
Chapter 1
Probability

SECTION 1 BOREL’S NORMAL NUMBER THEOREM

Although sufficient for the development of many interesting topics in mathe-
matical probability, the theory of discrete probability spaces† does not go far
enough for the rigorous treatment of problems of two kinds: those involving
an infinitely repeated operation, as an infinite sequence of tosses of a coin, and
those involving an infinitely fine operation, as the random drawing of a point
from a segment. A mathematically complete development of probability, based
on the theory of measure, puts these two classes of problem on the same footing,
and as an introduction to measure-theoretic probability it is the purpose of the
present section to show by example why this should be so.

The Unit Interval

The project is to construct simultaneously a model for the random drawing of
a point from a segment and a model for an infinite sequence of tosses of a
coin. The notions of independence and expected value, familiar in the discrete
theory, will have analogues here, and some of the terminology of the discrete
theory will be used in an informal way to motivate the development. The formal
mathematics, however, which involves only such notions as the length of an
interval and the Riemann integral of a step function, will be entirely rigorous.
All the ideas will reappear later in more general form.

†For the discrete theory, presupposed here, see for example the first half of Volume 1 of Feller.
(Names in capital letters refer to the bibliography on p. 581.)
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2 PROBABILITY

Let � denote the unit interval (0, 1]; to be definite, take intervals open on
the left and closed on the right. Let ω denote the generic point of �. Denote
the length of an interval I = (a , b] by |I |:

|I | = |(a , b]| = b − a. (1.1)

If

A =
n⋃

i=1

Ii =
n⋃

i=1

(a1, b1], (1.2)

where the intervals Ii = (ai , bi ] are disjoint [A3]† and are contained in �, assign
to A the probability

P(A) =
n∑

i=1

|Ii | =
n∑

i=1

(bi − ai ). (1.3)

It is important to understand that in this section P (A) is defined only if A is
a finite disjoint union of subintervals of (0, 1]—never for sets A of any other
kind.

If A and B are two such finite disjoint unions of intervals, and if A and B
are disjoint, then A ∪ B is a finite disjoint union of intervals and

P(A ∪ B) = P(A) + P(B). (1.4)

This relation, which is certainly obvious intuitively, is a consequence of the
additivity of the Riemann integral:

∫ 1

0
(f (ω) + g(ω)) dω =

∫ 1

0
f (ω) dω +

∫ 1

0
g(ω) dω. (1.5)

If f (ω) is a step function taking value cj in the interval (xj−1, xj ], where 0 =
x0 < x1 < · · · < xk = 1, then its integral in the sense of Riemann has the value

∫ 1

0
f (ω) dω =

k∑
i=1

cj (xj − xj−1). (1.6)

If f = IA and g = IB are the indicators [A5] of A and B , then (1.4) follows
from (1.5) and (1.6), provided A and B are disjoint. This also shows that the
definition (1.3) is unambiguous—note that A will have many representations of

†A notation [An] refers to paragraph n of the appendix beginning on p. 571; this is a collection of
mathematical definitions and facts required in the text.
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the form (1.2) because (a , b] ∪ (b, c] = (a , c]. Later these facts will be derived
anew from the general theory of Lebesgue integration.†

According to the usual models, if a radioactive substance has emitted a
single α-particle during a unit interval of time, or if a single telephone call has
arrived at an exchange during a unit interval of time, then the instant at which
the emission or the arrival occurred is random in the sense that it lies in (1.2)
with probability (1.3). Thus (1.3) is the starting place for the description of a
point drawn at random from the unit interval: � is regarded as a sample space,
and the set (1.2) is identified with the event that the random point lies in it.

The definition (1.3) is also the starting point for a mathematical represen-
tation of an infinite sequence of tosses of a coin. With each ω associate its
nonterminating dyadic expansion

ω =
∞∑

n=1

dn(ω)

2n
= .d1(ω)d2(ω) . . . , (1.7)

each dn(ω) being 0 or 1 [A31]. Thus

(d1(ω), d2(ω), . . .) (1.8)

is the sequence of binary digits in the expansion of ω. For definiteness, a point
such as 1

2 = .1000 . . . = .0111 . . ., which has two expansions, takes the nonter-
minating one; 1 takes the expansion .111 . . . .

0

Graph of d1 (w) Graph of d2 (w)

1 0 1

Imagine now a coin with faces labeled 1 and 0 instead of the usual heads
and tails. If ω is drawn at random, then (1.8) behaves as if it resulted from an
infinite sequence of tosses of a coin. To see this, consider first the set of ω for
which di (ω) = ui for i = 1, . . . , n , where u1, . . . , un is a sequence of 0’s and
l’s. Such an ω satisfies

n∑
i=1

ui

2i
< ω ≤

n∑
i=1

ui

2i
+

∞∑
i= n+1

1

2i
,

†Passages in small type concern side issues and technical matters, but their contents are sometimes
required later.



4 PROBABILITY

where the extreme values of ω correspond to the case di (ω) = 0 for i > n and
the case di (ω) = 1 for i > n . The second case can be achieved, but since the
binary expansions represented by the di (ω) are nonterminating—do not end in
0’s—the first cannot, and ω must actually exceed

∑n
i=1 ui/2i . Thus

[ω: di (ω) = ui , i = 1, . . . , n] =
(

n∑
i=1

ui

2i
,

n∑
i=1

ui

2i
+ 1

2n

]
. (1.9)

The interval here is open on the left and closed on the right precisely because
the expansion (1.7) is the nonterminating one. In the model for coin tossing the
set (1.9) represents the event that the first n tosses give the outcomes u1, . . . , un

in sequence. By (1.3) and (1.9),

P [ω: di (ω) = ui , i = 1, . . . , n] = 1

2n
, (1.10)

which is what probabilistic intuition requires.

0

00

000 001 010 011

Decompositions by dyadic intervals

100 101 110 111

01 10 11

1

The intervals (1.9) are called dyadic intervals, the endpoints being adjacent
dyadic rationals k/2n and (k + 1)/2n with the same denominator, and n is the
rank or order of the interval. For each n the 2n dyadic intervals of rank n
decompose or partition the unit interval. In the passage from the partition for n
to that for n+1, each interval (1.9) is split into two parts of equal length, a left
half on which dn+1(ω) is 0 and a right half on which dn+1(ω) is 1. For u = 0
and for u = 1, the set [ω: dn+1(ω) = u] is thus a disjoint union of 2n intervals
of length 1/2n+1 and hence has probability 1

2 : P [ω: dn(ω) = u] = 1
2 for all n .

Note that di (ω) is constant over each dyadic interval of rank i and that for
n > i each dyadic interval of rank n is entirely contained in a single dyadic
interval of rank i . Therefore, di (ω) is constant over each dyadic interval of rank
n if i ≤ n .

The probabilities of various familiar events can be written down immedi-
ately. The sum

∑n
i=1 di (ω) is the number of 1’s among d1(ω), . . . , dn(ω), to be

thought of as the number of heads in n tosses of a fair coin. The usual binomial
formula is

P

[
ω:

n∑
i=1

di (ω) = k

]
=
(

n
k

)
1

2n
, 0 ≤ k ≤ n. (1.11)
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This follows from the definitions: The set on the left in (1.11) is the union of
those intervals (1.9) corresponding to sequences u1, . . . , un containing k l’s and
n−k 0’s; each such interval has length 1/2n by (1.10) and there are

(n
k

)
of them,

and so (1.11) follows from (1.3).
The functions dn(ω) can be looked at in two ways. Fixing n and letting ω

vary gives a real function dn = dn(·) on the unit interval. Fixing ω and letting
n vary gives the sequence (1.8) of 0’s and 1’s. The probabilities (1.10) and
(1.11) involve only finitely many of the components di (ω). The interest here,
however, will center mainly on properties of the entire sequence (1.8). It will
be seen that the mathematical properties of this sequence mirror the properties
to be expected of a coin-tossing process that continues forever.

As the expansion (1.7) is the nonterminating one, there is the defect that
for no ω is (1.8) the sequence (1, 0, 0, 0, . . . ), for example. It seems clear
that the chance should be 0 for the coin to turn up heads on the first toss and
tails forever after, so that the absence of (1, 0, 0, 0, . . . )—or of any other
single sequence—should not matter. See on this point the additional remarks
immediately preceding Theorem 1.2.

The Weak Law of Large Numbers

In studying the connection with coin tossing it is instructive to begin with a
result that can, in fact, be treated within the framework of discrete probability,
namely, the weak law of large numbers:

Theorem 1.1
For each ∈,†

lim
n→∞ P

[
ω:

∣∣∣∣∣1

n

n∑
i=1

di (ω) − 1

2

∣∣∣∣∣ ≥ ε

]
= 0. (1.12)

Interpreted probabilistically, (1.12) says that if n is large, then there is small
probability that the fraction or relative frequency of heads in n tosses will
deviate much from 1

2 , an idea lying at the base of the frequency conception of
probability. As a statement about the structure of the real numbers, (1.12) is
also interesting arithmetically.

Since di (ω) is constant over each dyadic interval of rank n if i ≤ n , the sum∑n
i=1 di (ω) is also constant over each dyadic interval of rank n . The set in (1.12)

is therefore the union of certain of the intervals (1.9), and so its probability is
well defined by (1.3).

With the Riemann integral in the role of expected value, the usual application
of Chevyshev’s inequality will lead to a proof of (1.12). The argument becomes

†The standard ∈ and δ of analysis will always be understood to be positive.
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simpler if the dn(ω) are replaced by the Rademacher functions ,

rn(ω) = 2dn(ω) − 1

{
+1 if dn(ω) = 1,

−1 if dn(ω) = 0.
. (1.13)

0

Graph of r1 (w) Graph of r2 (w)

1 0 1

Consider the partial sums

Sn(ω) =
n∑

i=1

ri (ω). (1.14)

Since
∑n

i=1 di (ω) = (sn(ω) + n)/2, (1.12) with ∈ /2 in place of ∈ is the same
thing as

lim
n→∞ P

[
ω:

∣∣∣∣1

n
sn(ω)

∣∣∣∣ ≥ ε

]
= 0. (1.15)

This is the form in which the theorem will be proved.
The Rademacher functions have themselves a direct probabilistic meaning.

If a coin is tossed successively, and if a particle starting from the origin performs
a random walk on the real line by successively moving one unit in the positive or
negative direction according as the coin falls heads or tails, then ri (ω) represents
the distance it moves on the i th step and sn(ω) represents its position after n
steps. There is also the gambling interpretation: If a gambler bets one dollar,
say, on each toss of the coin, ri (ω) represents his gain or loss on the i th play
and sn(ω) represents his gain or loss in n plays.

Each dyadic interval of rank i−1 splits into two dyadic intervals of rank i ;
ri (ω) has value −1 on one of these and value +1 on the other. Thus ri (ω) is
−1 on a set of intervals of total length 1

2 and +1 on a set of total length 1
2 .

Hence
∫ 1

0 ri (ω)dω = 0 by (1.6), and

∫ 1

0
sn(ω) dω = 0 (1.16)

by (1.5). If the integral is viewed as an expected value, then (1.16) says that the
mean position after n steps of a random walk is 0.
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Suppose that i < j . On a dyadic interval of rank j − 1, ri (ω) is constant and
ri (ω) has value −1 on the left half and +1 on the right. The product ri (ω)rj (ω)

therefore integrates to 0 over each of the dyadic intervals of rank j−1, and so

∫ 1

0
ri (ω)rj (ω) dω = 0, i �= j . (1.17)

This corresponds to the fact that independent random variables are uncorrelated.
Since r2

i (ω) = 1, expanding the square of the sum (1.14) shows that

∫ 1

0
s2

n (ω) dω = n. (1.18)

This corresponds to the fact that the variances of independent random variables
add. Of course (1.16), (1.17), and (1.18) stand on their own, in no way depend
on any probabilistic interpretation.

Applying Chebyshev’s inequality in a formal way to the probability in (1.15)
now leads to

P [ω: |sn(ω)| ≥ nε] ≤ 1

n2ε2

∫ 1

0
s2

n (ω) dω = 1

nε2
. (1.19)

The following lemma justifies the inequality.
Let f be a step function as in (1.6): f (ω) = cj for ω ∈ (xj−1, xj ], where

0 = x0 < · · · < xk = 1.

Lemma. If f is a nonnegative step function, then [ω: f (ω) ≥ α] is for α > 0 a
finite union of intervals and

P [ω: f (ω) ≥ α] ≤ 1

α

∫ 1

0
f (ω) dω. (1.20)

x1 x2 x3 x4

The shaded region
has area
aP[w: ƒ(w) ≥ a]

0 1
0

a

Proof. The set in question is the union of the intervals (xj−1, xj ] for
which cj ≥ α. If

∑′ denotes summation over those j satisfying cj ≥ α, then
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P [ω: f (ω) ≥ α] = ∑′
(xj − xj−1) by the definition (1.3). On the other hand,

since the cj are all nonnegative by hypothesis, (1.6) gives

∫ 1

0
f (ω) dω =

k∑
j=1

cj (xj − xj−1) ≥
∑ ′

cj (xj − xj−1)

≥
∑ ′

α(xj − xj−1).

Hence (1.20). ■

Taking α = n2ε2 and f (ω) = s2
n (ω) in (1.20) gives (1.19). Clearly, (1.19)

implies (1.15), and as already observed, this in turn implies (1.12).

The Strong Law of Large Numbers

It is possible with a minimum of technical apparatus to prove a stronger result
that cannot even be formulated in the discrete theory of probability. Consider
the set

N =
[
ω: lim

n→∞
1

n

n∑
i=1

di (ω) = 1

2

]
(1.21)

consisting of those ω for which the asymptotic relative frequency† of 1 in the
sequence (1.8) is 1

2 . The points in (1.21) are called normal numbers . The idea
is to show that a real number ω drawn at random from the unit interval is
“practically certain” to be normal, or that there is “practical certainty” that 1
occurs in the sequence (1.8) of tosses with asymptotic relative frequency 1

2 . It
is impossible at this stage to prove that P(N ) = 1, because N is not a finite
union of intervals and so has been assigned no probability. But the notion of
“practical certainty” can be formalized in the following way.

Define a subset A of � to be negligible‡ if for each positive ε there exists a
finite or countable§ collection I1, I2, . . . of intervals (they may overlap) satisfying

A ⊂
⋃

k

Ik (1.22)

†The frequency of 1 (the number of occurrences of it) among d1(ω), . . . , dn(ω) is
∑n

i−1 di (ω), the
relative frequency is n−1 ∑n

i−1 di (ω), and the asymptotic relative frequency is the limit in (1.21).
‡The term negligible is introduced for the purposes of this section only. The negligible sets will
reappear later as the sets of Lebesgue measure 0.
§Countably infinite is unambiguous. Countable will mean finite or countably infinite, although it will
sometimes for emphasis be expanded as here to finite or countable.
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and ∑
k

|Ik | < ε. (1.23)

A negligible set is one that can be covered by intervals the total sum of
whose lengths can be made arbitrarily small. If P (A) is assigned to such an
A in any reasonable way, then for the Ik of (1.22) and (1.23) it ought to be
true that P(A) ≤ ∑

k P(Ik ) = ∑
k |Ik | < ε, and hence P (A) ought to be 0. Even

without any assignment of probability at all, the definition of negligibility can
serve as it stands as an explication of “practical impossibility” and “practical
certainty”: Regard it as practically impossible that the random ω will lie in A
if A is negligible, and regard it as practically certain that ω will lie in A if its
complement Ac [A1] is negligible.

Although the fact plays no role in the next proof, for an understanding of
negligibility observe first that a finite or countable union of negligible sets is neg-
ligible. Indeed, suppose that A1, A2, . . . are negligible. Given ε, for each n choose
intervals In1, In2, . . . such that An ⊂ ⋃

k Ink and
∑

k |Ink | < ε/2n . All the inter-
vals Ink taken together form a countable collection covering

⋃
n An , and their

lengths add to
∑

n

∑
k |Ink | <

∑
n ε/2n = ε. Therefore,

⋃
n An is negligible.

A set consisting of a single point is clearly negligible, and so every countable
set is also negligible. The rationals for example form a negligible set. In the
coin-tossing model, a single point of the unit interval has the role of a single
sequence of 0’s and 1’s, or of a single sequence of heads and tails. It corresponds
with intuition that it should be “practically impossible” to toss a coin infinitely
often and realize any one particular infinite sequence set down in advance. It is
for this reason not a real shortcoming of the model that for no ω is (1.8) the
sequence (1, 0, 0, 0, . . . ). In fact, since a countable set is negligible, it is not a
shortcoming that (1.8) is never one of the countably many sequences that end
in 0’s.

Theorem 1.2
The set of normal numbers has negligible complement.

This is Borel’s normal number theorem ,† a special case of the strong law
of large numbers . Like Theorem 1.1, it is of arithmetic as well as probabilistic
interest.

The set N c is not countable: Consider a point ω for which (d1(ω), d2(ω), . . .)
= (1, 1, u3, 1, 1, u6, . . .)—that is, a point for which di (ω) = 1 unless i is a mul-
tiple of 3. Since n−1 ∑n

i=1 di (ω) ≥ 2
3 , such a point cannot be normal. But there

are uncountably many such points, one for each infinite sequence (u3, u6, . . .)

†Émile Borel: Sur les probabilités dénombrables et leurs applications arithmétiques, Circ. Mat. d.
Palermo, 29 (1909), 247–271. See Dudley for excellent historical notes on analysis and probability.
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of 0’s and 1’s. Thus one cannot prove N c negligible by proving it countable,
and a deeper argument is required.

Proof of Theorem 1.2. Clearly (1.21) and

N =
[
ω: lim

n←∞
1

n
sn(ω) = 0

]
(1.24)

define the same set (see (1.14)). To prove N c negligible requires constructing
coverings that satisfy (1.22) and (1.23) for A = N c . The construction makes use
of the inequality.

P [ω; |sn(ω)| ≥ nε] ≤ 1

n4ε4

∫ 1

0
s4

n (ω) dω. (1.25)

This follows by the same argument that leads to the inequality in (1.19)—it is
only necessary to take f (ω) = s4

n (ω) and α = n4ε4 in (1.20). As the integral in
(1.25) will be shown to have order n2, the inequality is stronger than (1.19).

The integrand on the right in (1.25) is

s4
n (ω) =

∑
rα(ω)rβ(ω)rγ (ω)rδ(ω), (1.26)

where the four indices range independently from 1 to n . Depending on how the
indices match up, each term in this sum reduces to one of the following five
forms, where in each case the indices are now distinct :⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r4
i (ω) = 1,

r2
i (ω)r2

j (ω) = 1,

r2
i (ω)rj (ω)rk (ω) = rj (ω)rk (ω),

r3
i (ω)rj (ω) = ri (ω)rj (ω),

ri (ω)rj (ω)rk (ω)rl (ω).

(1.27)

If, for example, k exceeds i , j , and l , then the last product in (1.27) integrates
to 0 over each dyadic interval of rank k−1, because ri (ω)rj (ω)rl (ω) is constant
there, while rk (ω) is −1 on the left half and +1 on the right. Adding over the
dyadic intervals of rank k−1 gives∫ 1

0
ri (ω)rj (ω)rk (ω)rl (ω) dω = 0.

This holds whenever the four indices are distinct. From this and (1.17) it follows
that the last three forms in (1.27) integrate to 0 over the unit interval; of course,
the first two forms integrate to 1.

The number of occurrences in the sum (1.26) of the first form in (1.27) is n .
The number of occurrences of the second form is 3n(n − 1), because there are
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n choices for the α in (1.26), three ways to match it with β, γ , or δ, and n−1
choices for the value common to the remaining two indices. A term-by-term
integration of (1.26) therefore gives∫ 1

0
s4

n (ω) dω = n + 3n(n − 1) ≤ 3n2, (1.28)

and it follows by (1.25) that

P

[
ω:

∣∣∣∣1

n
sn(ω)

∣∣∣∣ ≥ ε

]
≤ 3

n2ε4
. (1.29)

Fix a positive sequence {εn} going to 0 slowly enough that the series∑
n ε−4

n n−2 converges (take εn = n−1/8, for example). If An = [ω: |n−1sn(ω)| ≥
εn], then P(An) ≤ 3ε−4

n n−2 by (1.29), and so
∑

n P(An) < ∞.
If, for some m , ω lies in Ac

n for all n greater than or equal to m , then
|n−1sn(ω)| < εn for n ≥ m , and it follows that ω is normal because εn → 0
(see (1.24)). In other words, for each m ,

⋂∞
n=m Ac

n ⊂ N , which is the same thing
as N c ⊂ ⋃∞

n=m An . This last relation leads to the required covering: Given ε,
choose m so that

∑∞
n=m P(An) < ε. Now An is a finite disjoint union

⋃
k Ink

of intervals with
∑

k |Ink | = P(An), and therefore
⋃∞

n=m An is a countable
union

⋃∞
n=m

⋃
k Ink of intervals (not disjoint, but that does not matter) with∑∞

n=m

∑
k |Ink | = ∑∞

n=m P(An) < ε. The intervals Ink (n ≥ m , k ≥ 1) provide
a covering of N c of the kind the definition of negligibility calls for. ■

Strong Law Versus Weak

Theorem 1.2 is stronger than Theorem 1.1. A consideration of the forms of the
two propositions will show that the strong law goes far beyond the weak law.

For each n let fn(ω) be a step function on the unit interval, and consider the
relation

lim
n←∞ P [ω: |fn(ω)| ≥ ε] = 0 (1.30)

together with the set

[ω: lim
n←∞ fn(ω) = 0]. (1.31)

If fn(ω) = n−1sn(ω), then (1.30) reduces to the weak law (1.15), and (1.31)
coincides with the set (1.24) of normal numbers. According to a general result
proved below (Theorem 5.2(ii)), whatever the step functions fn(ω) may be, if
the set (1.31) has negligible complement, then (1.30) holds for each positive ε.
For this reason, a proof of Theorem 1.2 is automatically a proof of Theorem 1.1.

The converse, however, fails: There exist step functions fn(ω) that satisfy
(1.30) for each positive ε but for which (1.30) fails to have negligible comple-
ment (Example 5.4). For this reason, a proof of Theorem 1.1 is not automatically
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a proof of Theorem 1.2; the latter lies deeper and its proof is correspondingly
more complex.

Length

According to Theorem 1.2, the complement N c of the set of normal num-
bers is negligible. What if N itself were negligible? It would then follow that
(0, 1] = N ∪ N c was negligible as well, which would disqualify negligibility as
an explication of “practical impossibility,” as a stand-in for “probability zero.”
The proof below of the “obvious” fact that an interval of positive length is
not negligible (Theorem 1.3(ii)), while simple enough, does involve the most
fundamental properties of the real number system.

Consider an interval I = (a , b] of length |I | = b − a; see (1.1). Consider
also a finite or infinite sequence of intervals Ik = (ak , bk ]. While each of these
intervals is bounded, they need not be subintervals of (0, 1].

Theorem 1.3

(i) If
⋃

k Ik ⊂ I , and the Ik are disjoint, then
∑

k |Ik | ≤ |I |.
(ii) If I ⊂ ⋃

k Ik (the Ik need not be disjoint), then |I | ≤ ∑
k |Ik |.

(iii) If I = ⋃
k Ik , and the Ik are disjoint, then |I | = ∑

k |Ik |.

Proof. Of course (iii) follows from (i) and (ii).

Proof of (i): Finite case. Suppose there are n intervals. The result being
obvious for n = 1, assume that it holds for n−1. If an is the largest among
a1, . . . , an (this is just a matter of notation), then

⋃n−1
k=1(ak , bk ] ⊂ (a , an], so that∑n−1

k=1(bk − ak ) ≤ an − a by the induction hypothesis, and hence
∑n

k=1(bk −
ak ) ≤ (an − a) + (bn − an) ≤ b − a .

Infinite case. If there are infinitely many intervals, each finite subcollection
satisfies the hypotheses of (i), and so

∑n
k=1(bk − ak ) ≤ b − a by the finite case.

