
1 Antiderivative(s) [or Indefinite
Integral(s)]

1.1 INTRODUCTION

In mathematics, we are familiar withmany pairs of inverse operations: addition and subtraction,

multiplication and division, raising to powers and extracting roots, taking logarithms and finding

antilogarithms, and so on. In this chapter, we discuss the inverse operation of differentiation,

which we call antidifferentiation.

Definition (1): A function �(x) is called an antiderivative of the given function f (x) on the

interval [a, b], if at all points of the interval [a, b],

�0ðxÞ ¼ f ðxÞð1Þ

Of course, it is logical to use the terms differentiation and antidifferentiation to mean the

operations, which must be inverse of each other. However, the term integration is frequently

used to stand for the process of antidifferentiation, and the term an integral (or an indefinite

integral) is generally used to mean an antiderivative of a function.

The reason behind using the terminology “an integral” (or an indefinite integral) will be clear

only after we have studied the concept of “the definite integral” in Chapter 5. The relation

between “the definite integral” and “an antiderivative” or an indefinite integral of a function is

established through first and second fundamental theorems ofCalculus, discussed inChapter 6a.

For the time being, we agree to use these terms freely, with an understanding that the terms:

“an antiderivative” and “an indefinite integral” have the samemeaning for all practical purposes

and that the logic behind using these terms will be clear later on. If a function f is differentiable

in an interval I, [i.e., if its derivative f 0 exists at each point in I] then a natural question arises:

Given f 0(x) which exists at each point of I, can we determine the function f(x)? In this chapter,

we shall consider this reverse problem, and study some methods of finding f(x) from f 0(x).

Note:We know that the derivative of a function f (x), if it exits, is a unique function. Let f 0(x)¼
g(x) and that f (x) and g(x) [where g(x)¼ f 0(x)] both exist for each x 2 I, then we say that an

antiderivative (or an integral) of the function g(x) is f (x).(2)
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1-Anti-differentiation (or integration) as the inverse process of differentiation.

(2) Shortly, it will be shown that an integral of the function g(x)[¼ f 0(x)] can be expressed in the form f (x)þ c, where c is

any constant. Thus, any two integrals of g(x) can differ only by some constant.We say that an integral (or an antiderivative)

of a function is “unique up to a constant.”

(1) Note that if x is an end point of the interval [a, b], then �0(x) will stand for the one-sided derivative at x.
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To understand the concept of an antiderivative (or an indefinite integral) more clearly, consider

the following example.

Example: Find an antiderivative of the function f (x)¼ x3.

Solution: From the definition of the derivative of a function, and its relation with the given

function, it is natural to guess that an integral of x3 must have the term x4. Therefore, we

consider the derivative of x4. Thus, we have

d

dx
x4 ¼ 4x3:

Now, from the definition of antiderivative (or indefinite integral)we canwrite that antiderivative

of 4x3 is x4. Therefore, antiderivative of x3 must be x4=4. In other words, the function

�ðxÞ ¼ x4=4 is an antiderivative of x3.

1.1.1 The Constant of Integration

When a function �(x) containing a constant term is differentiated, the constant term does not

appear in the derivative, since its derivative is zero. For instance, we have,

d

dx
x4 þ 6
� � ¼ 4x3 þ 0 ¼ 4x3;

d

dx
x4 ¼ 4x3; and

d

dx
x4 � 5
� � ¼ 4x3 � 0 ¼ 4x3:

Thus, by the definition of antiderivative, we can say that the functions x4 þ 6, x4, x4 � 5, and in

general, x4 þ c (where c2R), all are antiderivatives of 4x3.

Remark: From the above examples, it follows that a given function f (x) can have infinite

number of antiderivatives. Suppose the antiderivative of f (x) is�(x), then not only�(x) but also
functions like �(x)þ 3, �(x)� 2, and so on all are called antiderivatives of f (x). Since, the

constant term involvedwith an antiderivative can be any real number, an antiderivative is called

an indefinite integral, the indefiniteness being due to the constant term.

In the process of antidifferentiation,we cannot determine the constant term, associatedwith

the (original) function �(x). Hence, from this point of view, an antiderivative �(x) of the given
function f (x) will always be incomplete up to a constant. Therefore, to get a complete

antiderivative of a function, an arbitrary constant (which may be denoted by “c” or “k” or any

other symbol) must be added to the result. This arbitrary constant represents the undetermined

constant term of the function, and is called the constant of integration.

