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Probability

SECTION 1 BOREL’S NORMAL NUMBER THEOREM

Although sufficient for the development of many interesting topics in mathe-
matical probability, the theory of discrete probability spaces’ does not go far
enough for the rigorous treatment of problems of two kinds: those involving
an infinitely repeated operation, as an infinite sequence of tosses of a coin, and
those involving an infinitely fine operation, as the random drawing of a point
from a segment. A mathematically complete development of probability, based
on the theory of measure, puts these two classes of problem on the same footing,
and as an introduction to measure-theoretic probability it is the purpose of the
present section to show by example why this should be so.

The Unit Interval

The project is to construct simultaneously a model for the random drawing of
a point from a segment and a model for an infinite sequence of tosses of a
coin. The notions of independence and expected value, familiar in the discrete
theory, will have analogues here, and some of the terminology of the discrete
theory will be used in an informal way to motivate the development. The formal
mathematics, however, which involves only such notions as the length of an
interval and the Riemann integral of a step function, will be entirely rigorous.
All the ideas will reappear later in more general form.

TFor the discrete theory, presupposed here, see for example the first half of Volume 1 of FELLER.
(Names in capital letters refer to the bibliography on p. 581.)

Probability and Measure, Anniversary Edition. Patrick Billingsley.
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Let @ denote the unit interval (0, 1]; to be definite, take intervals open on
the left and closed on the right. Let w denote the generic point of 2. Denote
the length of an interval I = (a,b] by |I|:

| =|(a,b]| =b —a. (1.1)

If

A=t =Ud@.b1l, (1.2)
i=1 i=1

where the intervals I; = (a;, b;] are disjoint [A3]" and are contained in 2, assign
to A the probability

P@) =) il =) (b —ap. (1.3)
i=1 i=1

It is important to understand that in this section P(A) is defined only if A is
a finite disjoint union of subintervals of (0, 1]—never for sets A of any other
kind.

If A and B are two such finite disjoint unions of intervals, and if A and B
are disjoint, then A U B is a finite disjoint union of intervals and

P(AUB) = P(A) + P(B). (1.4)

This relation, which is certainly obvious intuitively, is a consequence of the
additivity of the Riemann integral:

1 1 1
/O(f<w>+g<w)>dw=f0 f(w)dw+f0 (@) do. (15)

If f(w) is a step function taking value ¢; in the interval (xj_1,x;], where 0 =
Xo < X1 < --- <x; = 1, then its integral in the sense of Riemann has the value

1 k
fo fl@do=Y cj(x;—x_1). (1.6)
i=1

If f =14 and g = I are the indicators [A5] of A and B, then (1.4) follows
from (1.5) and (1.6), provided A and B are disjoint. This also shows that the
definition (1.3) is unambiguous—note that A will have many representations of

TA notation [An] refers to paragraph n of the appendix beginning on p. 571; this is a collection of
mathematical definitions and facts required in the text.
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the form (1.2) because (a,b] U (b, c] = (a, c]. Later these facts will be derived
anew from the general theory of Lebesgue integration.”

According to the usual models, if a radioactive substance has emitted a
single a-particle during a unit interval of time, or if a single telephone call has
arrived at an exchange during a unit interval of time, then the instant at which
the emission or the arrival occurred is random in the sense that it lies in (1.2)
with probability (1.3). Thus (1.3) is the starting place for the description of a
point drawn at random from the unit interval: €2 is regarded as a sample space,
and the set (1.2) is identified with the event that the random point lies in it.

The definition (1.3) is also the starting point for a mathematical represen-
tation of an infinite sequence of tosses of a coin. With each w associate its
nonterminating dyadic expansion

00 d,
=Y 2(“’) = d{(0)d () .. .. (1.7)

n=1

each d,(w) being 0 or 1 [A31]. Thus

(di(), dr(®), ...) (1.8)

is the sequence of binary digits in the expansion of w. For definiteness, a point
such as % =.1000... =.0111..., which has two expansions, takes the nonter-
minating one; 1 takes the expansion .111....

Graph of d; () Graph of d, (w)

Imagine now a coin with faces labeled 1 and O instead of the usual heads
and tails. If w is drawn at random, then (1.8) behaves as if it resulted from an
infinite sequence of tosses of a coin. To see this, consider first the set of w for
which d;(w) = u; for i =1,...,n, where uy,...,u, is a sequence of 0’s and
I’s. Such an w satisfies

Z%<w§2%+ Z 5

TPassages in small type concern side issues and technical matters, but their contents are sometimes
required later.
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where the extreme values of w correspond to the case d;(w) = 0 for i > n and
the case d;(w) =1 for i > n. The second case can be achieved, but since the
binary expansions represented by the d;(w) are nonterminating—do not end in
0’s—the first cannot, and o must actually exceed ) ;_; u;/ 2¢. Thus

n n
. uj up 1
[w: d,-(a)):u,-,l:l,...,n]:(E P —l.—i——ni|. (1.9)
i=1 2 i=1 2 2

The interval here is open on the left and closed on the right precisely because
the expansion (1.7) is the nonterminating one. In the model for coin tossing the
set (1.9) represents the event that the first n tosses give the outcomes uy, ..., u,
in sequence. By (1.3) and (1.9),

Plw: d; (w) = u;, i=1,...,n]=2in, (1.10)
which is what probabilistic intuition requires.
| 0 ! 1 |
| 00 | 01 | 10 | 11 |

{000 , 001 , 010 ; 011 , 100 , 101 |, 110 , 111 |

Decompositions by dyadic intervals

The intervals (1.9) are called dyadic intervals, the endpoints being adjacent
dyadic rationals k /2" and (k + 1)/2" with the same denominator, and 7 is the
rank or order of the interval. For each n the 2" dyadic intervals of rank n
decompose or partition the unit interval. In the passage from the partition for n
to that for n+1, each interval (1.9) is split into two parts of equal length, a left
half on which d,+(w) is 0 and a right half on which d,, () is 1. For u = 0
and for u = 1, the set [w: d,+1(w) = u] is thus a disjoint union of 2" intervals
of length 1/2"*! and hence has probability %: Plw: d,(w) = u] = % for all n.

Note that d; (w) is constant over each dyadic interval of rank i and that for
n > i each dyadic interval of rank n is entirely contained in a single dyadic
interval of rank i. Therefore, d; (w) is constant over each dyadic interval of rank
nifi <n.

The probabilities of various familiar events can be written down immedi-
ately. The sum Z?:l d; (w) is the number of 1’s among d;(w), . . .,d,(w), to be
thought of as the number of heads in n tosses of a fair coin. The usual binomial
formula is

P|:a): Zdi(w)zk:|:<’]:) Zi 0<k<n. (1.11)
i=1

D



©

SECTION 1 BOREL’S NORMAL NUMBER THEOREM

This follows from the definitions: The set on the left in (1.11) is the union of
those intervals (1.9) corresponding to sequences uy, . .., u, containing k I’s and
n—k 0’s; each such interval has length 1/2" by (1.10) and there are (}) of them,
and so (1.11) follows from (1.3).

The functions d, (w) can be looked at in two ways. Fixing n and letting w
vary gives a real function d,, = d,(-) on the unit interval. Fixing @ and letting
n vary gives the sequence (1.8) of 0’s and 1’s. The probabilities (1.10) and
(1.11) involve only finitely many of the components d;(w). The interest here,
however, will center mainly on properties of the entire sequence (1.8). It will
be seen that the mathematical properties of this sequence mirror the properties
to be expected of a coin-tossing process that continues forever.

As the expansion (1.7) is the nonterminating one, there is the defect that
for no w is (1.8) the sequence (1, 0, 0, 0,...), for example. It seems clear
that the chance should be 0 for the coin to turn up heads on the first toss and
tails forever after, so that the absence of (1, 0, 0, O,...)—or of any other
single sequence—should not matter. See on this point the additional remarks
immediately preceding Theorem 1.2.

The Weak Law of Large Numbers

In studying the connection with coin tossing it is instructive to begin with a
result that can, in fact, be treated within the framework of discrete probability,
namely, the weak law of large numbers:

THEOREM 1.1
For each €,

lim P |:a):

n—o0

1§5d() 1
nizllw 2

Interpreted probabilistically, (1.12) says that if n is large, then there is small
probability that the fraction or relative frequency of heads in n tosses will
deviate much from % an idea lying at the base of the frequency conception of
probability. As a statement about the structure of the real numbers, (1.12) is
also interesting arithmetically.

Since d; (w) is constant over each dyadic interval of rank n if i < n, the sum
Z?:l d; (w) is also constant over each dyadic interval of rank n. The set in (1.12)
is therefore the union of certain of the intervals (1.9), and so its probability is
well defined by (1.3).

With the Riemann integral in the role of expected value, the usual application

of Chevyshev’s inequality will lead to a proof of (1.12). The argument becomes

ze}:& (1.12)

TThe standard € and § of analysis will always be understood to be positive.

D

5



6 PROBABILITY

simpler if the d,(w) are replaced by the Rademacher functions,

1 ifd =1,
(@) = 2dy (@) —1 ] 71 (@) =1 (1.13)
-1 ifd,(w) =0.
L | L |
0 1 0 1
Graph of ry (w) Graph of r; (w)
Consider the partial sums
Su(@) =Y ri(e). (1.14)
i=1
Since Z?:l di(w) = (sp(w) +n)/2, (1.12) with € /2 in place of € is the same
thing as
. 1
lim P [a): —sy(w)| = 6] =0. (1.15)
n—o00 n

This is the form in which the theorem will be proved.

The Rademacher functions have themselves a direct probabilistic meaning.
If a coin is tossed successively, and if a particle starting from the origin performs
a random walk on the real line by successively moving one unit in the positive or
negative direction according as the coin falls heads or tails, then r; (w) represents
the distance it moves on the ith step and s, (w) represents its position after n
steps. There is also the gambling interpretation: If a gambler bets one dollar,
say, on each toss of the coin, r;(w) represents his gain or loss on the ith play
and s, (w) represents his gain or loss in n plays.

Each dyadic interval of rank i —1 splits into two dyadic intervals of rank i;
ri(w) has value —1 on one of these and value +1 on the other. Thus r;(w) is
—1 on a set of intervals of total length % and +1 on a set of total length %

Hence fol ri(w)dw = 0 by (1.6), and

1
fsﬁ@dw:O (1.16)
0

by (1.5). If the integral is viewed as an expected value, then (1.16) says that the
mean position after n steps of a random walk is O.
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Suppose that i < j. On a dyadic interval of rank j — 1, r; (w) is constant and
ri (w) has value —1 on the left half and +1 on the right. The product r; (w)r; (w)
therefore integrates to 0 over each of the dyadic intervals of rank j—1, and so

1
/ ri(@rj(@)do =0, i#]. (1.17)
0

This corresponds to the fact that independent random variables are uncorrelated.
Since rl.2 (w) = 1, expanding the square of the sum (1.14) shows that

1
/ st (w)dw = n. (1.18)
0

This corresponds to the fact that the variances of independent random variables
add. Of course (1.16), (1.17), and (1.18) stand on their own, in no way depend
on any probabilistic interpretation.

Applying Chebyshev’s inequality in a formal way to the probability in (1.15)
now leads to

1! 1
Plw: |sp(w)| > ne] < ﬁf sp(@)do = —. (1.19)
n<e= Jo ne
The following lemma justifies the inequality.
Let f be a step function as in (1.6): f(w) = ¢; for w € (xj_1,x;], where

O=xp<- - <x=1.

Lemma. If f is a nonnegative step function, then [w: f(w) > «] is for « >0 a
finite union of intervals and

1
Plo: f(w) > o] < é/ f(w)dw. (1.20)
0

J The shaded region

has area
aPlw: f(w) 2 o]

0 Xy Xy X3 x, 1

Proof. The set in question is the union of the intervals (xj_,x;] for
which ¢; > a. If " denotes summation over those j satisfying ¢; > o, then

D
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Plo: f(w) > o] = Z/(x_,- —xj—1) by the definition (1.3). On the other hand,
since the ¢; are all nonnegative by hypothesis, (1.6) gives

1 k 1
./o fw)dow = ch(xj —Xj-1) > Z ¢j (X — Xj-1)
j=1

/
> Z a(xj —Xjfl).
Hence (1.20). |

Taking o = n’e” and f(w) = s,%(a)) in (1.20) gives (1.19). Clearly, (1.19)
implies (1.15), and as already observed, this in turn implies (1.12).

The Strong Law of Large Numbers

It is possible with a minimum of technical apparatus to prove a stronger result
that cannot even be formulated in the discrete theory of probability. Consider
the set

1 & 1
N=|w: lim - di(w)=—- 1.21
[w ”ggong () 2} (1.21)

consisting of those @ for which the asymptotic relative frequency’ of 1 in the
sequence (1.8) is % The points in (1.21) are called normal numbers. The idea
is to show that a real number w drawn at random from the unit interval is
“practically certain” to be normal, or that there is “practical certainty” that 1
occurs in the sequence (1.8) of tosses with asymptotic relative frequency % It
is impossible at this stage to prove that P(N) = 1, because N is not a finite
union of intervals and so has been assigned no probability. But the notion of
“practical certainty” can be formalized in the following way.

Define a subset A of 2 to be negligible* if for each positive € there exists a
finite or countable® collection I}, I, . . . of intervals (they may overlap) satisfying

AC Ulk (1.22)
k

TThe frequency of 1 (the number of occurrences of it) among d;(w),...,d,(w) is Z:’_l d; (w), the
relative frequency is n=!' Y"" | d;(w), and the asymptotic relative frequency is the limit in (1.21).
*The term negligible is introduced for the purposes of this section only. The negligible sets will
reappear later as the sets of Lebesgue measure 0.

8 Countably infinite is unambiguous. Countable will mean finite or countably infinite, although it will
sometimes for emphasis be expanded as here to finite or countable.
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and

> Ikl <e. (1.23)
k

A negligible set is one that can be covered by intervals the total sum of
whose lengths can be made arbitrarily small. If P(A) is assigned to such an
A in any reasonable way, then for the I; of (1.22) and (1.23) it ought to be
true that P(A) < ), P(Ix) = ) ; lIk| < €, and hence P(A) ought to be 0. Even
without any assignment of probability at all, the definition of negligibility can
serve as it stands as an explication of “practical impossibility” and “practical
certainty”’: Regard it as practically impossible that the random « will lie in A
if A is negligible, and regard it as practically certain that w will lie in A if its
complement A [Al] is negligible.

Although the fact plays no role in the next proof, for an understanding of
negligibility observe first that a finite or countable union of negligible sets is neg-
ligible. Indeed, suppose that Aj, A, . .. are negligible. Given €, for each n choose
intervals 1,1, 1,2, ... such that A, C |J, I and ), || < €/2". All the inter-
vals I taken together form a countable collection covering | J, A,, and their
lengths add to ), >, [l < )_, €/2" = €. Therefore, | J, A, is negligible.

A set consisting of a single point is clearly negligible, and so every countable
set is also negligible. The rationals for example form a negligible set. In the
coin-tossing model, a single point of the unit interval has the role of a single
sequence of 0’s and 1’s, or of a single sequence of heads and tails. It corresponds
with intuition that it should be “practically impossible” to toss a coin infinitely
often and realize any one particular infinite sequence set down in advance. It is
for this reason not a real shortcoming of the model that for no w is (1.8) the
sequence (1, 0, 0, 0,...). In fact, since a countable set is negligible, it is not a
shortcoming that (1.8) is never one of the countably many sequences that end
in 0’s.

THEOREM 1.2
The set of normal numbers has negligible complement.

This is Borel’s normal number theorem,’ a special case of the strong law
of large numbers. Like Theorem 1.1, it is of arithmetic as well as probabilistic
interest.

The set N¢ is not countable: Consider a point w for which (d|(w), d>(w), . . .)
= (1,1,u3, 1,1, ugq, ...)—that is, a point for which d;(w) = 1 unless i is a mul-
tiple of 3. Since n~! Yo di(w) > %, such a point cannot be normal. But there

are uncountably many such points, one for each infinite sequence (u3, g, .. .)

TEmile Borel: Sur les probabilités dénombrables et leurs applications arithmétiques, Circ. Mat. d.
Palermo, 29 (1909), 247-271. See DUDLEY for excellent historical notes on analysis and probability.
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of 0’s and 1’s. Thus one cannot prove N negligible by proving it countable,
and a deeper argument is required.

Proof of Theorem 1.2. Clearly (1.21) and
o1
N = [w: lim —s,(w) = O:| (1.24)
n<oo n

define the same set (see (1.14)). To prove N¢ negligible requires constructing
coverings that satisfy (1.22) and (1.23) for A = N°. The construction makes use
of the inequality.

1
Plw; |sy(w)| > nel < % sHw) do. (1.25)
nve- Jo
This follows by the same argument that leads to the inequality in (1.19)—it is
only necessary to take f(w) = s;‘ (w) and @ = n*e* in (1.20). As the integral in
(1.25) will be shown to have order n2, the inequality is stronger than (1.19).
The integrand on the right in (1.25) is

si(@) =Y ra(@)rp(@)ry (@)rs(w), (1.26)

where the four indices range independently from 1 to n. Depending on how the
indices match up, each term in this sum reduces to one of the following five
forms, where in each case the indices are now distinct:

i) =1,
r,?(a))rf(a)) =1,
rH(w)rj(@)r (@) = rj () (), (1.27)

r2(w)rj () = ri(0)r;(®),

ri(@)rj(@)ri(w)r(w).

If, for example, k exceeds i, j, and /, then the last product in (1.27) integrates
to 0 over each dyadic interval of rank k—1, because r; (w)rj(w)r;(w) is constant
there, while ¢ (w) is —1 on the left half and +1 on the right. Adding over the
dyadic intervals of rank k—1 gives

1
f ri(@)rj(@)r(w)r(w)dw = 0.
0

This holds whenever the four indices are distinct. From this and (1.17) it follows
that the last three forms in (1.27) integrate to 0 over the unit interval; of course,
the first two forms integrate to 1.

The number of occurrences in the sum (1.26) of the first form in (1.27) is n.
The number of occurrences of the second form is 3n(n — 1), because there are
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n choices for the o in (1.26), three ways to match it with 8, y, or §, and n—1
choices for the value common to the remaining two indices. A term-by-term
integration of (1.26) therefore gives

1
f sHw)dw =n+3n(n — 1) < 3n?, (1.28)
0

and it follows by (1.25) that

o

Fix a positive sequence {e€,} going to O slowly enough that the series
" 6;411 ~2 converges (take €, = n~!/3, for example). If A, = [w: |n"'s, ()| >
€n], then P(A,) <3¢, *n=2 by (1.29), and so Y, P(A,) < oo.

If, for some m, w lies in A{, for all n greater than or equal to m, then
In"s,(w)| < €, for n > m, and it follows that @ is normal because €, — 0
(see (1.24)). In other words, for each m, ﬂff’:m A? C N, which is the same thing
as N¢ C |,—,, An. This last relation leads to the required covering: Given e,
choose m so that > > P(A,) <e. Now A, is a finite disjoint union |J, i
of intervals with Y, || = P(A,), and therefore | J7- A, is a countable
union (J7Z, U, I of intervals (not disjoint, but that does not matter) with
Yoo > Mkl =Y, P(A,) < €. The intervals Ly (n > m,k > 1) provide

a covering of N¢ of the kind the definition of negligibility calls for. |

> e:| <2 (1.29)

1
n" @) n2e#

Strong Law Versus Weak

Theorem 1.2 is stronger than Theorem 1.1. A consideration of the forms of the
two propositions will show that the strong law goes far beyond the weak law.

For each n let f,, (w) be a step function on the unit interval, and consider the
relation

nl(i_rgloP[w: fu(@)| >€]l=0 (1.30)

together with the set
[@: lim f,(w) =0]. (1.31)
n<—0o0

If f,(w) = n"'s,(w), then (1.30) reduces to the weak law (1.15), and (1.31)
coincides with the set (1.24) of normal numbers. According to a general result
proved below (Theorem 5.2(ii)), whatever the step functions f, (w) may be, if
the set (1.31) has negligible complement, then (1.30) holds for each positive €.
For this reason, a proof of Theorem 1.2 is automatically a proof of Theorem 1.1.

The converse, however, fails: There exist step functions f, (w) that satisfy
(1.30) for each positive € but for which (1.30) fails to have negligible comple-
ment (Example 5.4). For this reason, a proof of Theorem 1.1 is not automatically

D
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a proof of Theorem 1.2; the latter lies deeper and its proof is correspondingly
more complex.

Length

According to Theorem 1.2, the complement N¢ of the set of normal num-
bers is negligible. What if N itself were negligible? It would then follow that
(0,1] = N U N¢ was negligible as well, which would disqualify negligibility as
an explication of “practical impossibility,” as a stand-in for “probability zero.”
The proof below of the “obvious” fact that an interval of positive length is
not negligible (Theorem 1.3(ii)), while simple enough, does involve the most
fundamental properties of the real number system.

Consider an interval I = (a,b] of length |[I| = b — a; see (1.1). Consider
also a finite or infinite sequence of intervals Iy = (ax, br]. While each of these
intervals is bounded, they need not be subintervals of (0, 1].

THEOREM 1.3

(i) If [, Ix C I, and the I are disjoint, then ) _, [Ix| < |I].

(i) If I C U, Ik (the I need not be disjoint), then |I| < >, ||
(iii) If I = (U, Ir, and the I; are disjoint, then |I]| =), |I|.

Proof. Of course (iii) follows from (i) and (ii).

Proof of (i): Finite case. Suppose there are n intervals. The result being
obvious for n = 1, assume that it holds for n—1. If a, is the largest among
ai,...,a, (this is just a matter of notation), then Uz;i(ak, by] C (a,a,], so that
ZZ;}(bk — ax) < a, — a by the induction hypothesis, and hence > ;_,(bx —
ay) < (a, —a) + (b, —ay) <b —a.

Infinite case. If there are infinitely many intervals, each finite subcollection
satisfies the hypotheses of (i), and so Y ;_, (bx — ax) < b — a by the finite case.
But as n is arbitrary, the result follows.

Proof of (ii): Finite case. Assume that the result holds for the case of n—1
intervals and that (a,b] C Uzzl(ak,bk]. Suppose that a, < b < b, (notation
again). If a, < a, the result is obvious. Otherwise, (a,a,] C UZ;%(ak,bk],
so that ZZ;%(bk —ay) > a, —a by the induction hypothesis and hence
Zzzl(bk —ay) > (a, —a)+ (b, —a,) > b —a. The finite case thus follows
by induction.

Infinite case. Suppose that (a,b] C U,fozl(ak,bk]. If 0<e <b—a, the
open intervals (ag, by + €27y cover the closed interval [a + €, b], and it fol-
lows by the Heine—Borel theorem [A13] that [a + €,b] C UZ:] (ag, by + €275
for some n. But then (a + €,b] C Uzzl(ak, by + €27%], and by the finite case,
b—(a+e) <Y j_ (b +e27% —ap) <372, (b — ax) + €. Since € was arbi-
trary, the result follows. |
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Theorem 1.3 will be the starting point for the theory of Lebesgue measure as
developed in Sections 2 and 3. Taken together, parts (i) and (ii) of the theorem
for only finitely many intervals I; imply (1.4) for disjoint A and B. Like (1.4),
they follow immediately from the additivity of the Riemann integral; but the
point is to give an independent development of which the Riemann theory will
be an eventual by-product.

To pass from the finite to the infinite case in part (i) of the theorem is easy.
But to pass from the finite to the infinite case in part (ii) involves compactness,
a profound idea underlying all of modern analysis. And it is part (ii) that shows
that an interval I of positive length is not negligible: |/| is a positive lower
bound for the sum of the lengths of the intervals in any covering of /.

The Measure Theory of Diophantine Approximation®

Diophantine approximation has to do with the approximation of real numbers
x by rational fractions p/q. The measure theory of Diophantine approximation
has to do with the degree of approximation that is possible if one disregards
negligible sets of real x.

For each positive integer g, x must lie between some pair of successive
multiples of //g, so that for some p,|x —p/q| < 1/q. Since for each g the

intervals
1 1
(’1 -2 —} (1.32)
9 299 24
decompose the line, the error of approximation can be further reduced to 1/2q:
For each g there is a p such that |x — p/q| < 1/2q. These observations are of
course trivial. But for “most” real numbers x there will be many values of p
and ¢g for which x lies very near the center of the interval (1.32), so that p/g is
a very sharp approximation to x.

THEOREM 1.4
If x is irrational, there are infinitely many irreducible fractions p/q such that

<. (1.33)

This famous theorem of Dirichlet says that for infinitely many p and ¢, x
lies in (p/q — 1/q%,p/q + 1/g*) and hence is indeed very near the center of
(1.32).

Proof. For a positive integer Q, decompose [0, 1) into the Q subintervals
[G—1)/0,i/Q),i =1,...,0. The points (fractional parts) {gx} = gx — [gx ]

"This topic may be omitted.

13
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for ¢ =0,1,...,0 lie in [0, 1), and since there are Q+1 pointsT and only
Q subintervals, it follows (Dirichlet’s drawer principle) that some subinterval
contains more than one point. Suppose that {¢g’x} and {¢”x} lie in the same
subinterval and 0 < ¢’ <¢” < Q. Take g =q¢”" — ¢’ and p = |¢"x| — |¢'x];
then 1 < ¢ < Q and |gx —p| = [{g"x} — {¢'x}| < 1/Q:

! < ! (1.34)

<—<—. .
qQ ~ q*

If p and ¢ have any common factors, cancel them; this will not change the left

side of (1.34), and it will decrease ¢.

For each Q, therefore, there is an irreducible p/g satisfying (1.34).% Sup-
pose there are only finitely many irreducible solutions of (1.33), say p1/q1,- ..,
DPm/qm- Since x is irrational, the |x — py/qx| are all positive, and it is possible
to choose Q so that Q! is smaller than each of them. But then the p/g of (1.34)
is a solution of (1.33), and since |x — p/q| < 1/Q, there is a contradiction. H

4

X — —

q

In the measure theory of Diophantine approximation, one looks at the set
of real x having such and such approximation properties and tries to show that
this set is negligible or else that its complement is. Since the set of rationals is
negligible, Theorem 1.4 implies such a result: Apart from a negligible set of x,
(1.33) has infinitely many irreducible solutions.

What happens if the inequality (1.33) is tightened? Consider

=il <
x—=| <5,
ql  q°¢(q)
and let A, consist of the real x for which (1.35) has infinitely many irreducible
solutions. Under what conditions on ¢ will A, have negligible complement? If
¢(q) <1, then (1.35) is weaker than (1.33): ¢(g) > 1 in the interesting cases.
Since x satisfies (1.35) for infinitely many irreducible p/g if and only if x — |x]

does, A, may as well be redefined as the set of x in (0, 1) (or even as the set
of irrational x in (0, 1)) for which (1.35) has infinitely many solutions.

(1.35)

THEOREM 1.5
Suppose that ¢ is positive and nondecreasing. If
1

— = o0, 1.36
. 49(q) > (130

then A, has negligible complement.

T Although the fact is not technically necessary to the proof, these points are distinct: {¢’x} = {¢"x}
implies (¢” — ¢')x = |¢”x] — |¢'x], which in turn implies that x is rational unless ¢’ = ¢”.
#This much of the proof goes through even if x is rational.

D
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SECTION 1 BOREL’S NORMAL NUMBER THEOREM

Theorem 1.4 covers the case ¢(g) = 1. Although this is the natural place
to state Theorem 1.5 in its general form, the proof, which involves continued
fractions and the ergodic theorem, must be postponed; see Section 24, p. 324.
The converse, on the other hand, has a very simple proof.

THEOREM 1.6
Suppose that ¢ is positive. If

1
] , 1.37
qu(q) = (1.37)

then A, is negligible.

Proof. Given €, choose g so that Zquo 1/qp(q) < €/4. If x € A,, then
(1.35) holds for some g > ¢, and since 0 < x < 1, the corresponding p lies in
the range 0 < p < ¢q. Therefore,

ACUU(—— R }

4540 p=0 20() g9 q*¢(q)

The right side here is a countable union of intervals covering A, and the sum
of their lengths is

IPI

q=90 p=0

Thus A, satisfies the definition ((1.22) and (1.23)) of negligibility. |

_y et oyt

q w(q) ] w(q) qzqoqw(q)

If ¢1(q) =1, then (1.36) holds and hence A, has negligible complement
(as follows also from Theorem 1.4). If ¢»(g) = ¢€, however, then (1.37) holds
and Ay, itself is negligible. Outside the negligible set A, UA,,, therefore,
Ix —p/ql < 1/¢* has infinitely many irreducible solutions but |x —p/q| <
1/g*>*¢ has only finitely many. Similarly, since Zq 1/(glogq) diverges but
Zq 1/(g log“re g) converges, outside a negligible set [x — p/q| < 1/(g*logq)
has infinitely many irreducible solutions but |x — p/g| < 1/(g*log'™ ¢) has
only finitely many.

Rational approximations to x obtained by truncating its binary (or decimal)
expansion are very inaccurate: see Example 4.17. The sharp rational approx-
imations to x come from truncation of its continued-fraction expansion: see
Section 24.

PROBLEMS

15

Some problems involve concepts not required for an understanding of the text,
or concepts treated only in later sections; there are no problems whose solutions

D
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are used in the text itself. An arrow 71 points back to a problem (the one
immediately preceding if no number is given) the solution and terminology of
which are assumed. See Notes on the Problems, p. 589.

1.1.

1.2
1.3.

1.4.

1.5.

(a) Show that a discrete probability space (see Example 2.8 for the
formal definition) cannot contain an infinite sequence A, A,, ... of
independent events each of probability % Since A, could be iden-
tified with heads on the nth toss of a coin, the existence of such a
sequence would make this section superfluous.

(b) Suppose that 0 < p, <1, and put o, = min{p,, 1 — p,}. Show that,
if ), o, diverges, then no discrete probability space can contain
independent events Ay, A, ... such that A, has probability p,.

Show that N and N€¢ are dense [A15] in (O, 1].

1 Define a set A to be trifling " if for each e there exists a finite sequence

of intervals I; satisfying (1.22) and (1.23). This definition and the defi-

nition of negligibility apply as they stand to all sets on the real line, not

just to subsets of (0, 1].

(a) Show that a trifling set is negligible.

(b) Show that the closure of a trifling set is also trifling.

(¢) Find a bounded negligible set that is not trifling.

(d) Show that the closure of a negligible set may not be negligible.

(e) Show that finite unions of trifling sets are trifling but that this can
fail for countable unions.

?Fori=0,...,r—1, let A.(i) be the set of numbers in (0, 1] whose

nonterminating expansions in the base r do not contain the digit i.

(a) Show that A, (i) is trifling.

(b) Find a trifling set A such that every point in the unit interval can be
represented in the form x4y with x and y in A.

(¢) Let A, (ij,...,i) consist of the numbers in the unit interval in whose
base-r expansions the digits ij, ..., iy nowhere appear consecutively
in that order. Show that it is trifling. What does this imply about the
monkey that types at random?

1 The Cantor set C can be defined as the closure of A3(1).

(a) Show that C is uncountable but trifling.

(b) From [0, 1] remove the open middle third (%, %), from the remainder,
a union of two closed intervals, remove the two open middle thirds
(3.2) and (4, 3). Show that C is what remains when this process is
continued ad infinitum.

(c¢) Show that C is perfect [A15].

TLike negligible, trifling is a nonce word used only here. The trifling sets are exactly the sets of
content 0: See Problem 3.15.



1.6.

1.7.

1.8.
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SECTION 1 BOREL’S NORMAL NUMBER THEOREM

Put M (¢) = /01 e"@dw, and show by successive differentiations under
the integral that

1
M P 0) = f sk (w) do. (1.38)
0

Over each dyadic interval of rank n, s,(w) has a constant value of
the form +1+1+---+ 1, and therefore M (r) =27" > exp t(£1 +
1+£---%+1), where the sum extends over all 2" n-long sequences of
+1’s and —1’s. Thus

t —t\ "
M) = (%) — (cosh 1)". (1.39)
Use this and (1.38) to give new proofs of (1.16), (1.18), and (1.28).

(This, the method of moment generating functions, will be investigated
systematically in Section 9.)

1 By an argument similar to that leading to (1.39) show that the Rade-
macher functions satisfy

1 n n iay —iag
f exp [izakrk(w)i| dow = H%
0 k=1

k=1
n
= H COS .
k=1
Take a; = 1275, and from Y 2, rx (@)27F = 2w — 1 deduce
sint ﬁ t (1.40)
— = | | cos—— .
t 2k
k=1
by letting n — oo inside the integral above. Derive Vieta’s formula

2 V2V24V2y24+V2+V2
== .

T

A number o is normal in the base 2 if and only if for each positive
¢ there exists an ng(e, ) such that [n~! Z?=1 di(w) — %l < € for all n
exceeding ng(e, ). Theorem 1.2 concerns the entire dyadic expansion,
whereas Theorem 1.1 concerns only the beginning segment. Point up the
difference by showing that for € < % the ng(e, w) above cannot be the
same for all w in N —in other words, n~! Z?:l d; (w) converges to %
for all w in N, but not uniformly. But see Problem 13.9.

D
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1.9. 413

(a) Using the finite form of Theorem 1.3(ii), together with Problem
1.3(b), show that a trifling set is nowhere dense [A15].

(b) PutB =, (r, — 27"=2 y, +27"2] where r|, ra, . . . iS an enumer-
ation of the rationals in (0, 1]. Show that (0, 1] — B is nowhere dense
but not trifling or even negligible.

(c) Show that a compact negligible set is trifling.

1.10. 1 A set of the first category [A15] can be represented as a countable
union of nowhere dense sets; this is a topological notion of smallness,
just as negligibility is a metric notion of smallness. Neither condition
implies the other:

(a) Show that the nonnegligible set N of normal numbers is of the
first category by proving that A, =(),2,, [a): In~ls,(w)] < %] is
nowhere dense and N C | J,, An-

(b) According to a famous theorem of Baire, a nonempty interval is not
of the first category. Use this fact to prove that the negligible set
N€¢ = (0,1] — N is not of the first category.

1.11. Prove:

(a) If x is rational, (1.33) has only finitely many irreducible solutions.

(b) Suppose that ¢(g) > 1 and (1.35) holds for infinitely many pairs p,
q but only for finitely many relatively prime ones. Then x is rational.

(¢) If ¢ goes to infinity too rapidly, then A, is negligible (Theorem
1.6). But however rapidly ¢ goes to infinity, A, is nonempty, even
uncountable. Hint: Consider x = Y 7o, 1/2*® for integral o(k)
increasing very rapidly to infinity.

SECTION 2 PROBABILITY MEASURES

Spaces

Let €2 be an arbitrary space or set of points w. In probability theory €2 consists
of all the possible results or outcomes w of an experiment or observation. For
observing the number of heads in n tosses of a coin the space 2 is {0, 1,...,n};
for describing the complete history of the n tosses 2 is the space of all 2"
n-long sequences of H’s and T’s; for an infinite sequence of tosses €2 can be
taken as the unit interval as in the preceding section; for the number of «-
particles emitted by a substance during a unit interval of time or for the number
of telephone calls arriving at an exchange €2 is {0, 1,2, ...}; for the position of
a particle €2 is three-dimensional Euclidean space; for describing the motion of
the particle 2 is an appropriate space of functions; and so on. Most 2’s to be
considered are interesting from the point of view of geometry and analysis as
well as that of probability.
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Viewed probabilistically, a subset of €2 is an event and an element w of Q2
is a sample point.

Assigning Probabilities

In setting up a space €2 as a probabilistic model, it is natural to try and
assign probabilities to as many events as possible. Consider again the case
Q = (0, 1]—the unit interval. It is natural to try and go beyond the definition
(1.3) and assign probabilities in a systematic way to sets other than finite unions
of intervals. Since the set of nonnormal numbers is negligible, for example, one
feels it ought to have probability 0. For another probabilistically interesting set
that is not a finite union of intervals, consider

U[a): —a < s1(w),...,sn_1(w) < b,s,(w) = —al, 2.1

n=1

where a and b are positive integers. This is the event that the gambler’s fortune
reaches —a before it reaches +b; it represents ruin for a gambler with a dollars
playing against an adversary with b dollars, the rule being that they play until
one or the other runs out of capital.

The union in (2.1) is countable and disjoint, and for each n the set in the
union is itself a union of certain of the intervals (1.9). Thus (2.1) is a countably
infinite disjoint union of intervals, and it is natural to take as its probability
the sum of the lengths of these constituent intervals. Since the set of normal
numbers is not a countable disjoint union of intervals, however, this extension of
the definition of probability would still not cover all the interesting sets (events)
in (0, 1].

It is, in fact, not fruitful to try to predict just which sets probabilistic analysis
will require and then assign probabilities to them in some ad hoc way. The
successful procedure is to develop a general theory that assigns probabilities at
once to the sets of a class so extensive that most of its members never actually
arise in probability theory. That being so, why not ask for a theory that goes all
the way and applies to every set in a space 27 In the case of the unit interval,
should there not exist a well-defined probability that the random point w lies in
A, whatever the set A may be? The answer turns out to be no (see p. 45), and
it is necessary to work within subclasses of the class of all subsets of a space
Q. The classes of the appropriate kinds—the fields and o-fields—are defined
and studied in this section. The theory developed here covers the spaces listed
above, including the unit interval, and a great variety of others.

Classes of Sets

It is necessary to single out for special treatment classes of subsets of a space
€2, and to be useful, such a class must be closed under various of the operations
of set theory. Once again the unit interval provides an instructive example.

D

19



20

PROBABILITY

EXAMPLE 2.17

Consider the set N of normal numbers in the form (1.24), where s, (w) is the
sum of the first » Rademacher functions. Since a point w lies in N if and only
if lim, n~'s,(w) = 0, N can be put in the form

N = Ml In "su(@)] <k, (2.2)
k=1 m=1n=m

Indeed, because of the very meaning of union and of intersection, w lies in
the set on the right here if and only if for every k there exists an m such
that |n~'s, (w)| < k= holds for all n > m, and this is just the definition of
convergence to 0—with the usual € replaced by k! to avoid the formation of
an uncountable intersection. Since s, (w) is constant over each dyadic interval
of rank n, the set [w: n™'s,(w)| < k~'] is a finite disjoint union of intervals.
The formula (2.2) shows explicitly how N is constructed in steps from these
simpler sets.

A systematic treatment of the ideas in Section 1 thus requires a class of sets
that contains the intervals and is closed under the formation of countable unions
and intersections. Note that a singleton [A1l] {x} is a countable intersection
Np(x —n~"', x] of intervals. If a class contains all the singletons and is closed
under the formation of arbitrary unions, then of course it contains all the subsets
of Q. As the theory of this section and the next does not apply to such extensive
classes of sets, attention must be restricted to countable set-theoretic operations
and in some cases even to finite ones.

Consider now a completely arbitrary nonempty space 2. A class 7 of
subsets of € is called a field* if it contains € itself and is closed under the
formation of complements and finite unions:

(1) e,
(i) A € 7 implies A° € 7
(iii) A,B € 7 implies AUB € 7.

Since 2 and the empty set @ are complementary, (i) is the same in the
presence of (ii) as the assumption @ € 7. In fact, (i) simply ensures that 7 is
nonempty: If A € 7, then A° € 7 by (ii) and Q2 = AUA® € 7 by (iii).

By DeMorgan’s law, ANB = (AUB°)° and AUB = (A° N B)°. If 7#
is closed under complementation, therefore, it is closed under the formation of

TMany of the examples in the book simply illustrate the concepts at hand, but others contain definitions
and facts needed subsequently.
*The term algebra is often used in place of field.

D
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finite unions if and only if it is closed under the formation of finite intersections.
Thus (iii) can be replaced by the requirement
(iii") A,B € # implies ANB € 7.

A class # of subsets of Q2 is a o-field if it is a field and if it is also closed
under the formation of countable unions:
(iv) A1,Ay, ... € 7 implies AfUA, U --- € 7.
By the infinite form of DeMorgan’s law, assuming (iv) is the same thing as
assuming
(iv') A1,Ay,... €7 implies AyNA, N -+ €F.

Note that (iv) implies (iii) because one can take Ay = A and A, = B for
n > 2. A field is sometimes called a finitely additive field to stress that it need
not be a o-field. A set in a given class 7 is said to be measurable # or to be

an 7 -set. A field or o-field of subsets of 2 will sometimes be called a field or
o-field in Q.

21

EXAMPLE 2.2

Section 1 began with a consideration of the sets (1.2), the finite disjoint unions
of subintervals of 2 = (0, 1]. Augmented by the empty set, this class is a field
Zo: Suppose that A = (aj,a;]U - -- U (an,q,,], where the notation is so chosen
thata; < --- < a,.If the (a;,a/] are disjoint, then A is (0,a;] U (aj,a2]U--- U
(a),_,,am]U (a,,,1] and so lies in #y (some of these intervals may be empty,
as a; and a;41 may coincide). If B = (by,b]]U--- U (b,, b, ], the (bj,bjf] again
disjoint, then ANB = (JI_, U]';l{(a,-,ai’] N (bj, bjf 1}; each intersection here is
again an interval or else the empty set, and the union is disjoint, and hence
AN B is in Ay. Thus Ay satisfies (i), (ii), and (iii’).

Although # is a field, it is not a o-field: It does not contain the singletons
{x}, even though each is a countable intersection [, (x — n=!, x] of Ay-sets.
And & does not contain the set (2.1), a countable union of intervals that cannot
be represented as a finite union of intervals. The set (2.2) of normal numbers
is also outside A.

The definitions above involve distinctions perhaps most easily made clear
by a pair of artificial examples.

EXAMPLE 2.3

Let # consist of the finite and the cofinite sets (A being cofinite if A€ is
finite). Then # is a field. If Q is finite, then # contains all the subsets of
Q2 and hence is a o-field as well. If Q2 is infinite, however, then & is not a

D
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o-field. Indeed, choose in €2 a set A that is countably infinite and has infinite
complement. (For example, choose a sequence wp,w;,... of distinct points
in Q and take A = {w, w4,...}.) Then A ¢ 7, even though A is the union,
necessarily countable, of the singletons it contains and each singleton is in 7.
This shows that the definition of o-field is indeed more restrictive than that of
field.

EXAMPLE 2.4

Let 7 consist of the countable and the cocountable sets (A being cocountable
if A€ is countable). Then & is a o-field. If ©2 is uncountable, then it contains a
set A such that A and A° are both uncountable.” Such a set is not in %, which
shows that even a o -field may not contain all the subsets of €2; furthermore, this
set is the union (uncountable) of the singletons it contains and each singleton
is in #, which shows that a o-field may not be closed under the formation of
arbitrary unions.