But as n is arbitrary, the result follows.

Proof of (ii): Finite case. Assume that the result holds for the case of n−1
intervals and that (a , b] ⊂ ⋃n

k=1(ak , bk ]. Suppose that an < b ≤ bn (notation
again). If an ≤ a , the result is obvious. Otherwise, (a , an] ⊂ ⋃n−1

k=1(ak , bk ],
so that

∑n−1
k=1(bk − ak ) ≥ an − a by the induction hypothesis and hence∑n

k=1(bk − ak ) ≥ (an − a) + (bn − an) ≥ b − a . The finite case thus follows
by induction.

Infinite case. Suppose that (a , b] ⊂ ⋃∞
k=1(ak , bk ]. If 0 < ε < b − a , the

open intervals (ak , bk + ε2−k ) cover the closed interval [a + ε, b], and it fol-
lows by the Heine–Borel theorem [A13] that [a + ε, b] ⊂ ⋃n

k=1(ak , bk + ε2−k )

for some n . But then (a + ε, b] ⊂ ⋃n
k=1(ak , bk + ε2−k ], and by the finite case,

b − (a + ε) ≤ ∑n
k=1(bk + ε2−k − ak ) ≤ ∑∞

k=1(bk − ak ) + ε. Since ε was arbi-
trary, the result follows. ■
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Theorem 1.3 will be the starting point for the theory of Lebesgue measure as
developed in Sections 2 and 3. Taken together, parts (i) and (ii) of the theorem
for only finitely many intervals Ik imply (1.4) for disjoint A and B . Like (1.4),
they follow immediately from the additivity of the Riemann integral; but the
point is to give an independent development of which the Riemann theory will
be an eventual by-product.

To pass from the finite to the infinite case in part (i) of the theorem is easy.
But to pass from the finite to the infinite case in part (ii) involves compactness,
a profound idea underlying all of modern analysis. And it is part (ii) that shows
that an interval I of positive length is not negligible: |I | is a positive lower
bound for the sum of the lengths of the intervals in any covering of I .

The Measure Theory of Diophantine Approximation†

Diophantine approximation has to do with the approximation of real numbers
x by rational fractions p/q . The measure theory of Diophantine approximation
has to do with the degree of approximation that is possible if one disregards
negligible sets of real x .

For each positive integer q, x must lie between some pair of successive
multiples of 1/q , so that for some p, |x − p/q | ≤ 1/q . Since for each q the
intervals (

p

q
− 1

2q
,

p

q
+ 1

2q

]
(1.32)

decompose the line, the error of approximation can be further reduced to 1/2q :
For each q there is a p such that |x − p/q | ≤ 1/2q . These observations are of
course trivial. But for “most” real numbers x there will be many values of p
and q for which x lies very near the center of the interval (1.32), so that p/q is
a very sharp approximation to x .

Theorem 1.4
If x is irrational, there are infinitely many irreducible fractions p/q such that∣∣∣∣x − p

q

∣∣∣∣ <
1

q2
. (1.33)

This famous theorem of Dirichlet says that for infinitely many p and q, x
lies in (p/q − 1/q2, p/q + 1/q2) and hence is indeed very near the center of
(1.32).

Proof. For a positive integer Q , decompose [0, 1) into the Q subintervals
[(i − 1)/Q , i/Q), i = 1, . . . , Q . The points (fractional parts) {qx} = qx − �qx


†This topic may be omitted.
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for q = 0, 1, . . . , Q lie in [0, 1), and since there are Q+1 points† and only
Q subintervals, it follows (Dirichlet’s drawer principle) that some subinterval
contains more than one point. Suppose that {q ′x} and {q ′′x} lie in the same
subinterval and 0 ≤ q ′ < q ′′ ≤ Q . Take q = q ′′ − q ′ and p = �q ′′x
 − �q ′x
;
then 1 ≤ q ≤ Q and |qx − p| = |{q ′′x} − {q ′x}| < 1/Q :∣∣∣∣x − p

q

∣∣∣∣ <
1

qQ
≤ 1

q2
. (1.34)

If p and q have any common factors, cancel them; this will not change the left
side of (1.34), and it will decrease q .

For each Q , therefore, there is an irreducible p/q satisfying (1.34).‡ Sup-
pose there are only finitely many irreducible solutions of (1.33), say p1/q1, . . . ,
pm/qm . Since x is irrational, the |x − pk/qk | are all positive, and it is possible
to choose Q so that Q−1 is smaller than each of them. But then the p/q of (1.34)
is a solution of (1.33), and since |x − p/q | < 1/Q , there is a contradiction. ■

In the measure theory of Diophantine approximation, one looks at the set
of real x having such and such approximation properties and tries to show that
this set is negligible or else that its complement is. Since the set of rationals is
negligible, Theorem 1.4 implies such a result: Apart from a negligible set of x ,
(1.33) has infinitely many irreducible solutions.

What happens if the inequality (1.33) is tightened? Consider∣∣∣∣x − p

q

∣∣∣∣ <
1

q2ϕ(q)
, (1.35)

and let Aϕ consist of the real x for which (1.35) has infinitely many irreducible
solutions. Under what conditions on ϕ will Aϕ have negligible complement? If
ϕ(q) ≤ 1, then (1.35) is weaker than (1.33): ϕ(q)> 1 in the interesting cases.
Since x satisfies (1.35) for infinitely many irreducible p/q if and only if x − �x

does, Aϕ may as well be redefined as the set of x in (0, 1) (or even as the set
of irrational x in (0, 1)) for which (1.35) has infinitely many solutions.

Theorem 1.5
Suppose that ϕ is positive and nondecreasing. If

∑
q

1

qϕ(q)
= ∞, (1.36)

then Aϕ has negligible complement.

†Although the fact is not technically necessary to the proof, these points are distinct: {q ′x} = {q ′′x}
implies (q ′′ − q ′)x = �q ′′x
 − �q ′x
, which in turn implies that x is rational unless q ′ = q ′′.
‡This much of the proof goes through even if x is rational.
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Theorem 1.4 covers the case ϕ(q) ≡ 1. Although this is the natural place
to state Theorem 1.5 in its general form, the proof, which involves continued
fractions and the ergodic theorem, must be postponed; see Section 24, p. 324.
The converse, on the other hand, has a very simple proof.

Theorem 1.6
Suppose that ϕ is positive. If

∑
q

1

qϕ(q)
< ∞, (1.37)

then Aϕ is negligible.

Proof. Given ε, choose q0 so that
∑

q≥q0
1/qϕ(q) < ε/4. If x ∈ Aϕ , then

(1.35) holds for some q ≥ q0, and since 0 < x < 1, the corresponding p lies in
the range 0 ≤ p ≤ q . Therefore,

Aϕ ⊂
⋃

q≥q0

q⋃
p=0

(
p

q
− 1

q2ϕ(q)
,

p

q
+ 1

q2ϕ(q)

]
.

The right side here is a countable union of intervals covering Aϕ , and the sum
of their lengths is

∑
q≥q0

q∑
p=0

2

q2ϕ(q)
=

∑
q≥q0

2(q + 1)

q2ϕ(q)
≤

∑
q≥q0

4

qϕ(q)
< ε.

Thus Aϕ satisfies the definition ((1.22) and (1.23)) of negligibility. ■

If ϕ1(q) ≡ 1, then (1.36) holds and hence Aϕ has negligible complement
(as follows also from Theorem 1.4). If ϕ2(q) = qε , however, then (1.37) holds
and Aϕ2 itself is negligible. Outside the negligible set Ac

ϕ1
∪ Aϕ2 , therefore,

|x − p/q | < 1/q2 has infinitely many irreducible solutions but |x − p/q | <

1/q2+ε has only finitely many. Similarly, since
∑

q 1/(q log q) diverges but∑
q 1/(q log1+ε q) converges, outside a negligible set |x − p/q | < 1/(q2 log q)

has infinitely many irreducible solutions but |x − p/q | < 1/(q2 log1+ε q) has
only finitely many.

Rational approximations to x obtained by truncating its binary (or decimal)
expansion are very inaccurate: see Example 4.17. The sharp rational approx-
imations to x come from truncation of its continued-fraction expansion: see
Section 24.

PROBLEMS

Some problems involve concepts not required for an understanding of the text,
or concepts treated only in later sections; there are no problems whose solutions
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are used in the text itself. An arrow ↑ points back to a problem (the one
immediately preceding if no number is given) the solution and terminology of
which are assumed. See Notes on the Problems, p. 589.

1.1. .(a) Show that a discrete probability space (see Example 2.8 for the
formal definition) cannot contain an infinite sequence A1, A2, . . . of
independent events each of probability 1

2 . Since An could be iden-
tified with heads on the nth toss of a coin, the existence of such a
sequence would make this section superfluous.

(b) Suppose that 0 ≤ pn ≤ 1, and put αn = min{pn , 1 − pn}. Show that,
if
∑

n αn diverges, then no discrete probability space can contain
independent events A1, A2, . . . such that An has probability pn .

1.2. Show that N and N c are dense [A15] in (0, 1].

1.3. ↑ Define a set A to be trifling† if for each ε there exists a finite sequence
of intervals Ik satisfying (1.22) and (1.23). This definition and the defi-
nition of negligibility apply as they stand to all sets on the real line, not
just to subsets of (0, 1].
(a) Show that a trifling set is negligible.
(b) Show that the closure of a trifling set is also trifling.
(c) Find a bounded negligible set that is not trifling.
(d) Show that the closure of a negligible set may not be negligible.
(e) Show that finite unions of trifling sets are trifling but that this can

fail for countable unions.

1.4. ↑ For i = 0, . . . , r − 1, let Ar (i ) be the set of numbers in (0, 1] whose
nonterminating expansions in the base r do not contain the digit i .
(a) Show that Ar (i ) is trifling.
(b) Find a trifling set A such that every point in the unit interval can be

represented in the form x+y with x and y in A.
(c) Let Ar (il , . . . , ik ) consist of the numbers in the unit interval in whose

base-r expansions the digits il , . . . , ik nowhere appear consecutively
in that order. Show that it is trifling. What does this imply about the
monkey that types at random?

1.5. ↑ The Cantor set C can be defined as the closure of A3(1).
(a) Show that C is uncountable but trifling.
(b) From [0, 1] remove the open middle third

(1
3 , 2

3

)
; from the remainder,

a union of two closed intervals, remove the two open middle thirds(1
9 , 2

9

)
and

(7
9 , 8

9

)
. Show that C is what remains when this process is

continued ad infinitum.
(c) Show that C is perfect [A15].

†Like negligible, trifling is a nonce word used only here. The trifling sets are exactly the sets of
content 0: See Problem 3.15.
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1.6. Put M (t) = ∫ 1
0 etsn(ω)dω, and show by successive differentiations under

the integral that

M (k)(0) =
∫ 1

0
sk

n (ω) dω. (1.38)

Over each dyadic interval of rank n , sn(ω) has a constant value of
the form ±1 ± 1 ± · · · ± 1, and therefore M (t) = 2−n ∑ exp t(±1 ±
1 ± · · · ± 1), where the sum extends over all 2n n-long sequences of
+1’s and −1’s. Thus

M (t) =
(

et + e−t

2

)n

= (cosh t)n . (1.39)

Use this and (1.38) to give new proofs of (1.16), (1.18), and (1.28).
(This, the method of moment generating functions, will be investigated
systematically in Section 9.)

1.7. ↑ By an argument similar to that leading to (1.39) show that the Rade-
macher functions satisfy

∫ 1

0
exp

[
i

n∑
k=1

ak rk (ω)

]
dω =

n∏
k=1

eiak + e−iak

2

=
n∏

k=1

cos ak .

Take ak = t2−k , and from
∑∞

k=1 rk (ω)2−k = 2ω − 1 deduce

sin t

t
=

n∏
k=1

cos
t

2k
(1.40)

by letting n → ∞ inside the integral above. Derive Vieta’s formula

2

π
=

√
2

2

√
2 + √

2

2

√
2 +

√
2 + √

2

2
· · · .

1.8. A number ω is normal in the base 2 if and only if for each positive
ε there exists an n0(ε, ω) such that |n−1 ∑n

i=1 di (ω) − 1
2 | < ε for all n

exceeding n0(ε, ω). Theorem 1.2 concerns the entire dyadic expansion,
whereas Theorem 1.1 concerns only the beginning segment. Point up the
difference by showing that for ε < 1

2 the n0(ε, ω) above cannot be the
same for all ω in N —in other words, n−1 ∑n

i=1 di (ω) converges to 1
2

for all ω in N , but not uniformly. But see Problem 13.9.
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1.9. ↑ 1.3
(a) Using the finite form of Theorem 1.3(ii), together with Problem

1.3(b), show that a trifling set is nowhere dense [A15].
(b) Put B = ⋃

n(rn − 2−n−2, rn + 2−n−2], where r1, r2, . . . is an enumer-
ation of the rationals in (0, 1]. Show that (0, 1] − B is nowhere dense
but not trifling or even negligible.

(c) Show that a compact negligible set is trifling.

1.10. ↑ A set of the first category [A15] can be represented as a countable
union of nowhere dense sets; this is a topological notion of smallness,
just as negligibility is a metric notion of smallness. Neither condition
implies the other:
(a) Show that the nonnegligible set N of normal numbers is of the

first category by proving that Am = ⋂∞
n=m

[
ω: |n−1sn(ω)| < 1

2

]
is

nowhere dense and N ⊂ ⋃
m Am .

(b) According to a famous theorem of Baire, a nonempty interval is not
of the first category. Use this fact to prove that the negligible set
N c = (0, 1] − N is not of the first category.

1.11. Prove:
(a) If x is rational, (1.33) has only finitely many irreducible solutions.
(b) Suppose that ϕ(q) ≥ 1 and (1.35) holds for infinitely many pairs p,

q but only for finitely many relatively prime ones. Then x is rational.
(c) If ϕ goes to infinity too rapidly, then Aϕ is negligible (Theorem

1.6). But however rapidly ϕ goes to infinity, Aϕ is nonempty, even
uncountable. Hint : Consider x = ∑∞

k=1 1/2α(k) for integral α(k)

increasing very rapidly to infinity.

SECTION 2 PROBABILITY MEASURES

Spaces

Let � be an arbitrary space or set of points ω. In probability theory � consists
of all the possible results or outcomes ω of an experiment or observation. For
observing the number of heads in n tosses of a coin the space � is {0, 1, . . . , n};
for describing the complete history of the n tosses � is the space of all 2n

n-long sequences of H’s and T’s; for an infinite sequence of tosses � can be
taken as the unit interval as in the preceding section; for the number of α-
particles emitted by a substance during a unit interval of time or for the number
of telephone calls arriving at an exchange � is {0, 1, 2, . . .}; for the position of
a particle � is three-dimensional Euclidean space; for describing the motion of
the particle � is an appropriate space of functions; and so on. Most �’s to be
considered are interesting from the point of view of geometry and analysis as
well as that of probability.
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Viewed probabilistically, a subset of � is an event and an element ω of �

is a sample point .

Assigning Probabilities

In setting up a space � as a probabilistic model, it is natural to try and
assign probabilities to as many events as possible. Consider again the case
� = (0, 1]—the unit interval. It is natural to try and go beyond the definition
(1.3) and assign probabilities in a systematic way to sets other than finite unions
of intervals. Since the set of nonnormal numbers is negligible, for example, one
feels it ought to have probability 0. For another probabilistically interesting set
that is not a finite union of intervals, consider

∞⋃
n=1

[ω: − a < s1(ω), . . . , sn−1(ω) < b, sn(ω) = −a], (2.1)

where a and b are positive integers. This is the event that the gambler’s fortune
reaches −a before it reaches +b; it represents ruin for a gambler with a dollars
playing against an adversary with b dollars, the rule being that they play until
one or the other runs out of capital.

The union in (2.1) is countable and disjoint, and for each n the set in the
union is itself a union of certain of the intervals (1.9). Thus (2.1) is a countably
infinite disjoint union of intervals, and it is natural to take as its probability
the sum of the lengths of these constituent intervals. Since the set of normal
numbers is not a countable disjoint union of intervals, however, this extension of
the definition of probability would still not cover all the interesting sets (events)
in (0, 1].

It is, in fact, not fruitful to try to predict just which sets probabilistic analysis
will require and then assign probabilities to them in some ad hoc way. The
successful procedure is to develop a general theory that assigns probabilities at
once to the sets of a class so extensive that most of its members never actually
arise in probability theory. That being so, why not ask for a theory that goes all
the way and applies to every set in a space �? In the case of the unit interval,
should there not exist a well-defined probability that the random point ω lies in
A, whatever the set A may be? The answer turns out to be no (see p. 45), and
it is necessary to work within subclasses of the class of all subsets of a space
�. The classes of the appropriate kinds—the fields and σ -fields—are defined
and studied in this section. The theory developed here covers the spaces listed
above, including the unit interval, and a great variety of others.

Classes of Sets

It is necessary to single out for special treatment classes of subsets of a space
�, and to be useful, such a class must be closed under various of the operations
of set theory. Once again the unit interval provides an instructive example.
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EXAMPLE 2.1†

Consider the set N of normal numbers in the form (1.24), where sn(ω) is the
sum of the first n Rademacher functions. Since a point ω lies in N if and only
if limn n−1sn(ω) = 0, N can be put in the form

N =
∞⋂

k=1

∞⋃
m=1

∞⋂
n=m

[ω: |n−1sn(ω)| < k−1]. (2.2)

Indeed, because of the very meaning of union and of intersection, ω lies in
the set on the right here if and only if for every k there exists an m such
that |n−1sn(ω)| < k−1 holds for all n ≥ m , and this is just the definition of
convergence to 0—with the usual ε replaced by k−1 to avoid the formation of
an uncountable intersection. Since sn(ω) is constant over each dyadic interval
of rank n , the set [ω: n−1sn(ω)| < k−1] is a finite disjoint union of intervals.
The formula (2.2) shows explicitly how N is constructed in steps from these
simpler sets.

A systematic treatment of the ideas in Section 1 thus requires a class of sets
that contains the intervals and is closed under the formation of countable unions
and intersections. Note that a singleton [A1] {x} is a countable intersection
∩n(x − n−1, x ] of intervals. If a class contains all the singletons and is closed
under the formation of arbitrary unions, then of course it contains all the subsets
of �. As the theory of this section and the next does not apply to such extensive
classes of sets, attention must be restricted to countable set-theoretic operations
and in some cases even to finite ones.

Consider now a completely arbitrary nonempty space �. A class F of
subsets of � is called a field‡ if it contains � itself and is closed under the
formation of complements and finite unions:

(i) � ∈ F ;

(ii) A ∈ F implies Ac ∈ F ;

(iii) A, B ∈ F implies A ∪ B ∈ F .

Since � and the empty set Ø are complementary, (i) is the same in the
presence of (ii) as the assumption Ø ∈ F . In fact, (i) simply ensures that F is
nonempty: If A ∈ F , then Ac ∈ F by (ii) and � = A ∪ Ac ∈ F by (iii).

By DeMorgan’s law, A ∩ B = (Ac ∪ Bc)c and A ∪ B = (Ac ∩ Bc)c . If F

is closed under complementation, therefore, it is closed under the formation of

†Many of the examples in the book simply illustrate the concepts at hand, but others contain definitions
and facts needed subsequently.
‡The term algebra is often used in place of field .
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finite unions if and only if it is closed under the formation of finite intersections.
Thus (iii) can be replaced by the requirement

(iii′) A, B ∈ F implies A ∩ B ∈ F .

A class F of subsets of � is a σ -field if it is a field and if it is also closed
under the formation of countable unions:

(iv) A1, A2, . . . ∈ F implies A1 ∪ A2 ∪ · · · ∈ F .

By the infinite form of DeMorgan’s law, assuming (iv) is the same thing as
assuming

(iv′) A1, A2, . . . ∈ F implies A1 ∩ A2 ∩ · · · ∈ F .

Note that (iv) implies (iii) because one can take A1 = A and An = B for
n ≥ 2. A field is sometimes called a finitely additive field to stress that it need
not be a σ -field. A set in a given class F is said to be measurable F or to be
an F -set . A field or σ -field of subsets of � will sometimes be called a field or
σ -field in �.

EXAMPLE 2.2
Section 1 began with a consideration of the sets (1.2), the finite disjoint unions
of subintervals of � = (0, 1]. Augmented by the empty set, this class is a field
B0: Suppose that A = (a1, a ′

1] ∪ · · · ∪ (am , a ′
m], where the notation is so chosen

that a1 ≤ · · · ≤ am . If the (ai , a ′
i ] are disjoint, then Ac is (0, a1] ∪ (a ′

1, a2] ∪ · · · ∪
(a ′

m−1, am] ∪ (a ′
m , 1] and so lies in B0 (some of these intervals may be empty,

as a ′
i and ai+1 may coincide). If B = (b1, b ′

1] ∪ · · · ∪ (bn , b ′
n], the (bj , b ′

j ] again
disjoint, then A ∩ B = ⋃m

i=1

⋃n
j=1{(ai , a ′

i ] ∩ (bj , b ′
j ]}; each intersection here is

again an interval or else the empty set, and the union is disjoint, and hence
A ∩ B is in B0. Thus B0 satisfies (i), (ii), and (iii′).

Although B0 is a field, it is not a σ -field: It does not contain the singletons
{x}, even though each is a countable intersection

⋂
n(x − n−1, x ] of B0-sets.

And B0 does not contain the set (2.1), a countable union of intervals that cannot
be represented as a finite union of intervals. The set (2.2) of normal numbers
is also outside B0.

The definitions above involve distinctions perhaps most easily made clear
by a pair of artificial examples.

EXAMPLE 2.3
Let F consist of the finite and the cofinite sets (A being cofinite if Ac is
finite). Then F is a field. If � is finite, then F contains all the subsets of
� and hence is a σ -field as well. If � is infinite, however, then F is not a
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σ -field. Indeed, choose in � a set A that is countably infinite and has infinite
complement. (For example, choose a sequence ω1, ω2, . . . of distinct points
in � and take A = {ω2, ω4, . . .}.) Then A /∈ F , even though A is the union,
necessarily countable, of the singletons it contains and each singleton is in F .
This shows that the definition of σ -field is indeed more restrictive than that of
field.

EXAMPLE 2.4
Let F consist of the countable and the cocountable sets (A being cocountable
if Ac is countable). Then F is a σ -field. If � is uncountable, then it contains a
set A such that A and Ac are both uncountable.† Such a set is not in F , which
shows that even a σ -field may not contain all the subsets of �; furthermore, this
set is the union (uncountable) of the singletons it contains and each singleton
is in F , which shows that a σ -field may not be closed under the formation of
arbitrary unions.

The largest σ -field in � is the power class 2�, consisting of all the subsets
of �; the smallest σ -field consists only of the empty set and � itself.

The elementary facts about fields and σ -fields are easy to prove: If F

is a field, then A, B ∈ F implies A − B = A ∩ Bc ∈ F and A�B = (A − B) ∪
(B − A) ∈ F . Further, it follows by induction on n that A1, . . . , An ∈ F implies
A1 ∪ · · · ∪ An ∈ F and A1 ∩ · · · ∩ An ∈ F .

A field is closed under the finite set-theoretic operations, and a σ -field is
closed also under the countable ones. The analysis of a probability problem
usually begins with the sets of some rather small class A , such as the class of
subintervals of (0, 1]. As in Example 2.1, probabilistically natural constructions
involving finite and countable operations can then lead to sets outside the initial
class A . This leads one to consider a class of sets that (i) contains A and (ii)
is a σ -field; it is natural and convenient, as it turns out, to consider a class that
has these two properties and that in addition (iii) is in a certain sense as small
as possible. As will be shown, this class is the intersection of all the σ -fields
containing A ; it is called the σ -field generated by A and is denoted by σ (A ).