1.1.2 The Symbol for Integration (or Antidifferentiation)

The symbol chosen for expressing the operation of integration is “
Ð
”; it is the old fashioned

elongated “S”, and it is selected as being the first letter of the word “Sum”, which is another

aspect of integration, as will be seen later.(3)

(3) The symbol
Ð
is also looked upon as a modification of the summation sign

P
.

2 ANTIDERIVATIVE(S) [OR INDEFINITE INTEGRAL(S)]



Thus, if an integral of a function f (x) is �(x), we writeð
f ðxÞdx ¼ �ðxÞ þ c; where c is the constant of integration:

Remark: The differential “dx” [written by the side of the function f (x) to be integrated]

separately does not have a meaning. However, “dx” indicates the independent variable “x”,

with respect to which the original differentiation was made. It also suggests that the reverse

process of integration has to be performed with respect to x.

Note:The concept of differentials “dy” and “dx” is discussed at length, inChapter 16. There, we

have discussed how the derivative of a function y¼ f (x) can be looked upon as the ratio dy=dx of
differentials. Besides, it is also explained that the equation dy=dx ¼ f 0ðxÞ can be expressed

in the form

dy ¼ f 0ðxÞdx;
which defines the differential of the dependent variable [i.e., the differential of the function

y¼ f (x)].

Accordingly,
Ð
f ðxÞdx stands to mean that f (x) is to be integrated with respect to x. In

other words, we have to find (or identify) a function �(x) such that �0(x)¼ f (x). Once this is

done, we can write ð
f ðxÞdx ¼ �ðxÞ þ c; ðc 2 RÞ:

Now, we are in a position to clarify the distinction between an antiderivative and an indefinite

integral.

Definition: If the function �(x) is an antiderivative of f (x), then the expression �(x)þ c

is called the indefinite integral of f (x) and it is denoted by the symbol
Ð
f ðxÞdx.

Thus, by definition,ð
f ðxÞdx ¼ �ðxÞ þ c; ðc 2 RÞ; provided �0ðxÞ ¼ f ðxÞ:

Remark: Note that the function in the form �(x)þ c exhausts all the antiderivatives of the

function f (x). On the other hand, the function �(x) with a constant [for instance, �(x)þ 3, or

�(x)� 7, or �(x)þ 0, etc.] is called an antiderivative or an indefinite integral (or simply,

an integral) of f (x).

1.1.3 Geometrical Interpretation of the Indefinite Integral

From the geometrical point of view, the indefinite integral of a function is a collection (or

family) of curves, each ofwhich is obtained by translating anyone curve [representing�(x)þ c]

parallel to itself, upwards or downwards along the y-axis. A natural question arises: Do

antiderivatives exist for every function f(x)? The answer is NO.

Let us note, however,without proof, that if a function f(x) is continuous on an interval [a, b],

then the function has an antiderivative.

Now, let us integrate the function y ¼ Ð
f (x)¼ 2x. We have,ð

f ðxÞdx ¼
ð
2x dx ¼ x2 þ c ð1Þ
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For different values of c, we get different antiderivatives of f (x). But, these antiderivatives (or

indefinite integrals) are very similar geometrically. By assigning different values to c, we get

different members of the family. All these members considered together constitute the

indefinite integral of f(x)¼ 2x. In this case, each antiderivative represents a parabola with

its axis along the y-axis.(4)

Note that for each positivevalue of c, there is a parabola of the familywhich has its vertex on

the positive side of the y-axis, and for each negative value of c, there is a parabola which has its

vertex on the negative side of the y-axis.

Let us consider the intersection of all these parabolas by a line x¼ a. In Figure 1.1, we have

taken a> 0 (the same is true for a< 0). If the line x¼ a intersects the parabolas y¼ x2,

(4) For c¼ 0,we obtain y¼x2, a parabolawith its vertex on the origin. The curve y¼ x2þ 1 for c¼ 1, is obtained by shifting

the parabola y¼ x2 one unit along y-axis in positive direction. Similarly, for c¼�1, the curve y¼x2� 1 is obtained by

shifting the parabola y¼ x2 one unit along y-axis in the negative direction. Similarly, all other curves can be obtained.

y

P3

P2

P1

y = x2 + 3

y = x2 + 2

y = x2 + 1

y = x2 – 1

y = x2 – 2

y = x2 – 3

y = x2

P0

P–1

P–2

0

x

P–3

x = a

FIGURE 1.1 Shows some curves of f (x)¼ 2x family.
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y¼ x2þ 1, y¼ x2þ 2, y¼ x2� 1, y¼ x2� 2, at P0, P1,P2,P�1,P�2, and so on, respectively,

then dy=dx (i.e., the slope of each curve) at x¼ a is 2a. This indicates that the tangents to

the curves �(x)¼ x2þ c at x¼ a are parallel. This is the geometrical interpretation of the

indefinite integral.