The largest o-field in Q2 is the power class 2%, consisting of all the subsets
of 2; the smallest o-field consists only of the empty set and €2 itself.

The elementary facts about fields and o-fields are easy to prove: If 7
is a field, then A, B € 7 implies A —B =ANB‘e€Z and AAB=(A—-B)U
(B — A) € 7. Further, it follows by induction on n that Ay, ...,A, € 7 implies
AfU---UA,eZ and AjN---NA, € 7.

A field is closed under the finite set-theoretic operations, and a o-field is
closed also under the countable ones. The analysis of a probability problem
usually begins with the sets of some rather small class .<7, such as the class of
subintervals of (0, 1]. As in Example 2.1, probabilistically natural constructions
involving finite and countable operations can then lead to sets outside the initial
class .¢7. This leads one to consider a class of sets that (i) contains .©/ and (ii)
1s a o-field; it is natural and convenient, as it turns out, to consider a class that
has these two properties and that in addition (iii) is in a certain sense as small
as possible. As will be shown, this class is the intersection of all the o-fields
containing ./ it is called the o -field generated by .</ and is denoted by o (.77).

There do exist o-fields containing .¢7, the class of all subsets of 2 being
one. Moreover, a completely arbitrary intersection of o-fields (however many
of them there may be) is itself a o-field: Suppose that # = (1), %, where 0

fIf Q is the unit interval, for example, take A = (0, %], say. To show that the general uncountable <2
contains such an A requires the axiom of choice [A8]. As a matter of fact, to prove the existence of the
sequence alluded to in Example 2.3 requires a form of the axiom of choice, as does even something
so apparently down-to-earth as proving that a countable union of negligible sets is negligible. Most
of us use the axiom of choice completely unaware of the fact. Even Borel and Lebesgue did; see
WAGON, pp. 217 ff.
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ranges over an arbitrary index set and each % is a o-field. Then Q € % for
all 6, so that Q € 7. And A € 7 implies for each 6 that A € 7% and hence
A€ € Y, sothat A € 7. If A,, € # for each n, then A,, € % for each n and 6,
so that (], A, lies in each % and hence in 7.

Thus the intersection in the definition of o (.¢7) is indeed a o -field containing
/. It is as small as possible, in the sense that it is contained in every o-field
that contains .o if .o/ C & and ¢ is a o-field, then & is one of the o-fields in
the intersection defining o (.o7), so that o (.</) C ¢. Thus o (.¢/) has these three
properties:

(1) o/ Co(A);

(1) o (/) is a o-field;
(iii) if &/ C ¢ and 9 is a o-field, then o (/) C .
The importance of o-fields will gradually become clear.
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EXAMPLE 2.5

If 7 is a o-field, then obviously o (7 ) = 7. If .o/ consists of the singletons,
then o (.<7) is the o-field in Example 2.4. If ./ is empty or .o/ = {@} or .«/ =
{Q}, then o (/) ={D,Q2}. If .o/ C.o/’, then o (/) Co(/). If .o/ C.o/ C
o(.</), then o (/) = o (/).

EXAMPLE 2.6

Let .7 be the class of subintervals of Q = (0, 1], and define X3 = o(.%). The
elements of &3 are called the Borel sets of the unit interval. The field 3 of
Example 2.2 satisfies .Y C #y C &3, and hence o (%)) = 4.

Since &3 contains the intervals and is a o-field, repeated finite and countable
set-theoretic operations starting from intervals will never lead outside #3. Thus
23 contains the set (2.2) of normal numbers. It also contains for example the
open sets in (0, 1]: If G is open and x € G, then there exist rationals a, and b,
such that x € (ay,by] C G. But then G = |, e (@x, by ]; since there are only
countably many intervals with rational endpoints, G is a countable union of
elements of . and hence lies in Z3.

In fact, &3 contains all the subsets of (0, 1] actually encountered in ordinary
analysis and probability. It is large enough for all “practical” purposes. It does
not contain every subset of the unit interval, however; see the end of Section 3
(p. 45). The class &3 will play a fundamental role in all that follows.

Probability Measures

A set function is a real-valued function defined on some class of subsets of
Q. A set function P on a field & is a probability measure if it satisfies these
conditions:
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() 0<P(A) <1forAe;
(i) P(Q)=0,P(Q) =1;
(iii) if Aj,A,, ... is a disjoint sequence of Z -sets and if [ J{~, Ax € 7, then’

P <UAk> =Y P4 (2.3)
k=1 k=1

The condition imposed on the set function P by (iii) is called countable
additivity. Note that, since # is a field but perhaps not a o-field, it is necessary
in (iii) to assume that U,fozl Ay liesin 7. If Ay,..., A, are disjoint 7 -sets, then
U= Ak is also in 7 and (2.3) with A, 4| = A,42 = - -+ = O gives

P (UAk> = ZP(Ak). (2.4)
k=1 k=1

The condition that (2.4) holds for disjoint 7 -sets is finite additivity; it is a con-
sequence of countable additivity. It follows by induction on n that P is finitely
additive if (2.4) holds for n = 2—if P(AUB) = P(A) + P (B) for disjoint 7 -
sets A and B.

The conditions above are redundant, because (i) can be replaced by P(A) >
0 and (i1) by P(2) = 1. Indeed, the weakened forms (together with (iii)) imply
that P(2) = P(RQ) + P(@D) + P(@) + - -, so that P(@) =0, and 1 = P(Q) =
P(A) + P(A°), so that P(A) < 1.

EXAMPLE 2.7

Consider as in Example 2.2 the field %3, of finite disjoint unions of subintervals
of Q2 = (0, 1]. The definition (1.3) assigns to each Z3y-set a number—the sum
of the lengths of the constituent intervals—and hence specifies a set function P
on #y. Extended inductively, (1.4) says that P is finitely additive. In Section
1 this property was deduced from the additivity of the Riemann integral (see
(1.5)). In Theorem 2.2 below, the finite additivity of P will be proved from
first principles, and it will be shown that P is, in fact, countably additive—is
a probability measure on the field #5y. The hard part of the argument is in the
proof of Theorem 1.3, already done; the rest will be easy.

As the left side of (2.3) is invariant under permutations of the A,, the same must be true of the right
side. But in fact, according to Dirichlet’s theorem [A26], a nonnegative series has the same value
whatever order the terms are summed in.
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If 7 is a o-field in Q and P is a probability measure on 7, the triple
(2,7, P) is called a probability measure space, or simply a probability space.
A support of P is any 7 -set A for which P(A) = 1.
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EXAMPLE 2.8

Let 7 be the o-field of all subsets of a countable space €2, and let p(w) be a
nonnegative function on €. Suppose that ) _op(w) = 1, and define P(A) =
Zwe 4 P(w); since p(w) > 0, the order of summation is irrelevant by Dirichlet’s
theorem [A26]. Suppose that A = U?il A;, where the A; are disjoint, and let
w;i1,w;2, ... be the points in A;. By the theorem on nonnegative double series
[A27], P(A) = Zijp(a)ij) =) ij(a),-j) =Y, P(A;), and so P is countably
additive. This (2,7, P) is a discrete probability space. It is the formal basis
for discrete probability theory.

EXAMPLE 2.9
Now consider a probability measure P on an arbitrary o-field # in an arbitrary
space 2; P is a discrete probability measure if there exist finitely or countably
many points @y and masses my such that P(A) = ) wp e Mk for A in & . Here P
is discrete, but the space itself may not be. In terms of indicator functions, the
defining condition is P(A) = ), myla(wi) for A € 7. If the set {w;, wo, ...}
lies in 7, then it is a support of P.

If there is just one of these points, say wg, with mass my = 1, then P is a
unit mass at wg. In this case P(A) = Ix(wg) for A € 7.

Suppose that P is a probability measure on a field #, and that A, B € #
and A C B. since P(A) + P(B — A) = P(B), P is monotone:

PA)<PB) ifACB. (2.5)
It follows further that P(B — A) = P(B) — P(A), and as a special case,
P(A°) =1—P(A). (2.6)

Other formulas familiar from the discrete theory are easily proved. For
example,

PA)+PB)=PAUB)+PANB), 2.7)

the common value of the two sides being P(A U B¢) +2P(ANB) + P(A° N B).
Subtraction gives

P(AUB)=PA)+P(B)—-PANB). (2.8)

D
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This is the case n = 2 of the general inclusion-exclusion formula:

P (U Ak> =Y P@A) - PANA) (2.9)
k=1 i

i<j

+ Y PANANA) + -+ (=D"P@A N NA).

i<j<k

To deduce this inductively from (2.8), note that (2.8) gives

n+1 n n
P (U Ak> =P (UAk) +P(Aps1) — P (U(Ak mAnH)) :
k=1 k=1

k=1

Applying (2.9) to the first and third terms on the right gives (2.9) with n+41 in
place of n.

If By =A; and By =A; NA{N---NA;_,, then the By are disjoint and
k=1 Ak = Uj—; Bx, so that P(U}_,Ax) = > ;_, P(By). Since P(By) < P (Ax)
by monotonicity, this establishes the finite subadditivity of P:

P <U Ak> <Y P@Ap. (2.10)
k=1 k=1

Here, of course, the A; need not be disjoint. Sometimes (2.10) is called Boole’s
inequality .

In these formulas all the sets are naturally assumed to lie in the field # . The
derivations above involve only the finite additivity of P. Countable additivity
gives further properties:

THEOREM 2.1
Let P be a probability measure on a field 7 .

(i) Continuity from below: If A, and A lie in 7 and' A, 1 A, then P(A,) }
P(A).
(i1) Continuity from above: If A, and A lie in 7 and A,, |, A, then P(A,) | P(A).

(i) Countable subadditivity: If A1, Ay, ... and U,fozl Ay lie in 7 (the Ay need
not be disjoint), then

P (UAk) <Y P@Ap. (2.11)
k=1 k=1

fFor the notation, see [A4] and [A10].
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Proof. For (i), put B; = A; and By = Ay — Ax—1. Then the By are disjoint,
A =JZ Bk, and A, = |J;_, B, so that by countable and finite additivity,
P(A) =Y 72, P(By) =lim, > ;_, P(Bx) = lim, P(A,). For (ii), observe that
A, | A implies Aj, 1 A€, so that 1 — P(A,) 1 1 — P(A).

As for (iii), increase the right side of (2.10) to Y 7~ P(A) and then apply
part (i) to the left side. [ |
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EXAMPLE 2.10

In the presence of finite additivity, a special case of (ii) implies countable
additivity. If P is a finitely additive probability measure on the field 7, and
if Ayl @ forsets A, in & implies P(A,) | 0, then P is countably additive.
Indeed, if B = |J, Bx for disjoint sets By (B and the By in #), then C, =
Uk~ Bc =B — U, -, Bx lies in the field 7, and C, | @. The hypothesis,
together with finite z;dditivity, gives P(B) — Y ;_, P(Bx) = P(C,) — 0, and
hence P(B) = > ;= P(By).

Lebesgue Measure on the Unit Interval

The definition (1.3) specifies a set function on the field %3, of finite disjoint
unions of intervals in (0, 1]; the problem is to prove P countably additive. It
will be convenient to change notation from P to A, and to denote by .# the
class of subintervals (a, b] of (0, 1]; then A(I) = |I| = b — a is ordinary length.
Regard @ as an element of .7 of length 0. If A = [ J}_, I;, the J; being disjoint
7 -sets, the definition (1.3) in the new notation is

MA) =) ) =) 1Ll (2.12)
i=l i=1

As pointed out in Section 1, there is a question of uniqueness here, because A
will have other representations as a finite disjoint union U}":l J; of 7-sets. But
4 is closed under the formation of finite intersections, and so the finite form of
Theorem 1.3(iii) gives

Dol=) ) 1ndii=) 1l (2.13)
i=1 j=1

i=1 j=I

(Some of the I; N'J; may be empty, but the corresponding lengths are then 0.)
The definition is indeed consistent.

Thus (2.12) defines a set function A on Z, a set function called Lebesgue
measure.
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THEOREM 2.2
Lebesgue measure A is a (countably additive) probability measure on the
field Zy.

Proof. Suppose that A = | ;= Ax, where A and the Ay are Zy-sets and
the Ay are disjoint. Then A = [ J;_, [; and Ay = UJm:" , Jij are disjoint unions of
7 -sets, and (2.12) and Theorem 1.3(iii) give

n no oo M
MAY =D =D 0 Nyl (2.14)
i=1 i=1 k=1 j=1
oo My 00
= Jiil = AAg).
,; ; ] k; (A%) =
In Section 3 it is shown how to extend A from Zy to the larger class
B = a(Hy) of Borel sets in (0, 1]. This will complete the construction of A as
a probability measure (countably additive, that is) on &3, and the construction
is fundamental to all that follows. For example, the set N of normal numbers
lies in &3 (Example 2.6), and it will turn out that A(N) = 1, as probabilistic
intuition requires. (In Chapter 2, A will be defined for sets outside the unit
interval as well.)
It is well to pause here and consider just what is involved in the construction
of Lebesgue measure on the Borel sets of the unit interval. That length defines a
finitely additive set function on the class .# of intervals in (0, 1] is a consequence
of Theorem 1.3 for the case of only finitely many intervals and thus involves only
the most elementary properties of the real number system. But proving countable
additivity on .# requires the deeper property of compactness (the Heine-Borel
theorem). Once A has been proved countably additive on .7, extending it to %3
by the definition (2.12) presents no real difficulty: the arguments involving (2.13)
and (2.14) are easy. Difficulties again arise, however, in the further extension of
A from Ay to # = o (Hy), and here new ideas are again required. These ideas
are the subject of Section 3, where it is shown that any probability measure on
any field can be extended to the generated o -field.

Sequence Spacet

Let S be a finite set of points regarded as the possible outcomes of a simple
observation or experiment. For tossing a coin, S can be {H, T} or {0, 1}; for
rolling a die, S = {1,...,6}; in information theory, S plays the role of a finite
alphabet. Let 2 = S be the space of all infinite sequences

o= (z1(w),2n(),...) (2.15)

TThe ideas that follow are basic to probability theory and are used further on, in particular in Section 24
and (in more elaborate form) Section 36. On a first reading, however, one might prefer to skip to
Section 3 and return to this topic as the need arises.

D
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of elements of S: zx(w) € § for all w € S* and k > 1. The sequence (2.15)
can be viewed as the result of repeating infinitely often the simple experiment
represented by S. For § = {0, 1}, the space $° is closely related to the unit
interval; compare (1.8) and (2.15).

The space S* is an infinite-dimensional Cartesian product. Each z;(-) is
a mapping of S° onto §; these are the coordinate functions, or the natural
projections. Let S = 8§ x --- x § be the Cartesian product of n copies of S;
it consists of the n-long sequences (ui,...,u,) of elements of S. For such a
sequence, the set

[@: (21(®), ...,z (@) = (u1, ..., un)] (2.16)
represents the event that the first n repetitions of the experiment give the out-
comes uy,...,uU, in sequence. A cylinder of rank n is a set of the form

A=l (21(®),....z(w) € H], (2.17)

where H C S". Note that A is nonempty if H is. If H is a singleton in S",
(2.17) reduces to (2.16), which can be called a thin cylinder.

Let ¢y be the class of cylinders of all ranks. Then ¢ is a field: S°° and the
empty set have the form (2.17) for H = §" and for H = @. If H is replaced
by " — H, then (2.17) goes into its complement, and hence ¢ is closed under
complementation. As for unions, consider (2.17) together with

B =lw: (z1(w),...,zn(w)) € 1], (2.18)

a cylinder of rank m. Suppose that n < m (symmetry); if H’ consists of the
sequences (uy,...,uUy,) in S for which the truncated sequence (uy,...,u,) lies
in H, then (2.17) has the alternative form

A=lw: (z1(w),...,zn(w) € H']. (2.19)
Since it is now clear that
AUB = [w: (z1(®),...,7n(w)) € H' UI] (2.20)

is also a cylinder, ¢ is closed under the formation of finite unions and hence
is indeed a field.

Letp,,u € S, be probabilities on § —nonnegative and summing to 1. Define
a set function P on ¢g (it will turn out to be a probability measure) in this way:
For a cylinder A given by (2.17), take

PA) =Y pu - Pun 2.21)
H

D
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the sum extending over all the sequences (uy,...,u,) in H. As a special case,

Plo: (z1(®), ..., z0(@)) = (u1, ..., upn)] = Pu; - - Puy- (2.22)

Because of the products on the right in (2.21) and (2.22), P is called product
measure; it provides a model for an infinite sequence of independent repetitions
of the simple experiment represented by the probabilities p, on S. In the case
where § = {0,1} and pg = p; = %, it is a model for independent tosses of a fair
coin, an alternative to the model used in Section 1.

The definition (2.21) presents a consistency problem, since the cylinder
A will have other representations. Suppose that A is also given by (2.19). If
n =m, then H and H' must coincide, and there is nothing to prove. Suppose

then (symmetry) that n < m. Then H’ must consist of those (u1, ..., u,;) in §™
for which (uy,...,u,) liesin H: H' = H x S™ . But then
Zpul “PupPuyyy - Py = Zpul © Puy Z Puyiy * Puy (2.23)
H' H sm—n

= ZPM © " Puy -
H

The definition (2.21) is therefore consistent. And finite additivity is now easy:
Suppose that A and B are disjoint cylinders given by (2.17) and (2.18). Suppose
that n < m, and put A in the form (2.19). Since A and B are disjoint, H’ and [/
must be disjoint as well, and by (2.20),

P(AUB) =Y pu - pu, =PA) +P(B). (2.24)
H'UI

Taking H = S" in (2.21) shows that P(S°°) = 1. Therefore, (2.21) defines a
finitely additive probability measure on the field ¢y.

Now, P is countably additive on ¢, but this requires no further argument,
because of the following completely general result.

THEOREM 2.3
Every finitely additive probability measure on the field ¢ of cylinders in S is
in fact countably additive.

The proof depends on this fundamental fact:

Lemma. [fA, | A, where the A, are nonempty cylinders, then A is nonempty.

Proof of Theorem 2.3. Assume that the lemma is true, and apply Example
2.10 to the measure P in question: If A,, | @ for sets in ¢ (cylinders) but P(A,)

D
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does not converge to 0, then P(A,) > ¢ >0 for some €. But then the A, are
nonempty, which by the lemma makes A,, | @ impossible. ]

Proof of the Lemma.” Suppose that A, is a cylinder of rank m;,, say
A = o (z1(@), ..., zm (@) € Hi], (2.25)

where H; C S™. Choose a point w, in A,, which is nonempty by assumption.
Write the components of the sequences in a square array:

zi(w1)  zi(w2) zi(w3)
2(w1) z2(w2) z2(w3) --- (2.26)

The nth column of the array gives the components of w,,.

Now argue by a modification of the diagonal method [A14]. Since S is
finite, some element u; of S appears infinitely often in the first row of (2.26):
for an increasing sequence {n;,} of integers, z1(wn, ;) = w1 for all k. By the
same reasoning, there exist an increasing subsequence {ny} of {n;x} and an
element uy of S such that zp (Wny ) = U2 for all k. Continue. If ny = ny , then
2z (wp )uy for k > r, and hence (z1(wy,), ...,z (wy)) = (uy,...,u,) for k > r.

Let @° be the element of S with components u,: @’ = (uy,uz,...) =
(z1(0”), z2(@"),...). Let t be arbitrary. If k > 7, then (ny is increasing) n; >t
and hence w,, € A,, C A;. It follows by (2.25) that, for kK > ¢, H; contains the

point (zi(wy, ), - . ., Zm, (wy, ) of $™ . But for k > m,, this point is identical with
(z1(@°), ..., zm, (®°)), which therefore lies in H,. Thus »° is a point common
to all the A;. [ |

Let ¢ be the o-field in §°° generated by ¢(. By the general theory of the
next section, the probability measure P defined on ¢y by (2.21) extends to ¢.
The term product measure, properly speaking, applies to the extended P. Thus
(§°°, ¢, P) is a probability space, one important in ergodic theory (Section 24).

Suppose that § = {0, 1} and pg = p; = % In this case, (S°°, ¢, P) is closely
related to ((0, 1], &3, 1), although there are essential differences. The sequence
(2.15) can end in 0’s, but (1.8) cannot. Thin cylinders are like dyadic intervals,
but the sets in ¢y (the cylinders) correspond to the finite disjoint unions of inter-
vals with dyadic endpoints, a field somewhat smaller than 3. While nonempty
sets in A3y (for example, (% % + 2*”]) can contract to the empty set, nonempty
sets in ¢y cannot. The lemma above plays here the role the Heine-Borel theorem
plays in the proof of Theorem 1.3. The product probability measure constructed
here on ¢ (in the case S = {0, 1},po = p1 = %, that is) is analogous to Lebesgue

"The lemma is a special case of Tychonov’s theorem: If S is given the discrete topology, the topological
product §°° is compact (and the cylinders are closed).

D
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measure on Z3,. But a finitely additive probability measure on “, can fail to
be countably additive,” which cannot happen in .

Constructing o -Fields*

The o-field o (.«7) generated by .</ was defined from above or from the outside,
so to speak, by intersecting all the o -fields that contain ./ (including the o -field
consisting of all the subsets of ). Can o(.2/) somehow be constructed from
the inside by repeated finite and countable set-theoretic operations starting with
sets in .o/?

For any class 7 of sets in €2 let 7/ consist of the sets in -7, the comple-
ments of sets in 777, and the finite and countable unions of sets in /7. Given a
class .7, put .o% = .o/ and define .77}, .%%, . .. inductively by

Ay = A (2.27)

That each .7, is contained in o (./) follows by induction. One might hope that
Sty = o (/) for some n, or at least that Up? .7, = o (.%/). But this process
applied to the class of intervals fails to account for all the Borel sets.

Let % consist of the empty set and the intervals in = (0, 1] with rational
endpoints, and define ., = .7 * | forn = 1,2,.... It will be shown that UZO:o A
is strictly smaller than 3 = o (%).

If a, and b, are rationals decreasing to a and b, then (a,b1=J,, ),
(am, b1 =, (U, (@n,b,1)¢ € 4. The result would therefore not be changed
by including in .% all the intervals in (0.1].

To prove |~ ;% smaller than 73, first put

V(AL Ay, ..) =ASUA UAZUALU - - (2.28)

Since .%,_; contains 2 = (0, 1] and the empty set, every element of .7, has the
form (2.28) for some sequence Aj,A,,... of sets in .%,_;. Let every positive
integer appear exactly once in the square array

myp mp
my; Mmoo
Inductively define
Do(A1,Az,...) =Ay, (2.29)
D, (A1, A2 ) = Y (Pu—1(Amy s Ampys - - ) Pt (A s Ay -+ )5 25

n=12,....

fSee Problem 2.15.
“This topic may be omitted.
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It follows by induction that every element of .9, has the form ©,(A{,A,,...)
for some sequence of sets in .%. Finally, put

DAL A, ..) = P 1Ay Ampys - - ) U P2(Apyys Ay ) U (2.30)

Then every element of UZC’:O 4, has the form (2.30) for some sequence Aj, A, . ..
of sets in .%.

If A, Ay, ... are in &3, then (2.28) is in &3; it follows by induction that each
®,(A,A>,...) is in &3 and therefore that (2.30) is in Z.

With each w in (0, 1] associate the sequence (wi,ws,...) of positive inte-
gers such that @ + - - - + wy is the position of the kth 1 in the nonterminat-
ing dyadic expansion of w (the smallest n for which ), d;(w) = k). Then
w < (w1, wy,...) is a one-to-one correspondence between (0, 1] and the set of
all sequences of positive integers. Let I, I, ... be an enumeration of the sets in
S, put (w) = ®(,,,10,, - ..), and define B = [w: w ¢ ¢(w)]. It will be shown
that B is a Borel set but is not contained in any of the .7,.

Since w lies in B if and only if w lies outside ¢(w), B # ¢(w) for every w.
But every element of UZO:o 4, has the form (2.30) for some sequence in .% and
hence has the form ¢(w) for some w. Therefore, B is not a member of UZO:o A.

It remains to show that B is a Borel set. Let Dy = [w: w € I,,]. Since
Li(n) = [0 o1+ +or=nl=[o: Y-/ di) <k=Y_ dw)] is a
Borel set, so are [w: wry =n] = Ufjle Liy_1(m)NLg(m+n) and

Dy =[w: w € I,] = | Jlw: ox =n]N1).

Suppose that it is shown that
[@: w € ®y(ly,, s 1w, - )] = PuDuy, Dy - - ) (2.31)

for every n and every sequence u1, uy, . . . of positive integers. It will then follow
from the definition (2.30) that

o0

B =lw:wep@]=]J [w: w € Oy, o, .- .)]

n—1

o
= ©4(Du,-Din,y. - ) = ©(D1. Dy, . ).

n=1

But as remarked above, (2.30), is a Borel set if the A, are. Therefore, (2.31)
will imply that B¢ and B are Borel sets.

If n =0, (2.31) holds because it reduces by (2.29) to [w: w € Iwu1 I =D,,.
Suppose that (2.31) holds with n—1 in place of n. Consider the condition

wed,_1(, (2.32)

SN AR
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By (2.28) and (2.29), a necessary and sufficient condition for w € &, (Iwul,
Iwuz, ...) is that either (2.32) is false for k = 1 or else (2.32) is true for some
k exceeding 1. But by the induction hypothesis, (2.32) and its negation can
be replaced by w € CDH,](Dumkl,Dumkz, ...) and its negation. Therefore, w €
DIy, 51w,y ---) if and only if w € ®,(Dy,,D,,, .. .).

Thus Un I, # A, and there are Borel sets that cannot be arrived at from the
intervals by any finite sequence of set-theoretic operations, each operation being
finite or countable. It can even be shown that there are Borel sets that cannot
be arrived at by any countable sequence of these operations. On the other hand,
every Borel set can be arrived at by a countable ordered set of these operations
if it is not required that they be performed in a simple sequence. The proof of
this statement—and indeed even a precise explanation of its meaning—depends
on the theory of infinite ordinal numbers."

PROBLEMS

2.1. Define x Vy = max{x,y}, and for a collection {x,} define Vv, x, =
sup, Xo; define x Ay = minf{x,y} and Ayx, = infy xo. Prove that Iyup =
Ia Vg, Ixsnp = 1g AN lg,Igc =1 — 14, and Igap = |I4 — Ig]| in the sense
that there is equality at each point of 2. Show that A C B if and only if
Iy < Ip pointwise. Check the equation x A(y VZ) = (x Ay) V(X AZ)

and deduce the distribute law
ANBUC)=ANB)UANC).By similar arguments prove that

AUBNC)=(AUB)N(AUC),
AAC C (AAB)U (BAC),

() =
<OA,1)C = Lr_lJA;.

2.2. Let Ay,...,A, be arbitrary events, and put Uy = [JA; N---NA;)
and Iy = ((A;,U---UA;), where the union and intersection extend
over all the k-tuples satisfying 1 </} < --- < iy < n. Show that Uy =
In—k-H-

2.3. (a) Suppose that Q2 € # and that A,B € # implies A — B =ANB‘ €

7 . Show that & is a field.

fSee Problem 2.22.
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(b) Suppose that 2 € 7 and that # is closed under the formation of
complements and finite disjoint unions. Show that # need not be a
field.

Let 7,7, ... be classes of sets in a common space £2.

(a) Suppose that 7, are fields satisfying %, C Z,,. Show that [ J°2
is a field.

(b) Suppose that 7, are o-fields satisfying %, C #,,1. Show by example
that | ;2 7 need not be a o-field.

The field f (.«7) generated by a class .o/ in Q2 is defined as the intersection

of all fields in 2 containing ..

(a) Show that f(.</) is indeed a field, that .o/ C f(.</), and that f (.</) is
minimal in the sense that if & is a field and ./ C &, then f(.</) C &.

(b) Show that for nonempty .<7,f(.</) is the class of sets of the form
UL ﬂ L1 Ajj, where for each i and j either A; € ./ or Aj; € ./,
and where the m sets ﬂ 1 Ajj, 1 =i < m, are disjoint. The sets in
f(o/) can thus be expllcltly presented, which is not in general true
of the sets in o (.%7).

nlL

T
(a) Show that if .«/ consists of the singletons, then f(.<7) is the field in

Example 2.3.

(b) Show that f(.7) C o(.%7), that (/) = o (/) if .o/ is finite, and
that o (f (7)) = o (7).

(c) Show that if .¢/ is countable, then f(.¢/) is countable.

(d) Show for fields 7 and 7 that f(7 U “) consists of the finite
disjoint unions of sets A} N A, with A; € 7. Extend.

2.5 4 Let H be a a set lying outside #, where 7 is a field [or o-field].

Show that the field [or o-field] generated by # U {H} consists of sets

of the form

(HNAYUHNB), ABe7. (2.33)

Suppose for each A in .o/ that A is a countable union of elements
of ./. The class of intervals in (0, 1] has this property. Show that
o (/) coincides with the smallest class over .o/ that is closed under
the formation of countable unions and intersections.

Show that, if B € o(.7), then there exists a countable subclass .<7 of
.o/ such that B € o (.%7).

(a) Show that if o (.</) contains every subset of €2, then for each pair
o and o' of distinct points in Q2 there is in ./ an A such that

(@) # Ia(0).
(b) Show that the reverse implication holds if €2 is countable.

D

35



36

PROBABILITY

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

(c) Show by example that the reverse implication need not hold for
uncountable €.

A o-field is countably generated, or separable, if it is generated by

some countable class of sets.

(a) Show that the o-field 73 of Borel sets is countably generated.

(b) Show that the o-field of Example 2.4 is countably generated if and
only if €2 is countable.

(c) Suppose that # and “# are o-fields, 7| C 7, and % is countably
generated. Show by example that 7/ may not be countably generated.

Show that a o-field cannot be countably infinite—its cardinality must

be finite or else at least that of the continuum. Show by example that a

field can be countably infinite.

(a) Let # be the field consisting of the finite and the cofinite sets in
an infinite 2, and define P on # by taking P(A) to be O or 1 as A
is finite or cofinite. (Note that P is not well defined if €2 is finite.)
Show that P is finitely additive.

(b) Show that this P is not countably additive if €2 is countably infinite.

(c) Show that this P is countably additive if 2 is uncountable.

(d) Now let # be the o-field consisting of the countable and the
cocountable sets in an uncountable €2, and define P on # by taking
P(A) to be 0 or 1 as A is countable or cocountable. (Note that P
is not well defined if 2 is countable.) Show that P is countably
additive.

In (0, 1] let # be the class of sets that either (i) are of the first category
[A15] or (ii) have complement of the first category. Show that # is a
o-field. For A in &, take P(A) to be 0 in case (i) and 1 in case (ii).
Show that P is countably additive.
On the field #y in (0, 1] define P(A) to be 1 or 0 according as there does
or does not exist some positive €4 (depending on A) such that A contains
the interval (%, % 4+ €4]. Show that P is finitely but not countably addi-
tive. No such example is possible for the field ¢y in S*° (Theorem 2.3).
(a) Suppose that P is a probability measure on a field 7. Suppose that
A; € 7 fort >0,that Ay, C A, fors <t,andthatA = J,_ (A, € 7.
Extend Theorem 2.1(i) by showing that P(A;) 1 P(A) as t — oo.
Show that A necessarily lies in 7 if it is a o-field.
(b) Extend Theorem 2.1(ii) in the same way.

Suppose that P is a probability measure on a field 7, that A, A, ...,
and A = |, A, lie in 7, and that the A, are nearly disjoint in the sense
that P(A,, NA,) = 0 for m # n. Show that P(A) = ), P(A,).
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Stochastic arithmetic. Define a set function P,, on the class of all subsets
of @ ={1,2,...} by

1
P,(A) = ;#[m: 1<m<n,meA]l (2.34)

among the first n integers, the proportion that lie in A is just P,(A).
Then P, is a discrete probability measure. The set A has density

D(A) = lim P, (A), (2.35)

provided this limit exists. Let & be the class of sets having density.

(a) Show that D is finitely but not countably additive on Z.

(b) Show that & contains the empty set and €2 and is closed under
the formation of complements, proper differences, and finite disjoint
unions, but is not closed under the formation of countable disjoint
unions or of finite unions that are not disjoint.

(¢) Let . # consist of the periodic sets M, = [ka: k = 1,2,...]. Observe
that

P.(M,) = FJ Sl by, (2.36)

n La a
Show that the field f( #) generated by .# (see Problem 2.5) is
contained in . Show that D is completely determined on f (.#) by
the value it gives for each a to the event that m is divisible by a.

(d) Assume that »_ p! diverges (sum over all primes; see Problem
5.20(e)) and prove that D, although finitely additive, is not countably
additive on the field f(M).

(e) Euler’s function ¢(n) is the number of positive integers less than n
and relatively prime to it. Let py, ..., p, be the distinct prime factors
of n; from the inclusion-exclusion formula for the events [m: p;|m],
(2.36), and the fact that the p; divide n, deduce

A (1 - 1). (2.37)

(f) Show for 0 < x < 1 that D(A) = x for some A.

(g) Show that D is translation invariant: If B = [m + 1: m € A], then B
has a density if and only if A does, in which case D(A) = D(B).

A probability measure space (2,7, P) is nonatomic if P(A) > 0 implies

that there exists a B such that B C A and 0 < P(B) < P(A) (A and B

in Z#, of course).

(a) Assuming the existence of Lebesgue measure A on 3, prove that it
is nonatomic.
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2.20.

2.21.

2.22,

2.23.

(b) Show in the nonatomic case that P(A) > 0 and € > 0 imply that there
exists a B such that B CAand 0 < P(B) < €.

(¢) Show in the nonatomic case that 0 < x < P(A) implies that there
exists a B such that B C A and P (B) = x. Hint: Inductively define
classes /7,, numbers h,, and sets H, by /gy = {@} = {Hy}, 7, =
[H:H CA—U;_, He.,P( Uy -, Ho) + P(H) < x], h, =sup[P(H):
H € /], and P(H,) > h, —n~'. Consider | J, H.

(d) Show in the nonatomic case that, if pi,p,,... are nonnegative and
add to 1, then A can be decomposed into sets By, B, ... such that
P(B,) = p,P(A).

Generalize the construction of product measure: For n = 1,2,..., let

S, be a finite space with given probabilities p,,,u € S,. Let S| x S» x

--- be the space of sequences (2.15), where now zx (w) € Si. Define P

on the class of cylinders, appropriately defined, by using the product

Pluy * * " Pru, ON the right in (2.21). Prove P countably additive on ¢y,

and extend Theorem 2.3 and its lemma to this more general setting.

Show that the lemma fails if any of the S, are infinite.

(a) Suppose that .7/ = {A|,A», ...} is a countable partition of Q. Show
(see (2.27)) that .o = .o = .o/* coincides with o (/). This is a
case where o (.¢7) can be constructed “from the inside.”

(b) Show that the set of normal numbers lies in .%.

(¢) Show that 7/ = 7 if and only if /7" is a o-field. Show that .7, _;
is strictly smaller than .%, for all n.

Extend (2.27) to infinite ordinals « by defining .c7, = (| f<a /g)*. Show

that, if Q is the first uncountable ordinal, then | J,_q % = o (.<7). Show

that, if the cardinality of .¢/ does not exceed that of the continuum, then
the same is true of o (.o/). Thus 3 has the power of the continuum.

1 Extend (2.29) to ordinals o < €2 as follows. Replace the right side

of (2.28) by UZOZI(Az,,_l U AS,). Suppose that ®g is defined for B < a.

Let B,(1), B4(2),... be a sequence of ordinals such that B,(n) < @ and

such that if 8 < «, then 8 = B (n) for infinitely many even n and for

infinitely many odd n; define

Dy(A1,A,..) = w(q)ﬂa(l)(Amn’Amlz’ ), (2.38)
q)ﬁa(z)(Amzl’Amzza . ~), .o )

Prove by transfinite induction that (2.38) is in 3 if the A, are, that
every element of .%, has the form (2.38) for sets A, in .%, and that
(2.31) holds with « in place of n. Define ¢, (w) = ®y(y,, 10, -.), and
show that B, = [w: @ ¢ ¢ (w)] lies in A — .4, for @ < Q. Show that
Iy 18 strictly smaller than .7 for o < B < Q.



©

SECTION 3 EXISTENCE AND EXTENSION

SECTION 3 EXISTENCE AND EXTENSION

The main theorem to be proved here may be compactly stated this way:

THEOREM 3.1
A probability measure on a field has a unique extension to the generated o -field.

In more detail the assertion is this: Suppose that P is a probability measure
on a field %, of subsets of €2, and put # = o (#)). Then there exists a probability
measure Q on # such that Q(A) = P(A) for A € %. Further, if Q' is another
probability measure on # such that Q'(A) = P(A) for A € %), then Q'(A) =
Q) forA e 7.

Although the measure extended to # is usually denoted by the same letter
as the original measure on %), they are really different set functions, since
they have different domains of definition. The class 7, is only assumed finitely
additive in the theorem, but the set function P on it must be assumed countably
additive (since this of course follows from the conclusion of the theorem).

As shown in Theorem 2.2, A (initially defined for intervals as length: A(/) =
|7]) extends to a probability measure on the field #3 of finite disjoint unions
of subintervals of (0, 1]. By Theorem 3.1, A extends in a unique way from %
to B =0o(Ayp), the class of Borel sets in (0,1]. The extended A is Lebesgue
measure on the unit interval. Theorem 3.1 has many other applications as well.

The uniqueness in Theorem 3.1 will be proved later; see Theorem 3.3. The
first project is to prove that an extension does exist.

Construction of the Extension

Let P be a probability measure on a field #. The construction following extends
P to a class that in general is much larger than o (#%) but nonetheless does not
in general contain all the subsets of 2.

For each subset A of 2, define its outer measure by

P*(A) =inf ) " P(A,), (3.1)

where the infimum extends over all finite and infinite sequences Aj,A»,... of
Fo-sets satisfying A C U,A,,. If the A, form an efficient covering of A, in the
sense that they do not overlap one another very much or extend much beyond
A, then ) P(A,) should be a good outer approximation to the measure of A
if A is indeed to have a measure assigned it at all. Thus (3.1) represents a first
attempt to assign a measure to A.

Because of the rule P(A°) =1 — P(A) for complements (see (2.6)), it is
natural in approximating A from the inside to approximate the complement A¢
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from the outside instead and then subtract from 1:
P.(A) =1—P*(A°). (3.2)

This, the inner measure of A, is a second candidate for the measure of A." A
plausible procedure is to assign measure to those A for which (3.1) and (3.2)
agree, and to take the common value P*(A) = P,(A) as the measure. Since (3.1)
and (3.2) agree if and only if

P*(A) + P*(A°) =1, (3.3)

the procedure would be to consider the class of A satisfying (3.3) and use P*(A)
as the measure.

It turns out to be simpler to impose on A the more stringent requirement
that

P*(ANE)—P*(A°NE)=P*(E) (3.4)

hold for every set E; (3.3) is the special case E = €2, because it will turn out
that P*(Q2) = 1.¥ A set A is called P*-measurable if (3.4) holds for all E; let

1 be the class of such sets. What will be shown is that .# contains o (%4,) and

that the restriction of P* to o (%) is the required extension of P.
The set function P* has four properties that will be needed:

(i) P*(9) =0;
(i) P* is nonnegative: P*(A) > 0 for every A C ;
(iii) P* is monotone: A C B implies P*(A) < P*(B);
(iv) P* is countably subadditive: P*(U,A,) <) P*(A,).

The others being obvious, only (iv) needs proof. For a given €, choose
Fy-sets By such that A, C UgBy and ), P(Buy) < P*(A,) + €27", which is
possible by the definition (3.1). Now U,A, C U, B, so that P*(U,A,) <
Yon ik PBu) <), P*(Ay) + €, and (iv) follows.® Of course, (iv) implies finite
subadditivity.

By definition, A lies in the class . # of P*-measurable sets if it splits each E
in 2 in such a way that P* adds for the pieces—that is, if (3.4) holds. Because
of finite subadditivity, this is equivalent to

P*(ANE)+ P*(A°NE) < P*(E). (3.5)

fAn idea which seems reasonable at first is to define P, (A) as the supremum of the sums Zn P(A,)
for disjoint sequences of #-sets in A. This will not do. For example, in the case where 2 is the unit
interval, % is %y (Example 2.2), and P is A as defined by (2.12), the set N of normal numbers would
have inner measure O because it contains no nonempty elements of “3y; in a satisfactory theory, N
will have both inner and outer measure 1.

#t also turns out after the fact, that (3.3) implies that (3.4) holds for all E anyway; see Problem 3.2.
$Compare the proof on p. 10 that a countable union of negligible sets is negligible.
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Lemma 1. The class % is a field.

Proof. 1t is clear that Q € ./ and that. # is closed under complementation.
Suppose that A,B € .# and E C 2. Then

P*(E)=P*(BNE)+P*(B°NE)
=P*(ANBNE)+P*(A°NBNE)
+P*(ANB° NE)+P*(A°NB°NE)
>P*(ANBNE)
+P*(A“NBNEYUANB NE)UA°“NB°NE))
=P"(ANB)NE)+P*(ANB)°NE),

the inequality following by subadditivity. Hence" ANB €. #, and ./ is a
field. |

Lemma 2. If Ai, A, ... is a finite or infinite sequence of disjoint ./ -sets, then
for each E C Q,

P* (E N (UAk>> - ZP*(E NAg). (3.6)
k k

Proof. Consider first the case of finitely many Ay, say n of them. For n =
1, there is nothing to prove. In the case n = 2, if A UA; = Q, then (3.6) is
just (3.4) with A; (or A3) in the role of A. If A; U A, is smaller than €2, split
EN(A;jUA) by Ay and A (or by A; and A%) and use (3.4) and disjointness.

Assume (3.6) holds for the case of n—1 sets. By the case n = 2, together
with  the induction hypothesis, P*(E N (U;_,Ax)) =P*(EN (UZ;%A;{))
+P*(ENA,) =) _ P*(E NAy).

Thus (3.6) holds in the finite case. For the infinite case use monotonicity:
P*(E N (U,40) = P*(E N (U]_A)) =D j_; P*(E NAg). Letn — oo, and
conclude that the left side of (3.6) is greater than or equal to the right. The
reverse inequality follows by countable subadditivity. |

Lemma 3. The class # is a o -field, and P* restricted to ¢ is countably additive
Proof. Suppose that Aj,A,,... are disjoint . #/-sets with union A. Since
F, = U[_ A lies in the field .#,P*(E) = P*(E NF,) + P*(E NF}). To the

first term on the right apply (3.6), and to the second term apply monotonic-
ity (FS D A°): PX(E) = Y i_, P*(ENAy) + P*(E NA°). Let n—o00 and use

TThis proof does not work if (3.4) is weakened to (3.3).
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(3.6) again: P*(E) > Y 2, P*(E NAx) + P*(E NA°) = P*(E NA) + P*(EN
A°). Hence A satisfies (3.5) and so lies in .#/, which is therefore closed under
the formation of countable disjoint unions.