There do exist σ -fields containing A , the class of all subsets of � being
one. Moreover, a completely arbitrary intersection of σ -fields (however many
of them there may be) is itself a σ -field: Suppose that F = ⋂

θ Fθ , where θ

†If � is the unit interval, for example, take A = (0, 1
2 ], say. To show that the general uncountable �

contains such an A requires the axiom of choice [A8]. As a matter of fact, to prove the existence of the
sequence alluded to in Example 2.3 requires a form of the axiom of choice, as does even something
so apparently down-to-earth as proving that a countable union of negligible sets is negligible. Most
of us use the axiom of choice completely unaware of the fact. Even Borel and Lebesgue did; see
Wagon, pp. 217 ff.
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ranges over an arbitrary index set and each Fθ is a σ -field. Then � ∈ Fθ for
all θ , so that � ∈ F . And A ∈ F implies for each θ that A ∈ Fθ and hence
Ac ∈ Fθ , so that Ac ∈ F . If An ∈ F for each n , then An ∈ Fθ for each n and θ ,
so that

⋃
n An lies in each Fθ and hence in F .

Thus the intersection in the definition of σ(A ) is indeed a σ -field containing
A . It is as small as possible, in the sense that it is contained in every σ -field
that contains A : if A ⊂ G and G is a σ -field, then G is one of the σ -fields in
the intersection defining σ(A ), so that σ(A ) ⊂ G . Thus σ(A ) has these three
properties:

(i) A ⊂ σ(A );

(ii) σ(A ) is a σ -field ;

(iii) if A ⊂ G and G is a σ -field, then σ(A ) ⊂ G .
The importance of σ -fields will gradually become clear.

EXAMPLE 2.5
If F is a σ -field, then obviously σ(F ) = F . If A consists of the singletons,
then σ(A ) is the σ -field in Example 2.4. If A is empty or A = {Ø} or A =
{�}, then σ(A ) = {Ø, �}. If A ⊂ A ′, then σ(A ) ⊂ σ(A ′). If A ⊂ A ′ ⊂
σ(A ), then σ(A ) = σ(A ′).

EXAMPLE 2.6
Let I be the class of subintervals of � = (0, 1], and define B = σ(I ). The
elements of B are called the Borel sets of the unit interval. The field B0 of
Example 2.2 satisfies I ⊂ B0 ⊂ B, and hence σ(B0) = B.

Since B contains the intervals and is a σ -field, repeated finite and countable
set-theoretic operations starting from intervals will never lead outside B. Thus
B contains the set (2.2) of normal numbers. It also contains for example the
open sets in (0, 1]: If G is open and x ∈ G , then there exist rationals ax and bx

such that x ∈ (ax , bx ] ⊂ G . But then G = ⋃
x∈G(ax , bx ]; since there are only

countably many intervals with rational endpoints, G is a countable union of
elements of I and hence lies in B.

In fact, B contains all the subsets of (0, 1] actually encountered in ordinary
analysis and probability. It is large enough for all “practical” purposes. It does
not contain every subset of the unit interval, however; see the end of Section 3
(p. 45). The class B will play a fundamental role in all that follows.

Probability Measures

A set function is a real-valued function defined on some class of subsets of
�. A set function P on a field F is a probability measure if it satisfies these
conditions:
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(i) 0 ≤ P(A) ≤ 1 for A ∈ F ;

(ii) P(Ø) = 0, P(�) = 1;

(iii) if A1, A2, . . . is a disjoint sequence of F -sets and if
⋃∞

k=1 Ak ∈ F , then†

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P(Ak ). (2.3)

The condition imposed on the set function P by (iii) is called countable
additivity . Note that, since F is a field but perhaps not a σ -field, it is necessary
in (iii) to assume that

⋃∞
k=1 Ak lies in F . If A1, . . . , An are disjoint F -sets, then⋃n

k=1 Ak is also in F and (2.3) with An+1 = An+2 = · · · = Ø gives

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

P(Ak ). (2.4)

The condition that (2.4) holds for disjoint F -sets is finite additivity ; it is a con-
sequence of countable additivity. It follows by induction on n that P is finitely
additive if (2.4) holds for n = 2—if P(A ∪ B) = P(A) + P(B) for disjoint F -
sets A and B .

The conditions above are redundant, because (i) can be replaced by P(A) ≥
0 and (ii) by P(�) = 1. Indeed, the weakened forms (together with (iii)) imply
that P(�) = P(�) + P(Ø) + P(Ø) + · · ·, so that P(Ø) = 0, and 1 = P(�) =
P(A) + P(Ac), so that P(A) ≤ 1.

EXAMPLE 2.7
Consider as in Example 2.2 the field B0 of finite disjoint unions of subintervals
of � = (0, 1]. The definition (1.3) assigns to each B0-set a number—the sum
of the lengths of the constituent intervals—and hence specifies a set function P
on B0. Extended inductively, (1.4) says that P is finitely additive. In Section
1 this property was deduced from the additivity of the Riemann integral (see
(1.5)). In Theorem 2.2 below, the finite additivity of P will be proved from
first principles, and it will be shown that P is, in fact, countably additive—is
a probability measure on the field B0. The hard part of the argument is in the
proof of Theorem 1.3, already done; the rest will be easy.

†As the left side of (2.3) is invariant under permutations of the An , the same must be true of the right
side. But in fact, according to Dirichlet’s theorem [A26], a nonnegative series has the same value
whatever order the terms are summed in.
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If F is a σ -field in � and P is a probability measure on F , the triple
(�, F , P ) is called a probability measure space, or simply a probability space.
A support of P is any F -set A for which P(A) = 1.

EXAMPLE 2.8
Let F be the σ -field of all subsets of a countable space �, and let p(ω) be a
nonnegative function on �. Suppose that

∑
ω∈� p(ω) = 1, and define P(A) =∑

ω∈A p(ω); since p(ω) ≥ 0, the order of summation is irrelevant by Dirichlet’s
theorem [A26]. Suppose that A = ⋃∞

i=1 Ai , where the Ai are disjoint, and let
ωi1, ωi2, . . . be the points in Ai . By the theorem on nonnegative double series
[A27], P(A) = ∑

ij p(ωij ) = ∑
i

∑
j p(ωij ) = ∑

i P(Ai ), and so P is countably
additive. This (�, F , P ) is a discrete probability space. It is the formal basis
for discrete probability theory.

EXAMPLE 2.9
Now consider a probability measure P on an arbitrary σ -field F in an arbitrary
space �; P is a discrete probability measure if there exist finitely or countably
many points ωk and masses mk such that P(A) = ∑

ωk ∈A mk for A in F . Here P
is discrete, but the space itself may not be. In terms of indicator functions, the
defining condition is P(A) = ∑

k mk IA(ωk ) for A ∈ F . If the set {ω1, ω2, . . .}
lies in F , then it is a support of P .

If there is just one of these points, say ω0, with mass m0 = 1, then P is a
unit mass at ω0. In this case P(A) = IA(ω0) for A ∈ F .

Suppose that P is a probability measure on a field F , and that A, B ∈ F

and A ⊂ B . since P(A) + P(B − A) = P(B), P is monotone:

P(A) ≤ P(B) if A ⊂ B . (2.5)

It follows further that P(B − A) = P(B) − P(A), and as a special case,

P(Ac) = 1 − P(A). (2.6)

Other formulas familiar from the discrete theory are easily proved. For
example,

P(A) + P(B) = P(A ∪ B) + P(A ∩ B), (2.7)

the common value of the two sides being P(A ∪ Bc) + 2P(A ∩ B) + P(Ac ∩ B).
Subtraction gives

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (2.8)
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This is the case n = 2 of the general inclusion-exclusion formula:

P

(
n⋃

k=1

Ak

)
=
∑

i

P(Ai ) −
∑
i<j

P(Ai ∩ Aj ) (2.9)

+
∑

i<j<k

P(Ai ∩ Aj ∩ Ak ) + · · · + (−1)n+1P(Al ∩ · · · ∩ An).

To deduce this inductively from (2.8), note that (2.8) gives

P

(
n+1⋃
k=1

Ak

)
= P

(
n⋃

k=1

Ak

)
+ P(An+1) − P

(
n⋃

k=1

(Ak ∩ An+1)

)
.

Applying (2.9) to the first and third terms on the right gives (2.9) with n+1 in
place of n .

If B1 = A1 and Bk = Ak ∩ Ac
1 ∩ · · · ∩ Ac

k−1, then the Bk are disjoint and⋃n
k=1 Ak = ⋃n

k=1 Bk , so that P(∪n
k=1Ak ) = ∑n

k=1 P(Bk ). Since P(Bk ) ≤ P(Ak )

by monotonicity, this establishes the finite subadditivity of P :

P

(
n⋃

k=1

Ak

)
≤

n∑
k=1

P(Ak ). (2.10)

Here, of course, the Ak need not be disjoint. Sometimes (2.10) is called Boole’s
inequality .

In these formulas all the sets are naturally assumed to lie in the field F . The
derivations above involve only the finite additivity of P . Countable additivity
gives further properties:

Theorem 2.1
Let P be a probability measure on a field F .

(i) Continuity from below: If An and A lie in F and† An ↑ A, then P(An) ↑
P(A).

(ii) Continuity from above: If An and A lie in F and An ↓ A, then P(An) ↓ P(A).

(iii) Countable subadditivity: If A1, A2, . . . and
⋃∞

k=1 Ak lie in F (the Ak need
not be disjoint), then

P

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

P(Ak ). (2.11)

†For the notation, see [A4] and [A10].
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Proof. For (i), put B1 = A1 and Bk = Ak − Ak−1. Then the Bk are disjoint,
A = ⋃∞

k=1 Bk , and An = ⋃n
k=1 Bk , so that by countable and finite additivity,

P(A) = ∑∞
k=1 P(Bk ) = limn

∑n
k=1 P(Bk ) = limn P(An). For (ii), observe that

An ↓ A implies Ac
n ↑ Ac , so that 1 − P(An) ↑ 1 − P(A).

As for (iii), increase the right side of (2.10) to
∑∞

k=1 P(Ak ) and then apply
part (i) to the left side. ■

EXAMPLE 2.10
In the presence of finite additivity, a special case of (ii) implies countable
additivity. If P is a finitely additive probability measure on the field F , and
if An ↓ Ø for sets An in F implies P(An) ↓ 0, then P is countably additive.
Indeed, if B = ⋃

k Bk for disjoint sets Bk (B and the Bk in F ), then Cn =⋃
k > n Bk = B −⋃

k≤n Bk lies in the field F , and Cn ↓ Ø. The hypothesis,
together with finite additivity, gives P(B) −∑n

k=1 P(Bk ) = P(Cn) → 0, and
hence P(B) = ∑∞

k=1 P(Bk ).

Lebesgue Measure on the Unit Interval

The definition (1.3) specifies a set function on the field B0 of finite disjoint
unions of intervals in (0, 1]; the problem is to prove P countably additive. It
will be convenient to change notation from P to λ, and to denote by I the
class of subintervals (a, b] of (0, 1]; then λ(I ) = |I | = b − a is ordinary length.
Regard Ø as an element of I of length 0. If A = ⋃n

i=1 Ii , the Ii being disjoint
I -sets, the definition (1.3) in the new notation is

λ(A) =
n∑

i=1

λ(Ii ) =
n∑

i=1

|Ii |. (2.12)

As pointed out in Section 1, there is a question of uniqueness here, because A
will have other representations as a finite disjoint union

⋃m
j=1 Jj of I -sets. But

I is closed under the formation of finite intersections, and so the finite form of
Theorem 1.3(iii) gives

n∑
i=1

|Ii | =
n∑

i=1

m∑
j=1

|Ii ∩ Jj | =
m∑

j=1

|Jj |. (2.13)

(Some of the Ii ∩ Jj may be empty, but the corresponding lengths are then 0.)
The definition is indeed consistent.

Thus (2.12) defines a set function λ on B0, a set function called Lebesgue
measure.
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Theorem 2.2
Lebesgue measure λ is a (countably additive) probability measure on the
field B0.

Proof. Suppose that A = ⋃∞
k=1 Ak , where A and the Ak are B0-sets and

the Ak are disjoint. Then A = ⋃n
i=1 Ii and Ak = ⋃mk

j=1 Jkj are disjoint unions of
I -sets, and (2.12) and Theorem 1.3(iii) give

λ(A) =
n∑

i=1

|Ii | =
n∑

i=1

∞∑
k=1

mk∑
j=1

|Ii ∩ Jkj | (2.14)

=
∞∑

k=1

mk∑
j=1

|Jkj | =
∞∑

k=1

λ(Ak ).
■

In Section 3 it is shown how to extend λ from B0 to the larger class
B = σ(B0) of Borel sets in (0, 1]. This will complete the construction of λ as
a probability measure (countably additive, that is) on B, and the construction
is fundamental to all that follows. For example, the set N of normal numbers
lies in B (Example 2.6), and it will turn out that λ(N ) = 1, as probabilistic
intuition requires. (In Chapter 2, λ will be defined for sets outside the unit
interval as well.)

It is well to pause here and consider just what is involved in the construction
of Lebesgue measure on the Borel sets of the unit interval. That length defines a
finitely additive set function on the class I of intervals in (0, 1] is a consequence
of Theorem 1.3 for the case of only finitely many intervals and thus involves only
the most elementary properties of the real number system. But proving countable
additivity on I requires the deeper property of compactness (the Heine-Borel
theorem). Once λ has been proved countably additive on I , extending it to B0

by the definition (2.12) presents no real difficulty: the arguments involving (2.13)
and (2.14) are easy. Difficulties again arise, however, in the further extension of
λ from B0 to B = σ(B0), and here new ideas are again required. These ideas
are the subject of Section 3, where it is shown that any probability measure on
any field can be extended to the generated σ -field.

Sequence Space†

Let S be a finite set of points regarded as the possible outcomes of a simple
observation or experiment. For tossing a coin, S can be {H, T} or {0, 1}; for
rolling a die, S = {1, . . . , 6}; in information theory, S plays the role of a finite
alphabet. Let � = S ∞ be the space of all infinite sequences

ω = (z1(ω), z2(ω), . . .) (2.15)

†The ideas that follow are basic to probability theory and are used further on, in particular in Section 24
and (in more elaborate form) Section 36. On a first reading, however, one might prefer to skip to
Section 3 and return to this topic as the need arises.
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of elements of S : zk (ω) ∈ S for all ω ∈ S ∞ and k ≥ 1. The sequence (2.15)
can be viewed as the result of repeating infinitely often the simple experiment
represented by S . For S = {0, 1}, the space S ∞ is closely related to the unit
interval; compare (1.8) and (2.15).

The space S ∞ is an infinite-dimensional Cartesian product. Each zk (·) is
a mapping of S ∞ onto S ; these are the coordinate functions , or the natural
projections . Let S n = S × · · · × S be the Cartesian product of n copies of S ;
it consists of the n-long sequences (u1, . . . , un) of elements of S . For such a
sequence, the set

[ω: (z1(ω), . . . , zn(ω)) = (u1, . . . , un)] (2.16)

represents the event that the first n repetitions of the experiment give the out-
comes u1, . . . , un in sequence. A cylinder of rank n is a set of the form

A = [ω: (z1(ω), . . . , zn(ω)) ∈ H ], (2.17)

where H ⊂ S n . Note that A is nonempty if H is. If H is a singleton in S n ,
(2.17) reduces to (2.16), which can be called a thin cylinder.

Let C0 be the class of cylinders of all ranks. Then C0 is a field : S ∞ and the
empty set have the form (2.17) for H = S n and for H = Ø. If H is replaced
by S n − H , then (2.17) goes into its complement, and hence C0 is closed under
complementation. As for unions, consider (2.17) together with

B = [ω: (z1(ω), . . . , zm(ω)) ∈ I ], (2.18)

a cylinder of rank m . Suppose that n ≤ m (symmetry); if H ′ consists of the
sequences (u1, . . . , um) in S m for which the truncated sequence (u1, . . . , un) lies
in H , then (2.17) has the alternative form

A = [ω: (z1(ω), . . . , zm(ω)) ∈ H ′]. (2.19)

Since it is now clear that

A ∪ B = [ω: (z1(ω), . . . , zm(ω)) ∈ H ′ ∪ I ] (2.20)

is also a cylinder, C0 is closed under the formation of finite unions and hence
is indeed a field.

Let pu , u ∈ S , be probabilities on S —nonnegative and summing to 1. Define
a set function P on C0 (it will turn out to be a probability measure) in this way:
For a cylinder A given by (2.17), take

P(A) =
∑

H

pu1 · · · pun , (2.21)
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the sum extending over all the sequences (u1, . . . , un) in H . As a special case,

P [ω: (z1(ω), . . . , zn(ω)) = (u1, . . . , un)] = pu1 · · · pun . (2.22)

Because of the products on the right in (2.21) and (2.22), P is called product
measure; it provides a model for an infinite sequence of independent repetitions
of the simple experiment represented by the probabilities pu on S . In the case
where S = {0, 1} and p0 = p1 = 1

2 , it is a model for independent tosses of a fair
coin, an alternative to the model used in Section 1.

The definition (2.21) presents a consistency problem, since the cylinder
A will have other representations. Suppose that A is also given by (2.19). If
n = m , then H and H ′ must coincide, and there is nothing to prove. Suppose
then (symmetry) that n < m . Then H ′ must consist of those (u1, . . . , um) in S m

for which (u1, . . . , un) lies in H : H ′ = H × S m−n . But then

∑
H ′

pu1 · · · pun pun+1 · · · pum =
∑

H

pu1 · · · pun

∑
S m−n

pun+1 · · · pum (2.23)

=
∑

H

pu1 · · · pun .

The definition (2.21) is therefore consistent. And finite additivity is now easy:
Suppose that A and B are disjoint cylinders given by (2.17) and (2.18). Suppose
that n ≤ m , and put A in the form (2.19). Since A and B are disjoint, H ′ and I
must be disjoint as well, and by (2.20),

P(A ∪ B) =
∑
H ′∪I

pu1 · · · pum = P(A) + P(B). (2.24)

Taking H = S n in (2.21) shows that P(S ∞) = 1. Therefore, (2.21) defines a
finitely additive probability measure on the field C0.

Now, P is countably additive on C0, but this requires no further argument,
because of the following completely general result.

Theorem 2.3
Every finitely additive probability measure on the field C0 of cylinders in S ∞ is
in fact countably additive.

The proof depends on this fundamental fact:

Lemma. If An ↓ A, where the An are nonempty cylinders, then A is nonempty.

Proof of Theorem 2.3. Assume that the lemma is true, and apply Example
2.10 to the measure P in question: If An ↓ Ø for sets in C0 (cylinders) but P(An)
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does not converge to 0, then P(An) ≥ ε > 0 for some ε. But then the An are
nonempty, which by the lemma makes An ↓ Ø impossible. ■

Proof of the Lemma.† Suppose that At is a cylinder of rank mt , say

At = [ω: (z1(ω), . . . , zmt (ω)) ∈ Ht ], (2.25)

where Ht ⊂ S mt . Choose a point ωn in An , which is nonempty by assumption.
Write the components of the sequences in a square array:

z1(ω1) z1(ω2) z1(ω3) · · ·
z2(ω1) z2(ω2) z2(ω3) · · ·

...
...

...

(2.26)

The nth column of the array gives the components of ωn .
Now argue by a modification of the diagonal method [A14]. Since S is

finite, some element u1 of S appears infinitely often in the first row of (2.26):
for an increasing sequence {n1,k } of integers, z1(ωn1,k ) = u1 for all k . By the
same reasoning, there exist an increasing subsequence {n2,k } of {n1,k } and an
element u2 of S such that z2(ωn2,k ) = u2 for all k . Continue. If nk = nk ,k , then
zr (ωnk )ur for k ≥ r , and hence (z1(ωnk ), . . . , zr (ωnk )) = (u1, . . . , ur ) for k ≥ r .

Let ω
◦ be the element of S ∞ with components ur : ω

◦ = (u1, u2, . . .) =
(z1(ω

◦
), z2(ω

◦
), . . .). Let t be arbitrary. If k ≥ t , then (nk is increasing) nk ≥ t

and hence ωnk ∈ Ank ⊂ At . It follows by (2.25) that, for k ≥ t , Ht contains the
point (z1(ωnk ), . . . , zmt (ωnk )) of S mt . But for k ≥ mt , this point is identical with
(z1(ω

◦
), . . . , zmt (ω

◦
)), which therefore lies in Ht . Thus ω

◦ is a point common
to all the At . ■

Let C be the σ -field in S ∞ generated by C0. By the general theory of the
next section, the probability measure P defined on C0 by (2.21) extends to C .
The term product measure, properly speaking, applies to the extended P . Thus
(S ∞, C , P) is a probability space, one important in ergodic theory (Section 24).

Suppose that S = {0, 1} and p0 = p1 = 1
2 . In this case, (S ∞, C , P) is closely

related to ((0, 1], B, λ), although there are essential differences. The sequence
(2.15) can end in 0’s, but (1.8) cannot. Thin cylinders are like dyadic intervals,
but the sets in C0 (the cylinders) correspond to the finite disjoint unions of inter-
vals with dyadic endpoints, a field somewhat smaller than B0. While nonempty
sets in B0 (for example,

(1
2 , 1

2 + 2−n]
)

can contract to the empty set, nonempty
sets in C0 cannot. The lemma above plays here the role the Heine-Borel theorem
plays in the proof of Theorem 1.3. The product probability measure constructed
here on C0 (in the case S = {0, 1}, p0 = p1 = 1

2 , that is) is analogous to Lebesgue

†The lemma is a special case of Tychonov’s theorem: If S is given the discrete topology, the topological
product S ∞ is compact (and the cylinders are closed).
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measure on B0. But a finitely additive probability measure on B0 can fail to
be countably additive,† which cannot happen in C0.

Constructing σ -Fields‡

The σ -field σ(A ) generated by A was defined from above or from the outside,
so to speak, by intersecting all the σ -fields that contain A (including the σ -field
consisting of all the subsets of �). Can σ(A ) somehow be constructed from
the inside by repeated finite and countable set-theoretic operations starting with
sets in A ?

For any class H of sets in � let H ∗ consist of the sets in H , the comple-
ments of sets in H , and the finite and countable unions of sets in H . Given a
class A , put A0 = A and define A1, A2, . . . inductively by

An = A ∗
n−1. (2.27)

That each An is contained in σ(A ) follows by induction. One might hope that
An = σ(A ) for some n , or at least that ∪∞

n=0An = σ(A ). But this process
applied to the class of intervals fails to account for all the Borel sets.

Let I0 consist of the empty set and the intervals in � = (0, 1] with rational
endpoints, and define In = I ∗

n−1 for n = 1, 2, . . .. It will be shown that
⋃∞

n=0 In

is strictly smaller than B = σ(I0).
If an and bn are rationals decreasing to a and b, then (a , b] = ⋃

m

⋂
n

(am , bn] = ⋃
m(
⋃

n(am , bn]c)c ∈ I4. The result would therefore not be changed
by including in I0 all the intervals in (0.1].

To prove
⋃∞

n−0 In smaller than B, first put

ψ(A1, A2, . . .) = Ac
1 ∪ A2 ∪ A3 ∪ A4 ∪ · · · . (2.28)

Since In−1 contains � = (0, 1] and the empty set, every element of In has the
form (2.28) for some sequence A1, A2, . . . of sets in In−1. Let every positive
integer appear exactly once in the square array

m11 m12 · · ·
m21 m22 · · ·
...

...

Inductively define

�0(A1, A2, . . .) = A1, (2.29)

�n(A1, A2 . . .) = ψ(�n−1(Am11 , Am12 , . . .), �n−1(Am21 , Am22 . . .), . . .),

n = 1, 2, . . . .

†See Problem 2.15.
‡This topic may be omitted.
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It follows by induction that every element of In has the form �n(A1, A2, . . .)
for some sequence of sets in I0. Finally, put

�(A1, A2, . . .) = �1(Am11 , Am12 , . . .) ∪ �2(Am21 , Am22 , . . .) ∪ · · · . (2.30)

Then every element of
⋃∞

n=0 In has the form (2.30) for some sequence A1, A2, . . .
of sets in I0.