Now, supposewewant to find the curve that passes through the point (3, 6). These values of

x and y can be substituted in the equation of the curve. Thus, on substitution in the equation

y¼ x2 þ c,

We get, 6 ¼ 32 þ c

) c ¼ �3

Thus, y¼ x2� 3 is the equation of the particular curve which passes through the point (3, 6).

Similarly, we can find the equation of any curvewhich passes through any given point (a, b). In

the relation,

ð
f ðxÞdx ¼ �ðxÞ þ c; ðc 2 RÞ:

. The function f (x) is called the integrand.

. The expression under the integral sign, that is, “f (x)dx” is called the element of integration.

Remark: By the definition of an integral, we have,

f ðxÞ ¼ ½� ðxÞ þ c�0 ¼ �0ðxÞ:

Thus, we can write,

ð
f ðxÞdx ¼

ð
�0ðxÞdx

¼
ð
d½�ðxÞ�

Observe that the last expression
Ð
d �ðxÞ½ � does not have “dx” attached to it (Why?). Recall that

d �ðxÞ½ � stands for the differential of the function �(x), which is denoted by �0(x)dx, as
discussed in Chapter 16 of Part I. Thus, we write,

ð
f ðxÞdx ¼

ð
�0ðxÞdx ¼

ð
d½�ðxÞ� ¼ �ðxÞ þ c: ð2Þ

Equation(2) tells us that when we integrate f(x) [or antidifferentiate the differential of a

function �(x)] we obtain the function “�(x)þ c”, where “c” is an arbitrary constant. Thus, on

the differential level, we have a useful interpretation of antiderivative of “f ”.

Since we have
Ð
f ðxÞdx ¼ �ðxÞ, we can say that an antiderivative of “f ” is a function “�”,

whose differential �0(x)dx equals f (x)dx. Thus, we can say that in the symbol
Ð
f ðxÞdx, the

expression “f ðxÞdx” is the differential of some function �(x).

Remark: Equation (2) suggests that differentiation and antidifferentiation (or integration) are

inverse processes of each other. (We shall come back to this discussion again in Chapter 6a).
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Leibniz introduced the convention of writing the differential of a function after the integral

symbol “
Ð
”. The advantage of using the differential in this manner will be apparent to the

reader later whenwe compute antiderivatives by themethod of substitution—to be studied later

in Chapters 3a and 3b. Whenever we are asked to evaluate the integral
Ð
f ðxÞdx, we are

required to find a function �(x), satisfying the condition �0(x)¼ f (x). But how can we find the

function �(x)?
Because of certain practical difficulties, it is not possible to formulate a set of rules bywhich

any function may be integrated. However, certain methods have been devised for integrating

certain types of functions.

. The knowledge of these methods,

. good grasp of differentiation formulas, and

. necessary practice, should help the students to integrate most of the commonly occurring

functions.

The methods of integration, in general, consist of certain mathematical operations

applied to the integrand so that it assumes some known form(s) of which the integrals

are known. Whenever it is possible to express the integrand in any of the known forms

(which we call standard forms), the final solution becomes a matter of recognition and

inspection.

Remark: It is important to remember that in the integral
Ð
f ðxÞdx, the variable in the integrand

“f (x)” and in the differential “dx”must be same (Here it is “x” in both). Thus,
Ð
cos y dx cannot

be evaluated as it stands. It would be necessary, if possible, to express cos y as a function of x.

Any other letter may be used to represent the independent variable besides x. Thus,
Ð
t2dt

indicates that t2 is to be integrated (wherein t is the independent variable), and we need to

integrate it with respect to t (which appears in dt).

Note: Integration has one advantage that the result can always be checked by differen-

tiation. If the function obtained by integration is differentiated, we should get back the

original function.