From the fact that .# is a field closed under the formation of countable
disjoint unions it follows that .# is a o-field (for sets By in ., let A| = B
and Ay =By NB{ N---NB{_; then the Ay are disjoint . #/-sets and | J, Bx =
(U, Ak € 7). The countable additivity of P* on .# follows from (3.6): take
E =Q. [

Lemmas 1, 2, and 3 use only the properties (i) through (iv) of P* derived
above. The next two use the specific assumption that P* is defined via (3.1)
from a probability measure P on the field %.

Lemma 4. If P* is defined by (3.1), then 4y C .

Proof. Suppose that A € %. Given E and €, choose #-sets A, such
that £ C |J,A, and ) , P(A,) <P*(E)+e€. The sets B, =A,NA and
C, = A, NAC lie in A because it is a field. Also, ENA C |, B, and E NA° C
U, C; by the definition of P* and the finite additivity of P,P*(E NA) +
PYENAY) <> PB,)+) ,P(C)=),P,) <P*(E)+e€. Hence A €
Z implies (3.5), and so A C .. [

Lemma 5. If P* is defined by (3.1), then
P*(A) = P(A) for A €. (3.7)

Proof. 1t is obvious from the definition (3.1) that P*(A) < P(A) for A in
. If A C U, An, where A and the A, are in %), then by the countable sub-
additivity and monotonicity of P on %4. P(A) <)  P(ANA,) <)  P(A,).
Hence (3.7). |

Proof of Extension in Theorem 3.1. Suppose that P* is defined via (3.1)
from a (countably additive) probability measure P on the field #4. Let 7 =
0 (%). By Lemmas 3 and 4,

T C T 22

By (3.7), P*(Q) = P(Q) = 1. By Lemma 3, P* (which is defined on all of 2)
restricted to . # is therefore a probability measure there. And then P* further
restricted to # is clearly a probability measure on that class as well. This
measure on 7 is the required extension, because by (3.7) it agrees with P
on . [ |

In the case of Lebesgue measure, the relation is 9 C % C .« C 2@V, and each of the three
inclusions is strict; see Example 2.2 and Problems 3.14 and 3.21.
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Uniqueness and the 7-)\ Theorem

To prove the extension in Theorem 3.1 is unique requires some auxiliary con-
cepts. A class 7 of subsets of €2 is a w-system if it is closed under the formation
of finite intersections:

(r) A,B € 2 implies ANB € 2.

A class .7 is a A-system if it contains 2 and is closed under the formation of
complements and of finite and countable disjoint unions:

(M) Qe s
(%2) A € £ implies A € /;
(A3) A1,Az,...,€ £ and A, NA, = @ for m # n imply |, A, € £,

Because of the disjointness condition in (A3), the definition of A-system is weaker
(more inclusive) than that of o-field. In the presence of (A1) and (A;), which
imply @ € Z, the countably infinite case of (13) implies the finite one.

In the presence of (1) and (X3), (A2) is equivalent to the condition that /'
is closed under the formation of proper differences:

(A)) A, Be /andACBimply B—-Ae /.

Suppose, in fact, that -/ satisfies (A;) and (13). [f A,B € £ and A C B, then £
contains B¢, the disjoint union A U B¢, and its complement (A U B)° = B — A.
Hence (1}). On the other hand, if ./ satisfies (A1) and (1)), then A € £ implies
A =Q — A € /. Hence (Xy).

Although a o-field is a A-system, the reverse is not true (in a four-point
space take Z to consist of @, 2, and the six two-point sets). But the connection
is close:

Lemma 6. A class that is both a w-system and a A-system is a o -field.

Proof. The class contains 2 by (A1) and is closed under the formation of
complements and finite intersections by (A;) and (;r). It is therefore a field. It
is a o-field because if it contains sets A, then it also contains the disjoint sets
B, =A, NA{N---NA¢_, and by (13) contains | J, A, = |, Bn. [ |

Many uniqueness arguments depend on Dynkin’s w—\ theorem:

THEOREM 3.2
If 7 is a w-system and £ is a A-system, then ° C £ implies o (#°) C L.
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Proof. Let £y be the A-system generated by #’—that is, the intersection of
all A-systems containing #°. It is a A-system, it contains 7, and it is contained
in every A-system that contains 7 (see the construction of generated o -fields,
p. 21). Thus # C £y C . If it can be shown that 7 is also a w-system, then
it will follow by Lemma 6 that it is a o-field. From the minimality of o () it
will then follow that o (2°) C £, so that ¥ C o (#°) C £y C £. Therefore, it
suffices to show that 7 is a w-system.

For each A, let Z4 be the class of sets B such that ANB € 4. If A is
assumed to lie in &, or even if A is merely assumed to lie in 7y, then /4
is a A-system: Since AN Q2 = A € £y by the assumption, 74 satisfies (1;). If
Bi,B; € Z4 and B C By, then the A-system £ contains A N B} and A N B, and
hence contains the proper difference (A N By) — (ANBy) =AN(By — By), so
that ./ contains By — B;: 2 satisfies (A5). If B, are disjoint -Z4-sets, then -2
contains the disjoint sets A N B, and hence contains their union A N (|, B,): -Za
satisfies (A3).

If Ae?and B € 2, then (7 is a w-system) ANB € 7 C £y, or B € Z4.
Thus A € & implies &’ C Z4, and since Z4 is a A-system, minimality gives
£y C Za.

Thus A € 2 implies 7y C Za, or, to put it another way, A € #” and B € 2
together imply that B € Z4 and hence A € Zp. (The key to the proof is that
B € 7, if and only if A € Zp.) This last implication means that B € 7 implies
2 C Z£p. Since Zp is a A-system, it follows by minimality once again that
B € 7y implies Zy C /. Finally, B € #y and C € Z; together imply C € /3,
or BN C € 7. Therefore, 7 is indeed a m-system. |

Since a field is certainly a w-system, the uniqueness asserted in Theorem
3.1 is a consequence of this result:

THEOREM 3.3
Suppose that Py and P, are probability measures on o(9°), where & is a -
system. If Py and P, agree on 2, then they agree on o ().

Proof. Let £ be the class of sets A in o(2°) such that P{(A) = P,(A).
Clearly Q € Z. If A € £, then P1(A°) =1 — P1(A) = 1 — P»(A) = P»(A°), and
hence A € £. If A, are disjoint sets in £, then Pi({J,A,) = X,P1(A,) =
X,P2(A,) = P>(U, An), and hence J, A, € £. Therefore £ is a A-system.
Since by hypothesis #” C £ and 7 is a m-system, the m — A theorem gives
o (??) C £, as required. |

Note that the 7-A theorem and the concept of A-system are exactly what are
needed to make this proof work: The essential property of probability measures
is countable additivity, and this is a condition on countable disjoint unions,
the only kind involved in the requirement (A3) in the definition of A-system.
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In this, as in many applications of the -\ theorem, Z C o(#°) and therefore
o (?°) = £, even though the relation o (7°) C £ itself suffices for the conclusion
of the theorem.

Monotone Classes

A class .7 of subsets of Q2 is monotone if it is closed under the formation of
monotone unions and intersections:

(i) A1,Ay,...€ . # and A, 1+ A imply A €
(i) Ay,Ay,...€ 4 and A, | A imply A € .
Halmos’s monotone class theorem is a close relative of the -\ theorem but

will be less frequently used in this book.

THEOREM 3.4
If % is a field and .4 is a monotone class, then 7y C A implies o (%) C M.

Proof. Let m(#,) be the minimal monotone class over #—the intersection
of all monotone classes containing “,. It is enough to prove o (%) C m(%);
this will follow if m (%)) is shown to be a field, because a monotone field is a
o-field.

Consider the class & = [A: A° € m(“)]. Since m (7)) is monotone, S0 is <.
Since % is a field, % C ¢, and so m(#) C &. Hence m(#%) is closed under
complementation.

Define 4 as the class of A such that A U B € m(%) for all B € %,. Then 4
is a monotone class and # C ¢; from the minimality of m (#4)) follows m(#4) C
91. Define & as the class of B such that A U B € m (%) for all A € m(%). Then
9> 1s a monotone class. Now from m (%)) C 4; it follows that A € m(%,) and
B € 7 together imply that A U B € m(%); in other words, B € %, implies that
B € 9. Thus % C %; by minimality, m (%) C %, and hence A,B € m(%)
implies that AU B € m(%). [ |

Lebesgue Measure on the Unit Interval

Consider once again the unit interval (0, 1] together with the field 3 of finite
disjoint unions of subintervals (Example 2.2) and the o-field & = (%)) of
Borel sets in (0, 1]. According to Theorem 2.2, (2.12) defines a probability
measure A on #y. By Theorem 3.1, A extends to 3, the extended A being
Lebesgue measure. The probability space ((0, 1], 23,1) will be the basis for
much of the probability theory in the remaining sections of this chapter. A few
geometric properties of A will be considered here. Since the intervals in (0, 1]
from a m-system generating 73, A is the only probability measure on & that
assigns to each interval its length as its measure.
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Some Borel sets are difficult to visualize:

EXAMPLE 3.1
Let {r;,7,...} be an enumeration of the rationals in (0, 1). Suppose that € is
small, and choose an open interval I, = (a,, b,) such that r, € I,, C (0,1) and
AIy) = by, —a, <€27". Put A =J'2, I,. By subadditivity, 0 < A(A) < €.
Since A contains all the rationals in (0, 1), it is dense there. Thus A is an
open, dense set with measure near 0. If / is an open subinterval of (0, 1), then
I must intersect one of the I, and therefore A(AN 1) > 0.
If B=(0,1)—A then 1 —€¢ < A(B) < 1. The set B contains no interval
and is in fact nowhere dense [A15]. Despite this, B has measure nearly 1.

EXAMPLE 3.2

There is a set defined in probability terms that has geometric properties similar
to those in the preceding example. As in Section 1, let d, (w) be the nth digit in
the dyadic expansion of w; see (1.7). Let A, = [w € (0, 1]: d; (w) = dy1; (w) =
dy+i(w),i =1,...,n], and let A = UflozlA,,. Probabilistically, A corresponds
to the event that in an infinite sequence of tosses of a coin, some finite initial
segment is immediately duplicated twice over. From A(A,) = 2" - 273" it fol-
lows that 0 < A(A) < Er‘l’i12_2” = % Again A is dense in the unit interval; its
measure, less than %, could be made less than € by requiring that some initial
segment be immediately duplicated k times over with k large.

The outer measure (3.1) corresponding to A on Ay is the infimum of the
sums X,A(A,) for which A, € %y and A C |, A,. Since each A, is a finite
disjoint union of intervals, this outer measure is

M (A) = inf Y ||, (3.8)

where the infimum extends over coverings of A by intervals [,. The notion of
negligibility in Section 1 can therefore be reformulated: A is negligible if and
only if A*(A) = 0. For A in &, this is the same thing as A(A) = 0. This covers
the set N of normal numbers: Since the complement N¢ is negligible and lies
in Z,A(N) = 0. Therefore, the Borel set N itself has probability 1: A(N) = 1.

Completeness

This is the natural place to consider completeness, although it enters into proba-
bility theory in an essential way only in connection with the study of stochastic
processes in continuous time; see Sections 37 and 38.
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A probability measure space (2,7, P) is complete it A C B,B € 7, and
P(B) = 0 together imply that A € # (and hence that P (A) = 0). If (2,7, P) is
complete, then the conditions A € #,AAA’ C B € #, and P(B) = 0 together
imply that A" € # and P(A") = P(A).

Suppose that (2,7, P) is an arbitrary probability space. Define P* by (3.1)
for %y = 7 = o (%)), and consider the o-field . # of P*-measurable sets. The
arguments leading to Theorem 3.1 show that P* restricted to . # is a probability
measure. If P*(B) =0 and A C B, then P*(ANE)+ P*(A°NE) <P*B) +
P*(E) = P*(E) by monotonicity, so that A satisfies (3.5) and hence lies in . 7.
Thus (2, #,P*) is a complete probability measure space. In any probability
space it is therefore possible to enlarge the o-field and extend the measure in
such a way as to get a complete space.

Suppose that ((0, 1], #3, 1) is completed in this way. The sets in the com-
pleted o-field . # are called Lebesgue sets, and A extended to . # is still called
Lebesgue measure.

Nonmeasurable Sets

There exist in (0, 1] sets that lie outside 3. For the construction (due to Vitali)
it is convenient to use addition modulo 1 in (0, 1]. For x,y € (0, 1] take x ® y
to be x4y or x +y — 1 according as x+y lies in (0, 1] or not.” Put A @ x =
[a ®x:a €Al

Let £ be the class of Borel sets A such that A @ x is a Borel set and
A(A @ x) = A(A). Then £ is a A-system containing the intervals, and so %3 C £
by the 7-A theorem. Thus A € &3 implies that A @ x € Z3 and L(A @ x) = A(A).
In this sense, A is translation-invariant.

Define x and y to be equivalent (x ~y) if x @ r =y for some rational r
in (0, 1]. Let H be a subset of (0, 1] consisting of exactly one representative
point from each equivalence class; such a set exists under the assumption of
the axiom of choice [A8]. Consider now the countably many sets H & r for
rational r.

These sets are disjoint, because no two distinct points of H are equivalent.
(If H & r; and H @ r, share the point hy @ r; = hy @ 1y, then hy ~ hy; this is
impossible unless 4| = hy, in which case r; = r,.) Each point of (0, 1] lies in
one of these sets, because H has a representative from each equivalence class.
(If x~heH, then x=h®r € H®r for some rational ».) Thus (0,1] =
U,(H & r), a countable disjoint union.

If H were in &3, it would follow that A(0, 1] = X,A(H & r). This is impossi-
ble: If the value common to the A(H & r) is 0, it leads to 1 = 0; if the common

TThis amounts to working in the circle group, where the translation y — x @y becomes a rotation
(1 is the identity). The rationals form a subgroup, and the set H defined below contains one element
from each coset.

a7



48

PROBABILITY

value is positive, it leads to a convergent infinite series of identical positive
terms (a +a + --- < oo and a > 0). Thus H lies outside 4.

Two Impossibility TheoremsT

The argument above, which uses the axiom of choice, in fact proves this: There
exists on 2O no probability measure P such that P(A @ x) = P(A) for all
A €201 and all x € (0,1]. In particular it is impossible to extend A to a
translation-invariant probability measure on 21,

There is a stronger result: There exists on 2%V no probability measure P
such that P{x} = 0 for each x. Since A{x} = 0, this implies that it is impossible
to extend A to 2011 at all.*

The proof of this second impossibility theorem requires the well-ordering
principle (equivalent to the axiom of choice) and also the continuum hypothesis.
Let S be the set of sequences (s(1),s(2),...) of positive integers. Then S has
the power of the continuum. (Let the nth partial sum of a sequence in § be the
position of the nth 1 in the nonterminating dyadic representation of a point in
(0, 1]; this gives a one-to-one correspondence.) By the continuum hypothesis,
the elements of S can be put in a one-to-one correspondence with the set of
ordinals preceding the first uncountable ordinal. Carrying the well ordering of
these ordinals over to S by means of the correspondence gives to S a well-
ordering relation <,, with the property that each element has only countably
many predecessors.

For s, t in § write s <1t if s(i) <t(i) for all i > 1. Say that ¢ rejects s if
t <y s and s <t; this is a transitive relation. Let 7" be the set of unrejected
elements of S. Let Vi be the set of elements that reject s, and assume it is
nonempty. If 7 is the first element (with respect to <,,) of Vs, then r € T (if
t' rejects t, then it also rejects s, and since ¢’ <y, ¢, there is a contradiction).
Therefore, if s is rejected at all, it is rejected by an element of 7.

Suppose T is countable and let #1, 1>, ... be an enumeration of its elements.
If t*(k) = tx (k) 4+ 1, then t* is not rejected by any #; and hence lies in 7', which
is impossible because it is distinct from each #;. Thus T is uncountable and must
by the continuum hypothesis have the power of (0, 1].

Let x be a one-to-one map of 7" onto (0, 1]; write the image of ¢ as x,. Let
A}'( = [x;: t(i) = k] be the image under x of the set of ¢ in T for which 1 (i) = k.
Since #(i) must have some value k, U/?LA;( = (0, 1]. Assume that P is countably
additive and choose # in S in such a way that P(UZS)]A;;) > 1 —1/21*! for

TThis topic may be omitted. It uses more set theory than is assumed in the rest of the book.
“This refers to a countably additive extension, of course. If one is content with finite additivity, there
is an extension to 2; see Problem 3.8.
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i>1.1If
A=A = 16) < u@] = b 1 < ul,

then P(A) > 0. It A is shown to be countable, this will contradict the hypothesis
that each singleton has probability 0.

Now, there is some 7y in 7 such that u <ty (if u € T, take fy = u; otherwise,
u is rejected by some 79 in 7). If t <u for a ¢t in T, then ¢t <y and hence
t <y ty (since otherwise ty rejects ¢). This means that [¢: t < u] is contained in
the countable set [f: ¢ <, fyp], and A is indeed countable.

PROBLEMS

49

3.1. (a) In the proof of Theorem 3.1 the assumed finite additivity of P is
used twice and the assumed countable additivity of P is used once.
Where?
(b) Show by example that a finitely additive probability measure on
a field may not be countably subadditive. Show in fact that if a
finitely additive probability measure is countably subadditive, then
it is necessarily countably additive as well.
(¢) Suppose Theorem 2.1 were weakened by strengthening its hypothesis
to the assumption that # is a o-field. Why would this weakened
result not suffice for the proof of Theorem 3.1?
3.2. Let P be a probability measure on a field # and for every subset A of
Q define P*(A) by (3.1). Denote also by P the extension (Theorem 3.1)
of P to ¥ = o(%).
(a) Show that

P*(A) =inf[P(B): AC B,B € 7| (3.9
and (see (3.2))
P.(A) =sup[P(C): C CA,C e7], (3.10)

and show that the infimum and supremum are always achieved.

(b) Show that A is P*-measurable if and only if P,(A) = P*(A).

(¢) The outer and inner measures associated with a probability measure
P on a o-field # are usually defined by (3.9) and (3.10). Show that
(3.9) and (3.10) are the same as (3.1) and (3.2) with # in the role
of A.
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22k

34.

S5k

3.6.

2.13, 2.15, 3.2 4 For the following examples, describe P* as defined by
(3.1) and .# = .7 (P*) as defined by the requirement (3.4). Sort out the
cases in which P* fails to agree with P on 4 and explain why.

(a) Let % consist of the sets @, {1}, {2, 3}, and Q = {1, 2, 3}, and define
probability measures Py and P, on % by P{1} = 0 and P»{2,3} = 0,
Note that . Z/(P{) and . 7 (P3) differ.

(b) Suppose that €2 is countably infinite, let %, be the field of finite and
cofinite sets, and take P(A) to be O or 1 as A is finite or confinite.

(¢) The same, but suppose that €2 is uncountable.

(d) Suppose that 2 is uncountable, let 4 consist of the countable and
the cocountable sets, and take P(A) to be 0 or 1 as A is countable
or cocountable.

(e) The probability in Problem 2.15.

(f) Let P(A) = I4(wg) for A € %, and assume {wy} € 0 (“).

Let f be a strictly increasing, strictly concave function on [0, c0) satis-

fying f(0) = 0. For A C (0, 1], define P*(A) = f(L*(A)). Show that P*

is an outer measure in the sense that it satisfies P*(@) = 0 and is non-

negative, monotone, and countably subadditive. Show that A lies in .4

(defined by the requirement (3.4)) if and only if A*(A) or A*(A¢) is O.

Show that P* does not arise from the definition (3.1) for any probability

measure P on any field %.

Let @ be the unit square [(x,y): 0 < x,y < 1], let # be the class of
sets of the form [(x,y): x € A,0 <y < 1], where A € &3, and let P have
value L(A) at this set. Show that (€2, 7, P) is a probability measure space.
Show for A = [(x,y): 0 < x < 1,y = 1] that P,(A) = 0 and P*(A) = 1.

Let P be a finitely additive probability measure on a field #. For A C €,
in analogy with (3.1) define

P°(A) = ianP(An), (3.11)

where now the infimum extends over all finite sequences of “-sets A,

satisfying A C |, An. (If countable coverings are allowed, everything

is different. It can happen that P°(2) = 0; see Problem 3.3(e).) Let .#/°
be the class of sets A such that P°(E) = P°(ANE)+P°(A° NE) for

all E C Q.

(a) Show that P°(@) = 0 and that P° is nonnegative, monotone, and
finitely subadditive. Using these four properties of P°, prove: Lemma
1°: _#° is a field. Lemma 2°: If Ay,A,,... is a finite sequence of
disjoint .#°-sets, then for each E C £,

pP° (E n (UAk>> =) PUENA. (3.12)
k k

Lemma 3°: P° restricted to the field . #° is finitely additive.

D
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3.8.

3.9.

3.10.
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(b) Show that if P° is defined by (3.11) (finite coverings), then: Lemma
4°: % C A#°. Lemma 5°: P°(A) = P(A) for A € %,.
(¢) Define Po(A) = 1 — P°(A°). Prove that if E C A € %, then

P-(E) =P(A) —P°(A—E). (3.13)

2.7 3.6 1 Suppose that H lies outside the field ), and let # be the
field generated by # U {H}, so that 7 consists of the sets (H NA) U
(H N B) with A, B € %. The problem is to show that a finitely additive
probability measure P on “ has a finitely additive extension to .
Define Q on # by

O((H NA)YUH NB)) =P°(HNA)+P-(H°NB) (3.14)

for A,B € %.

(a) Show that the definition is consistent.

(b) Shows that Q agrees with P on 7.

(c) Show that Q is finitely additive on 7. Show that Q(H) = P°(H).

(d) Define Q' by interchanging the roles of P° and P, on the right in
(3.14). Show that Q' is another finitely additive extension of P to
7. The same is true of any convex combination Q” of Q and Q’.
Show that Q”(H) can take any value between Po(H) and P°(H).

1 Use Zorn’s lemma to prove a theorem of Tarski: A finitely additive
probability measure on a field has a finitely additive extension to the
field of all subsets of the space.

T
(a) Let P be a (countably additive) probability measure on a o-field 7.

Suppose that H ¢ 7, and let 7 = o (7 U{H}). By adapting the
ideas in Problem 3.7, show that P has a countably additive extension
from 7 to A.

(b) It is tempting to go on and use Zorn’s lemma to extend P to a
completely additive probability measure on the o-field of all subsets
of 2. Where does the obvious proof break down?

2.17 3.2 1 As shown in the text, a probability measure space (2,7, P)

has a complete extension—that is, there exists a complete probability

measure space (2,7, Py) such that # C 7 and P; agrees with P on 7 .

(a) Suppose that (2,7, P,) is a second complete extension. Show by
an example in a space of two points that P; and P, need not agree
on the o-field 74 N %A,

(b) There is, however, a unique minimal complete extension: Let
Z*+ consist of the sets A for which there exist #-sets B and C
such that AAB C C and P(C) =0. Show that # T is a o-field.

D
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3.11.

3.12.

3.13.

3.14.

3.15.

For such a set A define PT(A) = P(B). Show that the definition
is consistent, that P* is a probability measure on & *, and that
(Q,7*,P7T) is complete. Show that, if (2,7, P}) is any complete
extension of (2,7 ,P), then #* C 74 and P, agrees with P* on
F T (Q, 7T, PT) is the completion of (2,7 ,P).

(¢) Show that A € ' if and only if P,(A) = P*(A), where P, and P*
are defined by (3.9) and (3.10), and that P*(A) = P,(A) = P*(A)
in this case. Thus the complete extension constructed in the text is
exactly the completion.

(a) Show that a A-system satisfies the conditions
(M) A, Be ZandANB =@ imply AUB € Z,
(As) A1,Ay,...€ £ and A, 1 A imply A € 7,
(k¢) A1,A2,...€ Zand A, | Aimply A € Z.

(b) Show that /" is a A-system if and only if it satisfies (1), (1), and
(As5). (Sometimes these conditions, with a redundant (14), are taken
as the definition.

253111

(a) Show that if 7’ is a m-system, then the minimal A-system over 7’
coincides with o ().

(b) Let #” be a w-system and . # a monotone class. Show that 7 C .#
does not imply o (#°) C ..

(¢) Deduce the 7 —A theorem from the monotone class theorem by show-
ing directly that, if a A-system / contains a w-system Z, then 7/
also contains the field generated by .

2571

(a) Suppose that % is a field and P and P, are probability measures
on o (#). Show by the monotone class theorem that if P; and P>
agree on 7, then they agree on o (%).

(b) Let #4 be the smallest field over the w-system #°. Show by the
inclusion—exclusion formula that probability measures agreeing on
2 must agree also on . Now deduce Theorem 3.3 from part (a).

1.5 2.22 4 Prove the existence of a Lebesgue set of Lebesgue measure
0 that is not a Borel set.

1.3, 3.6 3.14 4+ The outer content of a set A in (0, 1] is ¢*(A) =
inf )" |I,|, where the infimum extends over finite coverings of A by
intervals I,. Thus A is trifling in the sense of Problem 1.3 if and only
if ¢*(A) = 0. Define inner content by c,(A) =1 — c¢*(A°). Show that
c«(A) = sup Z,|I,|, where the supremum extends over finite disjoint
unions of intervals /,, contained in A (of course the analogue for A, fails).
Show that c,(A) < ¢*(A); if the two are equal, their common value is
taken as the content c(A) of A, which is then Jordan measurable. Connect
all this with Problem 3.6.
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3.17.

3.18.

3.19.

3.20.

3.21.
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Show that ¢*(A) = ¢*(A™), where A~ is the closure of A (the ana-
logue for A* fails).

A trifling set is Jordan measurable. Find (Problem 3.14) a Jordan
measurable set that is not a Borel set.

Show that c,(A) < A.(A) < A"(A) < c*(A). What happens in this
string of inequalities if A consists of the rationals in (0, %] together with
the irrationals in (%, 1]?

1.5 1 Deduce directly by countable additivity that the Cantor set has
Lebesgue measure 0.

From the fact that A(x @ A) = A(A), deduce that sums and differences
of normal numbers may be nonnormal.

Let H be the nonmeasurable set constructed at the end of the section.

(a) Show that, if A is a Borel set and A C H, then A(A) = 0—that is,
M(H) = 0.

(b) Show that, if A*(E) > 0, then E contains a nonmeasurable subset.

The aim of this problem is the construction of a Borel set A in (0, 1) such

that 0 < L(A N G) < A(G) for every nonempty open set G in (0, 1).

(a) It is shown in Example 3.1 how to construct a Borel set of positive
Lebesgue measure that is nowhere dense. Show that every interval
contains such a set.

(b) Let {/,} be an enumeration of the open intervals in (0, 1) with ratio-
nal endpoints. Construct disjoint, nowhere dense Borel sets Ay, By,
Ay, By, ... of positive Lebesgue measure such that A, UB,, C I,,.

(c) Let A=, Ax. A nonempty open G in (0, 1) contains some I,.
Show that 0 < A(4,)) < AANG) < AMANG)+ AB,) < AG).

4 There is no Borel set A in (0, 1) such that ar(I) < A(ANT) < bi(l)

for every open interval / in (0, 1), where 0 < a < b < 1. In fact prove:

(@) If X\(ANTIT) <br(l) for all I and if b < 1, then A(A) = 0. Hint:
Choose an open G such that A C G C (0,1) and A(G) < b~ 'A(A);
represent G as a disjoint union of intervals and obtain a contradiction.

(b) If ax(I) < A(ANIT) for all I and if a >0, then A(A) = 1.

Show that not every subset of the unit interval is a Lebesgue set. Hint:

Show that A* is translation-invariant on 2!l; then use the first impos-

sibility theorem (p. 45). Or use the second impossibility theorem.

SECTION 4 DENUMERABLE PROBABILITIES

Complex probability ideas can be made clear by the systematic use of measure
theory, and probabilistic ideas of extramathematical origin, such as indepen-
dence, can illuminate problems of purely mathematical interest. It is to this
reciprocal exchange that measure-theoretic probability owes much of its interest.
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The results of this section concern infinite sequences of events in a proba-
bility space.” They will be illustrated by examples in the unit interval. By this
will always be meant the triple (2,7, P) for which Q2 is (0, 1], # is the o-field
23 of Borel sets there, and P(A) is for A in 7 the Lebesgue measure A(A) of A.
This is the space appropriate to the problems of Section 1, which will be pur-
sued further. The definitions and theorems, as opposed to the examples, apply
to all probability spaces. The unit interval will appear again and again in this
chapter, and it is essential to keep in mind that there are many other important
spaces to which the general theory will be applied later.

General Formulas

The formulas (2.5) through (2.11) will be used repeatedly. The sets involved
in such formulas lie in the basic o-field # by hypothesis. Any probability
argument starts from given sets assumed (often tacitly) to lie in 7 ; further sets
constructed in the course of the argument must be shown to lie in # as well,
but it is usually quite clear how to do this.

If P(A) > 0, the conditional probability of B given A is defined in the usual
way as

P(ANB)

P(BJA) = ) (4.1)

There are the chain-rule formulas

P(ANB) = P(A)P(B|A),
P(ANBNC)=P(APB|AP(C|ANB), (4.2)

If A1, A,, ... partition €2, then

P(B) =) P(A,)P(BIA,). (4.3)

Note that for fixed A the function P (B|A) defines a probability measure as B
varies over 7 .

If P(A,) =0, then by subadditivity P (| J,A,) =0. If P(A,) =1, then
(), An has complement | J, A5 of probability 0. This gives two facts used over
and over again:

If A1,A,,... are sets of probability 0, so is Un Ay, If AL, Ay, ... are sets of
probability 1, so is (), An.

"They come under what Borel in his first paper on the subject (see the footnote on p. 9) called
probabilités dénombrables; hence the section heading.

D
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Limit Sets
For a sequence Aj,A,,... of sets, define a set
o o
lim supA, = m UAk 4.4)
n n=1k=n
and a set
[e.¢] o
lim infA, = (_J () A« (4.5)
n=1k=n

These sets’ are the limits superior and inferior of the sequence {A,}. They lie
in 7 if all the A, do. Now w lies in (4.4) if and only if for each n there is
some k > n for which w € Ag; in other words, w lies in (4.4) if and only if it
lies in infinitely many of the A,. In the same way, w lies in (4.5) if and only if
there is some n such that w € Ay for all £k > n; in other words, w lies in (4.5)
if and only if it lies in all but finitely many of the A,,.

Note that (=, Ax 1 liminf, A, and (J;—, Ax | limsup, A,. For every m
and n, (=, Ak C U=, Ak, because for i > max{m,n},A; contains the first of
these sets and is contained in the second. Taking the union over m and the
intersection over n shows that (4.5) is a subset of (4.4). But this follows more
easily from the observation that if w lies in all but finitely many of the A,
then of course it lies in infinitely many of them. Facts about limits inferior and
superior can usually be deduced from the logic they involve more easily than
by formal set-theoretic manipulations.

If (4.4) and (4.5) are equal, write

limA, = liminfA, = limsupA,. (4.6)
n n n

To say that A, has limit A, written A, — A, means that the limits inferior and
superior do coincide and in fact coincide with A. Since liminf,, A, C limsup, A,
always holds, to check whether A, — A is to check whether limsup, A, C A C
liminf, A,,. From A, € & and A,, — A follows A € & .
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EXAMPLE 4.1

Consider the functions d, (w) defined on the unit interval by the dyadic expan-
sion (1.7), and let [, (w) be the length of the run of 0’s starting at d, (w): [,,(w) =
kifd,(w)="---=dyix_1(w) =0and d, 1 (w) = 1; here [,(w) = 0 if d,(w) =
1. Probabilities can be computed by (1.10). Since [w: [,(w) = k] is a union of

TSee Problems 4.1 and 4.2 for the analogy between set-theoretic and numerical limits superior and
inferior.
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2"=1 disjoint intervals of length 27"* it lies in # and has probability 27¥~1,
Therefore, [w: [, (w) > r] = [w: d;(w) =0,n <i < n + r] lies also in # and
has probability X;-,27%1:

Plw: (@) >r] =27". 4.7)

If A, is the event in (4.7), then (4.4) is the set of w such that [, (w) > r for
infinitely many n, or, n being regarded as a time index, such that /,(w) > r
infinitely often.

Because of the theory of Sections 2 and 3, statements like (4.7) are valid
in the sense of ordinary mathematics, and using the traditional language of
probability—‘“heads,” “runs,” and so on—does not change this.

When n has the role of time, (4.4) is frequently written

limsup nA, = [A, i.0.], (4.8)
where “i.0.” stands for “infinitely often.”

THEOREM 4.1
(1) For each sequence {A,},

P (lim ing,,) < infP(4,) (4.9)
<limsupP(A,) <P (lim supA,,) .
(i) If A, — A, then P(A,) — P(A).
Proof. Clearly (ii) follows from (i). As for (i), if B, = N2 Ay and C, =
Uz2 Ak, then B, 1 liminf, A, and C, | limsup, A,, so that, by parts (i) and

(i1) of Theorem 2.1, P(A,) > P(B,) — P(liminf, A,) and P(4,) < P(C,) —
P(limsup, A,). |

EXAMPLE 4.2

Define [,(w) as in Example 4.1, and let A, = [w: [,(w) > r] for fixed r. By
(4.7) and (4.9), P|w: [, (®w) > r i.0.] = 27". Much stronger results will be proved
later.

Independent Events

Events A and B are independent if P(ANB) = P(A)P(B). (Sometimes an
unnecessary mutually is put in front of independent.) For events of positive

D
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probability, this is the same thing as requiring P(B|A) = P(B) or P(A|B) =
P (A). More generally, a finite collection Ay, ...,A, of events is independent if

P(Ay, N~ NAy) = P(A) - P(Ay) (4.10)

for 2<j <n and 1 <k <--- <k;j <n. Reordering the sets clearly has no
effect on the condition for independence, and a subcollection of independent
events is also independent. An infinite (perhaps uncountable) collection of events
is defined to be independent in each of its finite subcollections is.
If n = 3, (4.10) imposes for j = 2 the three constraints
P(A1NA2) =P(A)P(A2), P(A1NA3) =P(A)P(Az), (4.11)

P(A2 NA3) = P(A2)P(A3z),
and for j = 3 the single constraint

PATNA;NA3) =P(A)P(A)P(A3). 4.12)
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EXAMPLE 4.3

Consider in the unit interval the events B,, = [w: d,(w) = d,(w)]—the uth
and vth tosses agree—and let A; = By»,A> = B13,A3 = Br3. Then A, A3, A3
are pairwise independent in the sense that (4.11) holds (the two sides of each
eqliation being %). But since A; N Ay C Az, (4.12) does not hold (the left side

is 7 and the right is %), and the events are not independent.

EXAMPLE 4.4

In the discrete space 2 = {I1,...,6} suppose each point has probability % (a
fair die is rolled). If Ay = {1,2,3,4} and A, = A3 = {4, 5, 6}, then (4.12) holds
but none of the equations in (4.11) do. Again the events are not independent.

Independence requires that (4.10) hold for eachj = 2, ...,n and each choice
of ki,...,kj, a total of T/, (;’) = 2" — | — n constraints. This requirement can
be stated in a different way: If By, ..., B, are sets such that foreachi = 1,...,n
either B; = A; or B; = 2, then

PB NByN---NB,) =P(B)P(By)---P(By). (4.13)
The point is that if B; = €2, then B; can be ignored in the intersection on the

left and the factor P(B;) = 1 can be ignored in the product on the right. For
example, replacing A, by 2 reduces (4.12) to the middle equation in (4.11).

D
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From the assumed independence of certain sets it is possible to deduce the
independence of other sets.

EXAMPLE 4.5

On the unit interval the events H, = [w: d,(w) =0],n =1,2,..., are inde-
pendent, the two sides of (4.10) having in this case value 27/. It seems intu-
itively clear that from this should follow the independence, for example, of
[w: da(w) = 0] = H and [w: di(w) = 0,d3(w) = 1] = H| N Hy, since the two
events involve disjoint sets of times. Further, any sets A and B depending,
respectively, say, only on even and on odd times (like [w: d», (®w) = 0 i.0.] and
[w: do+1(w) = 1 1.0.]) ought also to be independent. This raises the general
question of what it means for A to depend only on even times. Intuitively, it
requires that knowing which ones among H», Hy, ... occurred entails knowing
whether or not A occurred—that is, it requires that the sets Hy, Hy, ... “deter-
mine” A. The set-theoretic form of this requirement is that A is to lie in the o-
field generated by Hy,Hy,.... From A € 6 (Hy,Hy,...) and B € 0 (H|,H3,...)
it ought to be possible to deduce the independence of A and B.

The next theorem and its corollaries make such deductions possible. Define
classes .11, ..., in the basic o-field # to be independent if for each choice
of A; from .o4,i = 1,...,n, the events Ay,...,A, are independent. This is the
same as requiring that (4.13) hold whenever foreach i, 1 <i < n, either B; € .%;
or B; = Q.

THEOREM 4.2
If <A,..., 5, are independent and each .4 is a w-system, then o(<4),...,
o (.o14,) are independent.

Proof. Let 73; be the class .o augmented by Q (which may be an element
of ./ to start with). Then each &3; is a w-system, and by the hypothesis of inde-
pendence, (4.13) holds if B; € #;,i = 1,...,n. For fixed sets B»,...,B, lying
respectively in %, ..., 7%, let £ be the class of 7 -sets B; for which (4.13)
holds. Then Z is a A-system containing the w-system #3; and hence (Theorem
3.2) containing o () = o(.</). Therefore, (4.13) holds if By,Bs,...,B, lie
respectively in o (.c4), %o, ..., B,, which means that o(.<4),.%%, ..., are
independent. Clearly the argument goes through if 1 is replaced by any of the
indices 2,...,n.

From the independence of o (), %,...,.%, now follows that of
o(h),0(h),.Ah,. .., and so on. [ |
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If . &/ ={A,,..., A} is finite, then each A in o(.%/) can be expressed by
a “formula” such as A =A; NAS or A = (A2 NA7) U (A3 NATNAg). If .7 is
infinite, the sets in o (.%/) may be very complicated; the way to make precise
the idea that the elements of .o/ “determine” A is not to require formulas, but
simply to require that A lie in o (.¢7).

Independence for an infinite collection of classes is defined just as in the
finite case: [.%%: 6 € ®] is independent if the collection [Ag: 6 € O] of sets is
independent for each choice of Ay from .o7%. This is equivalent to the indepen-
dence of each finite subcollection .7%,, .. .,.%%, of classes, because of the way
independence for infinite classes of sets is defined in terms of independence for
finite classes. Hence Theorem 4.2 has an immediate consequence:

Corollary 1. If Ag,0 € O, are independent and each .7 is a mw-system, then
o (4),0 € ©, are independent.

Corollary 2. Suppose that the array
An A
Ay Ap ... (4.14)

of events is independent; here each row is a finite or infinite sequence, and there
are finitely or infinitely many rows. If 7 is the o -field generated by the i th row,
then 71,7, ... are independent.

Proof. 1f .7 is the class of all finite intersections of elements of the ith row
of (4.14), then .7 is a w-system and o (.%4) = 7. Let I be a finite collection
of indices (integers), and for each i in I let J; be a finite collection of indices.
Consider for i € I the element C; = Nj¢;,A;; of .. Since every finite subcol-
lection of the array (4.14) is independent (the intersections and products here
extend over i € I and j € J;),

P<ﬂc">:P N4 | =T1[1P@» =]]P0an
! i i i
=[P

It follows that the classes .©7,.%,... are independent, so that Corollary 1
applies. |

Corollary 2 implies the independence of the events discussed in Example
4.5. The array (4.14) in this case has two rows:

H, H, Hg
H\, Hs; Hs
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Theorem 4.2 also implies, for example, that for independent A4, ... ,A,,
PATN---NA, NAgp1 N---NAy,) (4.15)
=P(A)---P(ADP(Ars1) --- P(Ay).

To prove this, let .74 consist of A; alone; of course, Af € o(.7%). In (4.15) any
subcollection of the A; could be replaced by their complements.

EXAMPLE 4.6

Consider as in Example 4.3 the events B, that, in a sequence of tosses of a
fair coin, the uth and vth outcomes agree. Let .c/ consist of the events By, and
Bi3, and let .24 consist of the event B,3. Since these three events are pairwise
independent, the classes .©/ and .©% are independent. Since By3 = (B2 AB13)¢
lies in o (.77]), however, o (.27]) and o (.¢%4) are not independent. The trouble is
that .7 is not a m-system, which shows that this condition in Theorem 4.2 is
essential.

EXAMPLE 4.7

If .o/ ={A,As,...} is a finite or countable partition of Q and P(B|A;) =p
for each A; of positive probability, then P(B) = p and B is independent of
o (.<7): If ¥’ denotes summation over those i for which P(A;) > 0, then P(B) =
¥'P(A; NB) = X'P(A;)p = p, and so B is independent of each set in the -
system .o/ U {@}.

Subfields

Theorem 4.2 involves a number of o-fields at once, which is characteristic
of probability theory; measure theory not directed toward probability usually
involves only one all-embracing o-field 7. In proability, o-fields in # —that
is, sub-o-fields of # —play an important role. To understand their function it
helps to have an informal, intuitive way of looking at them.

A subclass .7 of # corresponds heuristically to partial information. Imagine
that a point w is drawn from €2 according to the probabilities given by P: w lies
in A with probability P(A). Imagine also an observer who does not know which
o it is that has been drawn but who does know for each A in .</ whether w € A
or w ¢ A—that is, who does not know @ but does know the value of I4(w) for
each A in .o/. Identifying this partial information with the class .o/ itself will
illuminate the connection between various measure-theoretic concepts and the
premathematical ideas lying behind them.

The set B is by definition independent of the class .o/ if P(B|A) = P (B) for
all sets A in .o/ for which P(A) > 0. Thus if B is independent of .7, then the
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observer’s probability for B is P(B) even after he has received the information
in .o7; in this case .9/ contains no information about B. The point of Theorem
4.2 is that this remains true even if the observer is given the information in
o (.27), provided that .o/ is a w-system. It is to be stressed that here information,
like observer and know, is an informal, extramathematical term (in particular,
it is not information in the technical sense of entropy).