If A1, A2, . . . are in B, then (2.28) is in B; it follows by induction that each
�n(A1, A2, . . .) is in B and therefore that (2.30) is in B.

With each ω in (0, 1] associate the sequence (ω1, ω2, . . .) of positive inte-
gers such that ω1 + · · · + ωk is the position of the k th 1 in the nonterminat-
ing dyadic expansion of ω (the smallest n for which

∑n
i=1 dj (ω) = k ). Then

ω ↔ (ω1, ω2, . . .) is a one-to-one correspondence between (0, 1] and the set of
all sequences of positive integers. Let I1, I2, . . . be an enumeration of the sets in
I0, put ϕ(ω) = �(Iω1 , Iω2 , . . .), and define B = [ω: ω /∈ ϕ(ω)]. It will be shown
that B is a Borel set but is not contained in any of the In .

Since ω lies in B if and only if ω lies outside ϕ(ω), B �= ϕ(ω) for every ω.
But every element of

⋃∞
n=0 In has the form (2.30) for some sequence in I0 and

hence has the form ϕ(ω) for some ω. Therefore, B is not a member of
⋃∞

n=0 I1.
It remains to show that B is a Borel set. Let Dk = [ω: ω ∈ Iωk ]. Since

Lk (n) = [ω: ω1 + · · · + ωk = n] = [ω:
∑n−1

j=1 dj (ω) < k = ∑n
j=1 dj (ω)] is a

Borel set, so are [ω: ωk = n] = ⋃∞
m=1 Lk−1(m) ∩ Lk (m + n) and

Dk = [ω: ω ∈ Iwk ] =
⋃

n

([ω: ωk = n] ∩ In).

Suppose that it is shown that

[ω: ω ∈ �n(Iωu1
, Iωu2

. . .)] = �n(Du1 , Du21 , . . .) (2.31)

for every n and every sequence u1, u2, . . . of positive integers. It will then follow
from the definition (2.30) that

Bc = [ω: ω ∈ ϕ(ω)] =
∞⋃

n−1

[
ω: ω ∈ �n(Iωmn1

, Iωmn2
, . . .)

]

=
∞⋃

n=1

�n(Dmn1 , Dmn2 , . . .) = �(D1, D2, . . .).

But as remarked above, (2.30), is a Borel set if the An are. Therefore, (2.31)
will imply that Bc and B are Borel sets.

If n = 0, (2.31) holds because it reduces by (2.29) to [ω: ω ∈ Iωu1
]I = Du1 .

Suppose that (2.31) holds with n−1 in place of n . Consider the condition

ω ∈ �n−1(Iωumk1
, Iωumk2

, . . .). (2.32)
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By (2.28) and (2.29), a necessary and sufficient condition for ω ∈ �n(Iωu1
,

Iωu2
, . . .) is that either (2.32) is false for k = 1 or else (2.32) is true for some

k exceeding 1. But by the induction hypothesis, (2.32) and its negation can
be replaced by ω ∈ �n−1(Dumk1

, Dumk2
, . . .) and its negation. Therefore, ω ∈

�n(Iωu1 , Iωu2 , . . .) if and only if ω ∈ �n(Du1 , Du2 , . . .).
Thus

⋃
n In �= B, and there are Borel sets that cannot be arrived at from the

intervals by any finite sequence of set-theoretic operations, each operation being
finite or countable. It can even be shown that there are Borel sets that cannot
be arrived at by any countable sequence of these operations. On the other hand,
every Borel set can be arrived at by a countable ordered set of these operations
if it is not required that they be performed in a simple sequence. The proof of
this statement—and indeed even a precise explanation of its meaning—depends
on the theory of infinite ordinal numbers.†

PROBLEMS

2.1. Define x ∨ y = max{x , y}, and for a collection {xα} define ∨α xα =
supα xα; define x ∧ y = min{x , y} and ∧αxα = infα xα. Prove that IA∪B =
IA ∨ IB , IA∩B = 1A ∧ IB , IAc = 1 − IA, and IA�B = |IA − IB | in the sense
that there is equality at each point of �. Show that A ⊂ B if and only if
IA ≤ IB pointwise. Check the equation x ∧ (y ∨ z ) = (x ∧ y) ∨ (x ∧ z )

and deduce the distribute law
A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ). By similar arguments prove that

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ),

A�C ⊂ (A�B) ∪ (B�C ),(⋃
n

An

)c

=
⋂

n

Ac
n ,

(⋂
n

An

)c

=
⋃

n

Ac
n .

2.2. Let A1, . . . , An be arbitrary events, and put Uk = ⋃
(Ai1 ∩ · · · ∩ Aik )

and Ik = ⋂
(Ai1 ,

⋃ · · ·⋃Aik ), where the union and intersection extend
over all the k -tuples satisfying 1 ≤ l1 < · · · < ik ≤ n . Show that Uk =
In−k+1.

2.3. .(a) Suppose that � ∈ F and that A, B ∈ F implies A − B = A ∩ Bc ∈
F . Show that F is a field.

†See Problem 2.22.
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(b) Suppose that � ∈ F and that F is closed under the formation of
complements and finite disjoint unions. Show that F need not be a
field.

2.4. Let F1, F2, . . . be classes of sets in a common space �.
(a) Suppose that Fn are fields satisfying Fn ⊂ Fn+1. Show that

⋃∞
n=1 Fn

is a field.
(b) Suppose that Fn are σ -fields satisfying Fn ⊂ Fn+1. Show by example

that
⋃∞

n=1 Fn need not be a σ -field.

2.5. The field f (A ) generated by a class A in � is defined as the intersection
of all fields in � containing A .
(a) Show that f (A ) is indeed a field, that A ⊂ f (A ), and that f (A ) is

minimal in the sense that if G is a field and A ⊂ G , then f (A ) ⊂ G .
(b) Show that for nonempty A , f (A ) is the class of sets of the form⋃m

i=1

⋂ni
j=1 Aij , where for each i and j either Aij ∈ A or Ac

ij ∈ A ,
and where the m sets

⋂ni
j=1 Aij , 1 ≤ i ≤ m , are disjoint. The sets in

f (A ) can thus be explicitly presented, which is not in general true
of the sets in σ(A ).

2.6. ↑
(a) Show that if A consists of the singletons, then f (A ) is the field in

Example 2.3.
(b) Show that f (A ) ⊂ σ(A ), that f (A ) = σ(A ) if A is finite, and

that σ(f (A )) = σ(A ).
(c) Show that if A is countable, then f (A ) is countable.
(d) Show for fields F1 and F2 that f (F1 ∪ F2) consists of the finite

disjoint unions of sets A1 ∩ A2 with Ai ∈ Fi . Extend.

2.7. 2.5 ↑ Let H be a a set lying outside F , where F is a field [or σ -field].
Show that the field [or σ -field] generated by F ∪ {H } consists of sets
of the form

(H ∩ A) ∪ (H c ∩ B), A, B ∈ F . (2.33)

2.8. Suppose for each A in A that Ac is a countable union of elements
of A . The class of intervals in (0, 1] has this property. Show that
σ(A ) coincides with the smallest class over A that is closed under
the formation of countable unions and intersections.

2.9. Show that, if B ∈ σ(A ), then there exists a countable subclass AB of
A such that B ∈ σ(AB ).

2.10. .(a) Show that if σ(A ) contains every subset of �, then for each pair
ω and ω′ of distinct points in � there is in A an A such that
IA(ω) �= IA(ω′).

(b) Show that the reverse implication holds if � is countable.
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(c) Show by example that the reverse implication need not hold for
uncountable �.

2.11. A σ -field is countably generated , or separable, if it is generated by
some countable class of sets.
(a) Show that the σ -field B of Borel sets is countably generated.
(b) Show that the σ -field of Example 2.4 is countably generated if and

only if � is countable.
(c) Suppose that F1 and F2 are σ -fields, F1 ⊂ F2, and F2 is countably

generated. Show by example that F1 may not be countably generated.

2.12. Show that a σ -field cannot be countably infinite—its cardinality must
be finite or else at least that of the continuum. Show by example that a
field can be countably infinite.

2.13. .(a) Let F be the field consisting of the finite and the cofinite sets in
an infinite �, and define P on F by taking P (A) to be 0 or 1 as A
is finite or cofinite. (Note that P is not well defined if � is finite.)
Show that P is finitely additive.

(b) Show that this P is not countably additive if � is countably infinite.
(c) Show that this P is countably additive if � is uncountable.
(d) Now let F be the σ -field consisting of the countable and the

cocountable sets in an uncountable �, and define P on F by taking
P (A) to be 0 or 1 as A is countable or cocountable. (Note that P
is not well defined if � is countable.) Show that P is countably
additive.

2.14. In (0, 1] let F be the class of sets that either (i) are of the first category
[A15] or (ii) have complement of the first category. Show that F is a
σ -field. For A in F , take P (A) to be 0 in case (i) and 1 in case (ii).
Show that P is countably additive.

2.15. On the field B0 in (0, 1] define P (A) to be 1 or 0 according as there does
or does not exist some positive εA (depending on A) such that A contains
the interval (1

2 , 1
2 + εA]. Show that P is finitely but not countably addi-

tive. No such example is possible for the field C0 in S ∞ (Theorem 2.3).

2.16. .(a) Suppose that P is a probability measure on a field F . Suppose that
At ∈ F for t > 0, that As ⊂ At for s < t , and that A = ⋃

t > 0 At ∈ F .
Extend Theorem 2.1(i) by showing that P(At ) ↑ P(A) as t → ∞.
Show that A necessarily lies in F if it is a σ -field.

(b) Extend Theorem 2.1(ii) in the same way.

2.17. Suppose that P is a probability measure on a field F , that A1, A2, . . .,
and A = ⋃

n An lie in F , and that the An are nearly disjoint in the sense
that P(Am ∩ An) = 0 for m �= n . Show that P(A) = ∑

n P(An).
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2.18. Stochastic arithmetic. Define a set function Pn on the class of all subsets
of � = {1, 2, . . .} by

Pn(A) = 1

n
#[m: 1 ≤ m ≤ n , m ∈ A]; (2.34)

among the first n integers, the proportion that lie in A is just Pn(A).
Then Pn is a discrete probability measure. The set A has density

D(A) = lim
n

Pn(A), (2.35)

provided this limit exists. Let D be the class of sets having density.
(a) Show that D is finitely but not countably additive on D.
(b) Show that D contains the empty set and � and is closed under

the formation of complements, proper differences, and finite disjoint
unions, but is not closed under the formation of countable disjoint
unions or of finite unions that are not disjoint.

(c) Let M consist of the periodic sets Ma = [ka: k = 1, 2, . . .]. Observe
that

Pn(Ma) = 1

n

⌊n

a

⌋
→ 1

a
= D(Ma). (2.36)

Show that the field f (M ) generated by M (see Problem 2.5) is
contained in D. Show that D is completely determined on f (M ) by
the value it gives for each a to the event that m is divisible by a .

(d) Assume that
∑

p−1 diverges (sum over all primes; see Problem
5.20(e)) and prove that D , although finitely additive, is not countably
additive on the field f (M ).

(e) Euler’s function ϕ(n) is the number of positive integers less than n
and relatively prime to it. Let p1, . . . , pr be the distinct prime factors
of n; from the inclusion-exclusion formula for the events [m: pi |m],
(2.36), and the fact that the pi divide n , deduce

ϕ(n)

n
= �

p|n

(
1 − 1

p

)
. (2.37)

(f) Show for 0 ≤ x ≤ 1 that D(A) = x for some A.
(g) Show that D is translation invariant: If B = [m + 1: m ∈ A], then B

has a density if and only if A does, in which case D(A) = D(B).

2.19. A probability measure space (�, F , P) is nonatomic if P(A)> 0 implies
that there exists a B such that B ⊂ A and 0 < P(B) < P(A) (A and B
in F , of course).
(a) Assuming the existence of Lebesgue measure λ on B, prove that it

is nonatomic.
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(b) Show in the nonatomic case that P(A)> 0 and ε > 0 imply that there
exists a B such that B ⊂ A and 0 < P(B) < ε.

(c) Show in the nonatomic case that 0 ≤ x ≤ P(A) implies that there
exists a B such that B ⊂ A and P(B) = x . Hint : Inductively define
classes Hn , numbers hn , and sets Hn by H0 = {Ø} = {H0}, Hn =
[H : H ⊂ A −⋃

k<n Hk , P(
⋃

k<n Hk ) + P(H ) ≤ x ], hn =sup[P(H ):
H ∈ Hn], and P(Hn) > hn − n−1. Consider

⋃
k Hk .

(d) Show in the nonatomic case that, if p1, p2, . . . are nonnegative and
add to 1, then A can be decomposed into sets B1, B2, . . . such that
P(Bn) = pnP(A).

2.20. Generalize the construction of product measure: For n = 1, 2, . . ., let
Sn be a finite space with given probabilities pnu , u ∈ Sn . Let S1 × S2 ×
· · · be the space of sequences (2.15), where now zk (ω) ∈ Sk . Define P
on the class of cylinders, appropriately defined, by using the product
p1u1 · · · pnun on the right in (2.21). Prove P countably additive on C0,
and extend Theorem 2.3 and its lemma to this more general setting.
Show that the lemma fails if any of the Sn are infinite.

2.21. .(a) Suppose that A = {A1, A2, . . .} is a countable partition of �. Show
(see (2.27)) that A1 = A ∗

0 = A ∗ coincides with σ(A ). This is a
case where σ(A ) can be constructed “from the inside.”

(b) Show that the set of normal numbers lies in I6.
(c) Show that H ∗ = H if and only if H is a σ -field. Show that In−1

is strictly smaller than In for all n .

2.22. Extend (2.27) to infinite ordinals α by defining Aα = (
⋃

β<α Aβ)∗. Show
that, if � is the first uncountable ordinal, then

⋃
α<� Aα = σ(A ). Show

that, if the cardinality of A does not exceed that of the continuum, then
the same is true of σ(A ). Thus B has the power of the continuum.

2.23. ↑ Extend (2.29) to ordinals α < � as follows. Replace the right side
of (2.28) by

⋃∞
n=1(A2n−1 ∪ Ac

2n). Suppose that �β is defined for β < α.
Let βα(1), βα(2), . . . be a sequence of ordinals such that βα(n) < α and
such that if β < α, then β = βα(n) for infinitely many even n and for
infinitely many odd n; define

�α(A1, A2, . . .) = ψ(�βα(1)(Am11 , Am12 , . . .), (2.38)

�βα(2)(Am21 , Am22 , . . .), . . .).

Prove by transfinite induction that (2.38) is in B if the An are, that
every element of Iα has the form (2.38) for sets An in I0, and that
(2.31) holds with α in place of n . Define ϕα(ω) = �α(Iω1 , Iω2 , . . .), and
show that Bα = [ω: ω /∈ ϕα(ω)] lies in B − Iα for α < �. Show that
Iα is strictly smaller than Iβ for α < β ≤ �.
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SECTION 3 EXISTENCE AND EXTENSION

The main theorem to be proved here may be compactly stated this way:

Theorem 3.1
A probability measure on a field has a unique extension to the generated σ -field.

In more detail the assertion is this: Suppose that P is a probability measure
on a field F0 of subsets of �, and put F = σ(F0). Then there exists a probability
measure Q on F such that Q(A) = P(A) for A ∈ F0. Further, if Q ′ is another
probability measure on F such that Q ′(A) = P(A) for A ∈ F0, then Q ′(A) =
Q(A) for A ∈ F .

Although the measure extended to F is usually denoted by the same letter
as the original measure on F0, they are really different set functions, since
they have different domains of definition. The class F0 is only assumed finitely
additive in the theorem, but the set function P on it must be assumed countably
additive (since this of course follows from the conclusion of the theorem).

As shown in Theorem 2.2, λ (initially defined for intervals as length: λ(I ) =
|I |) extends to a probability measure on the field B0 of finite disjoint unions
of subintervals of (0, 1]. By Theorem 3.1, λ extends in a unique way from B0

to B = σ(B0), the class of Borel sets in (0,1]. The extended λ is Lebesgue
measure on the unit interval. Theorem 3.1 has many other applications as well.

The uniqueness in Theorem 3.1 will be proved later; see Theorem 3.3. The
first project is to prove that an extension does exist.

Construction of the Extension

Let P be a probability measure on a field F0. The construction following extends
P to a class that in general is much larger than σ(F0) but nonetheless does not
in general contain all the subsets of �.

For each subset A of �, define its outer measure by

P∗(A) = inf
∑

n

P(An), (3.1)

where the infimum extends over all finite and infinite sequences A1, A2, . . . of
F0-sets satisfying A ⊂ ∪nAn . If the An form an efficient covering of A, in the
sense that they do not overlap one another very much or extend much beyond
A, then

∑
n P(An) should be a good outer approximation to the measure of A

if A is indeed to have a measure assigned it at all. Thus (3.1) represents a first
attempt to assign a measure to A.

Because of the rule P(Ac) = 1 − P(A) for complements (see (2.6)), it is
natural in approximating A from the inside to approximate the complement Ac
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from the outside instead and then subtract from 1:

P∗(A) = 1 − P∗(Ac). (3.2)

This, the inner measure of A, is a second candidate for the measure of A.† A
plausible procedure is to assign measure to those A for which (3.1) and (3.2)
agree, and to take the common value P∗(A) = P∗(A) as the measure. Since (3.1)
and (3.2) agree if and only if

P∗(A) + P∗(Ac) = 1, (3.3)

the procedure would be to consider the class of A satisfying (3.3) and use P∗(A)

as the measure.
It turns out to be simpler to impose on A the more stringent requirement

that

P∗(A ∩ E ) − P∗(Ac ∩ E ) = P∗(E ) (3.4)

hold for every set E ; (3.3) is the special case E = �, because it will turn out
that P∗(�) = 1.‡ A set A is called P∗-measurable if (3.4) holds for all E ; let
M be the class of such sets. What will be shown is that M contains σ(F0) and
that the restriction of P∗ to σ(F0) is the required extension of P .

The set function P∗ has four properties that will be needed:

(i) P∗(Ø) = 0;

(ii) P∗ is nonnegative: P∗(A) ≥ 0 for every A ⊂ �;

(iii) P∗ is monotone: A ⊂ B implies P∗(A) ≤ P∗(B);

(iv) P∗ is countably subadditive: P∗(∪nAn) ≤ ∑
n P∗(An).

The others being obvious, only (iv) needs proof. For a given ε, choose
F0-sets Bnk such that An ⊂ ∪k Bnk and

∑
k P(Bnk ) < P∗(An) + ε2−n , which is

possible by the definition (3.1). Now ∪nAn ⊂ ∪n , k Bnk , so that P∗(∪nAn) ≤∑
n , k P(Bnk ) <

∑
n P∗(An) + ε, and (iv) follows.§ Of course, (iv) implies finite

subadditivity.
By definition, A lies in the class M of P∗-measurable sets if it splits each E

in 2� in such a way that P∗ adds for the pieces—that is, if (3.4) holds. Because
of finite subadditivity, this is equivalent to

P∗(A ∩ E ) + P∗(Ac ∩ E ) ≤ P∗(E ). (3.5)

†An idea which seems reasonable at first is to define P∗(A) as the supremum of the sums
∑

n P(An)

for disjoint sequences of F0-sets in A. This will not do. For example, in the case where � is the unit
interval, F0 is B0 (Example 2.2), and P is λ as defined by (2.12), the set N of normal numbers would
have inner measure 0 because it contains no nonempty elements of B0; in a satisfactory theory, N
will have both inner and outer measure 1.
‡It also turns out after the fact, that (3.3) implies that (3.4) holds for all E anyway; see Problem 3.2.
§Compare the proof on p. 10 that a countable union of negligible sets is negligible.
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Lemma 1. The class M is a field.

Proof. It is clear that � ∈ M and that M is closed under complementation.
Suppose that A, B ∈ M and E ⊂ �. Then

P∗(E ) = P∗(B ∩ E ) + P∗(Bc ∩ E )

= P∗(A ∩ B ∩ E ) + P∗(Ac ∩ B ∩ E )

+ P∗(A ∩ Bc ∩ E ) + P∗(Ac ∩ Bc ∩ E )

≥ P∗(A ∩ B ∩ E )

+ P∗((Ac ∩ B ∩ E ) ∪ (A ∩ Bc ∩ E ) ∪ (Ac ∩ Bc ∩ E ))

= P∗((A ∩ B) ∩ E ) + P∗((A ∩ B)c ∩ E ),

the inequality following by subadditivity. Hence† A ∩ B ∈ M , and M is a
field. ■

Lemma 2. If A1, A2, . . . is a finite or infinite sequence of disjoint M -sets, then
for each E ⊂ �,

P∗
(

E ∩
(⋃

k

Ak

))
=
∑

k

P∗(E ∩ Ak ). (3.6)

Proof. Consider first the case of finitely many Ak , say n of them. For n =
1, there is nothing to prove. In the case n = 2, if A1 ∪ A2 = �, then (3.6) is
just (3.4) with A1 (or A2) in the role of A. If A1 ∪ A2 is smaller than �, split
E ∩ (A1 ∪ A2) by A1 and Ac

1 (or by A2 and Ac
2) and use (3.4) and disjointness.

Assume (3.6) holds for the case of n−1 sets. By the case n = 2, together
with the induction hypothesis, P∗(E ∩ (∪n

k=1Ak )) = P∗(E ∩ (∪n−1
k=1Ak ))

+ P∗(E ∩ An) = ∑n
k=1 P∗(E ∩ Ak ).

Thus (3.6) holds in the finite case. For the infinite case use monotonicity:
P∗(E ∩ (∪∞

k=1Ak )) ≥ P∗(E ∩ (∪n
k=1Ak )) = ∑n

k=1 P∗(E ∩ Ak ). Let n → ∞, and
conclude that the left side of (3.6) is greater than or equal to the right. The
reverse inequality follows by countable subadditivity. ■

Lemma 3. The class M is a σ -field, and P∗ restricted to M is countably additive

Proof. Suppose that A1, A2, . . . are disjoint M -sets with union A. Since
Fn = ∪n

k=1Ak lies in the field M , P∗(E ) = P∗(E ∩ Fn) + P∗(E ∩ F c
n ). To the

first term on the right apply (3.6), and to the second term apply monotonic-
ity (F c

n ⊃ Ac): P∗(E ) ≥ ∑n
k=1 P∗(E ∩ Ak ) + P∗(E ∩ Ac). Let n→∞ and use

†This proof does not work if (3.4) is weakened to (3.3).
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(3.6) again: P∗(E ) ≥ ∑∞
k=1 P∗(E ∩ Ak ) + P∗(E ∩ Ac) = P∗(E ∩ A) + P∗(E ∩

Ac). Hence A satisfies (3.5) and so lies in M , which is therefore closed under
the formation of countable disjoint unions.

From the fact that M is a field closed under the formation of countable
disjoint unions it follows that M is a σ -field (for sets Bk in M , let A1 = B1

and Ak = Bk ∩ Bc
1 ∩ · · · ∩ Bc

k−1; then the Ak are disjoint M -sets and
⋃

k Bk =⋃
k Ak ∈ M ). The countable additivity of P∗ on M follows from (3.6): take

E = �. ■

Lemmas 1, 2, and 3 use only the properties (i) through (iv) of P∗ derived
above. The next two use the specific assumption that P∗ is defined via (3.1)
from a probability measure P on the field F0.

Lemma 4. If P∗ is defined by (3.1), then F0 ⊂ M .