1.2 USEFUL SYMBOLS, TERMS, AND PHRASES FREQUENTLY NEEDED

TABLE 1.1 Useful Symbols, Terms, and Phrases Frequently Needed

Symbols/Terms/Phrases Meaning

f (x) in
Ð
f ðxÞdx Integrand

The expression f (x)dx in
Ð
f ðxÞdx The element of integrationÐ

f ðxÞdx Integral of f (x) with respect to x. Here, x in “dx” is the

variable of integration

Integrate Find the indefinite integral (i.e., find an antiderivative and add

an arbitrary constant to it)a

An integral of f (x) A function �(x), such that �0(x)¼ f (x)

Integration The process of finding the integral

Constant of integration An arbitrary real number denoted by “c” (or any other

symbol) and considered as a constant.

aThe term integration also stands for the process of computing the definite integral of f(x), to be studied in Chapter 5.
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1.3 TABLE(S) OF DERIVATIVES AND THEIR CORRESPONDING

INTEGRALS

From the formulas of derivatives of functions, we can write down directly the corresponding

formulas for integrals. The formulas for integrals of the important functions given on the right-

hand side of the Table 1.2a are referred to as standard formulas which will be used to find

integrals of other (similar) functions.

Remark (1): We make two comments about formula (2) mentioned in Table 1.2a.

(i) It is meant to include the case when n¼ 0, that is,ð
x0dx ¼

ð
1dx ¼ xþ c

(ii) Since no interval is specified, the conclusion is understood to be valid for any interval

on which xn is defined. In particular, if n< 0, we must exclude any interval containing

the origin. (Thus,
Ð
x�3dx ¼ ðx�2=� 2Þ ¼ �ð1=2x2Þ, which is valid in any interval not

containing zero.)

Remark (2): Refer to formula (5) mentioned in Table 1.2a. We have to be careful when

considering functions whose domain is not the whole real line. For instance, when we say

d=dx logexð Þ ¼ 1=x; it is obvious that in this equality x 6¼ 0. However, it is important to

remember that, logex is defined only for positive x.(5)

TABLE 1.2a Table of Derivatives and Corresponding Integrals

S. No.

Differentiation Formulas Already

Known to us
d

dx
f ðxÞ½ � ¼ f 0ðxÞ

Corresponding Formulas for IntegralsÐ
f 0ðxÞdx ¼ f ðxÞ þ c

(Antiderivative with Arbitrary Constants)

1.
d

dx
xnð Þ ¼ n xn�1, n2R

ð
nxn�1dx ¼ xn þ c, n2R

2.
d

dx

xnþ1

nþ 1

� �
¼ xn, n 6¼�1

ð
xndx ¼ xnþ1

nþ 1
þ c; n 6¼ �1, n2R.

This form is more useful

3.
d

dx
exð Þ ¼ ex

ð
exdx ¼ ex þ c

4.
d

dx
axð Þ ¼ ax � logea ða > 0Þ

or
d

dx

ax

logea

� �
¼ ax ða > 0Þ

ð
ax � logea dx ¼ ax þ c ða > 0Þ

)
ð
ax dx ¼ ax

logea
þ c

5.
d

dx
logexð Þ ¼ 1

x
ðx > 0Þ

ð
1

x
dx ¼ logejxj þ c, x 6¼ 0�

�This formula is discussed at length in Remark (2), which follows.

(5) Recall that y¼ ex, logey¼x. Note that ex (¼y) is always a positive number. It follows that logey is defined only for

positive numbers. In fact, in any equality involving the function logex (to any base), it is assumed that log x is defined only

for positive values of x.
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In view of the above, the derivative of logexmust also be considered only for positive values

of x. Further, when we write
Ð
1=xðdxÞ ¼ logex, one must remember that in this equality the

function 1/x is to be considered only for positive values of x.

Note:Observe that, though the integrand 1/x is defined for negative values of x, it will be wrong

to say that, since 1/x is defined for all nonzero values of x, the integral of 1/x (which is logex)

may be defined for negative values of x. To overcome this situation, we write

ð
1

x
dx ¼ loge xj j; x 6¼ 0: Let us prove this:

For x> 0, we have,

d

dx
logexð Þ ¼ 1

x
;

and; for x < 0;

d

dx
logeð�xÞ½ � ¼ 1

�x
ð�1Þ ¼ 1

x

:

[Note that for x< 0, (�x)> 0]. Combining these two results, we get,

d

dx
loge xj jð Þ ¼ 1

x
; x 6¼ 0 )

ð
1

x
dx ¼ loge xj j þ c; x 6¼ 0:

From this point of view, it is not appropriate to write

ð
1

x
dx ¼ logex; x 6¼ 0: ðWhy?Þ

The correct statement is:

ð
1

x
dx ¼ logex; x > 0: ðAÞ

or

ð
1

x
dx ¼ loge xj j; x 6¼ 0 ðBÞ

Note that both the equalities at (A) and (B) above clearly indicate that logex is defined only for

positive values of x.