The notion of partial information can be looked at in terms of partitions.
Say that points @ and @’ are .°7-equivalent if, for every A in ./, @ and &' lie
either both in A or both in A —that is, if

Iy(w) = L1 (o)), Ae .. (4.16)

This relation partitions €2 into sets of equivalent points; call this the ./ partition.
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EXAMPLE 4.8

If w and ' are o(.%/)-equivalent, then certainly they are .c/-equivalent. For
fixed w and ', the class of A such that I4(w) = I4 (') is a o-field; if @ and
o' are .o/-equivalent, then this o-field contains .</ and hence o (.</), so that w
and o’ are also o (.%/)-equivalent. Thus .c/-equivalence and o (.¢/)-equivalence
are the same thing, and the .¢/-partition coincides with the o (.¢7)-partition.

An observer with the information in o (.¢/) knows, not the point @ drawn,
but only the equivalence class containing it. That is exactly the information he
has. In Example 4.6, it is as though an observer with the items of information
in .27 were unable to combine them to get information about Bj3.

EXAMPLE 4.9

If H, = [w: d,(w) = 0] as in Example 4.5, and if .o/ = {H|, H3, Hs, ...}, then w
and o’ satisfy (4.16) if and only if d, (w) = d,, () for all odd n. The information
in o (.o7) is thus the set of values of d,(w) for n odd.

One who knows that w lies in a set A has more information about w the
smaller A is. One who knows I4(w) for each A in a class .7, however, has more
information about w the larger ./ is. Furthermore, to have the information in
./ and the information in .94 is to have the information in .27 U .9%, not that
in .o/ N .oh.

The following example points up the informal nature of this interpretation
of o-fields as information.
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EXAMPLE 4.10

In the unit interval (2,7, P) let & be the o-field consisting of the countable
and the cocountable sets. Since P(G) is 0 or 1 for each G in & each set H in #
is independent of <. But in this case the & -partition consists of the singletons,
and so the information in ¢ tells the observer exactly which @ in © has been
drawn. (i) The o-field ¢ contains no information about H —in the sense that
H and ¢ are independent. (ii) The o-field ¢ contains all the information about
H —in the sense that it tells the observer exactly which w was drawn.

In this example, (i) and (ii) stand in apparent contradiction. But the mathe-
matics is in (i)—H and ¢ are independent—while (ii) only concerns heuristic
interpretation. The source of the difficulty or apparent paradox here lies in the
unnatural structure of the o-field ¢ rather than in any deficiency in the notion
of independence.” The heuristic equating of o -fields and information is helpful
even though it sometimes breaks down, and of course proofs are indifferent to
whatever illusions and vagaries brought them into existence.

The Borel-Cantelli Lemmas
This is the first Borel—Cantelli lemma:

THEOREM 4.3
If ¥, P(A,) converges, then P(limsup, A,) = 0.

Proof. From limsup, A, C Ug—,, Ax follows P(limsup,A,) < P(U;=,,
Ap) < X2 P(Ay), and this sum tends to 0 as m — oo if X,P(A,) con-
verges. l

By Theorem 4.1, P(A,) — 0 implies that P(liminf, A,) = 0; in Theorem
4.3 hypothesis and conclusion are both stronger.

EXAMPLE 4.11
Consider the run length /, (w) of Example 4.1 and a sequence {r,} of positive
reals. If the series %1/2' converges, then

Plw: lI,(w) > r, 1.0.] =0. (4.17)

To prove this, note that if s, is r, rounded up to the next integer, then by
@4.7), Plo: l,(w) = r,] =27 <27, Therefore, (4.17) follows by the first
Borel—Cantelli lemma.

See Problem 4.10 for a more extreme example.
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If r, = (1 + €)log, n and € is positive, there is convergence because 27" =
1/n'*. Thus

Plw: l,(w) > (1 +€)log, n i.0.] = 0. (4.18)

The limit superior of the ratio /,(w)/log, n exceeds 1 if and only if w belongs
to the set in (4.18) for some positive rational €. Since the union of this countable
class of sets has probability 0,

l
P [a): lim sup n(@) > 1] =0. 4.19)
n l0gyn

To put it the other way around.

I
P [a): lim sup (@) < 1:| =1. (4.20)
n 10g,n

Technically, the probability in (4.20) refers to Lebesgue measure. Intuitively, it
refers to an infinite sequence of independent tosses of a fair coin.
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In this example, whether lim sup,, [, (w)/log, n < 1 holds or not is a prop-
erty of w, and the property in fact holds for w in an 7 -set of probability 1. In
such a case the property is said to hold with probability 1, or almost surely.
In nonprobabilistic contexts, a property that holds for w outside a (measurable)
set of measure 0 holds almost everywhere, or for almost all w.

EXAMPLE 4.12

The preceding example has an interesting arithmetic consequence. Truncat-
ing the dyadic expansion at n gives the standard (n — 1)-place approximation
EZ;lldk (a))Z_k to w; the error is between 0 and 27", and the error relative
to the maximum is

w—Sd (2% & B
enlw) = —— =1 =D dpsi1(@)27, (4.21)
i=1

which lies between 0 and 1. The binary expansion of e, (w) begins with [, (w)
0’s, and then comes a 1. Hence .0...01 <e¢,(w) < .0...0111..., where there
are [,(w) 0’s in the extreme terms. Therefore,

1 1

S @1 <eu(w) < @)’ (4.22)

so that results on run length give information about the error of approximation.
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By the left-hand inequality in (4.22), e, (w) < x, (assume that 0 < x, < 1)
implies that [, (w) > —log, x, — 1; since £27" < oo implies (4.17), x, < 0o
implies Plw: e,(w) < x, 1.0.] = 0. (Clearly, [w: e,(w) < x] is a Borel set.) In
particular,

Plw: ey(w) < 1/n'T€1.0]=0. (4.23)

Technically, this probability refers to Lebesgue measure; intuitively, it refers to
a point drawn at random from the unit interval.

EXAMPLE 4.13

The final step in the proof of the normal number theorem (Theorem 1.2)

was a disguised application of the first Borel-Cantelli lemma. If A, = [w:

In"ls,(w)] > n~'/8], then ZP(A,) < oo, as follows by (1.29), and so

P[A, i.0.] = 0. But for w in the set complementary to [A,, i.0.], n~ls,(w) — 0.
The proof of Theorem 1.6 is also, in effect, an application of the first

Borel—Cantelli lemma.

This is the second Borel—Cantelli lemma:

THEOREM 4.4
If {A,} is an independent sequence of events and %,P(A,) diverges, then
P(limsup, A,) = 1.

Proof. It is enough to prove that P(|J,~, (=, A{) = 0 and hence enough
to prove that P(ﬂ,fozn Az) =0 forall n. Since 1 —x <e™*,

n+j n+j n+j
Pl | =10 =P <exp| =Y PAx)
k=n

k=n k=n

Since %P (Ay) diverges, ‘the last expression tends to 0 as j — oo, and hence
P(OF2,A9) = lim; P(OT]AS) = 0. -

By Theorem 4.1, limsup, P(A,) >0 implies P (limsup,A,)>0; in
Theorem 4.4, the hypothesis ¥,P(A,) = oo is weaker but the conclusion is
stronger because of the additional hypothesis of independence.

EXAMPLE 4.14
Since the events [w: [, (w) = 0] = [w: d,(w) = 1],n = 1,2, ..., are independent
and have probability %,P[w: l,(w) =01.0.] = 1.

Since the events A, = [w: [,(w) = 1] = [w: d,(®w) =0,d,+1(w) = 1],n =
1,2,..., are not independent, this argument is insufficient to prove that

Plo: (@) = 1i0] = 1. (4.24)

D
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But the events A, A4, Ag, . . . are independent (Theorem 4.2) and their probabil-
ities form a divergent series, and so Plw: b, (w) = 1 i.0.] = 1, which implies
(4.24).
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Significant applications of the second Borel—Cantelli lemma usually require,
in order to get around problems of dependence, some device of the kind used
in the preceding example.

EXAMPLE 4.15
There is a complement to (4.17): If r, is nondecreasing and 27" /r, diverges,
then

Plw: I,(w) > r, i.0.] = 1. 4.25)

To prove this, note first that if r, is rounded up to the next integer, then
27" [y, still diverges and (4.25) is unchanged. Assume then that r, = r(n)
is integral, and define {n;} inductively by n, =1 and nyy1 =ng + 1y, k >
1. Let Ay = [w: [y (w) > 1y ] = [w: di(w) = 0,n; <i < ngy1]; since the Ay
involve nonoverlapping sequences of time indices, it follows by Corollary 2
to Theorem 4.2 that Aj,A,, ... are independent. By the second Borel-Cantelli
lemma, P[A; i.0.] = 1 if ;P (Ay) = %3277 diverges. But since r, is non-
decreasing,

D27 = 2 ) (er — i)

k>1 k>1
S I S A
—_ n n -
k=1 ng=n<nji n>1

Thus the divergence of X,27"r,~ ! implies that of %;277"%) and it follows
that, with probability 1, [, (w) > r,, for infinitely many values of k. But this
is stronger than (4.25).

The result in Example 4.2 follows if r,, = r, but this is trivial. If r,, = log, n,
then 27" /r, = ¥1/(nlog, n) diverges, and therefore

Plo: (@) = logyn i.o.] = 1. (4.26)
By (4.26) and (4.20),
I
P[a): lim sup @) — 1] —1. (4.27)
n logyn

Thus for w in a set of probability 1, log, n as a function of # is a kind of “upper
envelope” for the function /, (w).
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EXAMPLE 4.16
By the right-hand inequality in (4.22), if [,(w) > log, n, then e,(w) < 1/n.
Hence (4.26) gives

P[w: en (@) < % i.o.] = 1. (4.28)

This and (4.23) show that, with probability 1, e,(w) has 1/n as a “lower
envelope.” The discrepancy between w and its (n — 1)-place approximation
Ez;lldk (w)27% will fall infinitely often below 1/(n2"~!) but not infinitely often
below 1/(n'Te2"—1).

EXAMPLE 4.17

Examples 4.12 and 4.16 have to do with the approximation of real numbers
by rationals: Diophantine approximation. Change the x, = 1/n'%¢ of (4.23) to
1/((n — 1)log2)!*¢. Then Xx, still converges, and hence

Plw: e,(w) < 1/(log2" Hl* € io0]=0.

And by (4.28),
Plw: e,(w) < 1/1og2" ' io]=1.

The dyadic rational Zz;lldk (w)27% = p/g has denominator ¢ =2""!, and
en(w) = q(w — p/q). There is therefore probability 1 that, if ¢ is restricted to
the powers of 2, then 0 < w — p/q < 1/(q logq) holds for infinitely many p/q
but 0 < w —p/q < 1/(glog'*€ ¢) holds only for finitely many.” But contrast
this with Theorems 1.5 and 1.6: The sharp rational approximations to a real
number come not from truncating its dyadic (or decimal) expansion, but from
truncating its continued-fraction expansion; see Section 24.

The Zero-One Law

For a sequence Aj,A,,... of events in a probability space (2,7, P) consider
the o-fields o (A,,A;+1,...) and their intersection
o0
T =)o@ Ans1s..). (4.29)

n=1

This is the fail o-field associated with the sequence {A,}, and its elements are
called tail events. The idea is that a tail event is determined solely by the A,
for arbitrarily large n.

TThis ignores the possibility of even p (reducible p/g); but see Problem 1.11(b). And rounding w up
to (p + 1)/q instead of down to p/g changes nothing; see Problem 4.13.
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EXAMPLE 4.18

Since limsup,, A, = Ng>n Uisk A; and liminf,, A,, = U, Ni>x A; are both in
o(A,,An+1, - - .), the limits superior and inferior are tail events for the sequence
{An}.

EXAMPLE 4.19
Let [, (w) be the run length, as before, and let H,, = [w: d,,(w) = 0]. For each ny,

[0 I(@) = 1, 0] = [ le: k(@) = n]

n=ny k>n

= ﬂ UHk NHepy N N Hyypy 1.

n=ny k>n

Thus [w: [,(w) > r, 1.0.] is a tail event for the sequence {H,}.

The probabilities of tail events are governed by Kolmogorov’s zero-one
law:T

THEOREM 4.5
If A1,Az, ... is an independent sequence of events, then for each event A in the
tail o-field (4.29), P(A) is either 0 or 1.

Proof. By Corollary 2 to Theorem 4.2, 6(A}),...,0(Au—-1),0(An,Apns1,-..)
are independent. If A€ #, then A€o(A,,Aut1,...) and therefore
Ay, ...,A,_1,A are independent. Since independence of a collection of events is
defined by independence of each finite subcollection, the sequence A,A{, A, ...
is independent. By a second application of Corollary 2 to Theorem 4.2,
0(A) and o(A},Ay,...) are independent. But A € 7 C 0(Ay,Az,...); from
Aeo(A) and A € 0(Ay,A,,...) it follows that A is independent of itself:
P(ANA) = P(A)P(A). This is the same as P(A) = (P(A))? and can hold only
if P(A)is O or 1. [ |

EXAMPLE 4.20

By the zero—one law and Example 4.18, P(limsup, A,) is O or 1 if the A,
are independent. The Borel—Cantelli lemmas in this case go further and give a
specific criterion in terms of the convergence or divergence of X P (A,).

"For a more general version, see Theorem 22.3.
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Kolmogorov’s result is surprisingly general, and it is in many cases quite
easy to use it to show that the probability of some set must have one of the
extreme values 0 and 1. It is perhaps curious that it should so often be very
difficult to determine which of these extreme values is the right one.

EXAMPLE 4.21

By Kolmogorov’s theorem and Example 4.19, [w: [,(®w) > r, i.0.] has proba-
bility 0 or 1. Call the sequence {r,} an outer boundary or an inner boundary
according as this probability is 0 or 1.

In Example 4.11 it was shown that {r,,} is an outer boundary if ¥27'" <
oo. In Example 4.15 it was shown that {r,} is an inner boundary if r, is
nondecreasing and X27'"r," ' = co. By these criteria 7, = 6log,n gives an
outer boundary if 6 > 1 and an inner boundary if 6 < 1.

What about the sequence r, =log,n + 60log,log,n? Here X277 =
¥ 1/n(log, n)?, and this converges for @ > 1, which gives an outer boundary.
Now 27"nr,~ ' is of the order 1/n(log, n)1+9, and this diverges if & < 0, which
gives an inner boundary (this follows indeed from (4.26)). But this analysis
leaves the range 0 < 6 < 1 unresolved, although every sequence is either an
inner or an outer boundary. This question is pursued further in Example 6.5.

PROBLEMS

4.1. 2.1 1 The limits superior and inferior of a numerical sequence {x,} can
be defined as the supremum and infimum of the set of limit points—that
is, the set of limits of convergent subsequences. This is the same thing

as defining
o0 o0
limsupx, = /\ \/ x (4.30)
n n=1k=n
and
o0 o0
liminfx, = \/ /\xk. (4.31)
n
n=1k=n

Compare these relations with (4.4) and (4.5) and prove that

Dimsup, A, = limsupla,, liminf, 4, = lim ilr}fIAn.
n

Prove that lim, A, exists in the sense of (4.6) if and only if lim, 4, ()
exists for each w.




4.2.

4.3.

44.
4.5.
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T
(a) Prove that

(limsupA,) N (limsup B,) D limsup(A, N B,),
n n n

(limsupA,) U (limsup B,) = limsup(A, UB,),
n n n

(liminfA,) N (liminf B,)) = liminf(A,, N B,,),
n n n

(liminfA,) U (liminf B,) C liminf(A, U B,).

Show by example that the two inclusions can be strict.
(b) The numerical analogue of the first of the relations in part (a) is

(limsup x,) A (limsupy,) > limsup(x, A y,).

n n n

Write out and verify the numerical analogues of the others.
(¢) Show that

limsupA;, = (liminfA,)¢,
n n
liminfA;, = (limsupA,)©,
n n
limsupA, — liminfA, = limsup(A, NA;_,)
n n n

= limsup(4; NA,+1).
n

(d) Show that A, — A and B, — B together imply that A, UB,, —
AUB and A, NB, - ANB.

Let A, be the square [(x,y): |x|] < 1,|y| < 1] rotated through the angle

2mrnf. Give geometric descriptions of limsup, A, and liminfA, in case

(@) 6 =g;

(b) 6 is rational;

(¢) O is irrational. Hint: The 2mn6 reduced modulo 27 are dense in
[0,27] if 6 is irrational.

(d) When is there convergence is the sense of (4.6)?

Find a sequence for which all three inequalities in (4.9) are strict.

(a) Show that lim, P (liminfy A, NA};) = 0. Hint: Show that limsup,
liminfy A, N Ay is empty.
Put A* = limsup, A, and A, = liminf, A,.

(b) Show that P(A, —A*) — 0 and P(A, — A,) — 0.

(c) Show that A, — A (in the sense that A = A* = A,) implies
P(AAA,) — 0.
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4.6.

4.7.

4.8.

4.9.

4.10.

(d) Suppose that A, converges to A in the weaker sense that P (AAA™)
= P(AAA,) =0 (which implies that P(A* — A,) = 0). Show that
P(AAA,) — 0 (which implies that P(A,) — P(A)).

In a space of six equally likely points (a die is rolled) find three events

that are not independent even though each is independent of the inter-

section of the other two.

For events Ay,...,A,, consider the 2" equations P(ByN---NB,) =
P(By)---P(B,) with B; =A; or B; =Aj for each i. Show that
Ay, ..., A, are independent if all these equations hold.

For each of the following classes .c7, describe the .c/-partition defined
by (4.16).

(a) The class of finite and cofinite sets.

(b) The class of countable and cocountable sets.

(¢) A partition (of arbitrary cardinality) of €.

(d) The level sets of sinx (2 = R').

(e) The o-field in Problem 3.5.

2.9 2.10 1 In connection with Example 4.8 and Problem 2.10, prove

these facts:

(a) Every set in o(.7/) is a union of .¢/-equivalence classes.

(b) If .o/ = [Ag: 6 € O], then the .7-equivalence classes have the form
Mo By, where for each 0, By is Ay or Aj,.

(¢) Every finite o-field is generated by a finite partition of 2.

(d) If A is a field, then each singleton, even each finite set, in o (%) is
a countable intersection of “)-sets.

3.2 1 There is in the unit interval a set H that is nonmeasurable in the
extreme sense that its inner and outer Lebesgue measures are 0 and 1
(see (3.9) and (3.10)): A.(H) =0 and A*(H) = 1. See Problem 12.4 for
the construction.

Let 2 = (0, 1], let & consist of the Borel sets in €2, and let H be the
set just described. Show that the class # of sets of the form (H N Gy) U
(H° N Gy) for Gy and G, in ¢ is a o-field and that P[(H N G) U (H° N
Gyl = %)\(Gl) + %A(Gz) consistently defines a probability measure on
# . Show that P(H) = % and that P(G) = A(G) for G € &. Show that
& is generated by a countable subclass (see Problem 2.11). Show that
& contains all the singletons and that H and ¢ are independent.

The construction proves this: There exist a probability space
(2,7 ,P), a o-field ¢ in 7, and a set H in &, such that P(H) = %,
H and & are independent, and & is generated by a countable subclass
and contains all the singletons.
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Example 4.10 is somewhat similar, but there the o-field & is not
countably generated and each set in it has probability either O or 1.
In the present example ¢ is countably generated and P(G) assumes
every value between 0 and 1 as G ranges over . Example 4.10 is to
some extent unnatural because the ¢ there is not countably generated.
The present example, on the other hand, involves the pathological set
H . This example is used in Section 33 in connection with conditional
probability; see Problem 33.11.

(a) If Ay, Ay, ... are independent events, then P(N°2 |A,) = I172 | P(A,)
and P(US2 |A,) =1 —T172 (1 — P(A,)). Prove these facts and from
them derive the second Borel-Cantelli lemma by the well-known
relation between infinite series and products.

(b) Show that P (limsup, A,) = 1 if for each k the series ¥, ~ P (A, |A]
N...NAJ ) diverges. From this deduce the second Borel—-Cantelli
lemma once again.

(¢) Show by example that P (limsup, A,) = 1 does not follow from the
divergence of X,P(A,|A{N---NAj;_,) alone.

(d) Show that P (limsup, A,) = 1 if and only if X,P(ANA,) diverges
for each A of positive probability.

(e) If sets A, are independent and P (A,,) < 1 for all n, then P[A, i.0.] =
1 if and only if P(U,A,) = 1.

(a) Show (see Example 4.21) that log, n + log, log, n 4 6 log, log,
log, n is an outer boundary if 6 > 1. Generalize.

(b) Show that log, n 4 log, log, log, n is an inner boundary.

Let ¢ be a positive function of integers, and define B, as the set of x in
(0, 1) such that |x — p/2'| < 1/2¢(2) holds for infinitely many pairs p,
i. Adapting the proof of Theorem 1.6, show directly (without reference
to Example 4.12) that %; 1/9(2") < o0 implies A(B,) = 0.

2.19 1 Suppose that there are in (€2, 7, P) independent events Ay, A», . ..
such that, if o, = min{P (4,),1 — P(A,)}, then X, = co. Show that P
iS nonatomic.

2.18 1 Let F be the set of square-free integers—those integers not divis-
ible by any perfect square. Let F; be the set of m such that p?|m for
no p <1/, and show that D (F) = I1,<(1 — p~?). Show that P, (F; —
F)y<%,. ;p~2, and conclude that the square-free integers have density
Mn,(1-p~%) =6/x>

2.18 © Reconsider Problem 2.18(d). If D were countably additive
on f(.#), it would extend to o(.#). Use the second Borel-Cantelli
lemma.
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SECTION 5 SIMPLE RANDOM VARIABLES

Definition

Let (2,7,P) be an arbitrary probability space, and let X be a real-valued
function on 2; X is a simple random variable if it has finite range (assumes
only finitely many values) and if

[w: X (w) =x] e 7 5.1

for each real x. (Of course, [w: X (w) = x] =@ € # for x outside the range
of X.) Whether or not X satisfies this condition depends only on #, not on P,
but the point of the definition is to ensure that the probabilities P[w: X (w) = x]
are defined. Later sections will treat the theory of general random variables,
of functions on €2 having arbitrary range; (5.1) will require modification in the
general case.

The d,(w) of the preceding section (the digits of the dyadic expansion)
are simple random variables on the unit interval: the sets [w: d,(w) = 0] and
[w: d,(w) = 1] are finite unions of subintervals and hence lie in the o-field A3
of Borel sets in (0, 1]. The Rademacher functions are also simple random vari-
ables. Although the concept itself is thus not entirely new, to proceed further in
probability requires a systematic theory of random variables and their expected
values.

The run lengths [,(w) satisfy (5.1) but are not simple random variables,
because they have infinite range (they come under the general theory). In a
discrete space, # consists of all subsets of €2, so that (5.1) always holds.

It is customary in probability theory to omit the argument w. Thus X stands
for a general value X (w) of the function as well as for the function itself, and
[X = x] is short for [w: X (w) = x]

A finite sum

X =Y xly, (5.2)

is a random variable if the A; form a finite partition of Q2 into # -sets. Moreover,
every simple random variable can be represented in the form (5.2): for the
x; take the range of X, and put A; = [X = x;]. But X may have other such
representations because x;14, can be replaced by ijiIA,j if the A;; form a finite
decomposition of A; into 7 -sets.

If ¢ is a sub-o-field of 7, a simple random variable X is measurable &,
or measurable with respect to &, if [X = x] € & for each x. A simple random
variable is by definition always measurable 7. Since [X € H] = [ J[X = x],
where the union extends over the finitely many x lying both in H and in the
range of X,[X € H] € & for every H C R if X is a simple random variable
variable measurable & .
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The o-field o(X) generated by X is the smallest o-field with respect to
which X is measurable; that is, o(X) is the intersection of all o-fields with
respect to which X is measurable. For a finite or infinite sequence X1, X», ... of
simple random variables, o (X1, X»,...) is the smallest o-field with respect to
which each X; is measurable. It can be described explicitly in the finite case:

THEOREM 5.1
Let X1, ...,X, be simple random variables.

(i) The o-field o(X1,...,X,) consists of the sets
[(X1,...,X,) e H] = [w: Xi{(w),...,X,(w)) € H] (5.3)

for H C R"; H in this representation may be taken finite.

(i1) A simple random variable Y is measurable o (X1, ...,X,) if and only if
Y =fX1,...,X,) (5.4)
for some f- R — R!.

Proof. Let _# be the class of sets of the form (5.3). Sets of the form
[(Xq,.... X)) = (x1,...,x0)] = ﬂ;’zl[Xi = x;] must lie in o (Xj,...,X,); each
set (5.3) is a finite union of sets of this form because (X1, ..., X,), as a mapping
from €2 to R", has finite range. Thus .# C o (Xy,...,X,).

On the other hand, .# is a o-field because Q =[(Xi,...,X,) €
R"],[(X1,....Xy) e HI = [(Xy,...,X,) €e H], and U;[(Xy,...,X,) € H;] =
[(Xy,...,X,) N Uj H;]. But each X; is measurable with respect to .7/, because
[X; =x] can be put in the form (5.3) by taking H to consist of those
(x1,...,x,) In R" for which x; = x. It follows that o (Xi,...,X,) is contained
in .# and therefore equals .#. As intersecting H with the range (finite) of
(X1,...,X,) in R" does not affect (5.3), H may be taken finite. This proves (i).

Assume that Y has the form (5.4)—that is, Y (w) = f (X1 (w), ..., X, (®))
for every w. Since [Y = y] can be put in the form (5.3) by taking H to consist
of those x = (xy,...,x,) for which f(x) =y, it follows that Y is measurable
O(X], N ,Xn).

Now assume that Y is measurable o (X,...,X,). Let yq,...,y, be the dis-
tinct values Y assumes. By part (i), there exist sets Hy,...,H, in R" such that

[w: Y (w) = yi] = [0: Xi(@),...,X,(0)) € H;].

Take f = X/_,yily,. Although the H; need not be disjoint, if H; and H; share
a point of the form (Xi(w),...,X,(w)), then Y (w) =y; and Y (w) = y;, which
is impossible if i # j. Therefore each (X|(w),...,X,(®)) lies in exactly one of
the H;, and it follows that f (X (w),...,X,(w)) = Y (w). [ |

D
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Since (5.4) implies that Y is measurable o (X1, ..., X},), it follows in particu-
lar that functions of simple random variables are again simple random variables.
Thus X2, eX, and so on are simple random variables along with X. Taking f
to be X" x;, IT7_,x;, or max;<, x; shows that sums, products, and maxima of
simple random variables are simple random variables.

As explained on p. 57, a sub-o -field corresponds to partial information about
w. From this point of view, o(Xy,...,X,) corresponds to a knowledge of the
values X;(w), ..., X, (w). These values suffice to determine the value Y (w) if
and only if (5.4) holds. The elements of the o (X, ..., X,)-partition (see (4.16))
are the sets [X| = xq,...,X,;, = x,] for x; in the range of X;.

EXAMPLE 5.1

For the dyadic digits d, () on the unit interval, d3 is not measurable o (d;, d>);
indeed, there exist o’ and " such that d;(0') = di (") and dr (') = dr (")
but d3(w') # d3(w”), an impossibility if d3(w) = f(d;(w), d>(w)) identically in
w. If such an f existed, one could unerringly predict the outcome dz(w) of the
third toss from the outcomes d;(w) and dp(w) of the first two.

EXAMPLE 5.2
Let s, (w) = X/_,rx(w) be the partial sums of the Rademacher functions—see

(1.14). By Theorem 5.1(ii)) s; is measurable o(r,...,r,) for k <n,
and rp =s; —Sr—1 1S measurable o(sy,...,s,) for k <n. Thus
o(ryy...,1m) =0(S1,...,8,). In random-walk terms, the first n posi-

tions contain the same information as the first n distances moved. In gambling
terms, to know the gambler’s first n fortunes (relative to his initial fortune) is
the same thing as to know his gains and losses on each of the first n plays.

EXAMPLE 5.3
An indicator I is measurable & if and only if A lies in &. And
Aco(Ay,...,Ay) if and only if Iy = f(ls,,...,1a,) for some f: R" — R

Convergence of Random Variables

It is a basic problem, for given random variables X and Xi, X5, ... on a probabil-
ity space (2,7, P), to look for the probability of the event that lim, X, (w) =
X (w). The normal number theorem is an example, one where the probabil-
ity is 1. It is convenient to characterize the complementary event: X, (w) fails
to converge to X (w) if and only if there is some € such that for no m does
|X, (w) — X (w)| remain below € for all n exceeding m —that is to say, if and

D
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only if, for some ¢, |X,(w) — X (w)| > € holds for infinitely many values of n.
Therefore,

[limX, = X1 = _JlIX, — X| = € i.0], (5.5)

where the union can be restricted to rational (positive) € because the set in the
union increases as € decreases (compare (2.2)).

The event [lim, X;, = X] therefore always lies in the basic o-field #, and
it has probability 1 if and only if

PlIX, —X| > € i0]=0 (5.6)

for each € (rational or not). The event in (5.6) is the limit superior of the events
[IX;, — X| > €], and it follows by Theorem 4.1 that (5.6) implies

lim P[|X, — X| > €] = 0. (5.7)
n

This leads to a definition: If (5.7) holds for each positive €, then X,, is said to
converge to X in probability, written X, —p X.
These arguments prove two facts:

THEOREM 5.2
(i) There is convergence lim, X,, = X with probability 1 if and only if (5.6)
holds for each e.

(i1) Convergence with probability 1 implies convergence in probability.

Theorem 1.2, the normal number theorem, has to do with the convergence
with probability 1 of n_lEled,- (w) to % Theorem 1.1 has to do instead with
the convergence in probability of the same sequence. By Theorem 5.2(ii), then,
Theorem 1.1 is a consequence of Theorem 1.2 (see (1.30) and (1.31)). The
converse is not true, however—convergence in probability does not imply con-

vergence with probability 1:

75

EXAMPLE 5.4
Take X =0 and X,, = I4,. Then X,, —p X is equivalent to P(4,) — 0, and
[lim, X,, = X]° = [A,, i.0.]. Any sequence {A,} such that P(A,) — O but
P[A, i.0.] >0 therefore gives a counterexample to the converse to Theorem
5.2(ii).

Consider the event A, = [w: [,(w) > log,n] in Example 4.15. Here,
P, <1/n — 0, while P[A, i0.]=1 by (4.26), and so this is one
counterexample. For an example more extreme and more transparent, define

D




76

PROBABILITY

events in the unit interval in the following way. Define the first two by

Ar=0,1,  A=G 10

Ay=(0,11,  As=(3  As=G3L Aa=GL1l

Define the next eight, A7,...,A14, as the dyadic intervals of rank 3. And so on.
Certainly, P(A,) — 0, and since each point w is covered by one set in each
successive block of length 2% the set [A, i.0.] is all of (0, 1].

Independence

A sequence X1, X», ... (finite or infinite) of simple random variables is by defi-
nition independent if the classes o (X), 0 (X3), ... are independent in the sense
of the preceding section. By Theorem 5.1(i), o (X;) consists of the sets [X; € H ]
for H C R!. The condition for independence of X1, ..., X, is therefore that

P[X, e Hy,...,X, e H,]=P[X; € H]---P[X, € H,] (5.8)

for linear sets Hy, ..., H,. The definition (4.10) also requires that (5.8) hold if
one or more of the [X; € H,] is suppressed; but taking H; to be R! eliminates
it from each side. For an infinite sequence X, X», . .., (5.8) must hold for each
n. A special case of (5.8) is

PX|i=x,....X, =x,] =P[X) =x1]--- P[X;, = x,,]. 5.9

On the other hand, summing (5.9) over x| € Hy,...,x, € H, gives (5.8). Thus
the X; are independent if and only if (5.9) holds for all xi,...,x,.
Suppose that

X1 X2
Xo1 X oo (5.10)

is an independent array of simple random variables. There may be finitely or
infinitely many rows, each row finite or infinite. If .4 consists of the finite
intersections () ;[X; € H;] with H; C R', an application of Theorem 4.2 shows
that the o-fields o (X;1, Xj2,...),i = 1,2,... are independent. As a consequence,
Y1,Ys,... are independent if ¥; is measurable o (X;1, Xj2,...) for each i.
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EXAMPLE 5.5
The dyadic digits dj(w),d>(w),... on the unit interval are an independent
sequence of random variables for which

Pld, =0] =P[d, = 1] = 3. (5.11)

It is because of (5.11) and independence that the d,, give a model for tossing a
fair coin.

The sequence (d;(w),d>(w), ...) and the point @ determine one another. It
can be imagined that w is determined by the outcomes d, (w) of a sequence of
tosses. It can also be imagined that w is the result of drawing a point at random
from the unit interval, and that w determines the d,(w). In the second inter-
pretation the d, (w) are all determined the instant w is drawn, and so it should
further be imagined that they are then revealed to the coin tosser or gambler
one by one. For example, o(d;,d>) corresponds to knowing the outcomes of
the first two tosses—to knowing not w but only d;(w) and d,(w)—and this
does not help in predicting the value dz(w), because o (d;,d>) and o (d3) are
independent. See Example 5.1.

EXAMPLE 5.6
Every permutation can be written as a product of cycles. For example,

7

3) — (1562)(37)(4).

This permutation sends 1 to 5, 2 to 1, 3 to 7, and so on. The cyclic form on the
right shows that 1 goes to 5, which goes to 6, which goes to 2, which goes back
to 1; and so on. To standardize this cyclic representation, start the first cycle
with 1 and each successive cycle with the smallest integer not yet encountered.

Let €2 consist of the n! permutations of 1,2,...,n, all equally probable; 7
contains all subsets of €2, and P(A) is the fraction of points in A. Let X (w) be
1 or 0 according as the element in the kth position in the cyclic representation
of the permutation @ completes a cycle or not. Then §(w) = T/_, Xi (w) is
the number of cycles in w. In the example above, n =7,X] = Xo = X3 = X5 =
0,X4 = X¢ = X7 = 1,and S = 3. The following argument shows that Xy, ..., X,
are independent and P[X; = 1] =1/(n — k + 1). This will lead later on to
results on P[S € H].

The idea is this: Xj(w) = 1 if and only if the random permutation » sends
1 to itself, the probability of which is 1/n. If it happens that X;(w) = 1—that
w fixes 1—then the image of 2 is one of 2,...,n, and X>(w) = 1 if and only
if this image is in fact 2; the conditional probability of this is 1/(n — 1). If
X1 (w) = 0, on the other hand, then w sends 1 to some i # 1, so that the image
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ofiisoneof 1,...,i —1,i +1,...,n, and Xp(w) = 1 if and only if this image
is in fact 1; the conditional probability of this is again 1/(n — 1). This argument
generalizes.

But the details are fussy. Let Y{(w),...,Y,(w) be the integers in the
successive positions in the cyclic representation of w. Fix k, and let A,
be the set where (Xi,...,X;—1,Y1,...,Yr) assumes a specific vector of
values v = (x1,...,X—1,V1,...,Yk).- The A, form a partition .o/ of £,
and if P[Xy =1|A,]=1/(n —k + 1) for each v, then by Example 4.7,
P[Xy =1]=1/(n —k + 1) and X; is independent of o (.2/) and hence of the
smaller o-field o (X, ..., Xr—1). It will follow by induction that X1, ..., X, are

independent.

Letj be the position of the rightmost 1 among xi, . ..,xx—1 (j = 0 if there are
none). Then w lies in A, if and only if it permutes yi,...,y; among themselves
(in a way specified by the values xi,...,xj_1,x; = 1,y;,...,y;) and sends each

of yj41,...,Yk—1 to the y just to its right. Thus A, contains (n — k + 1)! sample
points. And X (w) = 1 if and only if w also sends y; to y; 1. Thus A, N [X; = 1]
contains (n—k)! sample points, and so the conditional probability of X; =1 is
1/(n —k +1).

Existence of Independent Sequences

The distribution of a simple random variable X is the probability measure i
defined for all subsets A of the line by

1w(A) = P[X € A]. (5.12)

This does define a probability measure. It is discrete in the sense of Example
2.9: If xy,...,x; are the distinct points of the range of X, then p has mass
pi = P[X = x;] = u{x;} at x;, and w(A) = Xp;, the sum extending over those
i for which x; € A. As u(A) =1 if A is the range of X, not only is u discrete,
it has finite support.

THEOREM 5.3

Let {1, } be a sequence of probability measures on the class of all subsets of the
line, each having finite support. There exists on some probability space (2,7 , P)
an independent sequence {X,,} of simple random variables such that X, has dis-
tribution [i,.

What matters here is that there are finitely or countably many distribu-
tions u,. They need not be indexed by the integers; any countable index set
will do.
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Proof. The probability space will be the unit interval. To understand the
construction, consider first the case in which each u, concentrates its mass on
the two points 0 and 1. Put p, = 1,{0} and ¢, = 1 — p, = u,{1}. Split (0, 1]
into two intervals Iy and /; of lengths p; and ¢;. Define X| (w) = 0 for w € Iy and
Xi(w) =1 for w € I;. If P is Lebesgue measure, then clearly P[X; = 0] = p;
and P[X; = 1] = q1, so that X; has distribution ;.

X, =0 X, =
P - P
X = X, = X;=1 X, =1
X, = X, = X,=0 X, =1
Py 1
P1P2 P1492 a1p2 91492

Now split Iy into two intervals Ipy and Ip; of lengths pip, and p;gz, and
split /; into two intervals ;o and /;; of lengths g;p> and q;¢q>. Define X>(w) = 0
for w € Ipo U I1p and X>(w) = 1 for w € Ip; U I11. As the diagram makes clear,
P[X; =0,X, = 0] = p1p2, and similarly for the other three possibilities. It fol-
lows that X; and X, are independent and X, has distribution w;. Now X3 is
constructed by splitting each of Iy, o1, 10,111 in the proportions p3 and g3.
And so on.

Ifp,=q, = % for all n, then the successive decompositions here are the
decompositions of (0, 1] into dyadic intervals, and X, (@) = d,(®).

The argument for the general case is not very different. Let x,1,...,x,, be
the distinct points on which w, concentrates its mass, and put p,; = [, {x,;} for
1<i<l,.

DecomposeJr (0, 1] into [; subintervals 1
Piis---»p1,- Define X by setting X (w) = x1; for w € Ii(l), 1 <i </.Then (P
is Lebesgue measure) Plw: X|(w) = x1;] = P(Il.(l)) =p1i,1 <i <. Thus X;
is a simple random variable with distribution st;.

Next decompose each Il.(l) into /, subintervals
lengths pi;pai,...,p1ipa,. Define Xp(w) = xo; for w € Uflz] Il;z),l <j<bh.
Then Plw: X; () = x1;, Xa(@) = xp] = P(I;”)) = p1;py. Adding out i shows
that Plw: Xo(w) = xo;] = pyj, as required. Hence P[X; = x1;,X0 = xp;] =
p1ip2j = P[X; = x1;]P[X2 = x5;], and X, and X, are independent.

The construction proceeds inductively. Suppose that (0, 1] has been decom-
posed into [; ... [, intervals

1(1), e ,Il(ll) of respective lengths

) 2 :
I ,...,Iﬂ2 of respective

i...ip°

l<ip<h,....1 <iy <y,

(5.13)

fh—a=68 +---+8 ands; > 0,thenl; = (a + Xj<idj,a + X;<;d;] decomposes (g, b] into subin-
tervals Iq,..., I; with lengths of §;. Of course, I; is empty if §; = 0.

D

79



80

PROBABILITY

of lengths
P ) =priy - Puin- (5.14)
(ny : (n+1) (n+1) :
Decompose /; ., into l,4+1 subintervals I; 11,...,11.1.__1.“”+1 of respective
lengths P(Il(1 )l )pn+1,1,...,P(Ii(l'i)_in)pnﬁ,lnﬂ. These are the intervals of the

next decomposmon. This construction gives a sequence of decompositions
(5.13) of (0, 1] into subintervals; each decomposition satisfies (5.14), and
each refines the preceding one. If u, is given for 1 <n < N, the procedure
terminates after N steps; for an infinite sequence it does not terminate at all.

For 1 <i <y, putX,(w) = x; ifo e, , | l(]")l . Since each decom-
position (5.13) refines the preceding, Xy (w) = xy;, for w € Il(l’.'L Therefore
each element of (5.13) is contained in the element with the same label ...
in the decomposition

Ajj iy = o Xi(0) = X150, .., Xy (@) = x5, 1,1 <0y <y, 1 <0, <

The two decompositions thus coincide, and it follows by (5.14) that P[X| =

Xiiys - > Xn = Xniy| = P1,i, ** - Pn,i,- Adding out the indices i,...,i,—1 shows
that X,, has distribution @, and hence that Xi,...,X, are independent. But n
was arbitrary. H

In the case where the w, are all the same, there is an alternative construc-
tion based on probabilities in sequence space. Let S be the support (finite)
common to the w,, and let p,,u € S, be the probabilities common to the w,. In
sequence space S°°, define product measure P on the class ¢o of cylinders by
(2.21). By Theorem 2.3, P is countably additive on ¢(, and by Theorem 3.1 it
extends to ¢ = o (¢p). The coordinate functions z;(-) are random variables on
the probability space (S, ¢, P); take these as the X;. Then (2.22) translates into
P[Xi =uy,..., X, = u,] =py, - - pu,, which is just what Theorem 5.3 requires
in this special case.

Probability theorems such as those in the next sections concern independent
sequences {X,} with specified distributions or with distributions having speci-
fied properties, and because of Theorem 5.3 these theorems are true not merely
in the vacuous sense that their hypotheses are never fulfilled. Similar but more
complicated existence theorems will come later. For most purposes the probabil-
ity space on which the X,, are defined is largely irrelevant. Every independent
sequence {X,} satisfying P[X, = 1] =p and P[X, =0] =1 —p is a model
for Bernoulli trials, for example, and for an event like Uflozl[E,’::le >an],
expressed in terms of the X, alone, the calculation of its probability proceeds
in the same way whatever the underlying space (€2, 7, P) may be.
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It is, of course, an advantage that such results apply not just to some canon-
ical sequence {X,} (such as the one constructed in the proof above) but to every
sequence with the appropriate distributions. In some applications of probability
within mathematics itself, such as the arithmetic applications of run theory in
the preceding section, the underlying €2 does play a role.

Expected Value

A simple random variable in the form (5.2) is assigned expected value or mean
value

EX]=E |:Zx,-IAi:| = > xiP(A). (5.15)

There is the alternative form

E[X]=) xP[X =x], (5.16)

the sum extending over the range of X; indeed, (5.15) and (5.16) both coincide
with X, %;..—x; P(A;). By (5.16) the definition (5.15) is consistent: different
representations (5.2) give the same value to (5.15). From (5.16) it also follows
that £[X] depends only on the distribution of X; hence E[X] = E[Y ] if P[X =
YI=1.