Proof. Suppose that A ∈ F0. Given E and ε, choose F0-sets An such
that E ⊂ ⋃

n An and
∑

n P(An) ≤ P∗(E ) + ε. The sets Bn = An ∩ A and
Cn = An ∩ Ac lie in F0 because it is a field. Also, E ∩ A ⊂ ⋃

n Bn and E ∩ Ac ⊂⋃
n Cn ; by the definition of P∗ and the finite additivity of P , P∗(E ∩ A) +

P∗(E ∩ Ac) ≤ ∑
n P(Bn) +∑

n P(Cn) = ∑
n P(An) ≤ P∗(E ) + ε. Hence A ∈

F0 implies (3.5), and so F0 ⊂ M . ■

Lemma 5. If P∗ is defined by (3.1), then

P∗(A) = P(A) for A ∈ F0. (3.7)

Proof. It is obvious from the definition (3.1) that P∗(A) ≤ P(A) for A in
F0. If A ⊂ ⋃

n An , where A and the An are in F0, then by the countable sub-
additivity and monotonicity of P on F0. P(A) ≤ ∑

n P(A ∩ An) ≤ ∑
n P(An).

Hence (3.7). ■

Proof of Extension in Theorem 3.1. Suppose that P∗ is defined via (3.1)
from a (countably additive) probability measure P on the field F0. Let F =
σ(F0). By Lemmas 3 and 4,†

F0 ⊂ F ⊂ M ⊂ 2�.

By (3.7), P∗(�) = P(�) = 1. By Lemma 3, P∗ (which is defined on all of 2�)
restricted to M is therefore a probability measure there. And then P∗ further
restricted to F is clearly a probability measure on that class as well. This
measure on F is the required extension, because by (3.7) it agrees with P
on F0. ■

†In the case of Lebesgue measure, the relation is B0 ⊂ B ⊂ M ⊂ 2(0,1), and each of the three
inclusions is strict; see Example 2.2 and Problems 3.14 and 3.21.
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Uniqueness and the π –λ Theorem

To prove the extension in Theorem 3.1 is unique requires some auxiliary con-
cepts. A class P of subsets of � is a π-system if it is closed under the formation
of finite intersections:

(π) A, B ∈ P implies A ∩ B ∈ P .

A class L is a λ-system if it contains � and is closed under the formation of
complements and of finite and countable disjoint unions:

(λ1) � ∈ L ;

(λ2) A ∈ L implies Ac ∈ L ;

(λ3) A1, A2, . . . , ∈ L and An ∩ Am = Ø for m �= n imply
⋃

n An ∈ L .

Because of the disjointness condition in (λ3), the definition of λ-system is weaker
(more inclusive) than that of σ -field. In the presence of (λ1) and (λ2), which
imply Ø ∈ L , the countably infinite case of (λ3) implies the finite one.

In the presence of (λ1) and (λ3), (λ2) is equivalent to the condition that L

is closed under the formation of proper differences:

(λ′
2) A, B ∈ L and A ⊂ B imply B − A ∈ L .

Suppose, in fact, that L satisfies (λ2) and (λ3). If A, B ∈ L and A ⊂ B , then L

contains Bc , the disjoint union A ∪ Bc , and its complement (A ∪ Bc)c = B − A.
Hence (λ′

2). On the other hand, if L satisfies (λ1) and (λ′
2), then A ∈ L implies

Ac = � − A ∈ L . Hence (λ2).
Although a σ -field is a λ-system, the reverse is not true (in a four-point

space take L to consist of Ø, �, and the six two-point sets). But the connection
is close:

Lemma 6. A class that is both a π-system and a λ-system is a σ -field.

Proof. The class contains � by (λ1) and is closed under the formation of
complements and finite intersections by (λ2) and (π). It is therefore a field. It
is a σ -field because if it contains sets An , then it also contains the disjoint sets
Bn = An ∩ Ac

1 ∩ · · · ∩ Ac
n−1 and by (λ3) contains

⋃
n An = ⋃

n Bn . ■

Many uniqueness arguments depend on Dynkin’s π –λ theorem:

Theorem 3.2
If P is a π-system and L is a λ-system, then P ⊂ L implies σ(P ) ⊂ L .
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Proof. Let L0 be the λ-system generated by P —that is, the intersection of
all λ-systems containing P . It is a λ-system, it contains P , and it is contained
in every λ-system that contains P (see the construction of generated σ -fields,
p. 21). Thus P ⊂ L0 ⊂ L . If it can be shown that L0 is also a π-system, then
it will follow by Lemma 6 that it is a σ -field. From the minimality of σ(P ) it
will then follow that σ(P ) ⊂ L0, so that P ⊂ σ(P ) ⊂ L0 ⊂ L . Therefore, it
suffices to show that L0 is a π-system.

For each A, let LA be the class of sets B such that A ∩ B ∈ L0. If A is
assumed to lie in P , or even if A is merely assumed to lie in L0, then LA

is a λ-system: Since A ∩ � = A ∈ L0 by the assumption, LA satisfies (λ1). If
B1, B2 ∈ LA and B1 ⊂ B2, then the λ-system L0 contains A ∩ B1 and A ∩ B2 and
hence contains the proper difference (A ∩ B2) − (A ∩ B1) = A ∩ (B2 − B1), so
that LA contains B2 − B1: LA satisfies (λ′

2). If Bn are disjoint LA-sets, then L0

contains the disjoint sets A ∩ Bn and hence contains their union A ∩ (
⋃

n Bn): LA

satisfies (λ3).
If A ∈ P and B ∈ P , then (P is a π-system) A ∩ B ∈ P ⊂ L0, or B ∈ LA.

Thus A ∈ P implies P ⊂ LA, and since LA is a λ-system, minimality gives
L0 ⊂ LA.

Thus A ∈ P implies L0 ⊂ LA, or, to put it another way, A ∈ P and B ∈ L0

together imply that B ∈ LA and hence A ∈ LB . (The key to the proof is that
B ∈ LA if and only if A ∈ LB .) This last implication means that B ∈ L0 implies
P ⊂ LB . Since LB is a λ-system, it follows by minimality once again that
B ∈ L0 implies L0 ⊂ LB . Finally, B ∈ L0 and C ∈ L0 together imply C ∈ LB ,
or B ∩ C ∈ L0. Therefore, L0 is indeed a π-system. ■

Since a field is certainly a π-system, the uniqueness asserted in Theorem
3.1 is a consequence of this result:

Theorem 3.3
Suppose that P1 and P2 are probability measures on σ(P ), where P is a π-
system. If P1 and P2 agree on P , then they agree on σ(P ).

Proof. Let L be the class of sets A in σ(P ) such that P1(A) = P2(A).
Clearly � ∈ L . If A ∈ L , then P1(Ac) = 1 − P1(A) = 1 − P2(A) = P2(Ac), and
hence Ac ∈ L . If An are disjoint sets in L , then P1(

⋃
n An) = �nP1(An) =

�nP2(An) = P2(
⋃

n An), and hence
⋃

n An ∈ L . Therefore L is a λ-system.
Since by hypothesis P ⊂ L and P is a π-system, the π − λ theorem gives
σ(P ) ⊂ L , as required. ■

Note that the π-λ theorem and the concept of λ-system are exactly what are
needed to make this proof work: The essential property of probability measures
is countable additivity, and this is a condition on countable disjoint unions,
the only kind involved in the requirement (λ3) in the definition of λ-system.
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In this, as in many applications of the π-λ theorem, L ⊂ σ(P ) and therefore
σ(P ) = L , even though the relation σ(P ) ⊂ L itself suffices for the conclusion
of the theorem.

Monotone Classes

A class M of subsets of � is monotone if it is closed under the formation of
monotone unions and intersections:

(i) A1, A2, . . . ∈ M and An ↑ A imply A ∈ M ;

(ii) A1, A2, . . . ∈ M and An ↓ A imply A ∈ M .

Halmos’s monotone class theorem is a close relative of the π-λ theorem but
will be less frequently used in this book.

Theorem 3.4
If F0 is a field and M is a monotone class, then F0 ⊂ M implies σ(F0) ⊂ M .

Proof. Let m(F0) be the minimal monotone class over F0 —the intersection
of all monotone classes containing F0. It is enough to prove σ(F0) ⊂ m(F0);
this will follow if m(F0) is shown to be a field, because a monotone field is a
σ -field.

Consider the class G = [A: Ac ∈ m(F0)]. Since m(F0) is monotone, so is G .
Since F0 is a field, F0 ⊂ G , and so m(F0) ⊂ G . Hence m(F0) is closed under
complementation.

Define G1 as the class of A such that A ∪ B ∈ m(F0) for all B ∈ F0. Then G1

is a monotone class and F0 ⊂ G1; from the minimality of m(F0) follows m(F0) ⊂
G1. Define G2 as the class of B such that A ∪ B ∈ m(F0) for all A ∈ m(F0). Then
G2 is a monotone class. Now from m(F0) ⊂ G1 it follows that A ∈ m(F0) and
B ∈ F0 together imply that A ∪ B ∈ m(F0); in other words, B ∈ F0 implies that
B ∈ G2. Thus F0 ⊂ G2; by minimality, m(F0) ⊂ G2, and hence A, B ∈ m(F0)

implies that A ∪ B ∈ m(F0). ■

Lebesgue Measure on the Unit Interval

Consider once again the unit interval (0, 1] together with the field B0 of finite
disjoint unions of subintervals (Example 2.2) and the σ -field B = σ(B0) of
Borel sets in (0, 1]. According to Theorem 2.2, (2.12) defines a probability
measure λ on B0. By Theorem 3.1, λ extends to B, the extended λ being
Lebesgue measure. The probability space ((0, 1], B, λ) will be the basis for
much of the probability theory in the remaining sections of this chapter. A few
geometric properties of λ will be considered here. Since the intervals in (0, 1]
from a π-system generating B, λ is the only probability measure on B that
assigns to each interval its length as its measure.
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Some Borel sets are difficult to visualize:

EXAMPLE 3.1
Let {r1, r2, . . .} be an enumeration of the rationals in (0, 1). Suppose that ε is
small, and choose an open interval In = (an , bn) such that rn ∈ In ⊂ (0, 1) and
λ(In) = bn − an < ε2−n . Put A = ⋃∞

n=1 In . By subadditivity, 0 < λ(A) < ε.
Since A contains all the rationals in (0, 1), it is dense there. Thus A is an

open, dense set with measure near 0. If I is an open subinterval of (0, 1), then
I must intersect one of the In , and therefore λ(A ∩ I ) > 0.

If B = (0, 1) − A then 1 − ε < λ(B) < 1. The set B contains no interval
and is in fact nowhere dense [A15]. Despite this, B has measure nearly 1.

EXAMPLE 3.2
There is a set defined in probability terms that has geometric properties similar
to those in the preceding example. As in Section 1, let dn(ω) be the nth digit in
the dyadic expansion of ω; see (1.7). Let An = [ω ∈ (0, 1]: di (ω) = dn+i (ω) =
d2n+i (ω), i = 1, . . . , n], and let A = ⋃∞

n=1 An . Probabilistically, A corresponds
to the event that in an infinite sequence of tosses of a coin, some finite initial
segment is immediately duplicated twice over. From λ(An) = 2n · 2−3n it fol-
lows that 0 < λ(A) ≤ �∞

n=12−2n = 1
3 . Again A is dense in the unit interval; its

measure, less than 1
3 , could be made less than ε by requiring that some initial

segment be immediately duplicated k times over with k large.

The outer measure (3.1) corresponding to λ on B0 is the infimum of the
sums �nλ(An) for which An ∈ B0 and A ⊂ ⋃

n An . Since each An is a finite
disjoint union of intervals, this outer measure is

λ∗(A) = inf
∑

n

|In |, (3.8)

where the infimum extends over coverings of A by intervals In . The notion of
negligibility in Section 1 can therefore be reformulated: A is negligible if and
only if λ∗(A) = 0. For A in B, this is the same thing as λ(A) = 0. This covers
the set N of normal numbers: Since the complement N c is negligible and lies
in B, λ(N c) = 0. Therefore, the Borel set N itself has probability 1: λ(N ) = 1.

Completeness

This is the natural place to consider completeness, although it enters into proba-
bility theory in an essential way only in connection with the study of stochastic
processes in continuous time; see Sections 37 and 38.
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A probability measure space (�, F , P ) is complete if A ⊂ B , B ∈ F , and
P(B) = 0 together imply that A ∈ F (and hence that P(A) = 0). If (�, F , P ) is
complete, then the conditions A ∈ F , A�A′ ⊂ B ∈ F , and P(B) = 0 together
imply that A′ ∈ F and P(A′) = P(A).

Suppose that (�, F , P ) is an arbitrary probability space. Define P∗ by (3.1)
for F0 = F = σ(F0), and consider the σ -field M of P∗-measurable sets. The
arguments leading to Theorem 3.1 show that P∗ restricted to M is a probability
measure. If P∗(B) = 0 and A ⊂ B , then P∗(A ∩ E ) + P∗(Ac ∩ E ) ≤ P∗(B) +
P∗(E ) = P∗(E ) by monotonicity, so that A satisfies (3.5) and hence lies in M .
Thus (�, M , P∗) is a complete probability measure space. In any probability
space it is therefore possible to enlarge the σ -field and extend the measure in
such a way as to get a complete space.

Suppose that ((0, 1], B, λ) is completed in this way. The sets in the com-
pleted σ -field M are called Lebesgue sets, and λ extended to M is still called
Lebesgue measure.

Nonmeasurable Sets

There exist in (0, 1] sets that lie outside B. For the construction (due to Vitali)
it is convenient to use addition modulo 1 in (0, 1]. For x , y ∈ (0, 1] take x ⊕ y
to be x+y or x + y − 1 according as x+y lies in (0, 1] or not.† Put A ⊕ x =
[a ⊕ x : a ∈ A].

Let L be the class of Borel sets A such that A ⊕ x is a Borel set and
λ(A ⊕ x) = λ(A). Then L is a λ-system containing the intervals, and so B ⊂ L

by the π-λ theorem. Thus A ∈ B implies that A ⊕ x ∈ B and λ(A ⊕ x) = λ(A).
In this sense, λ is translation-invariant.

Define x and y to be equivalent (x ∼ y) if x ⊕ r = y for some rational r
in (0, 1]. Let H be a subset of (0, 1] consisting of exactly one representative
point from each equivalence class; such a set exists under the assumption of
the axiom of choice [A8]. Consider now the countably many sets H ⊕ r for
rational r .

These sets are disjoint, because no two distinct points of H are equivalent.
(If H ⊕ r1 and H ⊕ r2 share the point h1 ⊕ r1 = h2 ⊕ r2, then h1 ∼ h2; this is
impossible unless h1 = h2, in which case r1 = r2.) Each point of (0, 1] lies in
one of these sets, because H has a representative from each equivalence class.
(If x ∼ h ∈ H , then x = h ⊕ r ∈ H ⊕ r for some rational r .) Thus (0, 1] =
∪r (H ⊕ r), a countable disjoint union.

If H were in B, it would follow that λ(0, 1] = �rλ(H ⊕ r). This is impossi-
ble: If the value common to the λ(H ⊕ r) is 0, it leads to 1 = 0; if the common

†This amounts to working in the circle group, where the translation y → x ⊕ y becomes a rotation
(1 is the identity). The rationals form a subgroup, and the set H defined below contains one element
from each coset.
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value is positive, it leads to a convergent infinite series of identical positive
terms (a + a + · · · < ∞ and a > 0). Thus H lies outside B.

Two Impossibility Theorems†

The argument above, which uses the axiom of choice, in fact proves this: There
exists on 2(0,1] no probability measure P such that P(A ⊕ x) = P(A) for all
A ∈ 2(0,1] and all x ∈ (0, 1]. In particular it is impossible to extend λ to a
translation-invariant probability measure on 2(0,1].

There is a stronger result: There exists on 2(0,1] no probability measure P
such that P{x} = 0 for each x . Since λ{x} = 0, this implies that it is impossible
to extend λ to 2(0,1] at all.‡

The proof of this second impossibility theorem requires the well-ordering
principle (equivalent to the axiom of choice) and also the continuum hypothesis.
Let S be the set of sequences (s(1), s(2), . . .) of positive integers. Then S has
the power of the continuum. (Let the nth partial sum of a sequence in S be the
position of the nth 1 in the nonterminating dyadic representation of a point in
(0, 1]; this gives a one-to-one correspondence.) By the continuum hypothesis,
the elements of S can be put in a one-to-one correspondence with the set of
ordinals preceding the first uncountable ordinal. Carrying the well ordering of
these ordinals over to S by means of the correspondence gives to S a well-
ordering relation ≤w with the property that each element has only countably
many predecessors.

For s, t in S write s ≤ t if s(i ) ≤ t(i ) for all i ≥ 1. Say that t rejects s if
t <w s and s ≤ t ; this is a transitive relation. Let T be the set of unrejected
elements of S . Let Vs be the set of elements that reject s , and assume it is
nonempty. If t is the first element (with respect to ≤w) of Vs , then t ∈ T (if
t ′ rejects t , then it also rejects s , and since t ′ <w t , there is a contradiction).
Therefore, if s is rejected at all, it is rejected by an element of T .

Suppose T is countable and let t1, t2, . . . be an enumeration of its elements.
If t∗(k) = tk (k) + 1, then t∗ is not rejected by any tk and hence lies in T , which
is impossible because it is distinct from each tk . Thus T is uncountable and must
by the continuum hypothesis have the power of (0, 1].

Let x be a one-to-one map of T onto (0, 1]; write the image of t as xt . Let
Ai

k = [xt : t(i ) = k ] be the image under x of the set of t in T for which t(i ) = k .
Since t(i) must have some value k , ∪∞

k=1Ai
k = (0, 1]. Assume that P is countably

additive and choose u in S in such a way that P(∪u(i )
k=1Ai

k ) ≥ 1 − 1/2i+1 for

†This topic may be omitted. It uses more set theory than is assumed in the rest of the book.
‡This refers to a countably additive extension, of course. If one is content with finite additivity, there
is an extension to 2(0,1]; see Problem 3.8.
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i ≥ 1. If

A =
∞⋂

i=1

u(i )⋃
k=1

Ai
k =

∞⋂
i=1

[xt : t(i ) ≤ u(i )] = [xt : t ≤ u],

then P(A)> 0. It A is shown to be countable, this will contradict the hypothesis
that each singleton has probability 0.

Now, there is some t0 in T such that u ≤ t0 (if u ∈ T , take t0 = u; otherwise,
u is rejected by some t0 in T ). If t ≤ u for a t in T , then t ≤ t0 and hence
t ≤w t0 (since otherwise t0 rejects t). This means that [t : t ≤ u] is contained in
the countable set [t : t ≤w t0], and A is indeed countable.

PROBLEMS

3.1. .(a) In the proof of Theorem 3.1 the assumed finite additivity of P is
used twice and the assumed countable additivity of P is used once.
Where?

(b) Show by example that a finitely additive probability measure on
a field may not be countably subadditive. Show in fact that if a
finitely additive probability measure is countably subadditive, then
it is necessarily countably additive as well.

(c) Suppose Theorem 2.1 were weakened by strengthening its hypothesis
to the assumption that F is a σ -field. Why would this weakened
result not suffice for the proof of Theorem 3.1?

3.2. Let P be a probability measure on a field F0 and for every subset A of
� define P∗(A) by (3.1). Denote also by P the extension (Theorem 3.1)
of P to F = σ(F0).
(a) Show that

P∗(A) = inf[P(B): A ⊂ B , B ∈ F ] (3.9)

and (see (3.2))

P∗(A) = sup[P(C ): C ⊂ A, C ∈ F ], (3.10)

and show that the infimum and supremum are always achieved.
(b) Show that A is P∗-measurable if and only if P∗(A) = P∗(A).
(c) The outer and inner measures associated with a probability measure

P on a σ -field F are usually defined by (3.9) and (3.10). Show that
(3.9) and (3.10) are the same as (3.1) and (3.2) with F in the role
of F0.
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3.3. 2.13, 2.15, 3.2 ↑ For the following examples, describe P∗ as defined by
(3.1) and M = M (P∗) as defined by the requirement (3.4). Sort out the
cases in which P∗ fails to agree with P on F0 and explain why.
(a) Let F0 consist of the sets Ø, {1}, {2, 3}, and � = {1, 2, 3}, and define

probability measures P1 and P2 on F0 by P1{1} = 0 and P2{2, 3} = 0,
Note that M (P∗

1 ) and M (P∗
2 ) differ.

(b) Suppose that � is countably infinite, let F0 be the field of finite and
cofinite sets, and take P (A) to be 0 or 1 as A is finite or confinite.

(c) The same, but suppose that � is uncountable.
(d) Suppose that � is uncountable, let F0 consist of the countable and

the cocountable sets, and take P (A) to be 0 or 1 as A is countable
or cocountable.

(e) The probability in Problem 2.15.
(f) Let P(A) = IA(ω0) for A ∈ F0, and assume {ω0} ∈ σ(F0).

3.4. Let f be a strictly increasing, strictly concave function on [0, ∞) satis-
fying f (0) = 0. For A ⊂ (0, 1], define P∗(A) = f (λ∗(A)). Show that P∗

is an outer measure in the sense that it satisfies P∗(Ø) = 0 and is non-
negative, monotone, and countably subadditive. Show that A lies in M

(defined by the requirement (3.4)) if and only if λ∗(A) or λ∗(Ac) is 0.
Show that P∗ does not arise from the definition (3.1) for any probability
measure P on any field F0.

3.5. Let � be the unit square [(x , y): 0 < x , y ≤ 1], let F be the class of
sets of the form [(x , y): x ∈ A, 0 < y ≤ 1], where A ∈ B, and let P have
value λ(A) at this set. Show that (�, F , P ) is a probability measure space.
Show for A = [(x , y): 0 < x ≤ 1, y = 1

2] that P∗(A) = 0 and P∗(A) = 1.

3.6. Let P be a finitely additive probability measure on a field F0. For A ⊂ �,
in analogy with (3.1) define

P◦
(A) = inf

∑
n

P(An), (3.11)

where now the infimum extends over all finite sequences of F0-sets An

satisfying A ⊂ ⋃
n An . (If countable coverings are allowed, everything

is different. It can happen that P◦
(�) = 0; see Problem 3.3(e).) Let M

◦

be the class of sets A such that P◦
(E ) = P◦

(A ∩ E ) + P◦
(Ac ∩ E ) for

all E ⊂ �.
(a) Show that P◦

(Ø) = 0 and that P◦ is nonnegative, monotone, and
finitely subadditive. Using these four properties of P◦, prove: Lemma
1◦: M

◦ is a field. Lemma 2◦: If A1, A2, . . . is a finite sequence of
disjoint M

◦-sets, then for each E ⊂ �,

P◦
(

E ∩
(⋃

k

Ak

))
=
∑

k

P◦
(E ∩ Ak ). (3.12)

Lemma 3◦: P◦ restricted to the field M
◦ is finitely additive.
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(b) Show that if P◦ is defined by (3.11) (finite coverings), then: Lemma
4◦: F0 ⊂ M

◦. Lemma 5◦: P◦
(A) = P(A) for A ∈ F0.

(c) Define P◦(A) = 1 − P◦
(Ac). Prove that if E ⊂ A ∈ F0, then

P◦(E ) = P(A) − P◦
(A − E ). (3.13)

3.7. 2.7 3.6 ↑ Suppose that H lies outside the field F0, and let F1 be the
field generated by F0 ∪ {H }, so that F1 consists of the sets (H ∩ A) ∪
(H c ∩ B) with A, B ∈ F0. The problem is to show that a finitely additive
probability measure P on F0 has a finitely additive extension to F1.
Define Q on F1 by

Q((H ∩ A) ∪ (H c ∩ B)) = P◦
(H ∩ A) + P◦(H c ∩ B) (3.14)

for A, B ∈ F0.
(a) Show that the definition is consistent.
(b) Shows that Q agrees with P on F0.
(c) Show that Q is finitely additive on F1. Show that Q(H ) = P◦

(H ).
(d) Define Q ′ by interchanging the roles of P◦ and P◦ on the right in

(3.14). Show that Q ′ is another finitely additive extension of P to
F1. The same is true of any convex combination Q ′′ of Q and Q ′.
Show that Q ′′(H ) can take any value between P◦(H ) and P◦

(H ).