In solving problems involving log functions, generally the base “e” is assumed. It is

convenient and saves time and effort, both (To avoid confusion, onemay like to indicate the base

of logarithm, if necessary). Some important formulas for integrals that are directly obtained

from the derivatives of certain functions, are listed in Tables 1.2b and 1.2c.

Besides, there are certain results (formulas) for integration, which are not obtained directly

from the formulas for derivatives but obtained indirectly by applying other methods of

integration. (These methods will be discussed and developed in subsequent chapters).

Many important formulas for integration (whether obtained directly or indirectly) are

treated as standard formulas for integration, whichmeans that we can use these results towrite

the integrals of (other) similar looking functions.
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Important Note: The main problem in evaluating an integral lies in expressing the integrand

in the standard form. For this purpose, we may have to use algebraic operations and/or

trigonometric identities. For certain integrals, wemay have to change the variable of integration

by using themethod of substitution, to be studied later, in Chapters 3a and 3b. In such cases, the

element of integration is changed to a new element of integration, in which the integrand (in a

new variable) may be in the standard form. Once the integrand is expressed in the standard

TABLE 1.2b Table of Derivatives and Corresponding Integrals

S. No.

Differentiation Formulas

Already Known to us
d

dx
f ðxÞ½ � ¼ f 0ðxÞ

Corresponding Formulas for Indefinite

Integrals
Ð
f 0ðxÞdx ¼ f ðxÞ þ c

6.
d

dx
sin xð Þ ¼ cos x

Ð
cos x dx ¼ sin xþ c

7.a
d

dx
cos xð Þ ¼ �sin x

Ð ð�sin xÞdx ¼ cos xþ c

)
Ð
sin x dx ¼ �cos xþ c

8.
d

dx
tan xð Þ ¼ sec2x

Ð
sec2 x dx ¼ tan xþ c

9.a
d

dx
cot xð Þ ¼ �cosec2x

Ð ð�cosec2 xÞdx ¼ cot xþ c

)
Ð
cosec2 x dx ¼ �cot xþ c

10.
d

dx
sec xð Þ ¼ sec x � tan x Ð

sec x � tan x dx ¼ sec xþ c

11.a
d

dx
cosec xð Þ ¼ �cosec x � cot x

Ð ð�cosec x � cot xÞdx ¼ cosec xþ c

)
Ð
cosec x � cot x dx ¼ �cosec xþ c

aObserve that derivatives of trigonometric functions starting with “co,” (i.e., cos x, cot x, and cosec x) are with

negative sign. Accordingly, the corresponding integrals are also with negative sign.

TABLE 1.2c Derivatives of Inverse Trigonometric Functions and Corresponding Formulas for

Indefinite Integrals

S. No.

Differentiation Formulas

Already Known to us
d

dx
f ðxÞ½ � ¼ f 0ðxÞ

Corresponding Formulas for

Indefinite Integrals
Ð
f 0ðxÞdx ¼ f ðxÞ þ c

12.
d

dx
sin�1 x
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

d

dx
cos�1 x
� � ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

ð
dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼
sin�1 xþ c

or

�cos�1 xþ c

8><
>:

13. d

dx
tan�1 x
� � ¼ 1

1þ x2

d

dx
cot�1 x
� � ¼ �1

1þ x2

ð
dx

1þ x2
¼

tan�1 xþ c

or

�cot�1 xþ c

8><
>:

14.
d

dx
sec�1 x
� � ¼ 1

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
d

dx
cosec�1 x
� � ¼ �1

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

ð
dx

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ¼
sec�1 xþ c

or

�cosec�1 xþ c

8><
>:
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form, evaluating the integral depends only on recognizing the form and remembering the table

of integrals.

Remark: Thus, integration as such is not at all difficult. The real difficulty lies in applying the

necessary algebraic operations and using trigonometric identities needed for converting the

integrand to standard form(s).