If X is a simple random variable on the unit interval and if the A; in (5.2)
happen to be subintervals, then (5.15) coincides with the Riemann integral as
given by (1.6). More general notions of integral and expected value will be
studied later. Simple random variables are easy to work with because the theory
of their expected values is transparent and free of technical complications.

As a special case of (5.15) and (5.16),

E[I] = P(A). (5.17)

As another special case, if a constant « is identified with the random variable
X (w) = «, then

Ela] = «a. (5.18)

From (5.2) follows f(X) = X;f (x;)14,, and hence

E[f(X)] =) f)P(A) = > fx)PIX =x], (5.19)

the last sum extending over the range of X. For example, the kth moment E[X*]
of X is defined by E[X k= X, yP[X k— vl, where y varies over the range of
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Xk, but it is usually simpler to compute it by E[X Kl = =, x*P[X = x], where
x varies over the range of X.
If

X =Y xly, Y = "yl (5.20)
i J

are simple random variables, then oX + BY = X; (ax; + ,Byj)IA,.mBj has ex-
pected value X (ax; + By;)P(A; N B;j) = aXix;P(A;) + BX;y; P (B;). Expected
value is therefore linear:

ElaX + BY] = «E[X]+ BE[Y]. (5.21)

If X(w) <Y (w) for all o, then x; <y; if A; NB; is nonempty, and hence
Y;x;P(A; NB;) < X;;y;P(A; N B;j). Expected value therefore preserves order:

E[X]<E[Y] ifX<Y. (5.22)

(It is enough that X <Y on a set of probability 1.) Two applications of (5.22)
give E[—|X|] < E[X] < E[|X]], so that by linearity,

IE[X]] < ETIX]]. (5.23)

And more generally,
E[X = Y]| <E[|IX =Y]|]. (5.24)

The relations (5.17) through (5.24) will be used repeatedly, and so will the

following theorem on expected values and limits. If there is a finite K such that
| X, (w)| < K for all w and n, the X,, are uniformly bounded.

THEOREM 5.4
If{X,} is uniformly bounded, and if X = lim,, X,, with probability 1, then E[X] =
lim, E[X,].

Proof. By Theorem 5.2(ii), convergence with probability 1 implies conver-
gence in probability: X,, —p X. And in fact the latter suffices for the present
proof. Increase K so that it bounds |X| (which has finite range) as well as all
the |X,|; then |[X — X,,| <2K.If A =[|X — X,| > €], then

X (@) — Xp ()| < 2KIx(0) + €lac (@) < 2Kx(w) + €
for all w. By (5.17), (5.18), (5.21), and (5.22),

E[IX — X,|] < 2KP[|X — X,| = €] + €.
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But since X;, —p X, the first term on the right goes to 0, and since € is arbitrary,
E[I1X — X,|] = 0. Now apply (5.24). |

Theorems of this kind are of constant use in probability and analysis. For the
general version, Lebesgue’s dominated convergence theorem, see Section 16.

83

EXAMPLE 5.7

On the unit interval, take X (w) identically 0, and take X, (@) to be n? if 0 <
w<n"'and 0if n7! <w < 1. Then X, (w) — X (w) for every w, although
E[X,] = n does not converge to E[X] = 0. Thus Theorem 5.4 fails without
some hypothesis such as that of uniform boundedness. See also Example 7.7.

An extension of (5.21) is an immediate consequence of Theorem 5.4:

Corollary. If X = X, X,, on an 7 -set of probability 1, and if the partial sums
of X, X, are uniformly bounded, then E[X] = X, E[X,].

Expected values for independent random variables satisfy the familiar prod-
uct law. For X and Y as in (5.20), XY = E,-jxiyjIAl.mBj. If the x; are distinct and
the y; are distinct, then A; = [X = x;] and B; = [Y = y;]; for independent X and
Y, P(A;NB;)=P(A;)P(B;) by (5.9), and so E[XY ]| = X;jx;y;P(A;))P(B;) =
E[X]E[Y]). If X, Y, Z are independent, then XY and Z are independent by the
argument involving (5.10), so that E[XYZ] = E[XY |E[Z] = E[X]E[Y]E[Z].
This obviously extends:

E[X)--- Xyl = E[Xi]--- E[X,] (5.25)

if X1,...,X, are independent.
Various concepts from discrete probability carry over to simple random
variables. If E[X ] = m, the variance of X is

Var[X] = E[(X — m)*] = E[X?] — m?; (5.26)

the left-hand equality is a definition, the right-hand one a consequence of
expanding the square. Since «X + f has mean am + S, its variance is E[((aX +
B) — (am + B))*] = E[e*(X —m)*]:

Var[aX + B] = o Var[X]. (5.27)

If Xi,...,X, have means my,...,my, then § = X"_ X; has mean m = X!"_ m;,
and  E[(S —m)*] = E[(Z]_;(Xi —m;))*] = T/ E[(X; — mi)*] 4+ 2% 1<i<j<a
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E[(X; —m;)(X; —m;)]. If the X; are independent, then so are the X; —m;,
and by (5.25) the last sum vanishes. This gives the familiar formula for the
variance of a sum of independent random variables:

Var [Z X,-:| = Xn:Var[X,- 1. (5.28)
i=1 i=1

Suppose that X is nonnegative; order its range: 0 <x; <xp < -+ < x.
Then

k
E[X] = Zx,-P[X =x]
i=1

k—1
=Y xi(PIX = x] = PIX = xip1]) + % PIX > x]
i=1
k
=xP[X = x]+ ) (v —x )PIX = x].
i=2

Since P[X > x]=P[X > x;] for 0 <x <x; and P[X > x] = P[X > x;] for
Xi—1 < x < x;, it is possible to write the final sum as the Riemann integral of a
step function:

E[X] :f P[X > x]dx. (5.29)
0

This holds if X is nonnegative. Since P[X > x] = 0 for x > x;, the range of
integration is really finite.

There is for (5.29) a simple geometric argument involving the “area over
the curve.” If p; = P[X = x;], the area of the shaded region in the figure is the
sum pix; + - - - + prxxg = E[X] of the areas of the horizontal strips; it is also
the integral of the height P[X > x] of the region.
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Inequalities

There are for expected values several standard inequalities that will be needed.
If X is nonnegative, then for positive « (sum over the range of X) E[X] =
Y xP[X =x] > Xy y50XP[X = x] > aXy. y>oP[X = x]. Therefore,

PX > a] < éE[X] (5.30)

if X is nonnegative and o positive. A special case of this is (1.20). Applied to
IX|¥, (5.30) gives Markov'’s inequality,

PIX| > ] < —E[X["], (5.31)
o

valid for positive «. If k =2 and m = E[X] is subtracted from X, this becomes
the Chebyshev (or Chebyshev—Bienaymé) inequality:

PlIX —m|>a] < %Var[X]. (5.32)

A function ¢ on an interval is convex [A32] if p(px + (1 —p)y) < pe(x) +
(1 —=p)e() for 0 <p <1 and x and y in the interval. A sufficient condition
for this is that ¢ have a nonnegative second derivative. It follows by induction
that (p(Z}:lpixi) < Eilzlpitp(xi) if the p; are nonnegative and add to 1 and the
x; are in the domain of ¢. If X assumes the value x; with probability p;, this
becomes Jensen’s inequality,

p(E[X]) = E[p(X)], (5.33)

valid if ¢ is convex on an interval containing the range of X.
Suppose that

1 1
— =1, p>1,q>1. (5.34)
P 4
Holder’s inequality is
E[IXY|] < EVP[IX|P]1- EMa[|Y|9]. (5.35)

If, say, the first factor on the right vanishes, then X = 0 with probability 1,
hence XY = 0 with probability 1, and hence the left side vanishes also. Assume
then that the right side of (5.35) is positive. If a and b are positive, there exist
s and ¢ such that a = e ' and b = 7 . Since e* is convex, eP S+ 1 <
pfles _’_qflet’ or

a? bl

ab < — + —.
V4 q
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This obviously holds for nonnegative as well as for positive a and b. Let u
and v be the two factors on the right in (5.35). For each w,

q

‘X(a))Y(a))‘ - 1 ’X(a))
uv _1; u

P 1Y (w
_’__‘ (w)
qg| v

Taking expected values and applying (5.34) leads to (5.35).
If p = g = 2, Holder’s inequality becomes Schwarz’s inequality:

E[IXY ] < E'?[x?]-EY?[Y?). (5.36)

Suppose that 0 <o < 8. In (5.35) take p = B/a,q = B/(f — «), and
Y (w) = 1, and replace X by |X|*. The result is Lyapounov’s inequality,

EVx 1“1 < EVP[IXIP], 0<a <B. (5.37)

PROBLEMS

5.1. (a) Show that X is measurable with respect to the o-field ¢ if and

only if o(X) C ¢. Show that X is measurable o (Y) if and only if
o(X) Ca(Y).

(b) Show that, if & = {@, 2}, then X is measurable & if and only if X
is constant.

(¢) Suppose that P(A) is 0 or 1 for every A in &. This holds, for example,
if & is the tail field of an independent sequence (Theorem 4.5),
or if ¥ consists of the countable and cocountable sets on the unit
interval with Lebesgue measure. Show that if X is measurable &,
then P[X = c¢] = 1 for some constant c.

S5.2. 2.19 1 Show that the unit interval can be replaced by any nonatomic
probability measure space in the proof of Theorem 5.3.

5.3. Show that m = E[X] minimizes E[(X — m)?].
S5.4. Suppose that X assumes the values m — o, m,m + o« with probabilities
p,1 —2p,p, and show that there is equality in (5.32). Thus Chebyshev’s

inequality cannot be improved without special assumptions on X.

5.5. Suppose that X has mean m and variance o2.

(a) Prove Cantelli’s inequality

2

o
P[X—mza]fm, 0[20

&
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5.8.

5.9.

5.10.

S.11.
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(b) Show that P[|X —m| > «] < 202/(c> + «?). When is this better
than Chebyshev’s inequality?

(¢) By considering a random variable assuming two values, show that
Cantelli’s inequality is sharp.

The polynomial E[(¢|X| + |Y|)?] in ¢ has at most one real zero. Deduce

Schwarz’s inequality once more.

(a) Write (5.37) in the form EP/*[|X|%] < E[|X|%)#/*] and deduce it
directly from Jensen’s inequality.

(b) Prove that E[1/X?] > 1/EP[X] for p >0 and X a positive random
variable.

(a) Letf be a convex real function on a convex set C in the plane. Sup-
pose that (X (w), Y (w)) € C for all w and prove a two-dimensional
Jensen’s inequality:

FEIXLEY] < E[f(X,Y)]. (5.38)

(b) Show that f is convex if it has continuous second derivatives that
satisfy

fir=0, f2=0, fi1fo=>fd (5.39)

4 Holder’s inequality is equivalent to E[X /7Y /4] < EVP[X] . EV4[Y]
(p~'+¢ ' =1), where X and Y are nonnegative random variables.
Derive this from (5.38).

Minkowski’s inequality is
q
EVP[IX +YPP1 < EVPIXIP1+ EVP[IY 7], (5.40)

valid for p > 1. It is enough to prove that E[(X'/? +Y!/P)r] <
(EV/P[X]+ EYP[Y])? for nonnegative X and Y. Use (5.38).

For events Ay, A», .. ., not necessarily independent, let N, = EZ: 1a, be
the number to occur among the first n. Let

1 « 2
o = ; ZP(Ak), Bn = m Z P(Aj NAg). (5.41)
k=1 1<j<k<n
Show that
—1 —1 2, U= P
E[n ' N,]=a,, Var[n= N,]=p,—a«, + . (5.42)
n
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5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

Thus Var{n~'N,] — 0if and only if 8, — > — 0, which holds if the A,
are independent and P (A,) = p (Bernoulli trials), because then o, = p
and B, = p? = aﬁ.

Show that, if X has nonnegative integers as values, then E[X] =
x> PIX >n]

Let I; =14, be the indicators of n events having union A. Let §; =
X1l -+ -1, where the summation extends over all k-tuples satisfying
1 <ij <---<iy <n.Then s; = E[S;] are the terms in the inclusion-
exclusion formula P(A) =s; — sy + --- £ 5,. Deduce the inclusion-
exclusion formula from I, =8, — S+ ---%+S,. Prove the latter
formula by expanding the product IT}_, (1 — I;).

Let f,(x) be n2x or 2n — n%x or 0 according as 0 < x < ntorn!<
x <2nYor2n=! <x < 1. This gives a standard example of a sequence
of continuous functions that converges to 0 but not uniformly. Note that
fol Jfa(x)dx does not converge to 0; relate to Example 5.7.

By Theorem 5.3, for any prescribed sequence of probabilities p,, there
exists (on some space) an independent sequence of events A,, satisfying
P(A,) = p,. Show that if p,, — 0 but ¥p, = oo, this gives a counterex-
ample (like Example 5.4) to the converse of Theorem 5.2(ii).

1 Suppose that 0 < p, <1 and put &, = min{p,,1 — p,}. Show that,
if X, converges, then on some discrete probability space there exist
independent events A, satisfying P(A,) = p,. Compare Problem 1.1(b).

(a) Suppose that X, —, X and that f is continuous. Show that
S Xn) —p f(X).

(b) Show that E[|X — X,,|] — 0 implies X,, —, X. Show that the con-
verse is false.

2.20 1 The proof given for Theorem 5.3 for the special case where the
W, are all the same can be extended to cover the general case: use
Problem 2.20.

2.18 1 For integers m and primes p, let «, (m) be the exact power of p
in the prime factorization of m: m = I1,p* ™. Let §,(m) be 1 or 0 as p
divides m or not. Under each P, (see (2.34)) the ), and §, are random

variables. Show that for distinct primes py,...,py,
) 1 n 1
Pyloap, > kii <u]l=— T ol By » (5.43)
n pl - Pu pl < Pu
and
. " 1 1
Pyloy, =ki,i <ul— ITj_, - = i1 |- (5.44)
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Similarly,

1 1
Pn[Spi:l,iﬁu]:—L & J—> . (5.45)
npr--Pu P1-DPu
According to (5.44), the «;, are for large n approximately independent
under P,, and according to (5.45), the same is true of the §,.
For a function f of positive integers, let

1 n
E = - .
1= fom) (5.46)
m=1
be its expected value under the probability measure P,. Show that
o0
1| n 1
Eylap] = ]; - L;J - o (5.47)

this says roughly that (p — 1)~! is the average power of p in the factor-
ization of large integers.

T

(a) From Stirling’s formula, deduce
E,[log] =logn + O(1). (5.48)

From this, the inequality E,[c,] <2/p, and the relation logm =
Y,ap,(m)logp, conclude that EII,P_1 logp diverges and that there
are infinitely many primes.

(b) Let log*m = X,8,(m)logp. Show that

Euflog] =Y % L%J logp = logn + O(1). (5.49)
P

(¢) Show that |2n/p| —2|n/p] is always nonnegative and equals 1
in the range n < p < 2n. Deduce E,,[log"] — E,[log*] = O(1) and
conclude that

> logp = 0(x). (5.50)

pP=x

Use this to estimate the error removing the integral-part brackets
introduces into (5.49), and show that

Y p'logp =logx + O(1). (5.51)

p<x
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(d) Restrict the range of summation in (5.51) to fx < p < x for an
appropriate 6, and conclude that

Z logp = x, (5.52)

p=x

in the sense that the ratio of the two sides is bounded away from 0
and oo.

(e) Use (5.52) and truncation arguments to prove for the number 7 (x)
of primes not exceeding x that

T(x) < (5.53)

logx’
(By the prime number theorem the ratio of the two sides in fact goes
to 1.) Conclude that the rth prime p, satisfies p, < rlogr and that

> I~ (5.54)

SECTION 6 THE LAW OF LARGE NUMBERS

The Strong Law

Let X, X>,... be a sequence of simple random variables on some probability
space (2,7, P). They are identically distributed if their distributions (in the
sense of (5.12)) are all the same. Define S,, = X; + - - - + X,,. The strong law of
large numbers:

THEOREM 6.1
If the X,, are independent and identically distributed and E[X,] = m, then

P[limn~'S, =m] = 1. (6.1)

Proof. The conclusion is that n=!'S, —m =n~! Z?:1<Xi —m) — 0 with
probability 1. Replacing X; by X; — m shows that there is no loss of generality
in assuming that m = 0. The set in question does lie in # (see (5.5)), and by
Theorem 5.2(i), it is enough to show that P[|n~'S,| > € i.0.] = 0 for each €.

Let E[Xiz] =02 and E[Xl.“] = &% The proof is like that for Theorem 1.2.
First (see (1.26)), £ [Sn4 1= ) E[X,XsX,X;], the four indices ranging indepen-
dently from 1 to n. Since E[X;] = 0, it follows by the product rule (5.25) for
independent random variables that the summand vanishes if there is one index
different from the three others. This leaves terms of the form E [Xl.4] = &4 of
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which there are n, and terms of the form E[Xl.szz] = E[Xl.z]E[ij] = o* for
i # j, of which there are 3n(n — 1). Hence

E[SY1=ntg*4+3n(n — 1)o* < Kn?, (6.2)

where K does not depend on 7.
By Markov’s inequality (5.31) for k = 4, P[|S,| > ne] < Kn—2¢ %, and so
by the first Borel-Cantelli lemma, P[|n~'S,| > € i.0.] =0, as required. [ |

o1

EXAMPLE 6.1

The classical example is the strong law of large numbers for Bernoulli trials.
Here P[X, = 1] =p,P[X, =0]=1—p,m = p; S, represents the number of
successes in 7 trials, and n~'S, — p with probability 1. The idea of probability
as frequency depends on the long-range stability of the success ratio S, /n.

EXAMPLE 6.2

Theorem 1.2 is the case of Example 6.1 in which (2,7, P) is the unit interval
and the X, (w) are the digits d, (w) of the dyadic expansion of w. Here p = %
The set (1.21) of normal numbers in the unit interval has by (6.1) Lebesgue
measure 1; its complement has measure 0 (and so in the terminology of Section
I is negligible).

The Weak Law

Since convergence with probability 1 implies convergence in probability
(Theorem 5.2(ii)), it follows under the hypotheses of Theorem 6.1 that
n~=1S, —p m. But this is of course an immediate consequence of Chebyshev’s
inequality (5.32) and the rule (5.28) for adding variances:

Var[§, ] _ nVar[X]

n2e? n2e?

Plln~'s, —m| > €] <

This is the weak law of large numbers.
Chebyshev’s inequality leads to a weak law in other interesting cases as
well:

EXAMPLE 6.3

Let €2, consist of the n! permutations of 1,2, ..., n, all equally probable, and let
Xk (@) be 1 or 0 according as the kth element in the cyclic representation of w €
Q,, completes a cycle or not. This is Example 5.6, although there the dependence
on n was suppressed in the notation. The X1, ..., X}, are independent, and S,, =
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Xa1 + -+ + X, is the number of cycles. The mean m,,;, of X, is the probability
that it equals 1, namely (n — k 4+ 1)~!, and its variance is onzk = myu (1 — myy).

If L,=Y7;_, k7!, then S, has mean > ;_,mu =L, and variance
Y iy Mk (1 — myg) < L,. By Chebyshev’s inequality,

g

Of the n! permutations on n letters, a proportion exceeding 1 — e_zL,;l thus
have their cycle number in the range (1 £ €)L,. Since L, = logn + O (1), most
permutations on #n letters have about log n cycles. For a refinement, see Example
27.3.

Since 2, changes with n, it is the nature of the case that there cannot be a
strong law corresponding to this result.

>el<—=—=——0.

el  €’L,

n

Bernstein’s Theorem

Some theorems that can be stated without reference to probability nonethe-
less have simple probabilistic proofs, as the last example shows. Bernstein’s
approach to the Weierstrass approximation theorem is another example.

Let f be a function on [0, 1]. The Bernstein polynomial of degree n asso-
ciated with f is

- k
B, (x) = Zf (;) (Z) Xk —x)r* (6.3)
k=0

THEOREM 6.2
If f is continuous, B, (x) converges to f(x) uniformly on [0, 1].

According to the Weierstrass approximation theorem, f can be uniformly
approximated by polynomials; Bernstein’s result goes further and specifies an
approximating sequence.

Proof. Let M = sup, |f(x)], and let 6(¢) = sup[|[f (x) —f(W)]: |x —y]| < €]
be the modulus of continuity of f. It will be shown that

oM
sup |[f (x) — B, (x)| < 8(e) + a2 (6.4)

By the uniform continuity of f,lim._.¢8(e) =0, and so this inequality (for
e =n~1/3, say) will give the theorem.

Fix n > 1 and x € [0, 1] for the moment. Let Xy,...,X, be independent
random variables (on some probability space) such that P[X; =1]=x
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and P[X; =0]=1—x; put S =X;+---+X,. Since P[S=k]=(;)x*
(1 —x)"*, the formula (5.19) for calculating expected values of functions of
random variables gives E[f (S /n)] = B, (x). By the law of large numbers, there
should be high probability that S/n is near x and hence (f being continuous)
that f(S/n) is near f(x); E[f (S /n)] should therefore be near f(x). This is the
probabilistic idea behind the proof and, indeed, behind the definition (6.3)
itself.

Bound |f (n~'S) — f(x)| by 8(¢) on the set [[n~'S — x| < €] and by 2M on
the complementary set, and use (5.22) as in the proof of Theorem 5.4. Since
E[S] = nx, Chebyshev’s inequality gives

1By(x) —f ()| < E[If (n™'S) — f ()]
< 8(€)P[In~'S — x| < €l +2MP[|n"'S — x| > €]
< 8(€) +2M Var[S]/n%e>;

since Var[S] =nx(1 — x) < n, (6.4) follows. [ |

A Refinement of the Second Borel-Cantelli Lemmma

For a sequence A, A, ... of events, consider the number N, = Iy, + -+ + I,
of occurrences among Aj,...,A,. Since [A, i.0.]=[w: sup,N,(w) =
o], P[A, i.0.] can be studied by means of the random variables N,,.

Suppose that the A, are independent. Put py = P(Ax) and m,, =p; +--- +
pn- From E[ly, | = pi and Var[ly, | = pr (1 — pr) < pi follow E[N,] = m, and
Var[N,] = Y ;_, Var[ly,] < m,. If m,, > x, then

P[N, < x] < P[IN, — my| = my, — x] (6.5)
Var[N, ] - my,
= (my —x)* T (my _x)2'

If Y p, = oo, so that m, — oo, it follows that lim, P[N, < x] = 0 for each x.
Since

P[supN; < x] < P[N, <x], (6.6)
k

P[sup, Ny < x] =0 and hence (take the union over x = 1,2,...) P[sup;, Ny <
oo] = 0. Thus P[A, i.0.] = P[sup, N; = oo] = 1 if the A,, are independent and
> pn = 00, which proves the second Borel-Cantelli lemma once again.
Independence was used in this argument only to estimate Var[N,]. Even
without independence, E [N, ] = m, and the first two inequalities in (6.5) hold.

D
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THEOREM 6.3
If > P(A,) diverges and

> P(A; NAy)
k<n

Jim inf 2% <1, 6.7)
n

(Z P(Ak)>

k<n

then P[A, i.0.] = 1.

As the proof will show, the ratio in (6.7) is at least 1; if (6.7) holds, the
inequality must therefore be an equality.

Proof. Let 6, denote the ratio in (6.7). In the notation above,

Var[N,] = E[N;1—m; = Y EllyI] —m;
Jj, k<n
= Y P NAY) —m, = (6, — Dm,
Jj. k<n

(and 6, — 1 > 0). Hence (see (6.5)) P[N, <x] < (6, — l)m2/(m, — x)* for
X < m,. Since m,f/(m,, —x)? =1, (6.7) implies that liminf, P[N, <x] = 0.
It still follows by (6.6) that P[sup, Ny < x] =0, and the rest of the argument
is as before. u

EXAMPLE 6.4

If, as in the second Borel-Cantelli lemma, the A, are independent (or even
if they are merely independent in pairs), the ratio in (6.7) is 1 4+ X<, (px —
pi)/m2, so that £P(A,) = oo implies (6.7).

EXAMPLE 6.5
Return once again to the run lengths [,(w) of Section 4. It was shown in
Example 4.21 that {r,,} is an outer boundary (P[l, > r, i.0.] =0) if 27" <
oo. It was also shown that {r,} is an inner boundary (P[l, > r, i.0.] = 1) if r,
is nondecreasing and X27""r,~ I'— 50, but Theorem 6.3 can be used to prove
this under the sole assumption that 27" = oo.

As usual, the r, can be taken to be positive integers. Let A, = [/, >

ml=Id,=--=duytr,,-1 =0]. If j +r; <k, then A; and A; are indepen-
dent. If j < k <j + 1, then P(A;|Ay) < Pldj = --- = di—1 = 0|Ax] = Pld; =
oo =d_1 = 0] = 1/2¥7, and so P(A; N Ay) < P(Ax)/2*7. Therefore,
> P(A;NAY)
j, k<n

&
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<Y PAO+2 Y PAIPAY+2 Y 27 Py

k<n j<k<n j<k<n
Jr; <k k<j+rj

2

<Y PAO+ | D_PAD | +2) PAp.

k<n k<n k<n

If XP(A,) = X277 diverges, then (6.7) follows.

Thus {r,} is an outer or an inner boundary according as X2~ converges
or diverges, which completely settles the issue. In particular, r, =log,n +
0 log, log, n gives an outer boundary for & > 1 and an inner boundary for 6 < 1.

EXAMPLE 6.6

It is now possible to complete the analysis in Examples 4.12 and 4.16 of the
relative error ¢,(w) in the approximation of w by E,Z’;ldk (@)27F. If 1,(w) >
—log, x,(0 < x, < 1), then e,(w) < x, by (4.22). By the preceding example
for the case r, = —log, x,,, Xx, = oo implies that Plw: e,(w) < x, i.0.] = 1.
By this and Example 4.12, [w: e, (w) < x, 1.0.] has Lebesgue measure 0 or 1
according as Xx, converges or diverges.

PROBLEMS

6.1. Show that Z, — Z with probability 1 if and only if for every positive €
there exists an n such that P[|Z; —Z| <e,n <k <m]>1— € for all
m exceeding n. This describes convergence with probability 1 in “finite”

terms.
6.2. Show in Example 6.3 that P[|S, — L,| > L,/*™] — 0.
6.3. Asin Examples 5.6 and 6.3, let  be a random permutation of 1,2, ...,n.

Each k,1 <k <n, occupies some position in the bottom row of the
permutation w; let X, (w) be the number of smaller elements (between
1 and k—1) lying to the right of k in the bottom row. The sum S, =
Xn1 + -+ - + X,y 1s the total number of inversions —the number of pairs
appearing in the bottom row in reverse order of size. For the permutation
in Example 5.6 the values of X7;,...,X77 are 0, 0, 0, 2, 4, 2, 4, and
S7 = 12. Show that X}, . .., X, are independent and P[X,; = i] = k!
for 0 <i < k. Calculate E[S,] and Var[S,]. Show that S, is likely to be
near n’/4.

6.4. For a function f on [0, 1] write ||f| = sup, |f(x)|. Show that, if f has a

continuous derivative ', then ||f — B,|l < €llf’|| + 2|If||/n€>. Conclude
that ||f — B,|| = 0n~'73).
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6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

Prove Poisson’s theorem: If Ay, A,,... are independent events, p, =
n~ 'S P(A;),and N = £ 14, then n~'N, —p, —p 0.

In the following problems S, = X; + - -- + X,.

Prove Cantelli’s theorem: If X, X, ... are independent, E[X,,] = 0, and
E[X?] is bounded, then n~'S, — 0 with probability 1. The X, need not
be identically distributed.

(a) Letxy,x,...beasequence of real numbers, and puts, = x; + - +
X,. Suppose that n=2s,> — 0 and that the x, are bounded, and show
that n='s, — 0.

(b) Suppose that n=2S,> — 0 with probability 1 and that the X,, are uni-
formly bounded (sup,, ,, |X,(@)| < 00). Show that n~1S, — 0 with
probability 1. Here the X, need not be identically distributed or even
independent.

1 Suppose that X, X», ... are independent and uniformly bounded and
E[X,] = 0. Using only the preceding result, the first Borel-Cantelli
lemma, and Chebyshev’s inequality, prove that n~'S, — 0 with
probability 1.

1 Use the ideas of Problem 6.8 to give a new proof of Borel’s normal
number theorem, Theorem 1.2. The point is to return to first principles
and use only negligibility and the other ideas of Section 1, not the
apparatus of Sections 2 through 6; in particular, P(A) is to be taken
as defined only if A is a finite, disjoint union of intervals.

5.11 6.7 1 Suppose that (in the notation of (5.41)) B, — oeﬁ =0(1/n).
Show that n~'N,, — &, — 0 with probability 1. What condition on 8, —
Ol,% will imply a weak law? Note that independence is not assumed here.

Suppose that Xi, X», ... are m-dependent in the sense that random vari-
ables more than m apart in the sequence are independent. More precisely,
let L.Cfgk =o0(X;,...,Xt), and assume that 0(611” e, 9(611” are independent
if ki1 +m < j; fori =2,...,1. (Independent random variables are O-
dependent.) Suppose that the X, have this property and are uniformly
bounded and that E[X,,] = 0. Show that n~'S, — 0. Hint: Consider the
subsequences X1, Xi ym+1, Xit2m+1),.. for 1 <i <m + 1.

1 Suppose that the X,, are independent and assume the values xi, ..., x;
with probabilities p(x1),...,p(x1). For uy,...,u; a k-tuple of the
x;’s, let N,(uy,...,u;) be the frequency of the k-tuple in the first
n+k —1 trials, that is, the number of ¢ such that 1 <7 <n and
Xi =up,...,Xi4x—1 = ur. Show that with probability 1, all asymptotic
relative frequencies are what they should be—that is, with probability
Ln 'N,(uy, ..., ux) = p(uy)---p(ug) for every k and every k-tuple
Uty ..., Ug.



6.13.

6.14.

6.15.

6.16.
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4 A number w in the unit interval is completely normal if, for every base
b and every k and every k-tuple of base-b digits, the k-tuple appears in
the base-b expansion of w with asymptotic relative frequency b~*. Show
that the set of completely normal numbers has Lebesgue measure 1.

Shannon’s theorem. Suppose that X1, X, . .. are independent, identically
distributed random variables taking on the values 1,...,r with posi-
tive probabilities py,...,p,. If p,(i1,...,in) =pi, ...pi, and p,(w) =
pn(Xi(),...,X,(w)), then p, (w) is the probability that a new sequence
of n trials would produce the particular sequence X;(w),...,X,(w) of
outcomes that happens actually to have been observed. Show that

1 r
—;10gpn(w) —>h=- ZP:’ log pi
i=1

with probability 1.

In information theory 1,...,r are interpreted as the letters of an
alphabet, X1, X, ... are the successive letters produced by an informa-
tion source, and h is the entropy of the source. Prove the asymptotic
equipartition property: For large n there is probability exceeding 1 — €
that the probability p, (w) of the observed n-long sequence, or message,
is in the range e "+,

In the terminology of Example 6.5, show that log, n 4 log, log, n +
0 log, log, log, n is an outer or inner boundary as 8 > 1 or § < 1. Gen-
eralize. (Compare Problem 4.12.)

5.20 1 Let g(m) = X,6,(m) be the number of distinct prime divisors of
m. For a, = E,[g] (see (5.46)) show that a, — oo. Show that

al(r ) ea G =mem e

for p # g and hence that the variance of g under P, satisfies

1
Var,[g] <3 ¥ -—. (6.9)
p=np

Prove the Hardy-Ramanujan theorem:

g(m)
an

lim P, [m:
n

— 1‘ > 6] = 0. (6.10)

Since a, ~ loglogn (see Problem 18.17), most integers under n have
something like loglogn distinct prime divisors. Since loglog 107 is a
little less than 3, the typical integer under 107 has about three prime
factors—remarkably few.
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6.17. Suppose that X, Xp, ... are independent and P[X,, = 0] = p. Let L, be
the length of the run of 0’s starting at the nth place: L, =k if X, =
- = Xy4k—1 = 0 # X, 4«. Show that P[L, > r, i.0.] is 0 or 1 according

1

as X, p'™ converges or diverges. Example 6.5 covers the case p = 7.

SECTION 7 GAMBLING SYSTEMS

Let X;,Xz,... be an independent sequence of random variables (on
some (£2,7,P)) taking on the two values 4+1 and —1 with probabilities
P[X, =+1]=p and P[X, = —1] =¢g =1 — p. Throughout the section, X,
will be viewed as the gambler’s gain on the nth of a series of plays at unit
stakes. The game is favorable to the gambler if p > 1, fair if p = %, and
unfavorable if p < % The case p < % will be called the subfair case.

After the classical gambler’s ruin problem has been solved, it will be shown
that every gambling system is in certain respects without effect and that some
gambling systems are in other respects optimal. Gambling problems of the sort
considered here have inspired many ideas in the mathematical theory of proba-
bility, ideas that carry far beyond their origin.

Red-and-black will provide numerical examples. Of the 38 spaces on a
roulette wheel, 18 are red, 18 are black, and 2 are green. In betting either on
red or on black the chance of winning is %.

Gambler’s Ruin

Suppose that the gambler enters the casino with capital a and adopts the strategy
of continuing to bet at unit stakes until his fortune increases to ¢ or his funds
are exhausted. What is the probability of ruin, the probability that he will lose
his capital, a? What is the probability he will achieve his goal, ¢? Here a and
c are integers.

Let

So=X1+---+X,, So=0. (7.1)

The gambler’s fortune after n plays is a 4 S,,. The event

n—1

Asn=la+S,=cIn()0<a+5 <c] (7.2)
k=1

represents success for the gambler at time n, and

n—1

Baw=la+S$, =01N[)0<a+S <cl (7.3)
k=1
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represents ruin at time n. If s.(a) denotes the probability of ultimate success,
then

se@) =P (| JAwn) =) P(Aan) (7.4)
n=1 n=1

for0 <a <c.

Fix ¢ and let a vary. For n > 1 and 0 < a < ¢, define A,, by (7.2), and
adopt the conventions A, o = @ for 0 < a < ¢ and A, = Q (success is impos-
sible at time O if @ < ¢ and certain if a = ¢), as well as Ay, = A, = O for
n > 1 (play never starts if a is 0 or c¢). By these conventions, s.(0) = 0 and
sc(c) = 1.

Because of independence and the fact that the sequence Xp,X3,... is a
probabilistic replica of X, X, ..., it seems clear that the chance of success for
a gambler with initial fortune @ must be the chance of winning the first wager
times the chance of success for an initial fortune a1, plus the chance of losing
the first wager times the chance of success for an initial fortune a—1. It thus
seems intuitively clear that

sc(a) =psc(a+1)+gsc(a—1), O0<a<c. (7.5)

For a rigorous argument, define A}, just as A,, but with S, = Xp +--- +
X,+1 in place of S, in (7.2). Now P[X; = x;,i <n] = P[X;j+1 =x;,i <n] for
each sequence xi,...,x, of +1’s and —1’s, and therefore P[(Xy,...,X,) €
H]=P[(Xp,...,X,+1) €H] for HCR". Take H to be the set of
x = (x1,...,x,) 1in R" satisfying x;=+£l,a+x+---+x, =c¢, and
O<a+x +---+x <c for k < n. It follows then that

P(Aun) = P(A, ). (7.6)

Moreover, A, , = ([X; = +1] mA;+1,n—1) U (X = —1] ﬂA;_l’n_l) forn > 1
and 0 <a <c. By independence and (7.6), P(A, n) =pPAst1n-1) +
qP (A,—1,-1); adding over n now gives (7.5). Note that this argument involves
the entire infinite sequence X, X», ... .

It remains to solve the difference equation (7.5) with the side conditions
5¢(0) =0,s.(c) = 1. Let p = g/p be the odds against the gambler. Then [A19]
there exist constants A and B such that, for 0 <a <c¢,s.(a) =A+ Bp® if
p # q and s.(a) = A + Ba if p = q. The requirements s.(0) = 0 and s.(c) = 1
determine A and B, which gives the solution:

The probability that the gambler can before ruin attain his goal of ¢ from an
initial capital of a is

# 1,
~ (7.7)

4 O<a<e, ifp=

C’

ol 0<ag<e, ifp=
sc(a):{pc_l’ = = B /O

ASTENESERN

29



100

PROBABILITY

EXAMPLE 7.1

The gambler’s initial capital is $900 and his goal is $1000. If p = %, his chance
of success is very good: s1000(900) =.9. At red-and-black, p = % and
hence p = %; in this case his chance of success as computed by (7.7) is only
about .00003.

EXAMPLE 7.2

It is the gambler’s desperate intention to convert his $100 into $20,000.
For a game in which p = % (no casino has one), his chance of success is
100/20,000 = .005; at red-and-black it is minute—about 3 x 107911,

In the analysis leading to (7.7), replace (7.2) by (7.3). It follows that (7.7)
with p and ¢ interchanged (p goes to p~!) and a and c—a interchanged gives
the probability r.(a) of ruin for the gambler: r.(a) = (p~“~® —1)/(p~¢ = 1)
if p£1andr.(a) =(c —a)/cif p =1. Hence s.(a) + r.(a) = 1 holds in all
cases: The probability is O that play continues forever.

For positive integers a and b, let

00 n—1
Hy p = J{1S: =610 ()l—a < S < b]
n=1 k=1

be the event that S, reaches +b before reaching —a. Its probability is simply
(7.7y with ¢ =a + b: P(H,, ») = sq+»(a). Now let

o8} o0
Hy = | JHa » = |JIS: = b = [sup S, = b]

a=1 n=1
be the event that S, ever reaches +b. Since H, , 1 Hp as a — 0o, it follows
that P (Hp) = lim, 5415 (a); thisis 1 if p =1 or p < 1, and it is 1/p” if p > 1.
Thus
1 ifp>gq,
(p/q)" ifp<gq.

This is the probability that a gambler with unlimited capital can ultimately gain
b units.

PlsupS, > b] = ! (7.8)

EXAMPLE 7.3

The gambler in Example 7.1 has capital 900 and the goal of winning b = 100;
in Example 7.2 he has capital 100 and b is 19,900. Suppose, instead, that his
capital is infinite. If p = %, the chance of achieving his goal increases from .9

D
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to 1 in the first example and from .005 to 1 in the second. At red-and-black,
however, the two probabilities .9'% and .9'°°%° remain essentially what they
were before (.00003 and 3 x 107°11).
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Selection Systems

Players often try to improve their luck by betting only when in the preceding
trials the wins and losses form an auspicious pattern. Perhaps the gambler bets
on the nth trial only when among X, ..., X,_ there are many more +1’s than
—1’s, the idea being to ride winning streaks (he is “in the vein”). Or he may bet
only when there are many more —1’s than +1’s, the idea being it is then surely
time a +1 came along (the “maturity of the chances”). There is a mathematical
theorem that, translated into gaming language, says all such systems are futile.

It might be argued that it is sensible to bet if among X1, ..., X, there is
an excess of +1’s, on the ground that it is evidence of a high value of p. But
it is assumed throughout that statistical inference is not at issue: p is fixed—at
%, for example, in the case of red-and-black—and is known to the gambler, or
should be.

The gambler’s strategy is described by random variables By, B», . .. taking
the two values 0 and 1: If B,, = 1, the gambler places a bet on the nth trial; if
B, = 0, he skips that trial. If B, were (X,, + 1)/2, so that B, = 1 for X,, = +1
and B, =0 for X, = —1, the gambler would win every time he bet, but of
course such a system requires he be prescient—he must know the outcome X,
in advance. For this reason the value of B, is assumed to depend only on the
values of Xi,...,X,_:: there exists some function b,: R"~' — R! such that

B, :bn(Xla---,Xn—l)- (79)

(Here B; is constant.) Thus the mathematics avoids, as it must, the question of
whether prescience is actually possible.
Define

7.10
S = {9, Q}. (710

{7 =o(X1,....X)), n=12,...,

The o-field #,_; generated by Xi,...,X,_; corresponds to a knowledge of

the outcomes of the first n—1 trials. The requirement (7.9) ensures that B, is

measurable 7, _; (Theorem 5.1) and so depends only on the information actually
available to the gambler just before the nth trial.

Forn =1,2,..., let N, be the time at which the gambler places his nth bet.

This nth bet is placed at time k or earlier if and only if the number ZleBi of

D
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bets placed up to and including time k is n or more; in fact, N, is the smallest
k for which E{‘ZlBi = n. Thus the event [N, < k] coincides with [EleB,- >
n]; by (7.9) this latter event lies in o (By,...,By) Co(X1,...,Xx—1) = % 1.
Therefore,

[Ny =kl =[Ny <kl =[Ny <k —1] € 1. (7.11)

(Even though [N, = k] lies in #%_; and hence in #,N, is, as a function on
2, generally not a simple random variable, because it has infinite range. This
makes no difference, because expected values of the N,, will play no role; (7.11)
is the essential property.)

To ensure that play continues forever (stopping rules will be considered
later) and that the N, have finite values with probability 1, make the further
assumption that

P[B,=110.]=1. (7.12)

A sequence {B,} of random variables assuming the values 0 and 1, having the
form (7.9), and satisfying (7.12) is a selection system.

Let Y,, be the gambler’s gain on the nth of the trials at which he does bet:
Y, = Xy, . It is only on the set [B, = 1 1.0.] that all the N,, and hence all the Y,
are well defined. To complete the definition, set ¥,, = —1, say, on [B, = 1 i.0.];
since this set has probability 0 by (7.12), it really makes no difference how Y,
is defined on it.

Now Y, is a complicated function on €2 because Y,(w) = Xy, ) ().
Nonetheless,

[0: Yy (@) = 1] = [ J[: Ny(@) = k] N [0: Xi (@) = 1])
k=1

lies in 7, and so does its complement [w: Y, (w) = —1]. Hence Y, is a simple
random variable.

EXAMPLE 7.4

An example will fix these ideas. Suppose that the rule is always to bet on
the first trail, to bet on the second trial if and only if X; = 41, to bet on the
third trial if and only if X; = X5, and to bet on all subsequent trails. Here
B] = 1,[32: 1] = [X] =+1],[B3 = 1] = [X] :Xz], and B4:Bs =..-=1.
The table shows the ways the gambling can start out. A dot represents
a value undetermined by X, X5, X3. Ignore the rightmost column for the
moment.
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X1 X2 X3 Bl 32 B3 N1 N2 N3 N4 Y1 Y2 Y3 T
-1 -1 -1 1 0 1 1 3 4 5 -1 -1 1
-1 -1 +1 1 0 1 1 3 4 5 -1 +1 1
-1 +1 -1 1 0 0 1 4 5 6 -1 1
-1 +1 +1 1 0 0 1 4 5 6 -1 1
+1 -1 -1 1 1 0 1 2 4 5 41 -1 2
+1 -1 +1 1 1 0 1 2 4 5 41 -1 . 2
+1 +1 -1 1 1 1 1 2 3 4 +1 +1 -1 3
+1 +1 +1 1 1 1 1 2 3 4  +1 +1 +1

In the evolution represented by the first line of the table, the second bet is
placed on the third trial (N> = 3), which results in a loss because Y, = Xy, =
X3 = —1. Since X3 = —1, the gambler was “wrong” to bet. But remember that
before the third trial he does not know X3(w) (much less w itself); he knows
only X;(w) and X>(w). See the discussion in Example 5.5.
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Selection systems achieve nothing because {Y,} has the same structure
as {X,}:

THEOREM 7.1
For every selection system, {Y,} is independent and P|Y, = +1] = p,P[Y,, =
—1]1=g4.