3.8. ↑ Use Zorn’s lemma to prove a theorem of Tarski: A finitely additive
probability measure on a field has a finitely additive extension to the
field of all subsets of the space.

3.9. ↑
(a) Let P be a (countably additive) probability measure on a σ -field F .

Suppose that H /∈ F , and let F1 = σ(F ∪ {H }). By adapting the
ideas in Problem 3.7, show that P has a countably additive extension
from F to F1.

(b) It is tempting to go on and use Zorn’s lemma to extend P to a
completely additive probability measure on the σ -field of all subsets
of �. Where does the obvious proof break down?

3.10. 2.17 3.2 ↑ As shown in the text, a probability measure space (�, F , P )
has a complete extension—that is, there exists a complete probability
measure space (�, F1, P1) such that F ⊂ F1 and P1 agrees with P on F .
(a) Suppose that (�, F2, P2) is a second complete extension. Show by

an example in a space of two points that P1 and P2 need not agree
on the σ -field F1 ∩ F2.

(b) There is, however, a unique minimal complete extension: Let
F + consist of the sets A for which there exist F -sets B and C
such that A�B ⊂ C and P(C ) = 0. Show that F + is a σ -field.
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For such a set A define P+(A) = P(B). Show that the definition
is consistent, that P+ is a probability measure on F +, and that
(�, F +, P+) is complete. Show that, if (�, F1, P1) is any complete
extension of (�, F , P ), then F + ⊂ F1 and P1 agrees with P+ on
F +; (�, F +, P+) is the completion of (�, F , P ).

(c) Show that A ∈ F + if and only if P∗(A) = P∗(A), where P∗ and P∗

are defined by (3.9) and (3.10), and that P+(A) = P∗(A) = P∗(A)

in this case. Thus the complete extension constructed in the text is
exactly the completion.

3.11. .(a) Show that a λ-system satisfies the conditions
(λ4) A, B ∈ L and A ∩ B = � imply A ∪ B ∈ L ,
(λ5) A1, A2, . . . ∈ L and An ↑ A imply A ∈ L ,
(λ6) A1, A2, . . . ∈ L and An ↓ A imply A ∈ L .

(b) Show that L is a λ-system if and only if it satisfies (λ1), (λ′
2), and

(λ5). (Sometimes these conditions, with a redundant (λ4), are taken
as the definition.

3.12. 2.5 3.11 ↑
(a) Show that if P is a π-system, then the minimal λ-system over P

coincides with σ(P ).
(b) Let P be a π-system and M a monotone class. Show that P ⊂ M

does not imply σ(P ) ⊂ M .
(c) Deduce the π−λ theorem from the monotone class theorem by show-

ing directly that, if a λ-system L contains a π-system L , then L

also contains the field generated by P .

3.13. 2.5 ↑
(a) Suppose that F0 is a field and P1 and P2 are probability measures

on σ(F0). Show by the monotone class theorem that if P1 and P2

agree on F0, then they agree on σ(F0).
(b) Let F0 be the smallest field over the π-system P . Show by the

inclusion–exclusion formula that probability measures agreeing on
P must agree also on F0. Now deduce Theorem 3.3 from part (a).

3.14. 1.5 2.22 ↑ Prove the existence of a Lebesgue set of Lebesgue measure
0 that is not a Borel set.

3.15. 1.3, 3.6 3.14 ↑ The outer content of a set A in (0, 1] is c∗(A) =
inf

∑
n |In |, where the infimum extends over finite coverings of A by

intervals In . Thus A is trifling in the sense of Problem 1.3 if and only
if c∗(A) = 0. Define inner content by c∗(A) = 1 − c∗(Ac). Show that
c∗(A) = sup �n |In |, where the supremum extends over finite disjoint
unions of intervals In contained in A (of course the analogue for λ∗ fails).
Show that c∗(A) ≤ c∗(A); if the two are equal, their common value is
taken as the content c(A) of A, which is then Jordan measurable. Connect
all this with Problem 3.6.
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Show that c∗(A) = c∗(A−), where A− is the closure of A (the ana-
logue for λ∗ fails).

A trifling set is Jordan measurable. Find (Problem 3.14) a Jordan
measurable set that is not a Borel set.

Show that c∗(A) ≤ λ∗(A) ≤ λ∗(A) ≤ c∗(A). What happens in this
string of inequalities if A consists of the rationals in (0, 1

2 ] together with
the irrationals in (1

2 , 1]?

3.16. 1.5 ↑ Deduce directly by countable additivity that the Cantor set has
Lebesgue measure 0.

3.17. From the fact that λ(x ⊕ A) = λ(A), deduce that sums and differences
of normal numbers may be nonnormal.

3.18. Let H be the nonmeasurable set constructed at the end of the section.
(a) Show that, if A is a Borel set and A ⊂ H , then λ(A) = 0—that is,

λ∗(H ) = 0.
(b) Show that, if λ∗(E ) > 0, then E contains a nonmeasurable subset.

3.19. The aim of this problem is the construction of a Borel set A in (0, 1) such
that 0 < λ(A ∩ G) < λ(G) for every nonempty open set G in (0, 1).
(a) It is shown in Example 3.1 how to construct a Borel set of positive

Lebesgue measure that is nowhere dense. Show that every interval
contains such a set.

(b) Let {In} be an enumeration of the open intervals in (0, 1) with ratio-
nal endpoints. Construct disjoint, nowhere dense Borel sets A1, B1,
A2, B2, . . . of positive Lebesgue measure such that An ∪ Bn ⊂ In .

(c) Let A = ⋃
k Ak . A nonempty open G in (0, 1) contains some In .

Show that 0 < λ(An) ≤ λ(A ∩ G) < λ(A ∩ G) + λ(Bn) ≤ λ(G).

3.20. ↑ There is no Borel set A in (0, 1) such that aλ(I ) ≤ λ(A ∩ I ) ≤ bλ(I )

for every open interval I in (0, 1), where 0 < a ≤ b < 1. In fact prove:
(a) If λ(A ∩ I ) ≤ bλ(I ) for all I and if b < 1, then λ(A) = 0. Hint:

Choose an open G such that A ⊂ G ⊂ (0, 1) and λ(G) < b−1λ(A);
represent G as a disjoint union of intervals and obtain a contradiction.

(b) If aλ(I ) ≤ λ(A ∩ I ) for all I and if a > 0, then λ(A) = 1.

3.21. Show that not every subset of the unit interval is a Lebesgue set. Hint:
Show that λ∗ is translation-invariant on 2(0,1]; then use the first impos-
sibility theorem (p. 45). Or use the second impossibility theorem.

SECTION 4 DENUMERABLE PROBABILITIES

Complex probability ideas can be made clear by the systematic use of measure
theory, and probabilistic ideas of extramathematical origin, such as indepen-
dence, can illuminate problems of purely mathematical interest. It is to this
reciprocal exchange that measure-theoretic probability owes much of its interest.
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The results of this section concern infinite sequences of events in a proba-
bility space.† They will be illustrated by examples in the unit interval . By this
will always be meant the triple (�, F , P ) for which � is (0, 1], F is the σ -field
B of Borel sets there, and P(A) is for A in F the Lebesgue measure λ(A) of A.
This is the space appropriate to the problems of Section 1, which will be pur-
sued further. The definitions and theorems, as opposed to the examples, apply
to all probability spaces. The unit interval will appear again and again in this
chapter, and it is essential to keep in mind that there are many other important
spaces to which the general theory will be applied later.

General Formulas

The formulas (2.5) through (2.11) will be used repeatedly. The sets involved
in such formulas lie in the basic σ -field F by hypothesis. Any probability
argument starts from given sets assumed (often tacitly) to lie in F ; further sets
constructed in the course of the argument must be shown to lie in F as well,
but it is usually quite clear how to do this.

If P(A)> 0, the conditional probability of B given A is defined in the usual
way as

P(B |A) = P(A ∩ B)

P(A)
. (4.1)

There are the chain-rule formulas

P(A ∩ B) = P(A)P(B |A),

P(A ∩ B ∩ C ) = P(A)P(B |A)P(C |A ∩ B), (4.2)

If A1, A2, . . . partition �, then

P(B) =
∑

n

P(An)P(B |An). (4.3)

Note that for fixed A the function P(B |A) defines a probability measure as B
varies over F .

If P(An) ≡ 0, then by subadditivity P(
⋃

n An) = 0. If P(An) ≡ 1, then⋂
n An has complement

⋃
n Ac

n of probability 0. This gives two facts used over
and over again:

If A1, A2, . . . are sets of probability 0, so is
⋃

n An . If A1, A2, . . . are sets of
probability 1, so is

⋂
n An .

†They come under what Borel in his first paper on the subject (see the footnote on p. 9) called
probabilités dénombrables; hence the section heading.
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Limit Sets

For a sequence A1, A2, . . . of sets, define a set

lim sup
n

An =
∞⋂

n=1

∞⋃
k=n

Ak (4.4)

and a set

lim inf
n

An =
∞⋃

n=1

∞⋂
k=n

Ak . (4.5)

These sets† are the limits superior and inferior of the sequence {An}. They lie
in F if all the An do. Now ω lies in (4.4) if and only if for each n there is
some k ≥ n for which ω ∈ Ak ; in other words, ω lies in (4.4) if and only if it
lies in infinitely many of the An . In the same way, ω lies in (4.5) if and only if
there is some n such that ω ∈ Ak for all k ≥ n; in other words, ω lies in (4.5)
if and only if it lies in all but finitely many of the An .

Note that
⋂∞

k=n Ak ↑ lim infn An and
⋃∞

k=n Ak ↓ lim supn An . For every m
and n ,

⋂∞
k=m Ak ⊂ ⋃∞

k=n Ak , because for i ≥ max{m , n}, Ai contains the first of
these sets and is contained in the second. Taking the union over m and the
intersection over n shows that (4.5) is a subset of (4.4). But this follows more
easily from the observation that if ω lies in all but finitely many of the An

then of course it lies in infinitely many of them. Facts about limits inferior and
superior can usually be deduced from the logic they involve more easily than
by formal set-theoretic manipulations.

If (4.4) and (4.5) are equal, write

lim
n

An = lim inf
n

An = lim sup
n

An . (4.6)

To say that An has limit A, written An → A, means that the limits inferior and
superior do coincide and in fact coincide with A. Since lim infn An ⊂ lim supn An

always holds, to check whether An → A is to check whether lim supn An ⊂ A ⊂
lim infn An . From An ∈ F and An → A follows A ∈ F .

EXAMPLE 4.1
Consider the functions dn(ω) defined on the unit interval by the dyadic expan-
sion (1.7), and let ln(ω) be the length of the run of 0’s starting at dn(ω): ln(ω) =
k if dn(ω) = · · · = dn+k−1(ω) = 0 and dn+k (ω) = 1; here ln(ω) = 0 if dn(ω) =
1. Probabilities can be computed by (1.10). Since [ω: ln(ω) = k ] is a union of

†See Problems 4.1 and 4.2 for the analogy between set-theoretic and numerical limits superior and
inferior.
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2n−1 disjoint intervals of length 2−n−k , it lies in F and has probability 2−k−1.
Therefore, [ω: ln(ω) ≥ r] = [ω: di (ω) = 0, n ≤ i < n + r] lies also in F and
has probability �k≥r 2−k−1:

P [ω: ln(ω) ≥ r] = 2−r . (4.7)

If An is the event in (4.7), then (4.4) is the set of ω such that ln(ω) ≥ r for
infinitely many n , or, n being regarded as a time index, such that ln(ω) ≥ r
infinitely often .

Because of the theory of Sections 2 and 3, statements like (4.7) are valid
in the sense of ordinary mathematics, and using the traditional language of
probability—“heads,” “runs,” and so on—does not change this.

When n has the role of time, (4.4) is frequently written

lim sup nAn = [An i.o.], (4.8)

where “i.o.” stands for “infinitely often.”

Theorem 4.1
(i) For each sequence {An},

P
(

lim inf
n

An

)
≤ inf

n
P(An) (4.9)

≤ lim sup
n

P(An) ≤ P

(
lim sup

n
An

)
.

(ii) If An → A, then P(An) → P(A).

Proof. Clearly (ii) follows from (i). As for (i), if Bn = ∩∞
k=nAk and Cn =

∪∞
k=nAk , then Bn ↑ lim infn An and Cn ↓ lim supn An , so that, by parts (i) and

(ii) of Theorem 2.1, P(An) ≥ P(Bn) → P(lim infn An) and P(An) ≤ P(Cn) →
P(lim supn An). ■

EXAMPLE 4.2
Define ln(ω) as in Example 4.1, and let An = [ω: ln(ω) ≥ r] for fixed r . By
(4.7) and (4.9), P [ω: ln(ω) ≥ r i.o.] ≥ 2−r . Much stronger results will be proved
later.

Independent Events

Events A and B are independent if P(A ∩ B) = P(A)P(B). (Sometimes an
unnecessary mutually is put in front of independent .) For events of positive
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probability, this is the same thing as requiring P(B |A) = P(B) or P(A|B) =
P(A). More generally, a finite collection A1, . . . , An of events is independent if

P(Ak1 ∩ · · · ∩ Akj ) = P(Ak1) · · · P(Akj ) (4.10)

for 2 ≤ j ≤ n and 1 ≤ k1 < · · · < kj ≤ n . Reordering the sets clearly has no
effect on the condition for independence, and a subcollection of independent
events is also independent. An infinite (perhaps uncountable) collection of events
is defined to be independent in each of its finite subcollections is.

If n = 3, (4.10) imposes for j = 2 the three constraints

P(A1 ∩ A2) = P(A1)P(A2), P(A1 ∩ A3) = P(A1)P(A3), (4.11)

P(A2 ∩ A3) = P(A2)P(A3),

and for j = 3 the single constraint

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3). (4.12)

EXAMPLE 4.3
Consider in the unit interval the events Buv = [ω: du(ω) = dv(ω)]—the uth
and vth tosses agree—and let A1 = B12, A2 = B13, A3 = B23. Then A1, A2, A3

are pairwise independent in the sense that (4.11) holds (the two sides of each
equation being 1

4). But since A1 ∩ A2 ⊂ A3, (4.12) does not hold (the left side
is 1

4 and the right is 1
8 ), and the events are not independent.

EXAMPLE 4.4
In the discrete space � = {1, . . . , 6} suppose each point has probability 1

6 (a
fair die is rolled). If A1 = {1, 2, 3, 4} and A2 = A3 = {4, 5, 6}, then (4.12) holds
but none of the equations in (4.11) do. Again the events are not independent.

Independence requires that (4.10) hold for each j = 2, . . . , n and each choice
of k1, . . . , kj , a total of �n

j=2

(n
j

) = 2n − 1 − n constraints. This requirement can
be stated in a different way: If B1, . . . , Bn are sets such that for each i = 1, . . . , n
either Bi = Ai or Bi = �, then

P(B1 ∩ B2 ∩ · · · ∩ Bn) = P(B1)P(B2) · · · P(Bn). (4.13)

The point is that if Bi = �, then Bi can be ignored in the intersection on the
left and the factor P(Bi ) = 1 can be ignored in the product on the right. For
example, replacing A2 by � reduces (4.12) to the middle equation in (4.11).
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From the assumed independence of certain sets it is possible to deduce the
independence of other sets.

EXAMPLE 4.5
On the unit interval the events Hn = [ω: dn(ω) = 0], n = 1, 2, . . ., are inde-
pendent, the two sides of (4.10) having in this case value 2−j . It seems intu-
itively clear that from this should follow the independence, for example, of
[ω: d2(ω) = 0] = H2 and [ω: d1(ω) = 0, d3(ω) = 1] = H1 ∩ H c

3 , since the two
events involve disjoint sets of times. Further, any sets A and B depending,
respectively, say, only on even and on odd times (like [ω: d2n(ω) = 0 i.o.] and
[ω: d2n+1(ω) = 1 i.o.]) ought also to be independent. This raises the general
question of what it means for A to depend only on even times. Intuitively, it
requires that knowing which ones among H2, H4, . . . occurred entails knowing
whether or not A occurred—that is, it requires that the sets H2, H4, . . . “deter-
mine” A. The set-theoretic form of this requirement is that A is to lie in the σ -
field generated by H2, H4, . . .. From A ∈ σ(H2, H4, . . .) and B ∈ σ(H1, H3, . . .)
it ought to be possible to deduce the independence of A and B .

The next theorem and its corollaries make such deductions possible. Define
classes A1, . . . , An in the basic σ -field F to be independent if for each choice
of Ai from Ai , i = 1, . . . , n , the events A1, . . . , An are independent. This is the
same as requiring that (4.13) hold whenever for each i , 1 ≤ i ≤ n , either Bi ∈ Ai

or Bi = �.

Theorem 4.2
If A1, . . . , An are independent and each Ai is a π-system, then σ(A1), . . . ,
σ(An) are independent.

Proof. Let Bi be the class Ai augmented by � (which may be an element
of Ai to start with). Then each Bi is a π-system, and by the hypothesis of inde-
pendence, (4.13) holds if Bi ∈ Bi , i = 1, . . . , n . For fixed sets B2, . . . , Bn lying
respectively in B2, . . . , Bn , let L be the class of F -sets B1 for which (4.13)
holds. Then L is a λ-system containing the π-system B1 and hence (Theorem
3.2) containing σ(B1) = σ(A1). Therefore, (4.13) holds if B1, B2, . . . , Bn lie
respectively in σ(A1), B2, . . . , Bn , which means that σ(A1), A2, . . . , An are
independent. Clearly the argument goes through if 1 is replaced by any of the
indices 2, . . . , n .

From the independence of σ(A1), A2, . . . , An now follows that of
σ(A1), σ(A2), A3, . . . , An , and so on. ■
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If A = {A1, . . . , Ak } is finite, then each A in σ(A ) can be expressed by
a “formula” such as A = A2 ∩ Ac

5 or A = (A2 ∩ A7) ∪ (A3 ∩ Ac
7 ∩ A8). If A is

infinite, the sets in σ(A ) may be very complicated; the way to make precise
the idea that the elements of A “determine” A is not to require formulas, but
simply to require that A lie in σ(A ).

Independence for an infinite collection of classes is defined just as in the
finite case: [Aθ : θ ∈ �] is independent if the collection [Aθ : θ ∈ �] of sets is
independent for each choice of Aθ from Aθ . This is equivalent to the indepen-
dence of each finite subcollection Aθ1 , . . . , Aθn of classes, because of the way
independence for infinite classes of sets is defined in terms of independence for
finite classes. Hence Theorem 4.2 has an immediate consequence:

Corollary 1. If Aθ , θ ∈ �, are independent and each Aθ is a π-system, then
σ(Aθ ), θ ∈ �, are independent.

Corollary 2. Suppose that the array

A11 A12 . . .

A21 A22 . . .
...

...

(4.14)

of events is independent; here each row is a finite or infinite sequence, and there
are finitely or infinitely many rows. If Fi is the σ -field generated by the i th row,
then F1, F2, . . . are independent.

Proof. If Ai is the class of all finite intersections of elements of the i th row
of (4.14), then Ai is a π-system and σ(Ai ) = Fi . Let I be a finite collection
of indices (integers), and for each i in I let Ji be a finite collection of indices.
Consider for i ∈ I the element Ci = ∩j∈Ji Aij of Ai . Since every finite subcol-
lection of the array (4.14) is independent (the intersections and products here
extend over i ∈ I and j ∈ Ji ),

P

(⋂
i

Ci

)
= P

⎛
⎝⋂

i

⋂
j

Aij

⎞
⎠ =

∏
i

∏
j

P(Aij ) =
∏

i

P(∩j Aij )

=
∏

i

P(Ci ).

It follows that the classes A1, A2, . . . are independent, so that Corollary 1
applies. ■

Corollary 2 implies the independence of the events discussed in Example
4.5. The array (4.14) in this case has two rows:

H2 H4 H6 · · ·
H1 H3 H5 · · ·
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Theorem 4.2 also implies, for example, that for independent A1, . . . , An ,

P(Ac
1 ∩ · · · ∩ Ac

k ∩ Ak+1 ∩ · · · ∩ An) (4.15)

= P(Ac
1) · · · P(Ac

k )P(Ak+1) · · · P(An).

To prove this, let Ai consist of Ai alone; of course, Ac
i ∈ σ(Ai ). In (4.15) any

subcollection of the Ai could be replaced by their complements.

EXAMPLE 4.6
Consider as in Example 4.3 the events Buv that, in a sequence of tosses of a
fair coin, the uth and vth outcomes agree. Let A1 consist of the events B12 and
B13, and let A2 consist of the event B23. Since these three events are pairwise
independent, the classes A1 and A2 are independent. Since B23 = (B12�B13)

c

lies in σ(A1), however, σ(A1) and σ(A2) are not independent. The trouble is
that A1 is not a π-system, which shows that this condition in Theorem 4.2 is
essential.

EXAMPLE 4.7
If A = {A1, A2, . . .} is a finite or countable partition of � and P(B |Ai ) = p
for each Ai of positive probability, then P(B) = p and B is independent of
σ(A ): If �′ denotes summation over those i for which P(Ai ) > 0, then P(B) =
�′P(Ai ∩ B) = �′P(Ai )p = p, and so B is independent of each set in the π-
system A ∪ {Ø}.

Subfields

Theorem 4.2 involves a number of σ -fields at once, which is characteristic
of probability theory; measure theory not directed toward probability usually
involves only one all-embracing σ -field F . In proability, σ -fields in F —that
is, sub-σ -fields of F —play an important role. To understand their function it
helps to have an informal, intuitive way of looking at them.

A subclass A of F corresponds heuristically to partial information . Imagine
that a point ω is drawn from � according to the probabilities given by P : ω lies
in A with probability P (A). Imagine also an observer who does not know which
ω it is that has been drawn but who does know for each A in A whether ω ∈ A
or ω /∈ A—that is, who does not know ω but does know the value of IA(ω) for
each A in A . Identifying this partial information with the class A itself will
illuminate the connection between various measure-theoretic concepts and the
premathematical ideas lying behind them.

The set B is by definition independent of the class A if P(B |A) = P(B) for
all sets A in A for which P(A)> 0. Thus if B is independent of A , then the
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observer’s probability for B is P (B ) even after he has received the information
in A ; in this case A contains no information about B . The point of Theorem
4.2 is that this remains true even if the observer is given the information in
σ(A ), provided that A is a π-system. It is to be stressed that here information ,
like observer and know , is an informal, extramathematical term (in particular,
it is not information in the technical sense of entropy).

The notion of partial information can be looked at in terms of partitions.
Say that points ω and ω′ are A -equivalent if, for every A in A , ω and ω′ lie
either both in A or both in Ac —that is, if

IA(ω) = IA(ω′), A ∈ A . (4.16)

This relation partitions � into sets of equivalent points; call this the A partition .

EXAMPLE 4.8
If ω and ω′ are σ(A )-equivalent, then certainly they are A -equivalent. For
fixed ω and ω′, the class of A such that IA(ω) = IA(ω′) is a σ -field; if ω and
ω′ are A -equivalent, then this σ -field contains A and hence σ(A ), so that ω

and ω′ are also σ(A )-equivalent. Thus A -equivalence and σ(A )-equivalence
are the same thing, and the A -partition coincides with the σ(A )-partition.

An observer with the information in σ(A ) knows, not the point ω drawn,
but only the equivalence class containing it. That is exactly the information he
has. In Example 4.6, it is as though an observer with the items of information
in A1 were unable to combine them to get information about B23.

EXAMPLE 4.9
If Hn = [ω: dn(ω) = 0] as in Example 4.5, and if A = {H1, H3, H5, . . .}, then ω

and ω′ satisfy (4.16) if and only if dn(ω) = dn(ω
′) for all odd n . The information

in σ(A ) is thus the set of values of dn(ω) for n odd.