1.3.1 Table of Integrals of tan x, cot x, sec x, and cosec x

Now consider Table 1.2b.

Note: Table 1.2b does not include the integrals of tan x, cot x, sec x, and cosec x. The integrals

of these functions will be established by using the method of substitution (to be studied later in

Chapter 3a). However, we list below these results for convenience.

1.3.2 Results for the Integrals of tan x, cot x, sec x, and cosec x

(i)
Ð
tan x dx ¼ loge sec xj j þ c ¼ logðsec xÞ þ c

(ii)
Ð
cot x dx ¼ loge sin xj j þ c ¼ logðsin xÞ þ c

(iii)
Ð
sec x dx ¼ logðsec xþ tan xÞ þ c ¼ log tan x

2
þ p

4

� �� �þ c

(iv)
Ð
cosec x dx ¼ logðcosec x� cot xÞ þ c ¼ log tan x

2

� �þ c

These four integrals are also treated as standard integrals.

Now, we consider Table 1.2c.

Remark: Derivatives of inverse circular functions are certain algebraic functions. In

fact, there are only three types of algebraic functions whose integrals are inverse circular

functions.

1.4 INTEGRATION OF CERTAIN COMBINATIONS OF FUNCTIONS

There are some theorems of differentiation that have their counterparts in integration. These

theorems state the properties of “indefinite integrals” and can be easily proved using the

definition of antiderivative. Almost every theorem is proved with the help of differentiation,

thus stressing the concept of antidifferentiation. To integrate a given function, we shall need

these theorems of integration, in addition to the above standard formulas. We give below these

results without proof.

(a)
Ð
f ðxÞ þ gðxÞ½ �dx ¼ Ð

f ðxÞdxþ Ð
gðxÞdx

In words, “an integral of the sum of two functions, is equal to the sum of integrals of

these two functions”. The above rule can be extended to the sum of a finite number of

functions. The result also holds good, if the sum is replaced by the difference. Hence,

integration can be extended to the sum or difference of a finite number of functions.

(b)
Ð
c � f ðxÞdx ¼ c � Ð f ðxÞdx; where c is a real number:
Note that result (b) follows from result (a).
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Thus, a constant can be taken out of the integral sign. The theorem can also be

extended as follows:

Corollary:ð
k1f ðxÞ þ k2gðxÞ½ �dx ¼ k1

ð
f ðxÞdxþ k2

ð
gðxÞdx; where k1 and k2 are real numbers

(c) If

ð
f ðxÞdx ¼ FðxÞ þ c

then

ð
f ðxþ bÞdx ¼ Fðxþ bÞ þ c:

Example: ð
cosðxþ 3Þdx ¼ sinðxþ 3Þ þ c

(d) If

ð
f ðxÞdx ¼ FðxÞ þ c;

then

ð
f ðaxþ bÞdx ¼ 1

a
Fðaxþ bÞ þ c:

This result is easily proved, by differentiating both the sides.

Proof: It is given that
Ð
f ðxÞdx ¼ FðxÞ þ c

) F0ðxÞ ¼ f ðxÞ ðBy definitionÞ

To prove the desired result, we will show that the derivatives of both the sides give the same

function.

Now consider,

LHS:
d

dx

ð
f ðaxþ bÞdx

� �
¼ f ðaxþ bÞð6Þ

RHS:
d

dx

1

a
Fðaxþ bÞ þ c

� �
¼ 1

a
F0ðaxþ bÞ � a

¼ F0ðaxþ bÞ
¼ f ðaxþ bÞ

) L:H:S: ¼ R:H:S:

Note: This result is very useful since it offers a new set of “standard forms of integrals”,

wherein “x” is replaced by a linear function (axþ b). Later on, we will show that this result is

more conveniently proved by the method of substitution, to be studied in Chapter 3a.

Let us now evaluate the integrals of some functions using the above theorems, and the standard

formulas given in Tables 1.2a–1.2c.