Proof. Since random variables with indices that are themselves random
variables are conceptually confusing at first, the @’s here will not be suppressed
as they have been in previous proofs.

Relabel p and ¢ as p(+41) and p(—1), so that Plw: X;(w) = x] = p(x)
forx = +1. If A € %_1, then A and [w: X} (w) = x] are independent, and so
PAN[w: Xk (w) =x]) = P(A)p(x). Therefore, by (7.11),

Plw: Y, (w) = x] = P|w: XNy w) (w) = x]
= ZP[a): N, (o) = k, X (0) = x]
k=1

M

Plw: Ny (@) = k]p(x)

~
Il
—_

I
S
=
N—"



104

PROBABILITY

More generally, for any sequence xi,...,x, of £1’s,

Plw: Yi(w) = x;,1 < n] = Plo: Xy;w) (@) = x;,i <n]

= D PloNi@) =k Xy (@) = x,i <nl,

ky<--<kn

where the sum extends over n-tuples of positive integers satisfying k; < --- <
k,. The event [w: N;j(w) =k;,i <n]N[w: Xy, (w) =x;,i <n] lies in F, _;
(note that there is no condition on X} (w)), and therefore

Plw: Yi(w) = x;,i < n]

— Z P([w: Ni(w) = k;,i < n]

ky<--<ky
N[w: Xy, (@) = x;,i < n])p(x,).
Summing k, over k,—1 + 1,k,—1 + 2,... brings this last sum to
> Plo: Ni(@) = ki, X, (@) = x;,i < nlp(x,)
ki <-<ky_q
= Plw: Xy;(w)(®) = x;,i <n] p(x,)
= Plw: Yi(®) = x;,i < n]p(x,).

It follows by induction that

Plow: Yi(w) =x;,i <n]= TI p()= Tl Plo:Y(0)=x],

1 < 1 <n

and so the Y; are independent (see (5.9)). |

Gambling Policies

There are schemes that go beyond selection systems and tell the gambler not
only whether to bet but how much. Gamblers frequently contrive or adopt such
schemes in the confident expectation that they can, by pure force of arithmetic,
counter the most adverse workings of chance. If the wager specified for the nth
trial is in the amount W, and the gambler cannot see into the future, then W,
must depend only on X1, ..., X, _;. Assume therefore that W, is a nonnegative
function of these random variables: there is an f,: R"~! — R! such that

W, =£,(X1, ..., Xp_1) > 0. (7.13)

Apart from nonnegativity there are at the outset no constraints on the f;,, although
in an actual casino their values must be integral multiples of a basic unit. Such a

D
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sequence {W,} is a betting system. Since W, = 0 corresponds to a decision not
to bet at all, betting systems in effect include selection systems. In the double-
or-nothing system, W, =2" ' if X; =---. =X, =—1(W;=1)and W, =0
otherwise.

The amount the gambler wins on the nth play is W, X,. If his fortune at
time n is F,, then

Fy = Foq + W,X,. (7.14)

This also holds for n = 1 if F; is taken as his initial (nonrandom) fortune. It
is convenient to let W, depend on Fj as well as the past history of play and
hence to generalize (7.13) to

Wy = gn(Fo, X1,...,Xy-1) =2 0 (7.15)

for a function g,: R” — R'. In expanded notation, W, (w) = g, (Fo, X1 (w), ...,
X,—1(w)). The symbol W, does not show the dependence on w or on Fy,
either. For each fixed initial fortune Fy, W, is a simple random variable; by
(7.15) it is measurable #,_;. Similarly, F, is a function of Fy as well as of
Xi(w),...,X,(w): F,, = F,(Fy,w).

If Fp =0 and g, = 1, the F, reduce to the partial sums (7.1).

Since #,_; and o(X,) are independent, and since W, is measurable 7, |
(for each fixed Fy), W, and X,, are independent. Therefore, E[W, X,,] = E[W,] -
E[X,]. Now E[X,] =p —¢q <0 in the subfair case (p < %), with equality in
the fair case (p = %). Since E[W, ] > 0, (7.14) implies that E[F,] < E[F,—_1].
Therefore,

Fo>E[F]>=--->=E[F,]=--- (7.16)
in the subfair case, and
Fo=E[F|]=---=E[F,]="-- (7.17)

in the fair case. (If p < ¢ and P[W,, > 0] > 0, there is strict inequality in (7.16).)
Thus no betting system can convert a subfair game into a profitable enterprise.

Suppose that in addition to a betting system, the gambler adopts some policy
for quitting. Perhaps he stops when his fortune reaches a set target, or his funds
are exhausted, or the auguries are in some way dissuasive. The decision to stop
must depend only on the initial fortune and the history of play up to the present.

Let t(Fp,w) be a nonnegative integer for each w in 2 and each Fy > 0. If
T = n, the gambler plays on the nth trial (betting W,,) and then stops; if T = 0,
he does not begin gambling in the first place. The event [w: t(Fyp, w) = n]

D
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represents the decision to stop just after the nth trial, and so, whatever value Fj
may have, it must depend only on Xi, ..., X,. Therefore, assume that

[w: T(Fy,w) =n] € %, n=~0,12,... (7.18)

A 7 satisfying this requirement is a stopping time. (In general it has infinite
range and hence is not a simple random variable; as expected values of t play
no role here, this does not matter.) It is technically necessary to let 7 (Fyp, w)
be undefined or infinite on an w-set of probability 0. This has no effect on the
requirement (7.18), which must hold for each finite n. But it is assumed that
is finite with probability 1: play is certain to terminate.

A betting system together with a stopping time is a gambling policy. Let
denote such a policy.

EXAMPLE 7.5

Suppose that the betting system is given by W, = B,, with B, as in
Example 7.4. Suppose that the stopping rule is to quit after the first loss of a
wager. Then [t =n]=U]_ [Ny =n,Y; =--- =Y, =+1,Y; = —1]. For
J<k=n[Ny=nY =x]=U_ [Ny =n,N; =m,X,, =x] lies in %, by
(7.11); hence 7 is a stopping time. The values of t are shown in the rightmost
column of the table.

The sequence of fortunes is governed by (7.14) until play terminates, and
then the fortune remains for all future time fixed at F; (with value Fr (g o) (w)).
Therefore, the gambler’s fortune at time n is

F, ift>n,
(7.19)

F, ift <n.

Note that the case T = n is covered by both clauses here. If n — 1 <n <7,
then Fy =F, =F, 1 +WX, =F; +W,X,;if t <n—1<n, then F; =
F. = F;_,. Therefore, if W} = I;;>,)W,, then

n

But this is the equation for a new betting system in which the wager placed
attime n is W,". If ¢ > n (play has not already terminated), W,* is the old amount
W,; if T < n (play has terminated), W,* is 0. Now by (7.18), [t > n] = [t < n]°
lies in #,_;. Thus Ij;>,) is measurable #,_;, so that W as well as W, is
measurable 7, _;, and {W} represents a legitimate betting system. Therefore,
(7.16) and (7.17) apply to the new system:

Fo=F; > E[F{]>--->E[F;]>--- (7.21)

D
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if p <1, and

Fo=F;=E[Fj]=---=E[F,]=... (7.22)
if p=1.
The gambler’s ultimate fortune is Fr. Now lim, F," = F; with probability 1,
since in fact F;' = F; forn > 7. If

imE[F)] = E[F.], (7.23)

then (7.21) and (7.22), respectively, imply that E[F.] < Fy and E[F;] = Fp.
According to Theorem 5.4, (7.23) does hold if the F, are uniformly bounded.
Call the policy bounded by M (M nonrandom) if

O0<F'<M, n=0,1,2,.... (7.24)

If F)y is not bounded above, the gambler’s adversary must have infinite capital.
A negative F' represents a debt, and if F,’ is not bounded below, the gambler
must have a patron of infinite wealth and generosity from whom to borrow and
so must in effect have infinite capital. In case F,’ is bounded below, O is the
convenient lower bound—the gambler is assumed to have in hand all the capital
to which he has access. In any real case, (7.24) holds and (7.23) follows. (There
is a technical point that arises because the general theory of integration has been
postponed: F; must be assumed to have finite range so that it will be a simple
random variable and hence have an expected value in the sense of Section 5.7)
The argument has led to this result:

THEOREM 7.2

For every policy, (7.21) holds if p < % and (7.22) holds if p = % If the policy is
bounded (and F. has finite range), then E[F;] < Fy for p < % and E[F;] = F)
forp = %
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EXAMPLE 7.6

The gambler has initial capital a and plays at unit stakes until his capital

increases to ¢(0 < a < c) or he is ruined. Here F) =a and W, =1, and so

F, =a+S,. The policy is bounded by ¢, and F; is ¢ or 0 according as the

gambler succeeds or fails. If p = % and if s is the probability of success, then

a =Fy=E[F;] =sc. Thus s = a/c. This gives a new derivation of (7.7) for
1

the case p = 5. The argument assumes however that play is certain to terminate.

Ifp < % Theorem 7.2 only gives s < a/c, which is weaker than (7.7).

*See Problem 7.11.
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EXAMPLE 7.7

Suppose as before that Fp = a and W, = 1, so that F,, = a + S, but suppose
the stopping rule is to quit as soon as F, reaches a+b. Here F is bounded
above by a+b but is not bounded below. If p = %, the gambler is by (7.8)
certain to achieve his goal, so that F; =a + b. Inthiscase Fo =a <a +b =
E[F.]. This illustrates the effect of infinite capital. It also illustrates the need
for uniform boundedness in Theorem 5.4 (compare Example 5.7).

For some other systems (gamblers call them “martingales”), see the prob-
lems. For most such systems there is a large chance of a small gain and a small
chance of a large loss.

Bold Play’

The formula (7.7) gives the chance that a gambler betting unit stakes can increase
his fortune from a to ¢ before being ruined. Suppose that a and ¢ happen to be
even and that at each trial the wager is two units instead of one. Since this has
the effect of halving a and c, the chance of success is now

pa/Z_I_pa_lpC/2+1 q 41
02— 1 pe—1p P+ 1 p—,o :

Ifp>1 (p < %), the second factor on the right exceeds 1: Doubling the stakes
increases the probability of success in the unfavorable case p > 1. In the case
p = 1, the probability remains the same.

There is a sense in which large stakes are optimal. It will be convenient
to rescale so that the initial fortune satisfies 0 < Fy < 1 and the goal is 1. The
policy of bold play is this: At each stage the gambler bets his entire fortune,
unless a win would carry him past his goal of 1, in which case he bets just
enough that a win would exactly achieve that goal:

W {Fn_l if

1—F,— if

(It is convenient to allow even irrational fortunes.) As for stopping, the policy
is to quit as soon as Fj, reaches O or 1.

Suppose that play has not terminated by time k£ —1; under the policy (7.25),

if play is not to terminate at time k, then X; must be 41 or —1 according as

Fi_1 < % or Fj_1 > %, and the conditional probability of this is at most m =
max{p, q}. It follows by induction that the probability that bold play continues

o

IAIA

Fn—l

7.25
Fo (7.25)

—_ N—
. -

N —
IATA

"This topic may be omitted.
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beyond time 7 is at most m”, and so play is certain to terminate (7 is finite with
probability 1).

It will be shown that in the subfair case, bold play maximizes the probability
of successfully reaching the goal of 1. This is the Dubins—Savage theorem. It
will further be shown that there are other policies that are also optimal in
this sense, and this maximum probability will be calculated. Bold play can be
substantially better than betting at constant stakes. This contrasts with Theorems
7.1 and 7.2 concerning respects in which gambling systems are worthless.

From now on, consider only policies 7 that are bounded by 1 (see (7.24)).
Suppose further that play stops as soon as F, reaches O or 1 and that this
is certain eventually to happen. Since F; assumes the values O and 1, and
since [F; = x] = U;o:()[t =n]N[F, =x]forx =0and x = 1, F; is a simple
random variable. Bold play is one such policy 7.

The policy 7 leads to success if F; = 1. Let O, (x) be the probability of
this for an initial fortune Fy = x:

O0,(x)=P[F, =1] for Fy =x. (7.26)

Since F, is a function v, (Fo, X (w),...,X,(w)) =V¥,(Fy,w), (7.26) in
expanded notation is Q(x) = Plw: Wi w (x,w) = 1]. As 7 specifies that
play stops at the boundaries O and 1,

0:(0) =0, Ox(1)=1, (7.27)
0<0-(x) =<1, O<x=L

Let Q be the Q, for bold play. (The notation does not show the dependence of
QO and Q on p, which is fixed.)

THEOREM 7.3
In the subfair case, Qr (x) < Q(x) for all @ and all x.

Proof. Under the assumption p < ¢, it will be shown later that
Ox)=pO0x+1t)+g0x—1), 0<x—-t<x<x+t=<1. (7.28)

This can be interpreted as saying that the chance of success under bold play
starting at x is at least as great as the chance of success if the amount 7 is
wagered and bold play then pursued from x4 in case of a win and from x—¢
in case of a loss. Under the assumption of (7.28), optimality can be proved as
follows.

Consider a policy m, and let F,, and F,” be the simple random variables
defined by (7.14) and (7.19) for this policy. Now Q(x) is a real function, and so
Q(F)) is also a simple random variable; it can be interpreted as the conditional
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chance of success if 7 is replaced by bold play after time n. By (7.20), F) =
x + X, if F7 | =x and W = t. Therefore,

Q(F,) = ZI[F;I:)C,W;::]Q(X + 1Xy),
X,

where x and ¢ vary over the (finite) ranges of 7, and W, respectively.
For each x and ¢, the indicator above is measurable %,_; and QO (x + tX},)
is measurable o (X},); since the X, are independent, (5.25) and (5.17) give

E[Q(F)] =) PIFy | =x, W} =1E[Q(x +X,)] (7.29)

By (7.28), E[Q(x +tX,)] <Qx) if 0<x—t<x<x4+t<1. As it is
assumed of 7 that F lies in [0, 1] (that is, W) < min{F_,,1 —F _,}), the

probability in (7.29) is O unless x and ¢ satisfy this constraint. Therefore,

E[Q(F)] <Y PIF; = x, W =110 (x)
=Y PIF;_; =x10(x) =E[Q(F;_)].

This is true for each n, and so E[Q(F,)] < E[Q(F;)] = Q(Fp). Since
Q(F)) = Q(F;) for n > t, Theorem 5.4 implies that E[Q(F;)] < Q(Fp).
Since x = 1 implies that Q(x) = 1,P[F; = 1] < E[Q(F;)] < Q(Fp). Thus
0= (Fo) < Q(Fp) for the policy m, whatever Fy may be.

It remains to analyze Q and prove (7.28). Everything hinges on the func-
tional equation

pQ(2x), 0

1

< < =

e (7.30)
p+q0@x—1), L<x<l.

Q) = {
For x = 0 and x = 1 this is obvious because Q(0) =0 and Q(1) = 1. The
idea is this: Suppose that the initial fortune is x. If x < %, the first stake under
bold play is x; if the gambler is to succeed in reaching 1, he must win the first
trial (probability p) and then from his new fortune x + x = 2x go on to succeed
(probability Q(2x)); this makes the first half of (7.30) plausible. If x > %, the
first stake is 1 — x; the gambler can succeed either by winning the first trial
(probability p) or by losing the first trial (probability ¢) and then going on from
his new fortune x — (I —x) = 2x — 1 to succeed (probability Q (2x — 1)); this
makes the second half of (7.30) plausible.
It is also intuitively clear that Q(x) must be an increasing function of x
(0 < x < 1): the more money the gambler starts with, the better off he is. Finally,
it is intuitively clear that Q(x) ought to be a continuous function of the initial
fortune x.
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A formal proof of (7.30) can be constructed as for the difference equation

(7.5). If B(x) is x for x < % and 1 — x for x > %, then under bold play W, =

B(F,—1). Starting from fy(x) = x, recursively define

San O xn, o xn) = fac1 (s x1, . X—1) F B (X X1, X—1)) X

Then F, = f,(Fo; X1,...,X,). Now define

gn(x;x1,...,x,) = max  fr(x;xp, ..., xk).
0<k<n

If Fo = x, then T,,(x) = [gn(x; X1,...,X,) = 1] is the event that bold play will
by time n successfully increase the gambler’s fortune to 1. From the recursive

definition it follows by induction on n that for n > 1, f,(x;x,...,x,) =
fo—1(x + B(x)x1; x2,...,x,) and hence that g, (x; x1,...,X,) = max{x, g,_1(x +
B(xX)x1;x2,...,x,)}. Since x = 1 implies g,—1(x + B(xX)x1; X2,...,%,) > x +

Bx)x; =1,T,(x) = [ghn—1(x + B(x)X1; X2,...,X,;) = 1], and since the X; are
independent and identically distributed, P (7, (x)) = P([X; = +1]1NT,(x)) +
P([Xi = —11NT,(x)) = pPlgu—1(x + B(x); Xas ..., Xy) = 1]+ qPgu—1(x —
B(); X, ., Xn) = pP(Tyo1 (x + () + gP (T 1 (x — B(x))). Letting
n — oo now gives Q(x) = pQ(x + B(x)) + qQ(x — B(x)), which reduces to
(7.30) because Q(0) =0 and Q(1) = 1.

Suppose that y = f,,_1(x; x1,...,Xx,—1) is nondecreasing in x. If x,, = +1,
then f,(x;x1,...,x,) is 2y if 0<y <1 and 1 if 1 <y <1; if x, = —1,
then f, (x; x1,...,x,) s 0if 0 <y < % and 2y — 1 if % <y < 1. In any case,
Ju(x;x1,...,x,) is also nondecreasing in x, and by induction this is true for
every n. It follows that the same is true of g, (x; x1,...,x,), of P(T,(x)), and
of Q(x). Thus Q(x) is nondecreasing.

Since Q(1) = 1, (7.30) implies that Q (3) = pQ (1) =p,0 (3) =pQ (3) =
p%0 (%) =p+q0 (%) = p + pq. More generally, if po = p and p; = ¢, then

k L k
Q(z_n)=2[pul--.pu,zg<2_n] 0<k=2', nz21 (3

i=1

the sum extending over n-tuples (uy,...,u,) of 0’s and 1’s satisfying the con-
dition indicated. Indeed, it is easy to see that (7.31) is the same thing as

QCuy...uy +27") = Q(ur ... up) = pupu "~ * Pu, (7.32)

for each dyadic rational .uj...u, of rank n. If wuy...u, +27" < %, then

u; =0 and by (7.30) the difference in (7.32) is polQ(uz...u, +27"F1) —
O(uy...u,)]. But (7.32) follows inductively from this and a similar relation

for the case .uj...u, > %
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Therefore Q(k27") — Q((k — 1)27") is bounded by max{p”,q"}, and so
by monotonicity Q is continuous. Since (7.32) is positive, it follows that Q is
strictly increasing over [0, 1].

Thus Q is continuous and increasing and satisfies (7.30). The inequality
(7.28) is still to be proved. It is equivalent to the assertion that

A(r,s) = Q(a) —pQ(s) —qQ(r) = 0

if 0 <r <s <1, where a stands for the average: a = %(r +s). Since Q is
continuous, it suffices to prove the inequality for r and s of the form k/2",
and this will be done by induction on n. Checking all cases disposes of n = 0.
Assume that the inequality holds for a particular n, and that  and s have the
form k /2" *!. There are four cases to consider.

CaseE 1. 5 < % By the first part of (7.30), A(r,s) = pA(2r,2s). Since 2r and
2s have the form k /2", the induction hypothesis implies that A(2r,2s) > 0.

CaASE 2. 5 < r. By the second part of (7.30),

1
2

A(r,s) =qAQr—1,2s — 1) > 0.

CASE 3. r <a < % <s. By (7.30),

A(r,s) =pQQ2a) —plp +qQ2s — D] — q[pQ (2r)].

From % <s<r+4+s=2a<1, follows Q2a)=p+qQ“4a — 1); and from

0=<2a— % = %’ follows Q (2a — %) = pQ4a — 1). Therefore, pQ(2a) =
p?+4¢0Q (2a — 1), and it follows that

A(r,s) =q [0 (2a—1) —p0o@2s — 1) — pO(2r)].

Since p < ¢, the right side does not increase if either of the two p’s is changed
to g. Hence

A(r,s) > gmax[AQ2r,2s — 1), AQ2s — 1,2r)].

The induction hypothesis applies to 2r < 2s — 1 or to 2s — 1 < 2r, as the case
may be, so one of the two A’s on the right is nonnegative.

Case 4. r < 5 <a <s. By (7.30),

1
2

A(r,s) =pq +qQQ2a — 1) — pqQ(2s — 1) — pgQ (2r).

D
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From 0§2a—l:r—|—s—1§% follows QQRa — 1) =pQ(4a —2); a
from %§2a—%:r+s—%§l follows Q(2a——) p+qQ(4a—2)
Therefore, g0 (2a — 1) = pQ (2a — %) — p?, and it follows that

1
A(r,s) =p [61 —-p+0 <2a - 5) —qQQ2s —1) — QQ(ZV)] :
If 25 — 1 < 2r, the right side here is

rl@ —p)1—=0@2r) +A@2s —1,2r)] = 0.

If 2r < 2s — 1, the right side is

pllg —p)1 —-0@2s — 1)+ AQ2r,2s = D] = 0.
This completes the proof of (7.28) and hence of Theorem 7.3. |

The equation (7.31) has an interesting interpretation. Let Z;,Z,,... be
independent random variables satistfying P[Z, = 0] = po =p and P[Z, = 1] =
p1=¢q. From P[Z, =1 io]=1 and ), , 727" <27 it follows that
Py z2 <k2™"| <P[Y/Z27 <k2™"| <P [Y2,Z27 <k2™"].
Since by (7.31) the middle term is Q (k27"),

Q(x) =P [Z 727 < x} (7.33)
i=1

holds for dyadic rational x and hence by continuity holds for all x. In Section
31, Q will reappear as a continuous, strictly increasing function singular in the
sense of Lebesgue. On p. 408 is a graph for the case pg = .25.

Note that Q(x) = x in the fair case p = % In fact, for a bounded policy
Theorem 7.2 implies that E[F;] = Fy in the fair case, and if the policy is to stop
as soon as the fortune reaches 0 or 1, then the chance of successfully reaching
1is P[F, = 1] = E[F;] = Fy. Thus in the fair case with initial fortune x, the
chance of success is x for every policy that stops at the boundaries, and x is

an upper bound even if stopping earlier is allowed.
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EXAMPLE 7.8

The gambler of Example 7.1 has capital $900 and goal $1000. For a fair game
( = l) his chance of success is .9 whether he bets unit stakes or adopts
bold play. At red-and-black ( = ) his chance of success with unit stakes is
.00003; an approximate calculatlon based on (7.31) shows that under bold play
his chance Q(.9) of success increases to about .88, which compares well with
the fair case.
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EXAMPLE 7.9
In Example 7.2 the capital is $100 and the goal $20,000. At unit stakes the
chance of successes is .005 for p = % and 3 x 107°!! for p = %. Another
approximate calculation shows that bold play at red-and-black gives the gambler
probability about .003 of success, which again compares well with the fair case.
This example illustrates the point of Theorem 7.3. The gambler enters the
casino knowing that he must by dawn convert his $100 into $20,000 or face
certain death at the hands of criminals to whom he owes that amount. Only
red-and-black is available to him. The question is not whether to gamble—he
must gamble. The question is how to gamble so as to maximize the chance of
survival, and bold play is the answer.

There are policies other than the bold one that achieve the maximum success
probability Q(x). Suppose that as long as the gambler’s fortune x is less than %
he bets x for x < 1 and % — x for % <x < % This is, in effect, the bold-play
strategy scaled down to the interval [O, %], and so the chance he ever reaches
% is Q(2x) for an initial fortune of x. Suppose further that if he does reach
the goal of l, or if he starts with fortune at least % in the first place, then he
continues, but with ordinary bold play. For an initial fortune x > %, the overall
chance of success is of course Q(x), and for an initial fortune x < %, it 1s
02x)0 (%) = pQ(2x) = Q(x). The success probability is indeed Q(x) as for
bold play, although the policy is different. With this example in mind, one can

generate a whole series of distinct optimal policies.

Timid Play®

The optimality of bold play seems reasonable when one considers the effect of
its opposite, timid play. Let the e-timid policy be to bet W,, = min{e, F,,_1,1 —
F,—1} and stop when F, reaches O or 1. Suppose that p < ¢, fix an ini-
tial fortune x = Fy with 0 <x < 1, and consider what happens as € — 0.
By the strong law of large numbers, lim, n~'S, = E[X;] =p — ¢ < 0. There
is therefore probability 1 that sup, Sy < oo and lim, S, = —oo. Given 1 > 0,
choose € so that P[sup, (x + €S) < 1]>1 —n. Since P(U}2 ,[x + €S, < 0]) =
1, with probability at least 1 — n there exists an n such that x + €S, < 0 and
maxy <, (x + €Sx) < 1. But under the e-timid policy the gambler is in this cir-
cumstance ruined. If Q. (x) is the probability of success under the e-timid policy,
then lime_ o Qc(x) =0 for 0 <x < 1. The law of large numbers carries the
timid player to his ruin.*

TThis topic may be omitted.
*For each e, however, there exist optimal policies under which the bet never exceeds €; see DUBINS
& SAVAGE.
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PROBLEMS

7.1.

7.2.

73k

74.

7Sk

A gambler with initial capital a plays until his fortune increases b units
or he is ruined. Suppose that p > 1. The chance of success is multiplied
by 1 4 6 if his initial capital is infinite instead of a. Show that 0 < 6 <
(p* — 17! < (a(p — 1))7'; relate to Example 7.3.

As shown on p. 94, there is probability 1 that the gambler either achieves
his goal of ¢ or is ruined. For p # ¢, deduce this directly from the
strong law of large numbers. Deduce it (for all p) via the Borel—Cantelli
lemma from the fact that if play never terminates, there can never occur
¢ successive +1’s.

6.121 If V, is the set of n-long sequences of +1’s, the function b,
in (7.9) maps V,_; into {0,1}. A selection system is a sequence of
such maps. Although there are uncountably many selection systems,
how many have an effective description in the sense of an algorithm or
finite set of instructions by means of which a deputy (perhaps a machine)
could operate the system for the gambler? An analysis of the question
is a matter for mathematical logic, but one can see that there can be
only countably many algorithms or finite sets of rules expressed in finite
alphabets.

Let Y7, ¥,°),. .. be the random variables of Theorem 7.1 for a par-
ticular system o, and let C, be the w-set where every k-tuple of +1’s
(k arbitrary) occurs in Yl(a)(a)), YZ(U)(a)), ... with the right asymptotic
relative frequency (in the sense of Problem 6.12). Let C be the intersec-
tion of C, over all effective selection systems o. Show that C lies in
# (the o-field in the probability space (£2,#,P) on which the X,, are
defined) and that P(C) = 1. A sequence (X|(w),X2(w),...) for w in C
is called a collective: a subsequence chosen by any of the effective rules
o contains all k-tuples in the correct proportions.

Let D, be 1 or 0 according as X5, 1 # X», or not, and let M be the time
of the kth 1—the smallest n such that Z?:l D; = k. Let Z; = Xop, .
In other words, look at successive nonoverlapping pairs (Xz,—1,X2,),
discard accordant (X,,_; = X»,) pairs, and keep the second element
of discordant (X,—1 # X»,) pairs. Show that this process simulates
a fair coin: Z;,Z,,... are independent and identically distributed and
PlZy =+11=P[Z, = —1] = %, whatever p may be. Follow the proof
of Theorem 7.1.

Suppose that a gambler with initial fortune 1 stakes a proportion 6(0 <
6 < 1) of his current fortune: Fp = 1 and W,, = 0F,,_. Show that F,, =

D
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7.6.

7ol

7.8.

7.9.

7.10.

7.11.

7.12.

ITy_, (1 + 6X;) and hence that

2
o log(1 9)].

Show that F,, — 0 with probability 1 in the subfair case.

In “doubling,” W = 1, W,, = 2W,,_1, and the rule is to stop after the first
win. For any positive p, play is certain to terminate. Here F; = Fy + 1,
but of course infinite capital is required. If Fy = 2% — 1 and W,, cannot
exceed F,_1, the probability of F; = Fy + 1 in the fair case is 1 — 27%.
Prove this via Theorem 7.2 and also directly.

In “progress and pinch,” the wager, initially some integer, is increased
by 1 after a loss and decreased by 1 after a win, the stopping rule being
to quit if the next bet is 0. Show that play is certain to terminate if and
only if p > 1. Show that F; = Fo + $W? + 3(z — 1). Infinite capital is
required.

Here is a common martingale. Just before the nth spin of the wheel, the
gambler has before him a pattern xy, . . . x; of positive numbers (k varies
with n). He bets x; + x;, or x; in case k = 1. If he loses, at the next
stage he uses the pattern xi, ..., xg,x; + X (x1,x; in case k = 1). If he
wins, at the next stage he uses the pattern xj,...,x;_, unless k is 1
or 2, in which case he quits. Show that play is certain to terminate if
p > % and that the ultimate gain is the sum of the numbers in the initial
pattern. Infinite capital is again required.

Suppose that Wi = 1, so that Fy = Fy + Sx. Suppose that p > ¢ and
T is a stopping time such that 1 < t < n with probability 1. Show that
E[F.] < E[F,], with equality in case p = ¢. Interpret this result in terms
of a stock option that must be exercised by time n, where Fy -+ Sk
represents the price of the stock at time k.

For a given policy, let A be the fortune of the gambler’s adversary
at time n. Consider these conditions on the policy: (i) W," < Fr_; (ii)
Wy < A*_; (iii) F); + A}, is constant. Interpret each condition, and show
that together they imply that the policy is bounded in the sense of (7.24).
Show that F; has infinite range if Fo = 1, W,, = 27", and t is the small-
est n for which X,, = +1.

Let u be a real function on [0, 1], u(x) representing the utility of the
fortune x. Consider policies bounded by 1; see (7.24). Let Q, (Fy) =
E[u(F;)]: this represents the expected utility under the policy 7w of an
initial fortune Fy. Suppose of a policy mq that

ux) < Qn(x), 0=x=<1, (7.34)

D
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and that

Oy (X) = pQry(x +1) + qQxy(x — 1), (7.35)

O0<x—t<x<x+t<l1.

Show that Q;(x) < Q,(x) for all x and all policies 7. Such a 7 is
optimal.

Theorem 7.3 is the special case of this result for p < %, bold play in
the role of mp, and u(x) =1 or u(x) = 0 according as x = 1 or x < 1.

The condition (7.34) says that gambling with policy g is at least
as good as not gambling at all; (7.35) says that, although the prospects
even under my become on the average less sanguine as time passes, it
is better to use mp now than to use some other policy for one step and
then change to m.

7.13. The functional equation (7.30) and the assumption that Q is bounded
suffice to determine O completely. First, Q(0) and Q(1) must be 0 and 1,
respectively, and so (7.31) holds. Let Tox = %x and T1x = %x + %; let
Jox = px and fix =p +gx. Then Q(Tul T Tunx) :fu1 e 'funQ(x)- If
the binary expansions of x and y both begin with the digits uy, . . . u,, they
have the formx =T, --- Ty, x"andy = T, - - - T,,,y’. If K bounds Q and
if m = max{p, ¢}, it follows that |Q(x) — Q(y)| < Km". Therefore, Q
is continuous and satisfies (7.31) and (7.33)

SECTION 8 MARKOV CHAINS

As Markov chains illustrate in a clear and striking way the connection between
probability and measure, their basic properties are developed here in a measure-
theoretic setting.

Definitions

Let S be a finite or countable set. Suppose that to each pair i and j in S there is
assigned a nonnegative number p;; and that these numbers satisfy the constraint

Y pi=1 ie€Ss. (8.1)

JjeS
Let Xo, X1, X2, . .. be a sequence of random variables whose ranges are contained
in §. The sequence is a Markov chain or Markov process if

PXy1 =j[Xo =t0,...,.Xn = in] (8.2)

= P[Xy+1 =J1Xn = inl = Diyj

D
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for every n and every sequence iy,...,i, in S for which P[Xy = iy,..., X, =
in] > 0. The set S is the state space or phase space of the process, and the p;;
are the transition probabilities. Part of the defining condition (8.2) is that the
transition probability

PIXy—1 =jlXn =Jj1=pj (8.3)

does not vary with n."

The elements of S are thought of as the possible states of a system, X,
representing the state at time n. The sequence or process Xo,Xi,X2,... then
represents the history of the system, which evolves in accordance with the
probability law (8.2). The conditional distribution of the next state X, given
the present state X, must not further depend on the past Xo,...X,—1. This is
what (8.2) requires, and it leads to a copious theory.

The initial probabilities are

o = P[Xo = i]. (8.4)

The «; are nonnegative and add to 1, but the definition of Markov chain places
no further restrictions on them.

The following examples illustrate some of the possibilities. In each one,
the state space S and the transition probabilities p; are described, but the
underlying probability space (2,7, P) and the X,, are left unspecified for now:
see Theorem 8.1.*

EXAMPLE 8.1

The Bernoulli—Laplace model of diffusion. Imagine r black balls and r white
balls distributed between two boxes, with the constraint that each box contains
r balls. The state of the system is specified by the number of white balls in the
first box, so that the state space is § = {0, 1,...,r}. The transition mechanism
is this: at each stage one ball is chosen at random from each box and the two
are interchanged. If the present state is i, the chance of a transition to i —1 is
the chance i/r of drawing one of the i white balls from the first box times the
chance i/r of drawing one of the i black balls from the second box. Together
with similar arguments for the other possibilities, this shows that the transition

TSometimes in the definition of the Markov chain P[X,+1 =j|X, =i] is allowed to depend on n.
A chain satisfying (8.3) is then said to have stationary transition probabilities, a phrase that will be
omitted here because (8.3) will always be assumed.

For an excellent collection of examples from physics and biology, see FELLER, Volume 1. Chapter
XV.
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probabilities are

N\ 2 -\ 2 . .
i r—1i i(r—1i)

pii-1=\=) .  Piit1= s Di =2———,
r r r

the others being 0. This is the probablistic analogue of the model for the flow
of two liquids between two containers.
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The p;; form the transition matrix P = [p;;] of the process. A stochastic
matrix is one whose entries are nonnegative and satisfy (8.1); the transition
matrix of course has this property.

EXAMPLE 8.2
Random walk with absorbing barriers. Suppose that S = {0, 1,...,r} and

1 0 0 0 .. 0 0 0 07
g O p 0O ... 0 O 0 0
0O ¢ 0 p ... 0 0 0 0
P= |
0O 0 0 0 .. g 0 p 0
o 0 0 O .. 0 g 0 p
o 0o 0o 0 .. 0O 0 0 1|

That is, pii+1 =p and p;;_1 =g =1—p for 0 <i <r and py =p, = 1.
The chain represents a particle in random walk. The particle moves one unit to
the right or left, the respective probabilities being p and ¢, except that each of
0 and r is an absorbing state—once the particle enters, it cannot leave. The
state can also be viewed as a gambler’s fortune; absorption in O represents ruin
for the gambler, absorption in r ruin for his adversary (see Section 7). The
gambler’s initial fortune is usually regarded as nonrandom, so that (see (8.4))
o; = 1 for some i.

EXAMPLE 8.3

Unrestricted random walk. Let S consist of all the integers i = 0,41,42,.. .,
and take p; ;41 =p and p;;_1 =q =1 — p. This chain represents a random
walk without barriers, the particle being free to move anywhere on the integer
lattice. The walk is symmetric if p = q.

The state space may, as in the preceding example, be countably infinite. If
so, the Markov chain consists of functions X, on a probability space (2, 7, P),
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but these will have infinite range and hence will not be random variables in the
sense of the preceding sections. This will cause no difficulty, however, because
expected values of the X, will not be considered. All that is required is that for
each i € § the set [w: X,,(w) = i] lie in # and hence have a probability.

EXAMPLE 8.4

Symmetric random walk in space. Let S consist of the integer lattice points in
k-dimensional Euclidean space RK: x = (x1,...,x¢) lies in § if the coordinates
are all integers. Now x has 2k neighbors, points of the form y = (xq,...,x; £
1,...,x); for each such y let p,, = (2k)~!. The chain represents a particle
moving randomly in space; for k = 1 it reduces to Example 8.3 with p = ¢ =
%. The cases k <2 and k > 3 exhibit an interesting difference. If k < 2, the
particle is certain to return to its initial position, but this is not so if k > 3; see
Example 8.6.

Since the state space in this example is not a subset of the line, the Xy, X1, . . .
do not assume real values. This is immaterial because expected values of the
X, play no role. All that is necessary is that X, be a mapping from €2 into
S (finite or countable) such that [w: X, (w) = i] € # for i € S. There will be
expected values E[f (X,)] for real functions f on § with finite range, but then
f (X, (w)) is a simple random variable as defined before.

EXAMPLE 8.5

A selection problem. A princess must chose from among r suitors. She is definite
in her preferences and if presented with all  at once could choose her favorite
and could even rank the whole group. They are ushered into her presence one
by one in random order, however, and she must at each stage either stop and
accept the suitor or else reject him and proceed in the hope that a better one
will come along. What strategy will maximize her chance of stopping with the
best suitor of all?

Shorn of some details, the analysis is this. Let Sy, S»,...,S, be the suit-
ors in order of presentation; this sequence is a random permutation of the set
of suitors. Let X; = 1 and let X,, X3,... be the successive positions of suit-
ors who dominate (are preferable to) all their predecessors. Thus X, = 4 and
X3 = 6 means that §; dominates S, and S3 but S; dominates S;, S»,S3, and

that S4 dominates S5 but S¢ dominates Sy, ...,Ss5. There can be at most r of
these dominant suitors; if there are exactly m, X;,+1 = X;y40 =---=r + 1 by
convention.

As the suitors arrive in random order, the chance that S; ranks highest
among Sy,...,S; is (i — 1)!/i! = 1/i. The chance that §; ranks highest among
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S1,...,8; and S; ranks next is (j —2)!/j! =1/j(j — 1). This leads to a chain
with transition probabilities’

Pyt =jlXy =il = ———, l<i<j<r (8.5)
JjG =1
If X;, =i, then X;,.1 = r + 1 means that §; dominates S;1,...,S, as well as
S1,...,8;, and the conditional probability of this is

1
PXy1=r+1X,=il=-, 1<i<r. (8.6)
r

As downward transitions are impossible and 41 is absorbing, this specifies a
transition matrix for § = {1,2,...,r + 1}.

It is quite clear that in maximizing her chance of selecting the best suitor
of all, the princess should reject those who do not dominate their predecessors.
Her strategy therefore will be to stop with the suitor in position X,, where
T is a random variable representing her strategy. Since her decision to stop
must depend only on the suitors she has seen thus far, the event [t = n] must
lie in o(X,...,X,). If X; =i, then by (8.6) the conditional probability of
success is f (i) = i /r. The probability of success is therefore E[f (X;)], and the
problem is to choose the strategy t so as to maximize it. For the solution, see
Example 8.17.F
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Higher-Order Transitions

The properties of the Markov chain are entirely determined by the transition
and initial probabilities. The chain rule (4.2) for conditional probabilities gives

P[Xo = i0, X1 =11, X2 = i2]
= P[Xo = ig]lP[X1 = i1|Xo = ig]P[X2 = i2|Xo = i0, X1 = i1]
= UjyPigt1 Piyir -

Similarly,
P[X; =i;,0 <t <m] = Dipi, " Pipy_1im (8.7)

for any sequence iy, iy, - . ., i, of states.
Further,

Pl Xnye =Ji,1 <t <n|Xsis,0 <s <ml| = pi,j\Pij>" " Pjn_ijn (8.8)

"The details can be found in DyNKIN & YUSHKEVICH. Chapter IIL
#With the princess replaced by an executive and the suitors by applicants for an office job, this is
known as the secretary problem.
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as follows by expressing the conditional probability as a ratio and applying (8.7)
to numerator and denominator. Adding out the intermediate states now gives
the formula

Py = PXpin = j1Xm = i] (8.9)

= E Pik\Pkiky * * " Pk, _1j
ky..kn—

(the k| range over §) for the nth-order transition probabilities.

Notice that pi(j") is the entry in position (i, j) of P", the nth power of the
transition matrix P. If S is infinite, P is a matrix with infinitely many rows
and columns; as the terms in (8.9) are nonnegative, there are no convergence
problems. It is natural to put

1 ifi=j
0 J>s
p;)_sl}::

0 ifi#j.
Then PY is the identity /, as it should be. From (8.1) and (8.9) follow
(m+n) sz(:)n)pq();l)’ Zp(n) (810)

An Existence Theorem

THEOREM 8.1

Suppose that P = [p;;] is a stochastic matrix and that o; are nonnegative num-
bers satisfying ), cs @i = 1. There exists on some (2,7 ,P) a Markov chain
Xo0,X1, X2, ... with initial probabilities a; and transition probabilities p;;.

Proof. Reconsider the proof of Theorem 5.3. There the space (2,7, P)
was the unit interval, and the central part of the argument was the construction
of the decompositions (5.13). Suppose for the moment that § = {1,2,...}. First
construct a partition /, © A O of (0, 1] into countably many" subintervals of
lengths (P is again Lebesgue measure) P(Ii(o)) = «;. Next decompose each Il.(o)
into subintervals Iy D of lengths P(Iij(.l)) = o;p;;. Continuing inductively gives
a sequence of partltlons {Ilf)")l g, ...,0, = 1,2,...} such that each refines the
preceding and P(I(") ) = QigDigiy ** Pip_yin-

Put X, (w) =i if w € Ulo it lg")l . It follows just as in the proof of
Theorem 5.3 that the set [Xg = ip,..., X,, = i,] coincides with the interval
I iy, Thus P[Xo = io.....X, = in] = oiyPii, ***Pi,_,i,- From this it fol-
lows immediately that (8.4) holds and that the first and third members of (8.2)

8 +8+---=b—aand §; >0, then ; = (b — ngi 8,b— Zj<l- 51, i =1,2,..., decompose
(a, b] into intervals of lengths &;.
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are the same. As for the middle member, itis P[X,, = i,,, X,,+1 =j1/P[X, = in];
the numerator is ) &oPigi, * * * Pi,_inPin ;j the sum extending over all i, ..., i1,
and the denominator is the same thing without the factor p;,;, which means that
the ratio is p;,;, as required.