One who knows that ω lies in a set A has more information about ω the
smaller A is. One who knows IA(ω) for each A in a class A , however, has more
information about ω the larger A is. Furthermore, to have the information in
A1 and the information in A2 is to have the information in A1 ∪ A2, not that
in A1 ∩ A2.

The following example points up the informal nature of this interpretation
of σ -fields as information.
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EXAMPLE 4.10
In the unit interval (�, F , P) let G be the σ -field consisting of the countable
and the cocountable sets. Since P(G) is 0 or 1 for each G in G each set H in F

is independent of G . But in this case the G -partition consists of the singletons,
and so the information in G tells the observer exactly which ω in � has been
drawn. (i) The σ -field G contains no information about H —in the sense that
H and G are independent. (ii) The σ -field G contains all the information about
H —in the sense that it tells the observer exactly which ω was drawn.

In this example, (i) and (ii) stand in apparent contradiction. But the mathe-
matics is in (i)—H and G are independent—while (ii) only concerns heuristic
interpretation. The source of the difficulty or apparent paradox here lies in the
unnatural structure of the σ -field G rather than in any deficiency in the notion
of independence.† The heuristic equating of σ -fields and information is helpful
even though it sometimes breaks down, and of course proofs are indifferent to
whatever illusions and vagaries brought them into existence.

The Borel–Cantelli Lemmas

This is the first Borel–Cantelli lemma:

Theorem 4.3
If �nP(An) converges, then P(lim supn An) = 0.

Proof. From lim supn An ⊂ ⋃∞
k=m Ak follows P(lim supn An) ≤ P(

⋃∞
k=m

Ak ) ≤ �∞
k=mP(Ak ), and this sum tends to 0 as m → ∞ if �nP(An) con-

verges. ■

By Theorem 4.1, P(An) → 0 implies that P(lim infn An) = 0; in Theorem
4.3 hypothesis and conclusion are both stronger.

EXAMPLE 4.11
Consider the run length ln(ω) of Example 4.1 and a sequence {rn} of positive
reals. If the series �1/2rn converges, then

P [ω: ln(ω) ≥ rn i.o.] = 0. (4.17)

To prove this, note that if sn is rn rounded up to the next integer, then by
(4.7), P [ω: ln(ω) ≥ rn] = 2−sn ≤ 2−rn . Therefore, (4.17) follows by the first
Borel—Cantelli lemma.

†See Problem 4.10 for a more extreme example.



SECTION 4 DENUMERABLE PROBABILITIES 63

If rn = (1 + ε) log2 n and ε is positive, there is convergence because 2−rn =
1/n1+ε . Thus

P [ω: ln(ω) ≥ (1 + ε) log2 n i.o.] = 0. (4.18)

The limit superior of the ratio ln(ω)/ log2 n exceeds 1 if and only if ω belongs
to the set in (4.18) for some positive rational ε. Since the union of this countable
class of sets has probability 0,

P

[
ω: lim sup

n

ln(ω)

log2 n
> 1

]
= 0. (4.19)

To put it the other way around.

P

[
ω: lim sup

n

ln(ω)

log2 n
≤ 1

]
= 1. (4.20)

Technically, the probability in (4.20) refers to Lebesgue measure. Intuitively, it
refers to an infinite sequence of independent tosses of a fair coin.

In this example, whether lim supn ln(ω)/ log2 n ≤ 1 holds or not is a prop-
erty of ω, and the property in fact holds for ω in an F -set of probability 1. In
such a case the property is said to hold with probability 1, or almost surely .
In nonprobabilistic contexts, a property that holds for ω outside a (measurable)
set of measure 0 holds almost everywhere, or for almost all ω.

EXAMPLE 4.12
The preceding example has an interesting arithmetic consequence. Truncat-
ing the dyadic expansion at n gives the standard (n − 1)-place approximation
�n−1

k=1 dk (ω)2−k to ω; the error is between 0 and 2−n+1, and the error relative
to the maximum is

en(ω) = ω − �n−1
k=1 dk (ω)2−k

2−n+1
=

∞∑
i=1

dn+i−1(ω)2−i , (4.21)

which lies between 0 and 1. The binary expansion of en(ω) begins with ln(ω)

0’s, and then comes a 1. Hence .0 . . . 01 ≤ en(ω) ≤ .0 . . . 0111 . . ., where there
are ln(ω) 0’s in the extreme terms. Therefore,

1

2ln (ω)+1
≤ en(ω) ≤ 1

2ln (ω)
, (4.22)

so that results on run length give information about the error of approximation.
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By the left-hand inequality in (4.22), en(ω) ≤ xn (assume that 0 < xn ≤ 1)
implies that ln(ω) ≥ − log2 xn − 1; since �2−rn < ∞ implies (4.17), �xn < ∞
implies P [ω: en(ω) ≤ xn i.o.] = 0. (Clearly, [ω: en(ω) ≤ x ] is a Borel set.) In
particular,

P [ω: en(ω) ≤ 1/n1+ε i.o.] = 0. (4.23)

Technically, this probability refers to Lebesgue measure; intuitively, it refers to
a point drawn at random from the unit interval.

EXAMPLE 4.13
The final step in the proof of the normal number theorem (Theorem 1.2)
was a disguised application of the first Borel–Cantelli lemma. If An = [ω:
|n−1sn(ω)| ≥ n−1/8], then �P(An) < ∞, as follows by (1.29), and so
P [An i.o.] = 0. But for ω in the set complementary to [An i.o.], n−1sn(ω) → 0.

The proof of Theorem 1.6 is also, in effect, an application of the first
Borel—Cantelli lemma.

This is the second Borel–Cantelli lemma:

Theorem 4.4
If {An} is an independent sequence of events and �nP(An) diverges, then
P(lim supn An) = 1.

Proof. It is enough to prove that P(
⋃∞

n=1

⋂∞
k=n Ac

k ) = 0 and hence enough
to prove that P(

⋂∞
k=n Ac

k ) = 0 for all n . Since 1 − x ≤ e−x ,

P

⎛
⎝n+j⋂

k=n

Ac
k

⎞
⎠ =

n+j∏
k=n

(1 − P(Ak )) ≤ exp

⎡
⎣−

n+j∑
k=n

P(Ak )

⎤
⎦ .

Since �k P(Ak ) diverges, the last expression tends to 0 as j → ∞, and hence
P(∩∞

k=nAc
k ) = limj P(∩n+j

k=nAc
k ) = 0. ■

By Theorem 4.1, lim supn P(An) > 0 implies P(lim supn An) > 0; in
Theorem 4.4, the hypothesis �nP(An) = ∞ is weaker but the conclusion is
stronger because of the additional hypothesis of independence.

EXAMPLE 4.14
Since the events [ω: ln(ω) = 0] = [ω: dn(ω) = 1], n = 1, 2, . . ., are independent
and have probability 1

2 , P [ω: ln(ω) = 0 i.o.] = 1.
Since the events An = [ω: ln(ω) = 1] = [ω: dn(ω) = 0, dn+1(ω) = 1], n =

1, 2, . . ., are not independent, this argument is insufficient to prove that

P [ω: ln(ω) = 1 i.o.] = 1. (4.24)
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But the events A2, A4, A6, . . . are independent (Theorem 4.2) and their probabil-
ities form a divergent series, and so P [ω: l2n(ω) = 1 i.o.] = 1, which implies
(4.24).

Significant applications of the second Borel–Cantelli lemma usually require,

in order to get around problems of dependence, some device of the kind used

in the preceding example.

EXAMPLE 4.15
There is a complement to (4.17): If rn is nondecreasing and �2−rn /rn diverges,
then

P [ω: ln(ω) ≥ rn i .o.] = 1. (4.25)

To prove this, note first that if rn is rounded up to the next integer, then
�2−rn /rn still diverges and (4.25) is unchanged. Assume then that rn = r(n)

is integral, and define {nk } inductively by nt = 1 and nk+1 = nk + rnk , k ≥
1. Let Ak = [ω: lnk (ω) ≥ rnk ] = [ω: di (ω) = 0, nk ≤ i < nk+1]; since the Ak

involve nonoverlapping sequences of time indices, it follows by Corollary 2
to Theorem 4.2 that A1, A2, . . . are independent. By the second Borel-Cantelli
lemma, P [Ak i.o.] = 1 if �k P(Ak ) = �k 2−r(nk ) diverges. But since rn is non-
decreasing, ∑

k≥1

2−r(nk ) =
∑
k≥1

2−r(nk )r−1(nk )(nk+1 − nk )

≥
∑
k≥1

∑
nk ≤n<nk+1

2−rn r−1
n =

∑
n≥1

2−rn r−1
n .

Thus the divergence of �n2−rn r−1
n implies that of �k 2−r(nk ), and it follows

that, with probability 1, lnk (ω) ≥ rnk for infinitely many values of k . But this
is stronger than (4.25).

The result in Example 4.2 follows if rn ≡ r , but this is trivial. If rn = log2 n ,
then �2−rn /rn = �1/(n log2 n) diverges, and therefore

P [ω: ln(ω) ≥ log2 n i.o.] = 1. (4.26)

By (4.26) and (4.20),

P

[
ω: lim sup

n

ln(ω)

log2 n
= 1

]
= 1. (4.27)

Thus for ω in a set of probability 1, log2 n as a function of n is a kind of “upper
envelope” for the function ln(ω).
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EXAMPLE 4.16
By the right-hand inequality in (4.22), if ln(ω) ≥ log2 n , then en(ω) ≤ 1/n .
Hence (4.26) gives

P

[
ω: en(ω) ≤ 1

n
i.o.

]
= 1. (4.28)

This and (4.23) show that, with probability 1, en(ω) has 1/n as a “lower
envelope.” The discrepancy between ω and its (n − 1)-place approximation
�n−1

k=1 dk (ω)2−k will fall infinitely often below 1/(n2n−1) but not infinitely often
below 1/(n1+ε2n−1).

EXAMPLE 4.17
Examples 4.12 and 4.16 have to do with the approximation of real numbers
by rationals: Diophantine approximation. Change the xn = 1/n1+ε of (4.23) to
1/((n − 1) log 2)1+ε . Then �xn still converges, and hence

P [ω: en(ω) ≤ 1/(log 2n−1)1+ε i.o.] = 0.

And by (4.28),

P [ω: en(ω) < 1/ log 2n−1 i.o.] = 1.

The dyadic rational �n−1
k=1 dk (ω)2−k = p/q has denominator q = 2n−1, and

en(ω) = q(ω − p/q). There is therefore probability 1 that, if q is restricted to
the powers of 2, then 0 ≤ ω − p/q < 1/(q log q) holds for infinitely many p/q
but 0 ≤ ω − p/q ≤ 1/(q log1+ε q) holds only for finitely many.† But contrast
this with Theorems 1.5 and 1.6: The sharp rational approximations to a real
number come not from truncating its dyadic (or decimal) expansion, but from
truncating its continued-fraction expansion; see Section 24.

The Zero–One Law

For a sequence A1, A2, . . . of events in a probability space (�, F , P) consider
the σ -fields σ(An , An+1, . . .) and their intersection

F =
∞⋂

n=1

σ(An , An+1, . . .). (4.29)

This is the tail σ -field associated with the sequence {An}, and its elements are
called tail events . The idea is that a tail event is determined solely by the An

for arbitrarily large n .

†This ignores the possibility of even p (reducible p/q); but see Problem 1.11(b). And rounding ω up
to (p + 1)/q instead of down to p/q changes nothing; see Problem 4.13.
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EXAMPLE 4.18
Since lim supm Am = ∩k≥n ∪i≥k Ai and lim infm Am = ∪k≥n ∩i≥k Ai are both in
σ(An , An+1, . . .), the limits superior and inferior are tail events for the sequence
{An}.

EXAMPLE 4.19
Let ln(ω) be the run length, as before, and let Hn = [ω: dn(ω) = 0]. For each n0,

[ω: ln(ω) ≥ rn i.o.] =
⋂

n≥n0

⋃
k≥n

[ω: lk (ω) ≥ rk ]

=
⋂

n≥n0

⋃
k≥n

Hk ∩ Hk+1 ∩ · · · ∩ Hk+rk −1.

Thus [ω: ln(ω) ≥ rn i.o.] is a tail event for the sequence {Hn}.

The probabilities of tail events are governed by Kolmogorov’s zero-one
law:†

Theorem 4.5
If A1, A2, . . . is an independent sequence of events, then for each event A in the
tail σ -field (4.29), P(A) is either 0 or 1.

Proof. By Corollary 2 to Theorem 4.2, σ(A1), . . . , σ(An−1), σ(An , An+1, . . .)
are independent. If A ∈ F , then A ∈ σ(An , An+1, . . .) and therefore
A1, . . . , An−1, A are independent. Since independence of a collection of events is
defined by independence of each finite subcollection, the sequence A, A1, A2, . . .
is independent. By a second application of Corollary 2 to Theorem 4.2,
σ(A) and σ(A1, A2, . . .) are independent. But A ∈ F ⊂ σ(A1, A2, . . .); from
A ∈ σ(A) and A ∈ σ(A1, A2, . . .) it follows that A is independent of itself:
P(A ∩ A) = P(A)P(A). This is the same as P(A) = (P(A))2 and can hold only
if P (A) is 0 or 1. ■

EXAMPLE 4.20
By the zero–one law and Example 4.18, P(lim supn An) is 0 or 1 if the An

are independent. The Borel–Cantelli lemmas in this case go further and give a
specific criterion in terms of the convergence or divergence of �P(An).

†For a more general version, see Theorem 22.3.
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Kolmogorov’s result is surprisingly general, and it is in many cases quite
easy to use it to show that the probability of some set must have one of the
extreme values 0 and 1. It is perhaps curious that it should so often be very
difficult to determine which of these extreme values is the right one.

EXAMPLE 4.21
By Kolmogorov’s theorem and Example 4.19, [ω: ln(ω) ≥ rn i.o.] has proba-
bility 0 or 1. Call the sequence {rn} an outer boundary or an inner boundary
according as this probability is 0 or 1.

In Example 4.11 it was shown that {rn} is an outer boundary if �2−rn <

∞. In Example 4.15 it was shown that {rn} is an inner boundary if rn is
nondecreasing and �2−rn r−1

n = ∞. By these criteria rn = θ log2 n gives an
outer boundary if θ > 1 and an inner boundary if θ ≤ 1.

What about the sequence rn = log2 n + θ log2 log2 n? Here �2−rn =
�1/n(log2 n)θ , and this converges for θ > 1, which gives an outer boundary.
Now 2−rn r−1

n is of the order 1/n(log2 n)1+θ , and this diverges if θ ≤ 0, which
gives an inner boundary (this follows indeed from (4.26)). But this analysis
leaves the range 0 < θ ≤ 1 unresolved, although every sequence is either an
inner or an outer boundary. This question is pursued further in Example 6.5.

PROBLEMS

4.1. 2.1 ↑ The limits superior and inferior of a numerical sequence {xn} can
be defined as the supremum and infimum of the set of limit points—that
is, the set of limits of convergent subsequences. This is the same thing
as defining

lim sup
n

xn =
∞∧

n=1

∞∨
k=n

xk (4.30)

and

lim inf
n

xn =
∞∨

n=1

∞∧
k=n

xk . (4.31)

Compare these relations with (4.4) and (4.5) and prove that

Ilim supn An = lim sup
n

IAn , Ilim infn An = lim inf
n

IAn .

Prove that limn An exists in the sense of (4.6) if and only if limn IAn (ω)

exists for each ω.
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4.2. ↑
(a) Prove that

(lim sup
n

An) ∩ (lim sup
n

Bn) ⊃ lim sup
n

(An ∩ Bn),

(lim sup
n

An) ∪ (lim sup
n

Bn) = lim sup
n

(An ∪ Bn),

(lim inf
n

An) ∩ (lim inf
n

Bn) = lim inf
n

(An ∩ Bn),

(lim inf
n

An) ∪ (lim inf
n

Bn) ⊂ lim inf
n

(An ∪ Bn).

Show by example that the two inclusions can be strict.
(b) The numerical analogue of the first of the relations in part (a) is

(lim sup
n

xn) ∧ (lim sup
n

yn) ≥ lim sup
n

(xn ∧ yn).

Write out and verify the numerical analogues of the others.
(c) Show that

lim sup
n

Ac
n = (lim inf

n
An)c ,

lim inf
n

Ac
n = (lim sup

n
An)c ,

lim sup
n

An − lim inf
n

An = lim sup
n

(An ∩ Ac
n+1)

= lim sup
n

(Ac
n ∩ An+1).

(d) Show that An → A and Bn → B together imply that An ∪ Bn →
A ∪ B and An ∩ Bn → A ∩ B .

4.3. Let An be the square [(x , y): |x | ≤ 1, |y | ≤ 1] rotated through the angle
2πnθ . Give geometric descriptions of lim supn An and lim inf An in case
(a) θ = 1

8 ;
(b) θ is rational;
(c) θ is irrational. Hint : The 2πnθ reduced modulo 2π are dense in

[0, 2π] if θ is irrational.
(d) When is there convergence is the sense of (4.6)?

4.4. Find a sequence for which all three inequalities in (4.9) are strict.

4.5. .(a) Show that limn P(lim infk An ∩ Ac
k ) = 0. Hint : Show that lim supn

lim infk An ∩ Ac
k is empty.

Put A∗ = lim supn An and A∗ = lim infn An .
(b) Show that P(An − A∗) → 0 and P(A∗ − An) → 0.
(c) Show that An → A (in the sense that A = A∗ = A∗) implies

P(A�An) → 0.
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(d) Suppose that An converges to A in the weaker sense that P(A�A∗)
= P(A�A∗) = 0 (which implies that P(A∗ − A∗) = 0). Show that
P(A�An) → 0 (which implies that P(An) → P(A)).

4.6. In a space of six equally likely points (a die is rolled) find three events
that are not independent even though each is independent of the inter-
section of the other two.

4.7. For events A1, . . . , An , consider the 2n equations P(B1 ∩ · · · ∩ Bn) =
P(B1) · · · P(Bn) with Bi = Ai or Bi = Ac

i for each i . Show that
A1, . . . , An are independent if all these equations hold.

4.8. For each of the following classes A , describe the A -partition defined
by (4.16).
(a) The class of finite and cofinite sets.
(b) The class of countable and cocountable sets.
(c) A partition (of arbitrary cardinality) of �.
(d) The level sets of sin x(� = R1).
(e) The σ -field in Problem 3.5.

4.9. 2.9 2.10 ↑ In connection with Example 4.8 and Problem 2.10, prove
these facts:
(a) Every set in σ(A ) is a union of A -equivalence classes.
(b) If A = [Aθ : θ ∈ �], then the A -equivalence classes have the form

∩θBθ , where for each θ , Bθ is Aθ or Ac
θ .

(c) Every finite σ -field is generated by a finite partition of �.
(d) If F0 is a field, then each singleton, even each finite set, in σ(F0) is

a countable intersection of F0-sets.

4.10. 3.2 ↑ There is in the unit interval a set H that is nonmeasurable in the
extreme sense that its inner and outer Lebesgue measures are 0 and 1
(see (3.9) and (3.10)): λ∗(H ) = 0 and λ∗(H ) = 1. See Problem 12.4 for
the construction.

Let � = (0, 1], let G consist of the Borel sets in �, and let H be the
set just described. Show that the class F of sets of the form (H ∩ G1) ∪
(H c ∩ G2) for G1 and G2 in G is a σ -field and that P [(H ∩ G1) ∪ (H c ∩
G2)] = 1

2λ(G1) + 1
2λ(G2) consistently defines a probability measure on

F . Show that P(H ) = 1
2 and that P(G) = λ(G) for G ∈ G . Show that

G is generated by a countable subclass (see Problem 2.11). Show that
G contains all the singletons and that H and G are independent.

The construction proves this: There exist a probability space
( �, F , P), a σ -field G in F , and a set H in F , such that P(H ) = 1

2 ,
H and G are independent, and G is generated by a countable subclass
and contains all the singletons .
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Example 4.10 is somewhat similar, but there the σ -field G is not
countably generated and each set in it has probability either 0 or 1.
In the present example G is countably generated and P (G) assumes
every value between 0 and 1 as G ranges over G . Example 4.10 is to
some extent unnatural because the G there is not countably generated.
The present example, on the other hand, involves the pathological set
H . This example is used in Section 33 in connection with conditional
probability; see Problem 33.11.

4.11. .(a) If A1, A2, . . . are independent events, then P(∩∞
n=1An) = �∞

n=1P(An)

and P(∪∞
n=1An) = 1 − �∞

n=1(1 − P(An)). Prove these facts and from
them derive the second Borel–Cantelli lemma by the well-known
relation between infinite series and products.

(b) Show that P(lim supn An) = 1 if for each k the series �n > k P(An |Ac
k

∩ . . . ∩ Ac
n−l ) diverges. From this deduce the second Borel–Cantelli

lemma once again.
(c) Show by example that P(lim supn An) = 1 does not follow from the

divergence of �nP(An |Ac
1 ∩ · · · ∩ Ac

n−1) alone.
(d) Show that P(lim supn An) = 1 if and only if �nP(A ∩ An) diverges

for each A of positive probability.
(e) If sets An are independent and P(An) < 1 for all n , then P [An i.o.] =

1 if and only if P(∪nAn) = 1.

4.12. .(a) Show (see Example 4.21) that log2 n + log2 log2 n + θ log2 log2
log2 n is an outer boundary if θ > 1. Generalize.

(b) Show that log2 n + log2 log2 log2 n is an inner boundary.

4.13. Let ϕ be a positive function of integers, and define Bϕ as the set of x in
(0, 1) such that |x − p/2i | < 1/2iϕ(2i ) holds for infinitely many pairs p,
i . Adapting the proof of Theorem 1.6, show directly (without reference
to Example 4.12) that �i 1/ϕ(2i ) < ∞ implies λ(Bϕ) = 0.

4.14. 2.19 ↑ Suppose that there are in (�, F , P ) independent events A1, A2, . . .
such that, if αn = min{P(An), 1 − P(An)}, then �αn = ∞. Show that P
is nonatomic.

4.15. 2.18 ↑ Let F be the set of square-free integers—those integers not divis-
ible by any perfect square. Let F1 be the set of m such that p2|m for
no p ≤ l , and show that D(F1) = �p≤l (1 − p−2). Show that Pn(F1 −
F ) ≤ �p > l p−2, and conclude that the square-free integers have density
�p(1 − p−2) = 6/π2.

4.16. 2.18 ↑ Reconsider Problem 2.18(d). If D were countably additive
on f (M ), it would extend to σ(M ). Use the second Borel–Cantelli
lemma.
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SECTION 5 SIMPLE RANDOM VARIABLES

Definition

Let (�, F , P ) be an arbitrary probability space, and let X be a real-valued
function on �; X is a simple random variable if it has finite range (assumes
only finitely many values) and if

[ω: X (ω) = x ] ∈ F (5.1)

for each real x . (Of course, [ω: X (ω) = x ] = Ø ∈ F for x outside the range
of X .) Whether or not X satisfies this condition depends only on F , not on P ,
but the point of the definition is to ensure that the probabilities P [ω: X (ω) = x ]
are defined. Later sections will treat the theory of general random variables,
of functions on � having arbitrary range; (5.1) will require modification in the
general case.

The dn(ω) of the preceding section (the digits of the dyadic expansion)
are simple random variables on the unit interval: the sets [ω: dn(ω) = 0] and
[ω: dn(ω) = 1] are finite unions of subintervals and hence lie in the σ -field B

of Borel sets in (0, 1]. The Rademacher functions are also simple random vari-
ables. Although the concept itself is thus not entirely new, to proceed further in
probability requires a systematic theory of random variables and their expected
values.

The run lengths ln(ω) satisfy (5.1) but are not simple random variables,
because they have infinite range (they come under the general theory). In a
discrete space, F consists of all subsets of �, so that (5.1) always holds.