(6) We know that the process of differentiation is the inverse of integration (and vice versa). Hence, differentiation nullifies

the integration, and we get the integrand as the result. (Detailed explanation on this is given in Chapter 6a).
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Examples: We can write,

(i)

ð
sin ð5xþ 7Þdx ¼ � 1

5
cos ð5xþ 7Þ þ c

)

ð
sin x dx ¼ �cos xþ c

� �

Similarly,

(ii)
ð
e3x�2dx ¼ 1

3
e3x�2 þ c

(iii)

ð
sin ð2xþ 1Þ þ x� 2

x
� 4x

� �
dx

¼
ð
sinð2xþ 1Þdxþ

ð
1dx� 2

ð
1

x
dx�

ð
4x dx

¼ � 1

2
cosð2xþ 1Þ þ x� 2 logex� 4x

loge4
þ c Ans:

(iv)

ð
xðxþ 3Þ � 5 sec2x� 3e6x�1
	 


¼
ð
x2dxþ 3

ð
x dx� 5

ð
sec2 x dx� 3

ð
e6x�1dx

¼ x3

3
þ 3x2

2
� 5 tan x� 3e6x�1

6
þ c

¼ x3

3
þ 3

2
x2 � 5 tan x� 1

2
e6x�1 þ c Ans:

(v)
ð
xþ 2

ffiffiffi
x

p þ 7ffiffiffi
x

p dx ¼ I ðsayÞ

) I ¼
ð
x1=2 þ 2þ 7 � x�1=2
� �

dx

¼ x3=2

3=2
þ 2xþ 7

x1=2

1=2
þ c

¼ 2

3
x3=2 þ 2xþ 14x1=2 þ c Ans:

Here, the integrand is in the form of a ratio, which can be easily reduced to a sum

of functions in the standard form and hence their antiderivatives can be written, using

the tables.

(vi)

ð
3xþ 1

x� 3
dx ¼

ð
3x� 9þ 9þ 1

x� 3
dx

¼
ð
3ðx� 3Þ þ 10

x� 3
dx

¼ 3

ð
dxþ

ð
10

x� 3
dx

¼ 3xþ 10 logeðx� 3Þ þ c Ans:
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Here again, the integrand is in the form of a ratio, which can be easily reduced to the

standard form. If the degree of numerator and denominator is same, then creating

the same factor as the denominator (as shown above) is a quicker method than

actual division.

(vii)

ð
ð2xþ 3Þ ffiffiffiffiffiffiffiffiffiffiffi

x� 4
p

dx ¼ I ðsayÞ

) I ¼
ð
ð2x� 8þ 11Þ ffiffiffiffiffiffiffiffiffiffiffi

x� 4
p

dx

¼
ð
2ðx� 4Þ þ 11½ � � ffiffiffiffiffiffiffiffiffiffiffi

x� 4
p

dx

¼ 2

ð
ðx� 4Þ3=2dxþ 11

ð
ðx� 4Þ1=2dx

¼ 2 � ðx� 4Þ5=2
5=2

þ 11 � ðx� 4Þ3=2
3=2

¼ 4

5
ðx� 4Þ5=2 þ 22

3
ðx� 4Þ3=2 þ c Ans:

Here, the integrand is in the form of a product, which can be easily reduced to the

standard forms, as indicated above.

In solving the above problems, it has been possible to evaluate the integrals in the form of

quotients and products of functions, simply because the integrands can be converted to

standard forms, by applying certain algebraic operations. In fact, there are different methods

for handling integrals involving quotients and products and so on. For example, consider the

following integrals.

(a)

ð
ð3x2 � 5Þ100x dx

(b)

ð
sin3 x cos x dx

(c)

ð
sin x

1þ sin x
dx

(d)

ð
1� cos 2x

1þ cos 2x
dx

(e)

ð
x2sin x dx

(f)

ð
3x� 4

x2 � 3xþ 2
dx

The above integrals are not in the standard form(s), but they can be reduced to the standard

forms, by using algebraic operations, trigonometric identities, and some special methods to be

studied later.

Note:We emphasize that the main problem in evaluating integrals lies in converting the given

integrals into standard forms. Some integrands can be reduced to standard forms by using
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algebraic operations and trigonometric identities. For instance, consider
Ð
sin2 x dx. Here,

the integrand sin2x is not in the standard form. But, we know the trigonometric identity

cos 2x¼ 1� 2 sin2x. ) sin2x¼ (1� cos 2x)/2.

Thus,
Ð
sin2x dx ¼ Ð ðð1� cos 2xÞ=2Þdx ¼ 1=2

Ð
dx� ð1=2Þ Ð cos 2x dx; where the inte-

grands are in the standard form and so their (indefinite) integrals can bewritten easily. Note that,

here we could express the integrand in a standard form by using a trigonometric identity.