That completes the construction for the case S = {1,2,...}. For the general
countably infinite S, let g be a one-to-one mapping of {1,2,...} onto S, and
replace the X, as already constructed by g (X}, ); the assumption § = {1,2,...}
was merely a notational convenience. The same argument obviously works if S
is finite." [ ]

Although strictly speaking the Markov chain is the sequence Xy, X1,...,
one often speaks as though the chain were the matrix P together with the initial
probabilities «; or even P with some unspecified set of «;. Theorem 8.1 justifies
this attitude: For given P and «; the corresponding X,, do exist, and the apparatus
of probability theory—the Borel—Cantelli lemmas and so on—is available for
the study of P and of systems evolving in accordance with the Markov rule.

From now on fix a chain Xo, X1, ... satisfying o; > 0 for all i. Denote by P;
probabilities conditional on [Xg = i]: P;(A) = P[A|Xo = i]. Thus

Pi[X; =i, 1 <t <nl=piPiin Pi, i (8.11)
by (8.8). The interest centers on these conditional probabilities, and the actual
initial probabilities «; are now largely irrelevant.

From (8.11) follows

Pi[Xy=i,.... Xy = im’Xm—H :jlv cee aXm-i-n :]n] (812)

=PilXi =i1,.... Xn = inlPi, [ X1 =J1.... Xn = jnl
Suppose that I is a set (finite or infinite) of m-long sequences of states, J is a
set of n-long sequences of states, and every sequence in / ends in j. Adding
both sides of (8.12) for (i,...,i,) ranging over I and (ji,...,j,) ranging over

J gives

Pil(Xts .. Xm) €1, Xmsts s Xonin) € J] (8.13)
= Pi[(X1,....Xp) € 1IP)[(X1,....X,) € T].

For this to hold it is essential that each sequence in / end in j. The formulas
(8.12) and (8.13) are of central importance.

TFor a different approach in the finite case, see Problem 8.1.

D
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Transience and Persistence

Let
= PilXy £ X £ X =] (8.14)

be the probability of a first visit to j at time n for a system that starts in i, and

let
o0

fi =P JiXa =D =) " (8.15)
n=1

n=1

be the probability of an eventual visit. A state i is persistent if a system starting
at { is certain sometime to return to i: f;; = 1. The state is transient in the
opposite case: f; < 1.

Suppose that ny,...,n; are integers satisfying 1 <n; < --- < n; and con-
sider the event that the system visits j at times n; .. .n; but not in between; this
event is determined by the conditions

Xl #ja"" X}’l]—l #]9 an :ja
an-‘rl#j’--" an_l#]’ anzj’

Xnk—l—'_l#j’-'-’ X}’lk—l #]’ Xnk :j'

Repeated application of (8.13) shows that under P; the probability of this
event is fl.;"')fi;"z_”‘) o -fi{nk_nk‘l). Add this over the k-tuples np,...,n;: the
P;-probability that X,, = j for at least k different values of n is f;; ka ~!. Letting

k — oo therefore gives

. 0 iffy <1,
Pi[X, =j i.0.] = _ (8.16)
fi iffy =1
Recall that i.0. means infinitely often. Taking i =j gives
0 iffy <1,
Pi[X, =i io0]= itfii < (8.17)
ii lfﬁ[ =1.

Thus P;[X,, =i i.0.] is either O or 1; compare the zero—one law (Theorem 4.5),
but note that the events [X,, = i] here are not in general independent."'

THEOREM 8.2

(i) Transience of i is equivalent to Pi[X, =i i.o.] =0and to ), pi(l.n) < 0.
(n)
=00

u

(ii) Persistence of i is equivalent to P;[X, =i i.o.]=1landto ), p

fSee Problem 8.35.
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Proof. By the first Borel-Cantelli lemma, ), pl.(i") < oo implies P;[X, =
i 1.0.] =0, which by (8.17) in turn implies f;; < 1. The entire theorem will be
proved if it is shown that f;; < 1 implies ), pi(i") < 0.

The proof uses a first-passage argument: By (8.13),

n—1
P =PilXy =j1=) PilXi #j.. X o1 £ Xy =), Xn =]
s=0

n—1
= ZP,{XI F oo Xnosot # . Xaos = jIP;[X, =]

Z (n— S) (S)
Therefore,

n t—1
>l = A

t=1 s=0
_ me Z £l - ZPZS)ﬁl
t=s+1

Thus (1 —fu) Z, lp”) < fii, and if f; < 1, this puts a bound on the partial
sums 37, pl. o

EXAMPLE 8.6

Polya’s theorem. For the symmetric k-dimensional random walk (Example 8.4),
all states are persistent if k = 1 or k = 2, and all states are transient if k > 3.
To prove this, note first that the probability p(") of return in n steps is the same
for all states i; denote this probability by a, *) to indicate the dependence on
the dimension k. Clearly, az(fllrl = 0. Suppose that k = 1. Since return in 2n
steps means n steps east and n steps west,

azn = n ﬁ

By Stirling’s formula, aé,? ~ (Jrn)_l/ 2 Therefore, Zn a,El) = 00, and all states
are persistent by Theorem 8.2.

In the plane, a return to the starting point in 2n steps means equal numbers
of steps east and west as well as equal numbers north and south:

n

2) (2n)! 1
Do = % Wil (n — w)\(n — u)! 420

D
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- (206"

. . . (2n
It can be seen on combinatorial grounds that the last sum is (n ), and so

aéi) = (az(i))2 ~ (wn)~!. Again, o a,gz) = oo and every state is persistent.

For three dimensions,

A3) (2n)! 1
Aop = Z

uluhwl!(n —u —v)!(n —u —v)! 6207

the sum extending over nonnegative u and v satisfying u + v < n. This reduces

to
n 2n—21 21
DS )T . e
i=0

as can be checked by substitution. (To see the probabilistic meaning of this
formula, condition on there being 2n — 2/ steps parallel to the vertical axis and
2[ steps parallel to the horizontal plane.) It will be shown that ag) = 0(n3?),
which will imply that 3, a\” < co. The terms in (8.18) for / = 0 and [ = n are
each O (n=3/2) and hence can be omitted. Now a\” < Ku="/? and a” < Ku~',

as already seen, and so the sum in question is at most

n—1 m 1 2n—21 ) 21
K> (21) <§) (§> 2n =202~
=1

Since 2n —20)~Y2 < 2n'22n —20)"' < 4n'22n — 21+ 1)~V and 21! <
2(21 4+ 1)7!, this is at most a constant times

@n+2)! &= \20-1)\3 3 B '

Thus ), an(3) < 00, and the states are transient. The same is true for k = 4, 5,
..., since an inductive extension of the argument shows that a,(,k) = 0((n*?).

It is possible for a system starting in i to reach j(f; > 0) if and only if
plg.”) > () for some n. If this is true for all i and j, the Markov chain is irreducible.

THEOREM 8.3
If the Markov chain is irreducible, then one of the following two alternatives
holds.
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(i) All states are transient, P; (U [X, =j i.0.]) =0foralli,and ), P(n) <00
for all i and j.

(i) All states are persistent, P; (ﬂ [X, =j i.0o.]) = 1foralli,and ), p(") =
for all i and j.

The irreducible chain itself can accordingly be called persistent or transient.
In the persistent case the system visits every state infinitely often. In the transient
case it visits each state only finitely often, hence visits each finite set only finitely
often, and so may be said to go to infinity.

: : - (r) )
Proof. For each i and j there exist r and s such that pi > 0 and P> 0.
Now

pl(lr+s+n) - p;r)p;n)pj(ls)’ (819)
and from plgr)p](ls) >0 it follows that y_, pi(l.") < oo implies Y, pj§.”) <oo:if
one state is transient, they all are. In this case (8.16) gives P;[X,, =j i.0.] =0
for all i and j, so that P; (U [X, =j i.0.]) =0 for all i. Since Y - lp;") =

Zn IZV lf;(V) (n Y - Zv lf;(V) Zm Opjim) — Zm OPJSM) it follows that if
J 1s transient, then (Theorem 8.2) >, p(") converges for every i.

The other possibility is that all states are persistent. In this case P;[X, =
j 1.0.] =1 by Theorem 8.2, and it follows by (8.13) that

pi" = Pj([X, = i1N0[X, =] i0])

<D Py =i X1 E o Xaot £ X =]

n>m

(m) p(n—m) m)
Z‘Djl U _‘Djl fl

n>m

There is an m for which pj(l.m) >0, and therefore f;; = 1. By (8.16), P;[X, =

jiol=fi=1L1t), pi(j") were to converge for some i and j, it would follow
by the first Borel-Cantelli lemma that P;[X,, = i.0.] = 0. [ |
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EXAMPLE 8.7
Since Z p(") = 1, the first alternative in Theorem 8.3 is impossible if S is
finite: a ﬁnlte irreducible Markov chain is persistent.

EXAMPLE 8.8

The chain in Pdlya’s theorem is certainly irreducible. If the dimension is 1 or
2, there is probability 1 that a particle in symmetric random walk visits every
state infinitely often. If the dimension is 3 or more, the particle goes to infinity.

D
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EXAMPLE 8.9
Consider the unrestricted random walk on the line (Example 8.3). According to
the ruin calculation (7.8), fo1 = p/q for p < ¢g. Since the chain is irreducible,
all states are transient. By symmetry, of course, the chain is also transient if
p > ¢, although in this case (7.8) gives fo; = 1. Thus f;; = 1(i # j) is possible
in the transient case."

Iftp=gq= %, the chain is persistent by Pdlya’s theorem. If n and j —i have
the same parity,

n n 1 o
p;)_(n—l—j ’)2n J —i] <n.

This is maximal if j =i or j =i £ 1, and by Stirling’s formula the maximal
value is of order n~!/2. Therefore, lim, p(") = 0, which always holds in the tran-
sient case but is thus possible in the per51stent case as well (see Theorem 8.8).

Another Criterion for Persistence

Let Q = [g;;] be a matrix with rows and columns indexed by the elements of a
finite or countable set U. Suppose it is substochastic in the sense that g; > 0
and Zj g <1.Let Q" = [qig.")] be the nth power, so that

1 0
g™ =>"qnal. af = ;. (8.20)
v

Consider the row sums

Zq("). (8.21)

From (8.20) follows
(n-l—l) qu o). (8.22)

Since Q is substochastic 0" <1, and hence """ =2, a’ qu =
S, qMoM < 6™ Therefore, the monotone limits

o; = lim Z q;"” (8.23)

fBut for each j there must be some i # j for which fij<1; see Problem 8.7.
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exist. By (8.22) and the Weierstrass M -test [A28], 0; = Zj gjo;. Thus the o;
solve the system

xi:Zqijxj, 1eU,
jeu (8.24)
0<ux <1, ielU.

For an arbitrary solution, x; = Zj gijxj < Zj gij = o*l.(l), and x; < cri(”) for
all i implies x; <Y, gjo," = 0" by (8.22). Thus x; < 0" for all n by
induction, and so x; < o;. Thus the o; give the maximal solution to (8.24):

Lemma 1. For a substochastic matrix Q the limits (8.23) are the maximal solu-
tion of (8.24)

Now suppose that U is a subset of the state space S. The p;; for i and j in
U give a substochastic matrix Q. The row sums (8.21) are al.(") =Y Dii\Pir "
Dj,_1jn» Where the ji, ..., j, range over U, and so oi(") = P;[X; € U,t <n]. Let

n — oQ:
op=Pi[X,eU,t=1,2...], ieU. (8.25)

In this case, o; is thus the probability that the system remains forever in U,
given that it starts at i. The following theorem is now an immediate consequence
of Lemma 1.

THEOREM 8.4
For U C S the probabilities (8.25) are the maximal solution of the system

X; = Zpijxj, iEU,
jeu (8.26)
0 <ux < 1, 1eU,

The constraint x; > 0 in (8.26) is in a sense redundant: Since x; =0 is a
solution, the maximal solution is automatically nonnegative (and similarly for
(8.24)). And the maximal solution is x; = 1 if and only if ZjeU pij = 1 for all
i in U, which makes probabilistic sense.
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EXAMPLE 8.10
For the random walk on the line consider the set U = {0, 1,2,...}. The system
(8.26) is

Xi =pXiy1 +qxi—1, i >1,

X0 = pXi.
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It follows [A19] that x, =A +An if p =¢ and x, = A — A(q/p)" ! if p #
q. The only bounded solution is x, =0 if ¢ > p, and in this case there is
probability O of staying forever among the nonnegative integers. If g < p,A =1
gives the maximal solution x, = 1 — (¢/p)"*! (and 0 < A < 1 gives exactly the
solutions that are not maximal). Compare (7.8) and Example 8.9.

Now consider the system (8.26) with U = § — {ip} for an arbitrary single
state ip:

X = Y pijxj, I # o,
70 (8.27)
0<ux <1, i # .

There is always the trivial solution—the one for which x; = 0.

THEOREM 8.5
An irreducible chain is transient if and only if (8.27) has a nontrivial solution.

Proof. The probabilities
1 —fiip = PilXy # io,n = 11, i # o, (8.28)

are by Theorem 8.4 the maximal solution of (8.27). Therefore (8.27) has a non-
trivial solution if and only if f;;, < 1 for some i # iy. If the chain is persistent,
this is impossible by Theorem 8.3(ii).

Suppose the chain is transient. Since

(0,0
Jivio = Pip[X1 = io + ZZPiO[Xl =10,X0 #lp,...,Xn—1 # i0,Xn = o]
n=2 iz

= Pigio + )_ Pioifio>
i#ig

and since f;;, < 1, it follows that f;;; < 1 for some i # . |

Since the equations in (8.27) are homogeneous, the issue is whether they
have a solution that is nonnegative, nontrivial, and bounded. If they do, 0 <
x; < 1 can be arranged by rescaling.”

fSee Problem 8.9.
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EXAMPLE 8.11
In the simplest of queueing models the state space is {0, 1,2, ...} and the tran-
sition matrix has the form

™ 1o I ) 0 0
fo I3l 1) 0 0

I 15 0

Io 4] 1)

o oo
oo
cNoNoNo!

If there are i customers in the queue and i > 1, the customer at the head
of the queue is served and leaves, and then O, 1, or 2 new customers arrive
(probabilities 1y, t1,12), which leaves a queue of length i — 1,i, or i+1. If i =
0, no one is served, and the new customers bring the queue length to 0, 1, or
2. Assume that 7y and #, are positive, so that the chain is irreducible.

For iy = 0 the system (8.27) is

X1 = t1x1 + taxo, (8.29)

X = toXk—1 + hiXg + toxep1, k> 2.

Since 1,11, have the form g(1 —1),t,p(1 —t) for appropriate p, g, ¢, the
second line of (8.29) has the form x; = pxx11 + gxx—1,k > 2. Now the solution
[A19] is A+ B(q/p)* = A+ B(ty/1)* if 1ty # t2(p # q) and A + Bk if 1y =
tr(p = q), and A can be expressed in terms of B because of the first equation
in (8.29). The result is

o B((to/t)k — 1) if 1y # 1o,
“T Bk if 10 = by,

There is a nontrivial solution if ¢y < £, but not if 7y > 1,.

If ty < 1, the chain is thus transient, and the queue size goes to infinity
with proability 1. If 7y > #,, the chain is persistent. For a nonempty queue the
expected increase in queue length in one step is f, — fy, and the queue goes out
of control if and only if this is positive.

Stationary Distributions

Suppose that the chain has initial probabilities m; satisfying

Y mipy=mj, jeES. (8.30)
ieS
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It then follows by induction that

Y o mpl=m. jeS. n=012.... (8.31)
iedS
If ; is the probability that Xo = 7, then the left side of (8.31) is the probability
that X,, = j, and thus (8.30) implies that the probability of [X,, = j] is the same
for all n. A set of probabilities satisfying (8.30) is for this reason called a
stationary distribution. The existence of such a distribution implies that the
chain is very stable.
To discuss this requires the notion of periodicity. The state j has period
tif p(") > (0 implies that ¢ divides n and if ¢ is the largest integer with this
property In other words, the period of j is the greatest common divisor of the

set of integers
[n:n > 1,p" >0 (8.32)

If the chain is irreducible, then for each pair i and j there exist » and s for
which plg. and p(g) are positive, and of course

pl(lr—f—v—i—n) - pl(jr)p;n)pj(lv). (833)
Let 7; and #; be the periods of i and j. Taking n = 0 in this inequality shows
that 7; divides r + s; and now it follows by the inequality that p(") > 0 implies
that ¢, divides r +s +n and hence divides n. Thus ¢ d1V1des each integer
in the set (8.32), and so #; <. Since i and j can be interchanged in this
argument, { and j have the same period. One can thus speak of the period of
the chain itself in the irreducible case. The random walk on the line has period
2, for example. If the period is 1, the chain is aperiodic

Lemma 2. In an irreducible, aperiodic chain, for each i and j, pi(j”) >0 for all
n exceeding some ny(i,j)

Proof. Since p(m+") _pjim)pjin), if M is the set (8.32) then m € M and
n € M together 1mply m +n € M. But it is a fact of number theory [A21] that
if a set of positive integers is closed under addition and has greatest common
divisor 1, then it contains all integers exceeding some n;. Given i and j, choose
r so that p(’) >0.If n>ny =ny +r, then p(") p;r)pl(/" 7> 0. O
THEOREM 8.6
Suppose of an irreducible, aperiodic chain that there exists a stationary
distribution—a solution of (8.30) satisfying w; > 0 and ), w; = 1. Then the
chain is persistent,

limp” = 7; (8.34)

for all i and j, the 7; are all positive, and the stationary distribution is unique.

D
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The main point of the conclusion is that the effect of the initial state wears
off. Whatever the actual initial distribution {¢;} of the chain may be, if (8.34)
holds, then it follows by the M-test that the probability ) OliP,S-n) of [X,, =]
converges to ;.

Proof. 1f the chain is transient, then p"’

i 0 for all i and j by Theorem 8.3,
and it follows by (8.31) and the M -test that 7; is identically 0, which contradicts
> ;i = 1. The existence of a stationary distribution therefore implies that the
chain is persistent.

Consider now a Markov chain with state space § x § and transition proba-
bilities p (ij, kl) = pipji (it is easy to verify that these form a stochastic matrix).
Call this the coupled chain; it describes the joint behavior of a pair of inde-
pendent systems, each evolving according to the laws of the original Markov
chain. By Theorem 8.1 there exists a Markov chain (X,,,Y,),n = 0,1, ..., having

positive initial probabilities and transition probabilities

P[(Xpt1, Ynq1) = (k, DX, Yy) = (0,))] = p (i, kI).

For n exceeding some ng depending on i, j, k, [, the probability p ™ (ij, kl) =
pl.(,?)pj(l") is positive by Lemma 2. Therefore, the coupled chain is irreducible.
(This proof that the coupled chain is irreducible requires only the assumptions
that the original chain is irreducible and aperiodic, a fact needed again in the
proof of Theorem 8.7.)

It is easy to check that 7 (ij) = m;r; forms a set of stationary initial prob-
abilities for the coupled chain, which, like the original one, must therefore
be persistent. It follows that, for an arbitrary initial state (i, j) for the chain
{(Xy1,Y,)} and an arbitrary io in S, one has P;[(X,,Y,) = (ip,ip) i.0.] =1.If T
is the smallest integer such that X; = Y; = iy, then 7 is finite with probability
1 under P;;. The idea of the proof is now this: X, starts in i and Y, starts in
j; once X, =Y, =iy occurs, X;,, and Y, follow identical probability laws, and
hence the initial states i and j will lose their influence.

By (8.13) applied to the coupled chain, if m < n, then

Pi[(Xy, Yn) = (k, 1), T = m]
== Plj[(XlaYl) # (iO’ iO)’t <m, (XmaYm) == (iO’ 10)]
X Pioio[(Xn—m’ Yn—m) = (k’l)]

(n—m)__(n—m)

= Pijlv =mlpi Py

Adding out [ gives P;[X, =k, =m] = Pj[t = m]pg'k_m), and adding out k
gives P;;[Y, =1,t =m] = Pj[r = m]Pi(onfm). Take k = [, equate probabilities,

D
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and add over m = 1,...,n:
PilX, =k, <n]l=PylY, =k,t <nl.
From this follows

Pl][Xﬂ = k] SPt][Xn =k, T Sn]+sz[T>n]
:Pij[Yn =k,t Sn]+P1][T>n]
SPij[Yn :k]+PU[T>n]

This and the same inequality with X and Y interchanged give
Py’ —py| = IP§[Xy = k1 — PylY, = kl| < Pylt >n].
Since t is finite with probability 1,
: (n) (n)
hr{n Py — ik | = 0. (8.35)

(This proof of (8.35) goes through as long as the coupled chain is irreducible
and persistent—no assumptions on the original chain are needed. This fact is
used in the proof of the next theorem.)

By (8.31), mc —pyy = Y, mi(pyy” — i), and this goes to 0 by the M-test if
(8.35) holds. Thus lim,, p§” = ;. As this holds for each stationary distribution,
there can be only one of them.

It remains to show that the 7r; are all strictly positive. Choose r and s so that
pi(jr) and pj(is) are positive. Letting n — oo in (8.33) shows that 7; is positive if
7; is; since some 7; is positive (they add to 1), all the 7; must be positive. W

EXAMPLE 8.12
For the queueing model in Example 8.11 the equations (8.30) are
o = 1o fo + T1ilo,
T = 7o 11 + mt + malo,
Ty = o Ip + Wil + M2ty + 73,
Ty = W10y + Tty + Tp1to, k> 3.

Again write ty,11,%, as g(1 —1),t,p(1 —t). Since the last equation here is
T, = qTk+1 + p7r—1, the solution is

o A+B@p/q)* =A+Bn/i)* if 1o # 1,
“T A+ Bk if 10 =1




SECTION 8 MARKOV CHAINS

for k > 2. If 1p < t, and )_ m; converges, then 7 = 0, and hence there is no
stationary distribution; but this is not new, because it was shown in Example
8.11 that the chain is transient in this case. If 7y = #,, there is again no stationary
distribution, and this is new because the chain was in Example 8.11 shown to
be persistent in this case.

If 1o > 15, then ) _ ;. converges, provided A = 0. Solving for 7y and 7} in the
first two equations of the system above gives mg = Bt, and w1 = Bt (1 — 1y) /19.
From ), 7, = 1 it now follows that B = (fp — 12)/1,, and the 7 can be written
down explicitly. Since 7w, = B(t>/ 10)¥ for k > 2, there is small chance of a large
queue length.
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If t9 = £, in this queueing model, the chain is persistent (Example 8.11) but
has no stationary distribution (Example 8.12). The next theorem describes the
asymptotic behavior of the p; in this case.

THEOREM 8.7
If an irreducible, aperiodic chain has no stationary distribution, then

limp;" =0 (8.36)
n
foralliandj.

If the chain is transient, (8.36) follows from Theorem 8.3. What is interesting
here is the persistent case.

Proof. By the argument in the proof of Theorem 8.6, the coupled chain is
irreducible. If it is transient, then ) _, (pl.(j”))2 converges by Theorem 8.2, and the
conclusion follows.

Suppose, on the other hand, that the coupled chain is (irreducible and) persis-
tent. Then the stopping-time argument leading to (8.35) goes through as before.
If the p;") do not all go to 0, then there is an increasing sequence {n,} of inte-
gers along which some plgn) is bounded away from 0. By the diagonal method
[A14], it is possible by passing to a subsequence of {n,} to ensure that each

pi(j"“) converges to a limit, which by (8.35) must be independent of i. Therefore,

there is a sequence {n,} such that lim, pi(j"“) = 1; exists for all i and j, where
t; is nonnegative for all j and positive for some j. If M is a finite set of states,

then Zj c p i = lim, Zj c Mpi(j"“) <1, and hence 0 <t = Zj ti < 1. Now

Yk ewm pl.(;“)pkj < pl.g.””“) =Y pikplir.l“); it is possible to pass to the limit (v —

oo) inside the first sum (if M is finite) and inside the second sum (by the M -
test), and hence ) , _ 4, txpii < D _; Pitj = t;. Therefore, ), txpij < t;; if one
of these inequalities were strict, it would follow that >, t = > ; > tkpij <

D
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>_j tj» which is impossible. Therefore ), txpy; =1t; for all j, and the ratios
7 = tj/t give a stationary distribution, contrary to the hypothesis. |

The limits in (8.34) and (8.36) can be described in terms of mean return

times. Let
o0

=Y nj;;"); (8.37)

if the series diverges, write u; = oo. In the persistent case, this sum is to be
thought of as the average number of steps to first return to j, given that Xy = ;.

Lemma 3. Suppose that j is persistent and that lim,, p(") = u. Then u > 0 if and
only if u; < oo, in which case u = 1/u;.

Under the convention that 0 = 1/00, the case u = 0 and u; = o0 is consis-
tent with the equation u = 1/pu;.

Proof. Fork >O0letpr =), _, fj(") the notation does not show the depen-
dence on j, which is fixed. Consider the double series

f(l) f(2) f(3)
_|_];(2) +];(3)
f(3)

4+ ...

The kth row sums to p;(k > 0) and the nth column sums to n];.;")(n > 1), and
so [A27] the series in (8.37) converges if and only if ), px does, in which case

W= P (8.38)

Since j is persistent, the P;-probability that the system does not hit j up to time
n is the probability that it hits j after time n, and this is p,,. Therefore,

1 =P = P[X, # )]
n—1

=PilXi #j, o Xa EJ1H Y PiIXe =, X1 # o X # ]
k=1

fSince in general there is no upper bound to the number of steps to first return, it is not a simple
random variable. It does come under the general theory in Chapter 4, and its expected value is indeed
w; (and (8.38) is just (5.29)), but for the present the interpretation of w; as an average is informal.
See Problem 23.11.
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n—1
k
= pp + ij§' )/On—lm
k=1

and since pg = 1,

1= popi” + ooy ™ 4+ pucipy + papy -

Keep only the first k41 terms on the right here, and let n — oo; the result
is 1 > (po + -+ + px)u. Therefore u > 0 implies that ), px converges, so that
M < Q.

Write x,; = ,okpjg."_k) forO0 <k <mandx,; =0 forn <k.Then0 < x,; <
pr and lim, x,x = pru. If p; < oo, then ), px converges and it follows by the
M-test that 1 = Y72 )Xk —> 2 pep pkUt. By (8.38), 1 = pju, so that u >0 and
u=1/u;. |

The law of large numbers bears on the relation u = 1/u; in the persistent
case. Let V,, be the number of visits to state j up to time n. If the time from
one visit to the next is about w;, then V,, should be about n/u;: V,/n ~ 1/u;.
But (if Xo = j) V,,/n has expected value n~! Y e pj(k ), which goes to u under
the hypothesis of Lemma 3 [A30].

Consider an irreducible, aperiodic, persistent chain. There are two possibil-
ities. If there is a stationary distribution, then the limits (8.34) are positive, and
the chain is called positive persistent. It then follows by Lemma 3 that u; < oo
and 7r; = 1/u; for all j. In this case, it is not actually necessary to assume per-
sistence, since this follows from the existence of a stationary distribution. On
the other hand, if the chain has no stationary distribution, then the limits (8.36)
are all 0, and the chain is called null persistent. It then follows by Lemma 3 that
w; = oo for all j. This, taken together with Theorem 8.3, provides a complete
classification:

THEOREM 8.8
For an irreducible, aperiodic chain there are three possibilities:

(1) The chain is transient; then for all i and j, lim, plg.") =0 and in fact

(n)
> p; < 0o
(i1) The chain is persistent but there exists no stationary distribution (the null
persistent case); then for all i and j, plé.n) goes to 0 but so slowly that

anl;") = 00, and [1j = 0.
(iii) There exist stationary probabilities 7; and (hence) the chain is persistent
(the positive persistent case); then for all i and j, lim, piS.") =m; >0 and

Mmj = 1/7'[]' < Q.
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Since the asymptotic properties of the pl.;”) are distinct in the three cases,
these asymptotic properties in fact characterize the three cases.

EXAMPLE 8.13
Suppose that the states are 0, 1, 2,... and the transition matrix is

g0 po O 0
g1 0 p O
e 0 0 m

where p; and ¢; are positive. The state i represents the length of a success
run, the conditional chance of a further success being p;. Clearly the chain is
irreducible and aperiodic.

A solution of the system (8.27) for testing for transience (with ip = 0) must
have the form x; = x;/p; - - - px—1. Hence there is a bounded, nontrivial solution,
and the chain is transient, if and only if the limit @ of pg - - - p, is positive. But
the chance of no return to O (for initial state 0) in n steps is clearly po- - - pn—1;
hence fyo = 1 — a, which checks: the chain is persistent if and only if o = 0.

Every solution of the steady-state equations (8.30) has the form m; =
mopo - - - Pk—1. Hence there is a stationary distribution if and only if ), po - - - px
converges; this is the positive persistent case. The null persistent case is that in
which pg -+ -pr — 0 but Y, po-- - px diverges (which happens, for example, if
qr = 1/k for k > 1).

Since the chance of no return to O in n steps is po - - - p,—1, in the persistent
case (8.38) gives jo = > pooPo- - Pk—1. In the null persistent case this checks
with o = oo in the positive persistent case it gives wo = Y po Tk /7o = 1/70,
which again is consistent.

EXAMPLE 8.14
Since Zj pi(j") = 1, possibilities (i) and (ii) in Theorem 8.8 are impossible in
the finite case: A finite, irreducible, aperiodic Markov chain has a stationary

distribution.

Exponential Convergencet

In the finite case, pl;.") converges to 7r; at an exponential rate:

"This topic may be omitted.
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THEOREM 8.9
If the state space is finite and the chain is irreducible and aperiodic, then there
is a stationary distribution {m;}, and

Py — il < Ap",

where A>0and 0 < p < 1.

Proof.” Let mj(") = min; pl§") and Mj(") = max; pl.(j"). By (8.10),

(n+1) _ . (n) : (ny _ (n)
m; = Inl_lnzpivpvj = Iniln Zpivmj =m; -,
v v

(n+1) _ ., A s )
M = max ) piup,” < max ) pi;" = M.
Vv v

Since obviously mj(") < Mj(”),

0< mj(l) < mj(z) <...< Mj(z) < Mj(” <1. (8.39)

Suppose temporarily that all the p;; are positive. Let s be the number of states
and let § = min; p;;. From Zj pij = sé follows 0 < § < s~!. Fix states u and
v for the moment; let Y’ denote the summation over j in S satisfying Puj = Dvj
and let >_" denote summation over j satisfying p,; < p,j. Then

Z(Puj —Poj) + Z(pu/ —pyj)=1-1=0. (8.40)

Since Y pyi + Y. puj > 6.

/ A /
Y i —pu)=1=) Py— Y py <1—s8. (8.41)
Apply (8.40) and then (8.41):

(n+1) (n+1) _ (n)
P =yt = (0w — poIpy;
J

/ 1
<D Py =M Yy — Py

/
= (puj — po)) M —m{™)

< (1 =sHM™ —m™).

TFor other proofs, see Problems 8.18 and 8.27.
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Since u and v are arbitrary,
MY — D < (1 =5 M —m™).

Therefore, Mk(") - m,ﬁ") < (1 —s8)". It follows by (8.39) that mj(") and Mj(")
have a common limit 7; and that
g — il < (1— 58" (8.42)
Take A =1 and p = 1 — s8. Passing to the limit in ZiPIE’z)Pij = pi;’ﬂ) shows
that the 7r; are stationary probabilities. (Note that the proof thus far makes almost
no use of the preceding theory.)
If the p; are not all positive, apply Lemma 2: Since there are only

finitely many states, there exists an m such that p.(m) >0 for all i and j. By

i
the case just treated, Mj(m’) — mj(mt) < p'. Take A = p~! and then replace p
by pl/m. |

EXAMPLE 8.15
Suppose that

Po P1 st Ps—1
P = Ps—1 Po o Ps—2
P1 P2 te Po

The rows of P are the cyclic permutations of the first row: p; =p;_;,j —i
reduced modulo s. Since the columns of P add to 1 as well as the rows,
the steady-state equations (8.30) have the solution 7; = s~!. If the p; are all
positive, the theorem implies that pl.(j") converges to s ! at an exponential rate. If
Xo, Y1, Y2, ... are independent random variables with range {0, 1,...,s — 1}, if
each Y, has distribution {pg,...,ps—1}, and if X;, = X9+ Y| + --- 4+ Y}, where
the sum is reduced modulo s, then P[X, = j] — s~!. The X,, describe a random
walk on a circle of points, and whatever the initial distribution, the positions
become equally likely in the limit.

Optimal Stopping?

Assume throughout the rest of the section that § is finite. Consider a func-
tion T on 2 for which 7(w) is a nonnegative integer for each w. Let 7, =

"This topic may be omitted.
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o(Xo,X1,...,Xy,); T is a stopping time or a Markov time if
[w: T(w) =n] € %, (8.43)
for n =0,1,.... This is analogous to the condition (7.18) on the gambler’s

stopping time. It will be necessary to allow 7(w) to assume the special value
0o, but only on a set of probability 0. This has no effect on the requirement
(8.43), which concerns finite 7 only.

If f is a real function on the state space, then f(Xy), f (X1), . . . are simple ran-
dom variables. Imagine an observer who follows the successive states X, X1, . . .
of the system. He stops at time 7, when the state is X; (or X;(,)(w)), and receives
an reward or payoff f(X;). The condition (8.43) prevents prevision on the part
of the observer. This is a kind of game, the stopping time is a strategy, and
the problem is to find a strategy that maximizes the expected payoff E[f (X;)].
The problem in Example 8.5 had this form; there S = {1,2,...,r 4+ 1}, and the
payoff function is f(i) = i/r fori <r (set f(r +1) =0).

If PA)>0and ¥ = Zj yilp; is a simple random variable, the B; forming
a finite decomposition of 2 into # -sets, the conditional expected value of Y
given A is defined by

E[Y|A] =) yiP(BjlA).

Denote by E; conditional expected values for the case A = [Xg =i]:

E[Y1=E[Y|Xo=il=) yPi(B).
J

The stopping-time problem is to choose 7 so as to maximize simultaneously
Ei[f(X;)] for all initial states i. If x lies in the range of f, which is finite,
and if 7 is everywhere finite, then [w: f(X; () () = x] = U;O: olo: T(w) =
n,f(X,(w)) = x] lies in 7, and so f(X;) is a simple random variable. In order
that this always hold, put f(X; () (w)) = 0, say, if 7(w) = oo (which happens
only on a set of probability 0).

The game with payoff function f has at i the value

v(i) = sup E; [f (X7)]. (8.44)

the supremum extending over all Markov times 7. It will turn out that the
supremum here is achieved: there always exists an optimal stopping time. It
will also turn out that there is an optimal 7 that works for all initial states i.
The problem is to calculate v(i) and find the best 7. If the chain is irreducible,
the system must pass through every state, and the best strategy is obviously to
wait until the system enters a state for which f is maximal. This describes an
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optimal 7, and v(i) = maxf for all i. For this reason the interesting cases are

those in which some states are transient and others are absorbing (p;; = 1).
A function ¢ on S is excessive or superharmonic, if'
o) = > pij.ol). i€s. (8.45)

J

In terms of conditional expectation the requirement is ¢(i) > E;[¢(X1)].
Lemma 4. The value function v is excessive.

Proof. Given €, choose for each j in § a “good” stopping time 7; satisfying
Ej[f(X,j)] >v(j) — €. By (8.43), [t =n] =[(Xo,...,Xy) € [;;] for some set
I, of (n + 1)-long sequences of states. Set T =n + 1(n > 0) on the set [X; =
JIN[(X1,...,Xut1) € Ij]; that is, take one step and then from the new state X
add on the “good” stopping time for that state. Then 7 is a stopping time and

Eff(X)l=) Y Y PilXi =j,(X1,..., Xu41) € L, Xu1 = kIf (k)

n=0 j k

o
= ZZZPijpj[(Xo,---,Xn) € lin, X, = klf (k)
n=0 j k

= ZPijEj[f(er)]-
J

Therefore, v(i) > E;[f (X;)] > Zj pii(v(j) —e) = Zi pijv(j) — €. Since € was
arbitrary, v is excessive. |
Lemma 5. Suppose that ¢ is excessive.

(1) For all stopping times ©,¢(i) > E;[p(X)].
(ii) For all pairs of stopping times satisfying o < 1, E;[¢(Xy)] > Ei[p(X7)].

Part (i) says that for an excessive payoff function, v = 0 represents an
optimal strategy.
Proof. To prove (i), put ty = min{r, N }. Then 7y is a stopping time, and

N-—1

Eflp(Xen)] =) ) Pilt =n,X, =klp(k) (8.46)

n=o k

+ Y Pilt = N. Xy = klp(k).
k

fCompare the conditions (7.28) and (7.35).
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Since [t > N] = [t < N] € Fy_1, the final sum here is by (8.13)

Y Y Pilt = Ni,Xy-1 =, Xy = klg(k)

ko

=Y D Pt =N, Xy-1 =jlpaek) < Y Pilt = N Xn-1 = jlo().

ko] J

Substituting this into (8.46) leads to E;[¢(X:,)] < E;[¢p(X;,_,)]. Since 19 =
0 and E;[¢(Xo)] = ¢(i), it follows that E;[¢(X, )] < ¢(i) for all N. But for
T(w) finite, (X7, (@) = @(Xr(w)(w)) (there is equality for large N), and so
Eilp(X:y)] — Ei[¢(X;)] by Theorem 5.4.
The proof of (ii) is essentially the same. If ty = min{r,o + N}, then 1y is
a stopping time, and
oo N-—1

EfloXe)l =YY Y Pilo =m,t =m+n,Xnn = klopk)

m=0n=0 k

o0
+ ZZPZ-[U =m, T >m+N,Xn = klo(k).
m=0 k

Since [c=m, 1t >m+N]=[lo=m]—[c=m,t<m+ N] € %, +nN_1, again
Eilp(X:)] < Eilp(Xe, )] < Ei[¢(Xy)]. Since 19 = o, part (ii) follows from
part (i) by another passage to the limit. |

Lemma 6. If an excessive function ¢ dominates the payoff function f, then it
dominates the value function v as well

By definition, to say that g dominates / is to say that g(i) > h(i) for all i.

Proof. By Lemma 5, ¢(i) > E;[¢(X;)] > E;[f (X;)] for all Markov times
7, and so (i) > v(i) for all i. [ |

Since T = 0 is a stopping time, v dominates f. Lemmas 4 and 6 immediately
characterize v:

THEOREM 8.10
The value function v is the minimal excessive function dominating f.

There remains the problem of constructing the optimal strategy 7. Let M be
the set of states i for which v(i) = f(i); M, the support set, is nonempty, since
it at least contains those i that maximize f. Let A = N72 )[X,, ¢ M ] be the event
that the system never enters M. The following argument shows that P;(A) =0
for each i. As this is trivial if M = §, assume that M £ S. Choose § > 0 so that
fG@) <v@)—38 for ieS —M. Now E[f(X)]l=D) o> i Pilt =n,X, =

D

143



144

PROBABILITY

kf (k); replacing the f'(k) by v(k) or v(k) — § accordingask e M ork € S — M
gives Eil[f (Xo)] < Ei[v(X7)] — 6Pi[X: € S — M ] < Ei[v(X;)] — 0P (A) <
v(i) —6P;(A), the last inequality by Lemmas 4 and 5. Since this holds for
every Markov time, taking the supremum over t gives P;(A) = 0. Whatever
the initial state, the system is thus certain to enter the support set M .

Let t9(w) = min[n: X, (w) € M] be the hitting time for M. Then 1j is a
Markov time, and 7o = 0 if Xg € M. It may be that X,,(w) ¢ M for all n, in
which case 7o(w) = oo, but as just shown, the probability of this is 0.

THEOREM 8.11
The hitting time 1 is optimal: E;[f (X,))] = v(i) for all i.

Proof. By the definition of 7o,f (X)) = v(Xq). Put ¢(i) = E;[f (X¢)] =
E;[v(Xy,)]. The first step is to show that ¢ is excessive. If 71 = min[n: n >
1,X, € M], then 1; is a Markov time and

o0

ElvX )l =) D PilXi ¢ M,....X, 1 & M, X, = kJv(k)

n=1keM

=Y D D pPIXo ¢ M, ... Xy o ¢ M, X,y = klv(k)

n=1keM jeS

=Y piEilv(Xy,)].
J

Since 19 < 71, Ei[v(Xy)] = E;[v(X;,)] by Lemmas 4 and 5.

This shows that ¢ is excessive. And ¢(i) < v(i) by the definition (8.44). If
(i) > f (@) is proved, it will follow by Theorem 8.10 that ¢ (i) > v(i) and hence
that ¢(i) = v(i). Since 19 = 0 for Xog € M, if i € M, then ¢(i) = E;[f (Xo)] =
f(i). Suppose that ¢(i) < f(i) for some values of i in S — M, and choose iy
to maximize f (i) — ¢(i). Then ¥ (i) = ¢(i) + f (ip) — ¢(ip) dominates f and is
excessive, being the sum of a constant and an excessive function. By Theorem
8.10, ¥ must dominate v, so that ¥ (ip) > v(ip), or f(ip) > v(vy). But this
implies that iy € M, a contraction. |

The optimal strategy need not be unique. If f is constant, for example, all
strategies have the same value.

EXAMPLE 8.16

For the symmetric random walk with absorbing barriers at O and r (Example 8.2)
a function ¢ on § = {0, 1,...,r} is excessive if (i) > Jp(i — 1) + 0@ + 1)
for 1 <i <r — 1. The requirement is that ¢ give a concave function when
extended by linear interpolation from § to the entire interval [0, r]. Hence v
thus extended is the minimal concave function dominating f. The figure shows

D
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the geometry: the ordinates of the dots are the values of f and the polygonal
line describes v. The optimal strategy is to stop at a state for which the dot lies
on the polygon.

|

Iff(r) =1and f(i) =0fori < r, then v is a straight line; v(i) = i /r. The
optimal Markov time T is the hitting time for M = {0, 7}, and v(i) = E;[f (X¢,)]
is the probability of absorption in the state r. This gives another solution of the
gambler’s ruin problem for the symmetric case.

