0 ¼ x ¼ y ¼ z . . ., which means that all different numbers are equal.
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Thus, if a ¼ 0, and b ¼ 0, then we have a/b ¼ 0/0 and it represents any number whatever we

choose. But mathematicians require that the division of “a” by “b” should yield a unique

number as a result. But this is again not achieved.

From the above, we observe that division by zero leads either to no number or any

arbitrary number. (Note that this is the consequence of permitting division by the number

zero.) Thus, division by zero leads to meaningless results and hence it is not permitted

in mathematics.
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