Similarly, we can show that

ð
sin x

1þ sin x
dx ¼

ð
ðsec x � tan x� sec2 xþ 1Þdx

and

ð
1� cos 2x

1þ cos 2x
dx ¼

ð
ðsec2x� 1Þdx

wherein, the integrands on the right-hand side are in the standard form(s). A good number of

such integrals, involving trigonometric functions, are evaluated in Chapter 2, using trigono-

metric identities and algebraic operations. Naturally, the variable of integration remains

unchanged in these operations.

Now, consider the integral
Ð
f ðxÞdx ¼ Ð

sin3x cos x dx. Here, again the integrand is not in

the standard form. Moreover, it is not possible to convert it to a standard form by using

algebraic operations and/or trigonometric identities. However, it is possible to convert it into a

standard form as follows:

We put sin x¼ t and differentiate both sides of this equation with respect to t to obtain

cos x dx¼ dt. Now, by using these relations in the expression for the element of integration,

we get
Ð
sin3x cos x dx ¼ Ð

t3dt, which can be easily evaluated. We have

ð
t3dt ¼ t4

4
þ c ¼ sin4 x

4
þ c

Note that, in the process of converting the above integrand into a standard form, we had to

change the variable of integration from x to t. This method is known as the method of

substitution which is to be studied later.

The method of substitution is a very useful method for integration, associated with the

change of variable of integration. Besides these there are other methods of integration. In this

book, our interest is restricted to study the following methods of integration.

(a) Integration of certain trigonometric functions by using algebraic operations and/or

trigonometric identities.

(b) Method of substitution. This method involves the change of variable.

(c) Integration by parts. This method is applicable for integrating product(s) of two

different functions. It is also used for evaluating integrals of powers of trigonometric

functions (reduction formula). Finer details of this method will be appreciated only

while solving problems in Chapters 4a and 4b

(d) Method of integration by partial fractions. For integrating rational functions likeÐ ð3x� 4Þ=ðx2 � 3xþ 2Þdx.

The purpose of each method is to reduce the integrad into the standard form.
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Before going for discussions about the above methods of integration, it is useful to realize

and appreciate the following points related to the processes of differentiation and integration, in

connection with the similarities and differences in these operations.

1.5 COMPARISON BETWEEN THE OPERATIONS OF DIFFERENTIATION

AND INTEGRATION

(1) Both operate on functions.

(2) Both satisfy the property of linearity, that is,

(i)
d

dx
k1f1ðxÞ þ k2f2ðxÞ½ � ¼ k1

d

dx
f1ðxÞ þ k2

d

dx
f2ðxÞ, where k1 and k2 are constants.

(ii)

ð
k1f1ðxÞ þ k2f2ðxÞ½ �dx ¼ k1

ð
f1ðxÞdxþ k2

ð
f2ðxÞdx, wherek1and k2 are constants.

(3) We have seen that all functions are not differentiable. Similarly, all functions are not

integrable. We will learn about this later in Chapter 5.

(4) The derivative of a function (when it exists) is a unique function. The integral of a

function is not so.However, integrals are unique up to an additive constant, that is, any

two integrals of a function differ by a constant.

(5) When a polynomial function P is differentiated, the result is a polynomial whose

degree is one less than the degree ofP.When a polynomial functionP is integrated, the

result is a polynomial whose degree is one more than that of P.

(6) We can speak of the derivative at a point. We do not speak of an integral at a point. We

speak of an integral over an interval on which the integral is defined. (This will be seen

in the Chapter 5).

(7) The derivative of a function has a geometrical meaning, namely the slope of the

tangent to the corresponding curve at a point. Similarly, the indefinite integral of a

function represents geometrically, a family of curves placed parallel to each other

having parallel tangents at the points of intersection of the curve by the family of lines

perpendicular to the axis representing the variable of integration. (Definite integral has

a geometrical meaning as an area under a curve).

(8) The derivative is used to find some physical quantities such as the velocity of a moving

particle, when the distance traversed at any time t is known. Similarly, the integral is

used in calculating the distance traversed, when the velocity at time t is known.

(9) Differentiation is the process involving limits. So is the process of integration, as

will be seen in Chapter 5. Both processes deal with situations where the quantities

vary.

(10) The process of differentiation and integration are inverses of each other as will be clear

in Chapter 6a.
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