EXAMPLE 8.17
For the selection problem in Example 8.5, the p;; are given by (8.5) and (8.6)
forl <i <r,while p,y1,4+1 = 1. The payoftfis f (i) =i/r fori < r and f(r +
1) = 0. Thus v(r + 1) = 0, and since v is excessive,

v(i) g = )

j=i+1

i
EN

G), l1<i<r. (8.47)

By Theorem 8.10, v is the smallest function satisfying (8.47) and v(i) > f (i) =
i/r,1 <i <r.Since (8.47) puts no lower limit on v(r), it follows that v(r) =
f(r)y =1, and r lies in the support set M. By minimality,

v(i) =max{f(i),g@(@)}, 1<i<r. (8.48)

If i € M, then f(i) = v(i) > (i) = Y/, i~ G = DTFG) =) i,
(G — 1™, and hence Z;:i 10— 1)~! < 1. On the other hand, if this inequal-
ity holds and i +1,...,r all lie in M, then g(i) = ZJT:iHij*l(j — !
fG) :f(i)Z;:iH(j — 1)~ <f@), so that i € M by (8.48). Therefore,
M ={i.,i.+1,...,r,r + 1}, where i, is determined by

1 1 1 1 1 1
4+ o+ <1< 4+ -+ +

i i+1 r—1 ir—1 i r—1

Ifi <i,, sothati ¢ M, then v(i) > f (i) and so, by (8.48),

(8.49)

ir—1

VD) =g = 32 )+ Y )
j=ir

j=i+1
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ir—1

i . i 1 1
- Zj(i—l)”(’”?(ir—l+"'+r—1)'

=i+l

It follows by backward induction starting with i =i, — 1 that

_ -1/ 1 1
(i) =pr=t— (gt (8.50)
r

1s constant for 1 <i < i,.

In the selection problem as originally posed, X; = 1. The optimal strategy
is to stop with the first X;, that lies in M. The princess should therefore reject
the first i, — 1 suitors and accept the next one who is preferable to all his
predecessors (is dominant). The probability of success is p, as given by (8.50).
Failure can happen in two ways. Perhaps the first dominant suitor after i, is
not the best of all suitors; in this case the princess will be unaware of failure.
Perhaps no dominant suitor comes after i,; in this case the princess is obliged
to take the last suitor of all and may be well aware of failure. Recall that the
problem was to maximize the chance of getting the best suitor of all rather than,
say, the chance of getting a suitor in the top half.

If r is large, (8.49) essentially requires that log r — log i, be near 1, so that
i, = r/e. In this case, p, =~ 1/e.

Note that although the system starts in state 1 in the original problem,
its resolution by means of the preceding theory requires consideration of all
possible initial states.

This theory carries over in part to the case of infinite S, although this requires
the general theory of expected values, since f(X;) may not be a simple random
variable. Theorem 8.10 holds for infinite S if the payoff function is nonnegative
and the value function is finite." But then problems arise: Optimal strategies
may not exist, and the probability of hitting the support set M may be less than
1. Even if this probability is 1, the strategy of stopping on first entering M may
be the worst one of all.#

PROBLEMS

8.1. Prove Theorem 8.1 for the case of finite S by constructing the appropri-
ate probability measure on sequence space S *°: Replace the summand on

TThe only essential change in the argument is that Fatou’s lemma (Theorem 16.3) must be used in
place of Theorem 5.4 in the proof of Lemma 5.
#See Problems 8.36 and 8.37.




8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

SECTION 8 MARKOV CHAINS

the right in (2.21) by &, Pujuy» - - * Pu,,_yun» and extend the arguments pre-
ceding Theorem 2.3. If X,,(-) = z,(-), then Xi, X», ... is the appropriate
Markov chain (here time is shifted by 1).

Let Yo, Yy,... be independent and identically distributed with P[Y, =
I]=p,PIY,=0l=¢g=1—-p,p#q. Put X;, =Y, + Y,y (mode 2).
Show that Xy, Xy,... is not a Markov chain even though P[X,;| =
Jj1Xn—1 =i] = P[X,+1 =J]. Does this last relation hold for all Markov
chains? Why?

Show by example that a function f(Xp),f (X1),... of a Markov chain
need not be a Markov chain.

Show that

00 00 n 00
IS 0 W RE W
k=0 n=1

n=1m=1

(n)

and prove that if j is transient, then ), pi;

Theorem 8.3(i)). If j is transient, then

o) e.¢]
= (13
n=1 n=1

Specialize to the case i =j: in addition to implying that i is transient
(Theorem 8.2(i)), a finite value for Z:OZI pl.(i") suffices to determine f;;
exactly.

Call {x;} a subsolution of (8.24) if x; < Zj gixiand 0 <x; <1,i eU.
Extending Lemma 1, show that a subsolution {x;} satisfies x; < o;: The
solution {o;} of (8.24) dominates all subsolutions as well as all solutions.
Show that if x; = Zj gijxj and —1 < x; <1, then {|x;[} is a subsolution
of (8.24).

Show by solving (8.27) that the unrestricted random walk on the line
(Example 8.3) is persistent if and only if p = %

< oo for each i (compare

(a) Generalize an argument in the proof of Theorem 8.5 to show that
Jie = pix + ZJ.# piifjk. Generalize this further to
1 7
fie =Fi 4o+ £

+ ) PXG FE kX # KXy = e
j#k

(b) Take k = i. Show that f;; > 0 if and only if P;[X; #1i,...,X,—1 #
i,X, =j]> 0 for some n, and conclude that i is transient if and only
if f;; < 1 for some j # i such that f;; > 0.
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8.8.

8.9.

8.10.

8.11.

8.12.
8.13.

8.14.

8.15.

8.16.

(¢) Show that an irreducible chain is transient if and only if for each i
there is a j # i such that f;; < 1.

Suppose that S = {0,1,2,...},poo = 1, and f;o > 0 for all i.
(a) Show that P; (Ufil[Xn =j i.0.]) =0 for all i.
(b) Regard the state as the size of a population and interpret the condi-

tions poo = 1 and f;o > 0 and the conclusion in part (a).

8.51 Show for an irreducible chain that (8.27) has a nontrivial solution
if and only if there exists a nontrivial, bounded sequence {x;} (not nec-

essarily nonnegative) satisfying x; = ZJ- 4io PijXj» 1 7 0. (See the remark
following the proof of Theorem 8.5.)

1 Show that an irreducible chain is transient if and only if (for arbitrary
ip) the system y; = Zj Pijyj»i #ip (sum over all j), has a bounded,
nonconstant solution {y;,i € S}.

Show that the P;-probabilities of ever leaving U for i € U are the min-
imal solution of the system.

=Y pi5+ > pij, €U,
jev v (8.51)

0<z =<1, ieU.
The constraint z; < 1 can be dropped: the minimal solution automatically
satisfies it, since z; = 1 is a solution.
Show that sup;;ing(i,j) = oo is possible in Lemma 2.

Suppose that {;} solves (8.30), where it is assumed that ), |7r;| < oo,
so that the left side is well defined. Show in the irreducible case that the
m; are either all positive or all negative or all 0. Stationary probabilities
thus exist in the irreducible case if and only if (8.30) has a nontrivial
solution {r;} (D, m; absolutely convergent).

Show by example that the coupled chain in the proof of Theorem 8.6
need not be irreducible if the original chain is not aperiodic.

Suppose that S consists of all the integers and
P0o,—1 = P00 = Po,+1 = %,
Pkk—1={¢, Dkik+l =P, k< -1,
Pik—1 =D, Dik+1 =4, k>1.

Show that the chain is irreducible and aperiodic. For which p’s is the
chain persistent? For which p’s are there stationary probabilities?

Show that the period of j is the greatest common divisor of the set

[mnzLﬁ“>m. (8.52)

D
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8.18.

8.19.

8.20.
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1 Recurrent events. Let f1,f>,... be nonnegative numbers with f =
Z;ozlfn < 1. Define uy, us, . .. recursively by u; = f; and

Uy :flun—l + - +fn—1ul +fn (8.53)

(a) Show that f < 1 if and only if ) u, < oo.
(b) Assume that f = 1, set u = Z:o: | "fn, and assume that

ged[n:n > 1,f,>0] = 1. (8.54)

Prove the renewal theorem: Under these assumptions, the limit u =
lim,, u,, exists, and u > 0 if and only if u < oo, in which case u =
1/pu.

Although these definitions and facts are stated in purely analytical
terms, they have a probabilistic interpretation: Imagine an event ¢
that may occur at times 1,2,.... Suppose f, is the probability &
occurs first at time n. Suppose further that at each occurrence of
¢ the system starts anew, so that f,, is the probability that ¢ next
occurs n steps later. Such an ¢ is called a recurrent event. If u,
is the probability that ¢ occurs at time n, then (8.53) holds. The
recurrent event ¢ is called transient or persistent according as f < 1
or f = 1, it is called aperiodic if (8.54) holds, and if f = 1, u is
interpreted as the mean recurrence time.

(a) Let t be the smallest integer for which X, = iy. Suppose that the
state space is finite and that the p;; are all positive. Find a p such
that max; (1 — p;;,)) < p < 1 and hence P;[t >n] < p" for all i.

(b) Apply this to the coupled chain in the proof of Theorem 8.6: | pl.(,?) —

pj(,:l)| < p". Now give a new proof of Theorem 8.9.

A thinker who owns r umbrellas wanders back and forth between home
and office, taking along an umbrella (if there is one at hand) in rain
(probability p) but not in shine (probability ¢g). Let the state be the
number of umbrellas at hand, irrespective of whether the thinker is at
home or at work. Set up the transition matrix and find the stationary
probabilities. Find the steady-state probability of his getting wet, and
show that five umbrellas will protect him at the 5% level against any
climate (any p).

(a) A transition matrix is doubly stochastic if ), p;; = 1 for each j. For
a finite, irreducible, aperiodic chain with doubly stochastic transition
matrix, show that the stationary probabilities are all equal.

(b) Generalize Example 8.15: Let S be a finite group, let p(i) be prob-
abilities, and put p;; = p( - i ~1), where product and inverse refer to
the group operation. Show that, if all p(i) are positive, the states are
all equally likely in the limit.
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8.21.

8.22.

8.23.

8.24.

8.25.

8.26.

8.27.

(c) Let S be the symmetric group on 52 elements. What has (b) to say
about card shuffling?

Aset C in S is closed if ZjeC pij = 1 fori € C: once the system enters
C it cannot leave. Show that a chain is irreducible if and only if S has
no proper closed subset.

1 Let T be the set of transient states and define persistent states i and j (if
there are any) to be equivalent if f;; > 0. Show that this is an equivalence
relation on § — 7 and decomposes it into equivalence classes Cy, Cy, . . .,
sothat S =TUC; UCy,U---. Show that each C,, is closed and that
fij = 1for i and j in the same C,,.

8.11 8.21 1 Let T be the set of transient states and let C be any closed set
of persistent states. Show that the P;-probabilities of eventual absorption
in C fori € T are the minimal solution of

yi= 2 piyi+ X pj, i€T,
Jer jec (8.55)
O0<y <1, ieT.

Suppose that an irreducible chain has period ¢ > 1. Show that S decom-
poses into sets Sp, ...,S;—1 such that p;; >0 only if i € S, andj € §,44
for some v (v + 1 reduced modulo 7). Thus the system passes through
the S, in cyclic succession.

1 Suppose that an irreducible chain of period ¢ > 1 has a stationary dis-
tribution {m;}. Show that, if i € §, and j € S, (v + « reduced modulo
), then lim,, p{""** = 7;. Show that lim, n=' Y0 _ pi™ = 7; /¢ for all
i andj.
Eigenvalues. Consider an irreducible, aperiodic chain with state space
{1,...,s}. Let ro = (ry,...,ms) be (Example 8.14) the row vector of
stationary probabilities, and let ¢y be the column vector of 1’s; then ry
and cq are left and right eigenvectors of P for the eigenvalue A = 1.
(a) Suppose that r is a left eigenvector for the (possibly complex) eigen-
value A: rP = Ar. Prove: If A =1, then r is a scalar multiple of ry
(A =1 has geometric multiplicity 1). If A # 1, then |A] < 1 and
rco =0 (the 1 x 1 product of 1 x s and s x 1 matrices).
(b) Suppose that c is a right eigenvector: Pc = Ac. If A =1, thencis a
scalar multiple of cp (again the geometric multiplicity is 1). If A # 1,
then again |A| < 1, and roc = 0.

1 Suppose P is diagonalizable; that is, suppose there is a nonsingular C

such that C~'PC = A, where A is a diagonal matrix. Let A,...,A; be
the diagonal elements of A, let c¢y,...,c; be the successive columns of
C,let R=C""', and let rq,...,r; be the successive rows of R.

D
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8.29.

8.30.
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(a) Show that ¢; and r; are right and left eigenvectors for the eigenvalue
Aiyi =1,...,s. Show that ric; = §;. Let A; = ¢;ri(s x s). Show
that A" is a diagonal matrix with diagonal elements A,..., A} and
that P" = CA"R =Y, _ | MA,,n > 1.

(b) Part (a) goes through under the sole assumption that P is a diago-
nalizable matrix. Now assume also that it is an irreducible, aperiodic
stochastic matrix, and arrange the notation so that A; = 1. Show that

each row of A; is the vector (m1,...,7m,) of stationary probabilities.
Since
P"=Ay+ Y MA, (8.56)
u=2

and |A,| <1 for 2 <u <, this proves exponential convergence
once more.

(c) Write out (8.56) explicitly for the case s = 2.

(d) Find an irreducible, aperiodic stochastic matrix that is not diagonal-
izable.

T

(a) Show that the eigenvalue A = 1 has geometric multiplicity 1 if there
is only one closed, irreducible set of states; there may be transient
states, in which case the chain itself is not irreducible.

(b) Show, on the other hand, that if there is more than one closed, irre-
ducible set of states, then A = 1 has geometric multiplicity exceed-
ing 1.

(c) Suppose that there is only one closed, irreducible set of states. Show
that the chain has period exceeding 1 if and only if there is an
eigenvalue other than 1 on the unit circle.

Suppose that {X,,} is a Markov chain with state space S, and put Y,, =
(X5, Xn41). Let T be the set of pairs (i, j) such that p;; > 0 and show that
{Y,} is a Markov chain with state space 7. Write down the transition
probabilities. Show that, if {X,} is irreducible and aperiodic, so is {Y,}.
Show that, if m; are stationary probabilities for {X,}, then m;p; are
stationary probabilities for {Y,,}.

6.10 8.291 Suppose that the chain is finite, irreducible, and aperiodic
and that the initial probabilities are the stationary ones. Fix a state i,
let A, = [X; =i], and let N,, be the number of passages through i in
the first n steps. Calculate «, and B, as defined by (5.41). Show that
Bn — a2 = O(1/n), so that n~'N,, — m; with probability 1. Show for
a function f on the state space that n~! Yoot f X)) = >, wif (i) with
probability 1. Show that n=! >, & (X, Xe41) — > Tipig (i j) for
functions g on § x S.
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8.31.

8.32.

8.33.

8.34.

8.35.

8.36.

6.14 8301 If Xo(w) =ip,...,Xy(w) =1, for states igp,...,i,, put
Pu(@) = T Digiy ** * Pin_yin» SO that p, () is the probability of the obser-
vation observed. Show that —n~'logp,(w) — h = — Zij 7;pij log pjj
with probability 1 if the chain is finite, irreducible, and aperiodic.
Extend to this case the notions of source, entropy, and asymptotic
equipartition.

A sequence {X,} is a Markov chain of second order if P[X,t+1 =
JIXo=1ip,.... Xy = iy] = P[Xpt1 = Jj|1Xn—1 = in—1, X0 = in]l = Pi,_inyj-
Show that nothing really new is involved because the sequence of
pairs (X,,, X, +1) 1s an ordinary Markov chain (of first order). Compare
Problem 8.29. Generalize this idea into chains of order r.

Consider a chain on § ={0,1,...,r}, where 0 and r are absorbing
states and p; ;41 =p; >0,pii—-1 =¢qi =1 —p; >0 for 0 <i < r. Iden-
tify state i with a point z; on the line, where 0 = zp < --- < z, and the
distance from z; to z;4; is ¢;/p; times that from z;_; to z;. Given a
function ¢ on §, consider the associated function ¢ on [0, z,] defined
at the z; by @(z;) = ¢(i) and in between by linear interpolation. Show
that ¢ is excessive if and only if ¢ is concave. Show that the prob-
ability of absorption in r for initial state i is t;—1/t,—;, where t; =
Z;;:O q1---qr/p1- - pr. Deduce (7.7). Show that in the new scale the
expected distance moved on each step is 0.

Suppose that a finite chain is irreducible and aperiodic. Show by Theorem
8.9 that an excessive function must be constant.

A zero—one law. Let the state space S contain s points, and suppose that
€n = sup; |pl§.") —mj| — 0, as holds under the hypotheses of Theorem
8.9. For a < b, let (O;f’ be the o-field generated by the sets [X, =
Uas . Xp = up]. Let 7, = o (Uje, ¢F) and 7 = (N°2, Z,. Show that
I[P(ANB) — P(A)P(B)| < s(e, + €ptp) for A € (/6” and B € g;)b;m; the
€p+n can be suppressed if the initial probabilities are the stationary
ones. Show that this holds for A & be and B € Z,4,,. Show that C € 7

implies that P(C) is either O or 1.

Alter the chain in Example 8.13 so that go =1 —pg =1 (the other
p; and g; still positive). Let § = lim, p; - - - p, and assume that 8 > 0.
Define a payoff function by f(0) =1 and f(i) =1 —fijo for i >0. If
Xo,...,X, are positive, put o, = n; otherwise let o, be the smallest
k such that X; = 0. Show that E;[f(X,,)] — 1 as n — oo, so that

TThe final three problems in this section involve expected values for random variables with infinite

range.
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v(i) = 1. Thus the support set is M = {0}, and for an initial state i >0
the probability of ever hitting M is fio < 1.

For an arbitrary finite stopping time t, choose n so that P;[t <
n = o0,]>0. Then E;[f(X;)] <1 — fixnoPilt <n =o0,] < 1. Thus no
strategy achieves the value v(i) (except of course for i = 0).
1 Let the chain be as in the preceding problem, but assume that § =
0, so that f;o = 1 for all i. Suppose that A, A;,... exceed 1 and that
Al dp > A <oosputf(0)=0andf(i) =Ay---Aj—1/p1---pi—1. For
an arbitrary (finite) stopping time t, the event [t = n] must have the
form [(Xp,...,X,) € I,] for some set I, of (n 4+ 1)-long sequences of
states. Show that for each i there is at most one n > 0 such that (i,i +
1,...,i +n) € l,. If there is no such n, then E;[f (X;)] = 0. If there is
one, then

El[f(X‘[)] == Pl[(XOa s aXn) = (la e ’i + n)]f(l + n)’
and hence the only possible values of E;[f (X;)] are

0.f(@),pif (i +1) =f(DAi, pipipifGi +2) =f@OAidit1,....

Thus v(i) =f(@)A/Ay---A;j—; for i > 1; no strategy this value. The
support set is M = {0}, and the hitting time 7¢ for M is finite, but
Ei[f (X¢)1 = 0.

5.12 4 Consider an irreducible, aperiodic, positive persistent chain. Let
7; be the smallest n such that X, = j, and let m;; = E;[7;]. Show that
there is an r such that p = P;[X1 #j,...,X,—1 #j,X, =i] is positive;
from f("+r) >pf(") and mj < oo, conclude that m;; < oo and m; =
> o2 o Pilt;. > n]. Starting from pl.(jt) = Z;zlfi(y)pjy %) show that

Z(p(t) pJJ)) =1- ijn "P;lz; > m].

t=1

Use the M-test to show that

njml]—l-i-z (n) le

If i =j, this gives mj; = 1/m; again; if i # j, it shows how in princi-
ple m;; can be calculated from the transition matrix and the stationary
probabilities.
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SECTION 9 LARGE DEVIATIONS AND THE LAW
OF THE ITERATED LOGARITHMT

It is interesting in connection with the strong law of large numbers to estimate
the rate at which S, /n converges to the mean m. The proof of the strong law
used upper bounds for the probabilities P[|S,, — m| > «] for large «. Accurate
upper and lower bounds for these probabilities will lead to the law of the iterated
logarithm, a theorem giving very precise rates for S, /n — m.

The first concern will be to estimate the probability of large deviations from
the mean, which will require the method of moment generating functions. The
estimates will be applied first to a problem in statistics and then to the law of
the iterated logarithm.

Moment Generating Functions

Let X be a simple random variable assuming the distinct values xi,...,x; with
respective probabilities py,...,p;. Its moment generating function is
1
M(t) = E[e™] =) pie™. 9.1)

i=1

(See (5.19) for expected values of functions of random variables.) This function,
defined for all real 7, can be regarded as associated with X itself or as associated
with its distribution—that is, with the measure on the line having mass p; at x;
(see (5.12)).

If ¢ = max; |x;|, the partial sums of the series e = 77 t*X* /k! are
bounded by e/, and so the corollary to Theorem 5.4 applies:

Xk

M()=>" %E[Xk]. 9.2)

k=0

Thus M (¢) has a Taylor expansion, and as follows from the general theory
[A29], the coefficient of ¥ must be M ®)(0)/k! Thus

E[X*1 = M®(0). 9.3)

Furthermore, term-by-term differentiation in (9.1) gives

1
MO@) =) pixfe™ = EIX*e™);

i=l

"This section may be omitted.
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taking + = 0 here gives (9.3) again. Thus the moments of X can be calculated
by successive differentiation, whence M (¢) gets its name. Note that M (0) = 1.

155

EXAMPLE 9.1

If X assumes the values 1 and 0 with probabilities p and ¢ =1 — p, as in
Bernoulli trials, its moment generating function is M () = pe’ + ¢g. The first
two moments are M'(0) = p and M"(0) = p, and the variance is p — p> = pq.

If X1,...,X, are independent, then for each ¢ (see the argument following
(5.10)), e™1, ..., e are also independent. Let M and My, . .., M, be the respec-
tive moment generating functions of S = X; +---+ X, and of Xi,...,X,; of

course, e’ = I;e™i. Since by (5.25) expected values multiply for independent
random variables, there results the fundamental relation

M) =M(t) - -M,(t). 9.4)

This is an effective way of calculating the moment generating function of the
sum S. The real interest, however, centers on the distribution of §, and so it
is important to know that distributions can in principle be recovered from their
moment generating functions.

Consider along with (9.1) another finite exponential sum N (¢) = Zj gje'i,
and suppose that M (1) = N (¢) for all . If x;, = maxx; and y;, = maxyj;, then
M(t) ~ pioeixio and N (1) ~ gj,e™o as t — oo, and s0 x;, = y;, and p;, = ¢,
The same argument now applies to »;; pie™ =3 . gje™, and it follows
inductively that with appropriate relabeling, x; = y; and p; = ¢; for each i.
Thus the function (9.1) does uniquely determine the x; and p;.

EXAMPLE 9.2

If Xi,...,X, are independent, each assuming values 1 and O with probabilities
p and g, then § = X; + --- 4+ X, is the number of successes in n Bernoulli
trials. By (9.4) and Example 9.1, S has the moment generating function

E[etS] — (pel +q)n — Z <Z>pkqn—ketk.

k=0

The right-hand form shows this to be the moment generating function of a

distribution with mass (})p*q"~* at the integer k,0 < k < n. The uniqueness

just established therefore yields the standard fact that P[S = k] = (})pFq"*.
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The cumulant generating function of X (or of its distribution) is
C (1) =logM (1) = log E[¢™X]. 9.5)

(Note that M (r) is strictly positive.) Since C' =M’'/M and C" = (MM" —
(M")?)/M?, and since M (0) = 1,

C0)=0, C'(0)=E[X], C"(0)= Var[X]. (9.6)

Let my = E[X]. The leading term in (9.2) is mo = 1, and so a formal expansion
of the logarithm in (9.5) gives

00 _1yv+! 00 v
C(t):Z( 3 <Z%r’<) 9.7)

v=1 k=1

Since M (t) — 1 as t — 0, this expression is valid for # in some neighborhood
of 0. By the theory of series, the powers on the right can be expanded and terms
with a common factor ' collected together. This gives an expansion

OEDY %’i’ 9.8)

i=1

valid in some neighborhood of 0.

The ¢; are the cumulants of X. Equating coefficients in the expansions (9.7)
and (9.8) leads to ¢; =my and ¢y = my — mlz, which checks with (9.6). Each
¢; can be expressed as a polynomial in my,...,m; and conversely, although the
calculations soon become tedious. If E[X] = 0, however, so that m; =c¢; =0,
it is not hard to check that

c3=m3, C4= My — 3m§. 9.9)

Taking logarithms converts the multiplicative relation (9.4) into the additive
relation

Ct)y=Ci() +---+C, (1) (9.10)

for the corresponding cumulant generating functions; it is valid in the presence
of independence. By this and the definition (9.8), it follows that cumulants add
for independent random variables.

Clearly, M’"(t) = E[X?¢X]>0. Since (M'(t))*> = E?*[Xe’X] < E[eX].
E[X?e™] =M (t)M"(t) by Schwarz’s inequality (5.36), C”(¢) > 0. Thus the
moment generating function and the cumulant generating function are both
convex.
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Large Deviations

Let Y be a simple random variable assuming values y; with probabilities p;.
The problem is to estimate P[Y > «] when Y has mean O and « is positive.
It is notationally convenient to subtract o« away from Y and instead estimate
P[Y > 0] when Y has negative mean.

Assume then that

E[Y] <0, P[Y>0]>0, 9.11)

the second assumption to avoid trivialities. Let M (t) = Zj pje”i be the moment
generating function of Y. Then M’(0) < O by the first assumption in

M (1)

(9.11), and M (t) — oo as t — oo by the second. Since M (t) is convex, it has
its minimum p at a positive argument 7:

infM @) =M@ =p, 0<p<l, >0 9.12)

Construct (on an entirely irrelevant probability space) an auxiliary random
variable Z such that

Tyj

PIZ =y = ep PLY = y] (9.13)

for each y; in the range of Y. Note that the probabilities on the right do add to
1. The moment generating function of Z is

. Ty M t
Ele?] = Z ¢ pie = ﬂ 9.14)
—
j

and therefore

M'(t )
ElZ] = p =0, s“=E[Z°] = > 0. (9.15)
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For all positive ¢, P[Y > 0] = Ple > 11 <M @) by Markov’s inequality
(5.31), and hence

P[Y > 0] < p. 9.16)

Inequalities in the other direction are harder to obtain. If "’ denotes summation
over those indices j for which y; > 0, then

PIY 201=) pi=p) e ™PZ=yl 9.17)

Put the final sum here in the form e¢~%, and let p = P[Z > 0]. By (9.16), 6 > 0.
Since log x is concave, Jensen’s inequality (5.33) gives

/
—0 =log Ze*”?'pflP[Z =yl +logp
> > (—ty)p 'PIZ =y;] + logp

/
_ Yj
=—tsp”' ) TPIZ =1+ logp.

By (9.15) and Lyapounov’s inequality (5.37),

/
Vi 1 1
Y 2Pz =y]=<-EllZ]] < -E'*[2*]=1.
s s s
The last two inequalities give

0<

This proves the following result.
THEOREM 9.1
Suppose that Y satisfies (9.11). Define p and t by (9.12), let Z be a random
variable with distribution (9.13), and define s> by (9.15). Then P[Y > 0] =
pe~?, where 6 satisfies (9.18).

To use (9.18) requires a lower bound for P[Z > 0].
THEOREM 9.2

IfE[Z] =0,E[Z%] = 5% and E[Z*] = £*> 0, then P[Z > 0] > s*/4&47

fFor a related result, see Problem 25.19.
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Proof. Let ZT =Zlz - oy and Z~ = —ZIz7¢;. Then Z* and Z~ are non-
negative, Z =ZT —7Z7,Z?> = (Z1)*> + (Z7)?, and

s =E[ZDHI+ENZ7)*]. 9.19)
Let p = P[Z > 0]. By Schwarz’s inequality (5.36),

E[(Z")]=Ellz = 0Z°]

By Holder’s inequality (5.35) (for p = % and g = 3)

ELZ)* ) =ENZ )z
< E*PIZTIE'PLZ )1 < EXPLZ718.

Since E[Z] = 0, another application of Holder’s inequality (for p = 4 and
q = %) gives

E[Z71=E[Z"] = E[Zlz > o]
< E1/4[Z4]E3/4[Ié/32 ol = £p34,

Combining these three inequalities with (9.19) gives s> < p!/2£2 + (&p3/4)?/3

54/3 — 2p1/2€2. [ |

Chernoff’s Theoremt

THEOREM 9.3

Let X1,X, ... be independent, identically distributed simple random variables
satisfying E[X,,] < 0 and P[X,, > 0] >0, let M (t) be their common moment gen-
erating function, and put p = inf, M (t). Then

1
lim —logP[X; + -+ X, > 0] = logp. (9.20)

n—>o0on

Proof. Put Y, =X;+---+X,. Then E[Y,]<0 and P[Y,>0]>
P"[X; > 0] >0, and so the hypotheses of Theorem 9.1 are satisfied. Define p,
and 7, by inf, M, (t) = M, (t,) = pn, where M, (¢) is the moment generating
function of Y,. Since M, (t) = M"(t), it follows that p, = p" and 7, = T,
where M (t) = p.

Let Z, be the analogue for Y, of the Z described by (9.13). Its moment gen-
erating function (see (9.14)) is M, (t +1t)/p" = (M (v +t)/p)". This is also the

TThis theorem is not needed for the law of the iterated logarithm, Theorem 9.5.

D



160

PROBABILITY

moment generating function of V| + - - - 4 V,, for independent random variables
Vi,...,V, each having moment generating function M (t 4 ¢t)/p. Now each V;
has (see (9.15)) mean 0 and some positive variance o> and fourth moment &4
independent of i. Since Z, must have the same moments as V| 4+ --- 4V, it
has mean 0, variance s> = no?, and fourth moment £* = n&* + 3n(n — 1)o* =
O (n?) (see (6.2)). By Theorem 9.2, P[Z, > 0] > s#/4£* > a for some posi-
tive « independent of n. By Theorem 9.1 then, P[Y, > 0] = p"e % where
0<6, <150 —loga =ta"'o/n —loga. This gives (9.20), and shows,

in fact, that the rate of convergence is O (n~'/?). [

This result is important in the theory of statistical hypothesis testing. An
informal treatment of the Bernoulli case will illustrate the connection.

Suppose S, = X| + --- + X,,, where the X; are independent and assume
the values 1 and O with probabilities p and ¢g. Now P[S, > na] =
P [ZZZI(Xk —a)> O], and Chernoff’s theorem applies if p < a < 1. In this
case M (t) = E[e!%179] = ¢~ (pe’ + ¢). Minimizing this shows that the p of
Chernoff’s theorem satisfies

b
—logp = K(a, p):alogg—l—blog—,
p q

where b = 1 — a. By (9.20), n-! log P[S, > na] — —K (a, p); express this as

P[S, > na] ~ e¢"K@ P, (9.21)

Suppose now that p is unknown and that there are two competing hypotheses
concerning its value, the hypothesis H; that p = p; and the hypothesis H, that
p = p2, where p; < p,. Given the observed results Xi,...,X, of n Bernoulli
trials, one decides in favor of H, if §,, > na and in favor of H; if S, < na,
where a is some number satisfying p; < a < p,. The problem is to find an
advantageous value for the threshold a.

By (9.21),

P[S, > na|H] ~ e K@ PD, (9.22)

where the notation indicates that the probability is calculated for p = p;—that
is, under the assumption of H;. By symmetry,

P[S, < na|H,] = e~ "K(@ P2, (9.23)

The left sides of (9.22) and (9.23) are the probabilities of erroneously deciding
in favor of H, when H| is, in fact, true and of erroneously deciding in favor of
H; when H, is, in fact, true—the probabilities describing the level and power
of the test.
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Suppose a is chosen so that K (a, p;) = K(a, p2), which makes the two
error probabilities approximately equal. This constraint gives for a a linear
equation with solution

log(q1/492)
log(p2/p1) + log(qi1/92)’

where ¢; = 1 — p;. The common error probability is approximately e ~"K(@ rv
for this value of a, and so the larger K (a, p) is, the easier it is to distinguish
statistically between p; and p,.

Although K (a(p1,p2),p1) is a complicated function, it has a simple approx-
imation for p; near pr. As x — 0,log(1 +x) =x — %xQ + O (x?). Using this in
the definition of K and collecting terms gives

a=a(p,p2) = (9.24)

2
Kp+x.p) =—— 4003, x—0. (9.25)
2pq

Fix p; = p,and let p, = p + ¢; (9.24) becomes a function v (¢) of ¢, and expand-
ing the logarithms gives

1
V() =p+ St ot>, t—0, (9.26)
after some reductions. Finally, (9.25) and (9.26) together imply that
12
K@W(t),p) = ——+0@), t—0. 9.27)
8pq

In distinguishing p; = p from p, = p + ¢ for small 7, if a is chosen to equalize
the two error probabilities, then their common value is about e_mz/ 894 For ¢
fixed, the nearer p is to %, the larger this probability is and the more difficult it
is to distinguish p from p+r. As an example, compare p = .1 with p = .5. Now
36nt2/8(.1)(.9) = nt?/8(.5)(.5). With a sample only 36 percent as large, .1 can
therefore be distinguished from .1 4 ¢ with about the same precision as .5 can
be distinguished from .5 + ¢.

The Law of the Iterated Logarithm

The analysis of the rate at which S, /n approaches the mean depends on the
following variant of the theorem on large deviations.

THEOREM 9.4
LetS, = X| + - - - 4+ X, where the X, are independent and identically distributed
simple random variables with mean 0 and variance 1. If a, are constants satis-

fying

An

a, — 00,

=0, (9.28)

9
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then
PISy > ay/n] = e~ (14002 (9.29)
for a sequence ¢, going to 0.

Proof. Put Y, =S, —a,/n =) ;_ Xk —a,//n). Then E[Y,] <O.
Since X; has mean O and variance 1, P[X;>0]>0, and it follows by
(9.28) that P[X|>a,/+/n]>0 for n sufficiently large, in which case
P[Y, >0] > P"[X| — a,/+/n > 0] > 0. Thus Theorem 9.1 applies to Y,, for all
large enough n.

Let M, (1), p,, T,, and Z, be associated with Y,, as in the theorem. If m () and
c(t) are the moment and cumulant generating functions of the X,,, then M,,(¢) is
the nth power of the moment generating function e~/ YTm(t) of X1 — ay /A,
and so Y, has cumulant generating function

C, (1) = —tay~/n + nc(t). (9.30)

Since 7, is the unique minimum of C,(¢), and since C, (1) = —a,~/n +
nc'(t), t, is determined by the equation ¢’(z,) = a,/+/n. Since X; has mean 0
and variance 1, it follows by (9.6) that

c(0)=c(0)=0. ") =1. (9.31)

Now c’(t) is nondecreasing because c() is convex, and since ¢'(t,) = a,/+/n
goes to 0, 7, must therefore go to 0 as well and must in fact be O (a, /+/n). By
the second-order mean-value theorem for ¢'(t),a,//n = ¢'(t,) = ©, + O(z?),
from which follows

ay, a,%
T, = NG + O (7) . (9.32)

By the third-order mean-value theorem for c(¢),
log pp = Cp(tn) = —Twan/n + nc(zy,)
= —T,ap/n +n [%r,f +0 (t,f)] .
Applying (9.32) gives

_ _1 2 2
log p, = 2an +o(a;). (9.33)

Now (see (9.14)) Z, has moment generating function M,(t, +1t)/p, and
(see (9.30)) cumulant generating function D, (t) = C,(t, +1t) —logp, =

D
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—(Ty + Day/n +ne(t + 7,) — log p,. The mean of Z, is D/ (0) =0. Its
variance s> is D/ (0); by (9.31), this is

s2 = nc"(1,) = n(c"(0) + O (1)) = n(1 + o(1)). (9.34)

The fourth cumulant of Z, is D,”(0) = nc""(v,) = O(n). By the formula
(9.9) relating moments and cumulants (applicable because E[Z,] = 0),
E[Z,f] = 3s3 + D, (0). Therefore, E [Z,f] /s;1 — 3, and it follows by Theorem
9.2 that there exists an « such that P[Z, > 0] > « >0 for all sufficiently
large n.

By Theorem 9.1, P[Y, > 0] = pne % with 0 < 6, < 1,5,07! + loga. By
(9.28), (9.32), and (9.34), 6, = O(a,) = o(a,%), and it follows by (9.33) that
P[Y, > 0] = e—%(+0(1)/2, u

The law of the iterated logarithm is this:

THEOREM 9.5
Let S, = X1 + - - - 4+ X,,, where the X, are independent, identically distributed
simple random variables with mean 0 and variance 1. Then

n +/2nloglogn B

Equivalent to (9.35) is the assertion that for positive €

P[S, > (1 +¢€)y/2nloglogn i.0.] =0 (9.36)

Sn
P |:lim SUp ——— = 1:| =1 (9.35)

and

P[S, > (1 —€)y/2nloglogn i.0.] = 1. (9.37)

The set in (9.35) is, in fact, the intersection over positive rational € of the sets
in (9.37) minus the union over positive rational € of the sets in (9.36).
The idea of the proof is this. Write

¢(n) =+/2nloglogn. (9.38)

If A£ =18, > (1 £e)p(n)], then by (9.29), P(AE) is near (logn)~(1%? 1f
ni increases exponentially, say n; ~ 6% for 6 > 1, then P(A,jfk) is of the order
k=01+9% Now Dk f—(£e? converges if the sign is 4+ and diverges if the sign
is —. It will follow by the first Borel—Cantelli lemma that there is probability 0
that A,J{k occurs for infinitely many k. In providing (9.36), an extra argument is
required to get around the fact that the A for n # n; must also be accounted
for (this requires choosing 6 near 1). If the A, were independent, it would

D
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follow by the second Borel—Cantelli lemma that with probability 1, A, occurs
for infinitely many k, which would in turn imply (9.37). An extra argument is
required to get around the fact that the A, are dependent (this requires choosing
0 large).

For the proof of (9.36) a preliminary result is needed. Put M; =
max{Sp, S1,...,S¢}, where Sy = 0.

THEOREM 9.6
If the Xy are independent simple random variables with mean 0 and variance 1,

then for a > \/5

P[%za]gzp[j’%za—fz] (9.39)

Proof. If Aj = [M;_ < ay/n < M;], then

P[%za]gp[j’iza—x/i]JrgP(Aj”[%f“_ﬁ])'

n

Since §, — §; has variance n—j, it follows by independence and Chebyshev’s
inequality that the probability in the sum is at most

A B _payp |25l
P(Ajﬂ[ 7 >«/§D _P(AJ)P|: 7 >«/§]

<par" =L < Lpay
- o T2 T
Since U}:ll A; C M, = ay/n],

[l e e[ )

Proof of (9.36). Given ¢, choose 0 so that # > 1 but 62 < 1 + €. Let n; =
16% | and x; = 6(2loglogny)'/?. By (9.29) and (9.39),

P|:Mnk > xk:| < zexp[_%(xk — \/5)2(1 +$k):| .

N

where & — 0. The negative of the exponent is asymptotically 6%logk and
hence for large k exceeds 6 logk, so that

p M,, - - 2
X, —.
Jhe k= k¢

D



©

SECTION 9 LARGE DEVIATIONS AND THE LAW OF THE ITERATED LOGARITHM

Since 6 > 1, it follows by the first Borel—Cantelli lemma that there is probability
0 that (see (9.38))

My, = 0¢ () (9.40)
for infinitely many k. Suppose that ny_; < n < n; and that
Sy >0 +e)p(n). (9.41)

Now ¢ (n) > ¢(nx_1) ~6"2¢(ny); hence, by the choice of @, (1+
€)p(n) >0¢(n,) if k is large enough. Thus for sufficiently large k, (9.41)
implies (9.40) (if nx—; < n < ny), and there is therefore proability O that (9.41)
holds for infinitely many 7. |

Proof of (9.37). Given e, choose an integer 6 so large that 36~!/2
Take n; = 6. Now ny — ng_; — oo, and (9.29) applies with n = n; — ng_
and a, = x;//nx — nx_1, where x; = (1 —6~1)¢ (nr). It follows that

< €.

1 x2
PlSy, —Su_, Zxx]=P[Sy,—n,_, = %] = exp[_im_iknk_l(l + Sk)j| )

where £ — 0. The negative of the exponent is asymptotically (1 —6~!)logk
and so for large k is less than log k, in which case P[S,, —S,, , > x] > kL.
The events here being independent, it follows by the second Borel—Cantelli
lemma that with probability 1, S, —S,, , > x; for infinitely many k. On the
other hand, by (9.36) applied to {—X,}, there is probability 1 that —S,, , <
2¢ (nk—1) < 2072¢(ny) for all but finitely many k. These two inequalities
give S, > xx — 207 12¢ () > (1 — €)¢p (mr), the last inequality because of the

choice of 6. [ |

That completes the proof of Theorem 9.5.

PROBLEMS
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9.1. Prove (6.2) by using (9.9) and the fact that cumulants add in the presence
of independence.

9.2. In the Bernoulli case, (9.21) gives

PISy = np +x,] = exp|=nK (p +=.p ) (1 +0(1)].

D



166

PROBABILITY

9.3.

94.

9.5.

9.6.

9.7.

where p <a < 1 and x,, = n(a — p). Theorem 9.4 gives

2

P[S, = np +x,] = exp [—2;6;;6] 1+ 0(1))) ;

where x,, = a,/npq. Resolve the apparent discrepancy. Use (9.25) to
compare the two expressions in case x,/n is small. See Problem 27.17.

Relabel the binomial parameter p as 6 = f(p), where f is increas-
ing and continuously differentiable. Show by (9.27) that the distin-
guishability of 6 from 6 4+ A6, as measured by K, is (A#)?/8p(1 —
)’ (p)* + 0(A0)3. The leading coefficient is independent of 6 if
f(p) = arcsin /p.

From (9.35) and the same result for {—X,}, together with the uniform
boundedness of the X,,, deduce that with probability 1 the set of limit
points of the sequence {S, (2n loglogn)~'/?} is the closed interval from
—1to +1.

1 Suppose X, takes the values 1 with probability % each, and show that
P[S, = 01i.0.] = 1. (This gives still another proof of the persistence of
symmetric random walk on the line (Example 8.6).) Show more generally
that, if the X, are bounded by M, then P[|S,| <M i.0.] = 1.
Weakened versions of (9.36) are quite easy to prove. By a fourth-moment
argument (see (6.2)), show that P[S, > n3/*(logn)1+9/% i.0.] = 0. Use
(9.29) to give a simple proof that P[S, >(3nlogn)'/? i.0.] = 0.

Show that (9.35) is true if S, is replaced by |S,| or maxy<, Sy or
max i <p |Sk |