It is customary in probability theory to omit the argument ω. Thus X stands
for a general value X (ω) of the function as well as for the function itself, and
[X = x ] is short for [ω: X (ω) = x ]

A finite sum
X =

∑
i

xi IAi (5.2)

is a random variable if the Ai form a finite partition of � into F -sets. Moreover,
every simple random variable can be represented in the form (5.2): for the
xi take the range of X , and put Ai = [X = xi ]. But X may have other such
representations because xi IAi can be replaced by �j xi IAij if the Aij form a finite
decomposition of Ai into F -sets.

If G is a sub-σ -field of F , a simple random variable X is measurable G ,
or measurable with respect to G , if [X = x ] ∈ G for each x . A simple random
variable is by definition always measurable F . Since [X ∈ H ] = ⋃

[X = x ],
where the union extends over the finitely many x lying both in H and in the
range of X , [X ∈ H ] ∈ G for every H ⊂ R1 if X is a simple random variable
variable measurable G .
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The σ -field σ(X ) generated by X is the smallest σ -field with respect to
which X is measurable; that is, σ(X ) is the intersection of all σ -fields with
respect to which X is measurable. For a finite or infinite sequence X1, X2, . . . of
simple random variables, σ(X1, X2, . . .) is the smallest σ -field with respect to
which each Xi is measurable. It can be described explicitly in the finite case:

Theorem 5.1
Let X1, . . . , Xn be simple random variables.

(i) The σ -field σ(X1, . . . , Xn) consists of the sets

[(X1, . . . , Xn) ∈ H ] = [ω: (X1(ω), . . . , Xn(ω)) ∈ H ] (5.3)

for H ⊂ Rn; H in this representation may be taken finite.

(ii) A simple random variable Y is measurable σ(X1, . . . , Xn) if and only if

Y = f (X1, . . . , Xn) (5.4)

for some f: Rn → R1.

Proof. Let M be the class of sets of the form (5.3). Sets of the form
[(X1, . . . , Xn) = (x1, . . . , xn)] = ⋂n

i=1[Xi = xi ] must lie in σ(X1, . . . , Xn); each
set (5.3) is a finite union of sets of this form because (X1, . . . , Xn), as a mapping
from � to Rn , has finite range. Thus M ⊂ σ(X1, . . . , Xn).

On the other hand, M is a σ -field because � = [(X1, . . . , Xn) ∈
Rn], [(X1, . . . , Xn) ∈ H ]c = [(X1, . . . , Xn) ∈ H c], and ∪j [(X1, . . . , Xn) ∈ Hj ] =
[(X1, . . . , Xn) ∩⋃

j Hj ]. But each Xi is measurable with respect to M , because
[Xi = x ] can be put in the form (5.3) by taking H to consist of those
(x1, . . . , xn) in Rn for which xi = x . It follows that σ(X1, . . . , Xn) is contained
in M and therefore equals M . As intersecting H with the range (finite) of
(X1, . . . , Xn) in Rn does not affect (5.3), H may be taken finite. This proves (i).

Assume that Y has the form (5.4)—that is, Y (ω) = f (X1(ω), . . . , Xn(ω))

for every ω. Since [Y = y] can be put in the form (5.3) by taking H to consist
of those x = (x1, . . . , xn) for which f (x) = y , it follows that Y is measurable
σ(X1, . . . , Xn).

Now assume that Y is measurable σ(X1, . . . , Xn). Let y1, . . . , yr be the dis-
tinct values Y assumes. By part (i), there exist sets H1, . . . , Hr in Rn such that

[ω: Y (ω) = yi ] = [ω: (X1(ω), . . . , Xn(ω)) ∈ Hi ].

Take f = �r
i=1yi IHi . Although the Hi need not be disjoint, if Hi and Hj share

a point of the form (X1(ω), . . . , Xn(ω)), then Y (ω) = yi and Y (ω) = yj , which
is impossible if i �= j . Therefore each (X1(ω), . . . , Xn(ω)) lies in exactly one of
the Hi , and it follows that f (X1(ω), . . . , Xn(ω)) = Y (ω). ■
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Since (5.4) implies that Y is measurable σ(X1, . . . , Xn), it follows in particu-
lar that functions of simple random variables are again simple random variables.
Thus X 2, etX , and so on are simple random variables along with X . Taking f
to be �n

i=1xi , �n
i=1xi , or maxi≤n xi shows that sums, products, and maxima of

simple random variables are simple random variables.
As explained on p. 57, a sub-σ -field corresponds to partial information about

ω. From this point of view, σ(X1, . . . , Xn) corresponds to a knowledge of the
values X1(ω), . . . , Xn(ω). These values suffice to determine the value Y (ω) if
and only if (5.4) holds. The elements of the σ(X1, . . . , Xn)-partition (see (4.16))
are the sets [X1 = x1, . . . , Xn = xn] for xi in the range of Xi .

EXAMPLE 5.1
For the dyadic digits dn(ω) on the unit interval, d3 is not measurable σ(d1, d2);
indeed, there exist ω′ and ω′′ such that d1(ω

′) = d1(ω
′′) and d2(ω

′) = d2(ω
′′)

but d3(ω
′) �= d3(ω

′′), an impossibility if d3(ω) = f (d1(ω), d2(ω)) identically in
ω. If such an f existed, one could unerringly predict the outcome d3(ω) of the
third toss from the outcomes d1(ω) and d2(ω) of the first two.

EXAMPLE 5.2
Let sn(ω) = �n

k=1rk (ω) be the partial sums of the Rademacher functions—see
(1.14). By Theorem 5.1(ii) sk is measurable σ(r1, . . . , rn) for k ≤ n ,
and rk = sk − sk−1 is measurable σ(s1, . . . , sn) for k ≤ n . Thus
σ(r1, . . . , rn) = σ(s1, . . . , sn). In random-walk terms, the first n posi-
tions contain the same information as the first n distances moved. In gambling
terms, to know the gambler’s first n fortunes (relative to his initial fortune) is
the same thing as to know his gains and losses on each of the first n plays.

EXAMPLE 5.3
An indicator IA is measurable G if and only if A lies in G . And
A ∈ σ(A1, . . . , An) if and only if IA = f (IA1 , . . . , IAn ) for some f : Rn → R1.

Convergence of Random Variables

It is a basic problem, for given random variables X and X1, X2, . . . on a probabil-
ity space (�, F , P ), to look for the probability of the event that limn Xn(ω) =
X (ω). The normal number theorem is an example, one where the probabil-
ity is 1. It is convenient to characterize the complementary event: Xn(ω) fails
to converge to X (ω) if and only if there is some ε such that for no m does
|Xn(ω) − X (ω)| remain below ε for all n exceeding m —that is to say, if and
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only if, for some ε, |Xn(ω) − X (ω)| ≥ ε holds for infinitely many values of n .
Therefore,

[lim
n

Xn = X ]c =
⋃
ε

[|Xn − X | ≥ ε i.o.], (5.5)

where the union can be restricted to rational (positive) ε because the set in the
union increases as ε decreases (compare (2.2)).

The event [limn Xn = X ] therefore always lies in the basic σ -field F , and
it has probability 1 if and only if

P [|Xn − X | ≥ ε i.o.] = 0 (5.6)

for each ε (rational or not). The event in (5.6) is the limit superior of the events
[|Xn − X | ≥ ε], and it follows by Theorem 4.1 that (5.6) implies

lim
n

P [|Xn − X | ≥ ε] = 0. (5.7)

This leads to a definition: If (5.7) holds for each positive ε, then Xn is said to
converge to X in probability , written Xn →P X .

These arguments prove two facts:

Theorem 5.2
(i) There is convergence limn Xn = X with probability 1 if and only if (5.6)

holds for each ε.

(ii) Convergence with probability 1 implies convergence in probability.

Theorem 1.2, the normal number theorem, has to do with the convergence
with probability 1 of n−1�n

i=1di (ω) to 1
2 . Theorem 1.1 has to do instead with

the convergence in probability of the same sequence. By Theorem 5.2(ii), then,
Theorem 1.1 is a consequence of Theorem 1.2 (see (1.30) and (1.31)). The
converse is not true, however—convergence in probability does not imply con-
vergence with probability 1:

EXAMPLE 5.4
Take X ≡ 0 and Xn = IAn . Then Xn →P X is equivalent to P(An) → 0, and
[limn Xn = X ]c = [An i.o.]. Any sequence {An} such that P(An) → 0 but
P [An i.o.] > 0 therefore gives a counterexample to the converse to Theorem
5.2(ii).

Consider the event An = [ω: ln(ω) ≥ log2 n] in Example 4.15. Here,
P(An) ≤ 1/n → 0, while P [An i.o.] = 1 by (4.26), and so this is one
counterexample. For an example more extreme and more transparent, define
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events in the unit interval in the following way. Define the first two by

A1 = (0, 1
2], A2 = (1

2 , 1].

Define the next four by

A3 = (0, 1
4], A4 = (1

4 , 1
2 ], A5 = (1

2 , 3
4 ], A6 = (3

4 , 1].

Define the next eight, A7, . . . , A14, as the dyadic intervals of rank 3. And so on.
Certainly, P(An) → 0, and since each point ω is covered by one set in each
successive block of length 2k , the set [An i.o.] is all of (0, 1].

Independence

A sequence X1, X2, . . . (finite or infinite) of simple random variables is by defi-
nition independent if the classes σ(X1), σ(X2), . . . are independent in the sense
of the preceding section. By Theorem 5.1(i), σ(Xi ) consists of the sets [Xi ∈ H ]
for H ⊂ R1. The condition for independence of X1, . . . , Xn is therefore that

P [X1 ∈ H1, . . . , Xn ∈ Hn] = P [X1 ∈ H1] · · · P [Xn ∈ Hn] (5.8)

for linear sets H1, . . . , Hn . The definition (4.10) also requires that (5.8) hold if
one or more of the [Xi ∈ Hi ] is suppressed; but taking Hi to be R1 eliminates
it from each side. For an infinite sequence X1, X2, . . ., (5.8) must hold for each
n . A special case of (5.8) is

P [X1 = x1, . . . , Xn = xn] = P [X1 = x1] · · · P [Xn = xn]. (5.9)

On the other hand, summing (5.9) over x1 ∈ H1, . . . , xn ∈ Hn gives (5.8). Thus
the Xi are independent if and only if (5.9) holds for all x1, . . . , xn .

Suppose that

X11 X12 · · ·
X21 X22 · · ·
...

...

(5.10)

is an independent array of simple random variables. There may be finitely or
infinitely many rows, each row finite or infinite. If Ai consists of the finite
intersections

⋂
j [Xij ∈ Hj ] with Hj ⊂ R1, an application of Theorem 4.2 shows

that the σ -fields σ(Xi1, Xi2, . . .), i = 1, 2, . . . are independent. As a consequence,
Y1, Y2, . . . are independent if Yi is measurable σ(Xi1, Xi2, . . .) for each i .
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EXAMPLE 5.5
The dyadic digits d1(ω), d2(ω), . . . on the unit interval are an independent
sequence of random variables for which

P [dn = 0] = P [dn = 1] = 1
2 . (5.11)

It is because of (5.11) and independence that the dn give a model for tossing a
fair coin.

The sequence (d1(ω), d2(ω), . . .) and the point ω determine one another. It
can be imagined that ω is determined by the outcomes dn(ω) of a sequence of
tosses. It can also be imagined that ω is the result of drawing a point at random
from the unit interval, and that ω determines the dn(ω). In the second inter-
pretation the dn(ω) are all determined the instant ω is drawn, and so it should
further be imagined that they are then revealed to the coin tosser or gambler
one by one. For example, σ(d1, d2) corresponds to knowing the outcomes of
the first two tosses—to knowing not ω but only d1(ω) and d2(ω)—and this
does not help in predicting the value d3(ω), because σ(d1, d2) and σ(d3) are
independent. See Example 5.1.

EXAMPLE 5.6
Every permutation can be written as a product of cycles. For example,(

1 2 3 4 5 6 7
5 1 7 4 6 2 3

)
= (1562)(37)(4).

This permutation sends 1 to 5, 2 to 1, 3 to 7, and so on. The cyclic form on the
right shows that 1 goes to 5, which goes to 6, which goes to 2, which goes back
to 1; and so on. To standardize this cyclic representation, start the first cycle
with 1 and each successive cycle with the smallest integer not yet encountered.

Let � consist of the n! permutations of 1, 2, . . . , n , all equally probable; F

contains all subsets of �, and P (A) is the fraction of points in A. Let Xk (ω) be
1 or 0 according as the element in the k th position in the cyclic representation
of the permutation ω completes a cycle or not. Then S (ω) = �n

k=1Xk (ω) is
the number of cycles in ω. In the example above, n = 7, X1 = X2 = X3 = X5 =
0, X4 = X6 = X7 = 1, and S = 3. The following argument shows that X1, . . . , Xn

are independent and P [Xk = 1] = 1/(n − k + 1). This will lead later on to
results on P [S ∈ H ].

The idea is this: X1(ω) = 1 if and only if the random permutation ω sends
1 to itself, the probability of which is 1/n . If it happens that X1(ω) = 1—that
ω fixes 1—then the image of 2 is one of 2, . . . , n , and X2(ω) = 1 if and only
if this image is in fact 2; the conditional probability of this is 1/(n − 1). If
X1(ω) = 0, on the other hand, then ω sends 1 to some i �= 1, so that the image



78 PROBABILITY

of i is one of 1, . . . , i − 1, i + 1, . . . , n , and X2(ω) = 1 if and only if this image
is in fact 1; the conditional probability of this is again 1/(n − 1). This argument
generalizes.

But the details are fussy. Let Y1(ω), . . . , Yn(ω) be the integers in the
successive positions in the cyclic representation of ω. Fix k , and let Av

be the set where (X1, . . . , Xk−1, Y1, . . . , Yk ) assumes a specific vector of
values v = (x1, . . . , xk−1, y1, . . . , yk ). The Ar form a partition A of �,
and if P [Xk = 1|Ar ] = 1/(n − k + 1) for each ν, then by Example 4.7,
P [Xk = 1] = 1/(n − k + 1) and Xk is independent of σ(A ) and hence of the
smaller σ -field σ(X1, . . . , Xk−1). It will follow by induction that X1, . . . , Xn are
independent.

Let j be the position of the rightmost 1 among x1, . . . , xk−1 (j = 0 if there are
none). Then ω lies in Ar if and only if it permutes y1, . . . , yj among themselves
(in a way specified by the values x1, . . . , xj−1, xj = 1, y1, . . . , yj ) and sends each
of yj+1, . . . , yk−1 to the y just to its right. Thus Ar contains (n − k + 1)! sample
points. And Xk (ω) = 1 if and only if ω also sends yk to yj+1. Thus Ar ∩ [Xk = 1]
contains (n−k )! sample points, and so the conditional probability of Xk = 1 is
1/(n − k + 1).

Existence of Independent Sequences

The distribution of a simple random variable X is the probability measure μ

defined for all subsets A of the line by

μ(A) = P [X ∈ A]. (5.12)

This does define a probability measure. It is discrete in the sense of Example
2.9: If x1, . . . , x1 are the distinct points of the range of X , then μ has mass
pi = P [X = xi ] = μ{xi } at xi , and μ(A) = �pi , the sum extending over those
i for which xi ∈ A. As μ(A) = 1 if A is the range of X , not only is μ discrete,
it has finite support.

Theorem 5.3
Let {μn} be a sequence of probability measures on the class of all subsets of the
line, each having finite support. There exists on some probability space (�, F , P)

an independent sequence {Xn} of simple random variables such that Xn has dis-
tribution μn .

What matters here is that there are finitely or countably many distribu-
tions μn . They need not be indexed by the integers; any countable index set
will do.
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Proof. The probability space will be the unit interval. To understand the
construction, consider first the case in which each μn concentrates its mass on
the two points 0 and 1. Put pn = μn{0} and qn = 1 − pn = μn{1}. Split (0, 1]
into two intervals I0 and I1 of lengths p1 and q1. Define X1(ω) = 0 for ω ∈ I0 and
X1(ω) = 1 for ω ∈ I1. If P is Lebesgue measure, then clearly P [X1 = 0] = p1

and P [X1 = 1] = q1, so that X1 has distribution μ1.

p1

X1 = 0

p1

X1 = 0

p1 p2

X1 = 0 
X2 = 0

p1 q2

X1 = 0 
X2 = 1

q1 p2

X1 = 1 
X2 = 0

q1 q2

X1 = 1 
X2 = 1

Now split I0 into two intervals I00 and I01 of lengths p1p2 and p1q2, and
split I1 into two intervals I10 and I11 of lengths q1p2 and q1q2. Define X2(ω) = 0
for ω ∈ I00 ∪ I10 and X2(ω) = 1 for ω ∈ I01 ∪ I11. As the diagram makes clear,
P [X1 = 0, X2 = 0] = p1p2, and similarly for the other three possibilities. It fol-
lows that X1 and X2 are independent and X2 has distribution μ2. Now X3 is
constructed by splitting each of I00, I01, I10, I11 in the proportions p3 and q3.
And so on.

If pn = qn = 1
2 for all n , then the successive decompositions here are the

decompositions of (0, 1] into dyadic intervals, and Xn(ω) = dn(ω).
The argument for the general case is not very different. Let xn1, . . . , xnln be

the distinct points on which μn concentrates its mass, and put pni = μn{xni } for
1 ≤ i ≤ ln .

Decompose† (0, 1] into l1 subintervals I (1)
1 , . . . , I (1)

l1
of respective lengths

p11, . . . , p1l1 . Define X1 by setting X1(ω) = x1i for ω ∈ I (1)
i , 1 ≤ i ≤ l1. Then (P

is Lebesgue measure) P [ω: X1(ω) = x1i ] = P(I (1)
i ) = p1i , 1 ≤ i ≤ l1. Thus X1

is a simple random variable with distribution μ1.
Next decompose each I (1)

i into l2 subintervals I (2)
i1 , . . . , I (2)

il2
of respective

lengths p1i p21, . . . , p1i p2l2 . Define X2(ω) = x2j for ω ∈ ⋃l1
i=1 I (2)

ij , 1 ≤ j ≤ l2.

Then P [ω: X1(ω) = x1i , X2(ω) = x2j ] = P(I (2)
ij ) = p1i p2j . Adding out i shows

that P [ω: X2(ω) = x2j ] = p2j , as required. Hence P [X1 = x1i , X2 = x2j ] =
p1i p2j = P [X1 = x1i ]P [X2 = x2j ], and X1 and X2 are independent.

The construction proceeds inductively. Suppose that (0, 1] has been decom-
posed into l1 . . . ln intervals

I (n)
i1...in

, 1 ≤ i1 ≤ l1, . . . , 1 ≤ in ≤ ln , (5.13)

†If b − a = δ1 + · · · + δl and δi ≥ 0, then Ii = (a + �j<i δj , a + �l≤j δj ] decomposes (a, b] into subin-
tervals I1, . . . , Il with lengths of δi . Of course, Ii is empty if δi = 0.
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of lengths

P(I (n)
i1···in ) = p1,i1 · · · pn ,in . (5.14)

Decompose I (n)
i1···in into ln+1 subintervals I (n+1)

i1···in 1, . . . , I (n+1)

i1···in ln+1
of respective

lengths P(I (n)
i1···in )pn+1,1, . . . , P(I (n)

i1···in )pn+1,ln+1 . These are the intervals of the
next decomposition. This construction gives a sequence of decompositions
(5.13) of (0, 1] into subintervals; each decomposition satisfies (5.14), and
each refines the preceding one. If μn is given for 1 ≤ n ≤ N , the procedure
terminates after N steps; for an infinite sequence it does not terminate at all.

For 1 ≤ i ≤ ln , put Xn(ω) = xni if ω ∈ ⋃
i1...in−1

I (n)
i1···in−1i . Since each decom-

position (5.13) refines the preceding, Xk (ω) = xkik for ω ∈ I (n)
i1···ik ···in . Therefore,

each element of (5.13) is contained in the element with the same label i1 . . . in
in the decomposition

Ai1···in = [ω: X1(ω) = x1i1 , . . . , Xn(ω) = xnin ], 1 ≤ i1 ≤ l1, . . . , 1 ≤ in ≤ ln .

The two decompositions thus coincide, and it follows by (5.14) that P [X1 =
x1i1 , . . . , Xn = xnin ] = p1,i1 · · · pn ,in . Adding out the indices i1, . . . , in−1 shows
that Xn has distribution μn and hence that X1, . . . , Xn are independent. But n
was arbitrary. ■

In the case where the μn are all the same, there is an alternative construc-
tion based on probabilities in sequence space. Let S be the support (finite)
common to the μn , and let pu , u ∈ S , be the probabilities common to the μn . In
sequence space S ∞, define product measure P on the class C0 of cylinders by
(2.21). By Theorem 2.3, P is countably additive on C0, and by Theorem 3.1 it
extends to C = σ(C0). The coordinate functions zk (·) are random variables on
the probability space (S ∞, C , P ); take these as the Xk . Then (2.22) translates into
P [X1 = u1, . . . , Xn = un] = pu1 · · · pun , which is just what Theorem 5.3 requires
in this special case.

Probability theorems such as those in the next sections concern independent
sequences {Xn} with specified distributions or with distributions having speci-
fied properties, and because of Theorem 5.3 these theorems are true not merely
in the vacuous sense that their hypotheses are never fulfilled. Similar but more
complicated existence theorems will come later. For most purposes the probabil-
ity space on which the Xn are defined is largely irrelevant. Every independent
sequence {Xn} satisfying P [Xn = 1] = p and P [Xn = 0] = 1 − p is a model
for Bernoulli trials, for example, and for an event like

⋃∞
n=1[�n

k=1Xk > αn],
expressed in terms of the Xn alone, the calculation of its probability proceeds
in the same way whatever the underlying space (�, F , P ) may be.
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It is, of course, an advantage that such results apply not just to some canon-
ical sequence {Xn} (such as the one constructed in the proof above) but to every
sequence with the appropriate distributions. In some applications of probability
within mathematics itself, such as the arithmetic applications of run theory in
the preceding section, the underlying � does play a role.

Expected Value

A simple random variable in the form (5.2) is assigned expected value or mean
value

E [X ] = E

[∑
i

xi IAi

]
=
∑

i

xi P(Ai ). (5.15)

There is the alternative form

E [X ] =
∑

x

xP [X = x ], (5.16)

the sum extending over the range of X ; indeed, (5.15) and (5.16) both coincide
with �x�i :xi =x xi P(Ai ). By (5.16) the definition (5.15) is consistent: different
representations (5.2) give the same value to (5.15). From (5.16) it also follows
that E [X ] depends only on the distribution of X ; hence E [X ] = E [Y ] if P [X =
Y ] = 1.

If X is a simple random variable on the unit interval and if the Ai in (5.2)
happen to be subintervals, then (5.15) coincides with the Riemann integral as
given by (1.6). More general notions of integral and expected value will be
studied later. Simple random variables are easy to work with because the theory
of their expected values is transparent and free of technical complications.

As a special case of (5.15) and (5.16),

E [IA] = P(A). (5.17)

As another special case, if a constant α is identified with the random variable
X (ω) ≡ α, then

E [α] = α. (5.18)

From (5.2) follows f (X ) = �i f (xi )IAi , and hence

E [f (X )] =
∑

i

f (xi )P(Ai ) =
∑

x

f (x)P [X = x ], (5.19)

the last sum extending over the range of X . For example, the k th moment E [X k ]
of X is defined by E [X k ] = �yyP [X k = y], where y varies over the range of
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X k , but it is usually simpler to compute it by E [X k ] = �x x k P [X = x ], where
x varies over the range of X .

If
X =

∑
i

xi IAi , Y =
∑

j

yj IBj (5.20)

are simple random variables, then αX + βY = �ij (αxi + βyj )IAi ∩Bj has ex-
pected value �ij (αxi + βyj )P(Ai ∩ Bj ) = α�i xi P(Ai ) + β�j yj P(Bj ). Expected
value is therefore linear :

E [αX + βY ] = αE [X ] + βE [Y ]. (5.21)

If X (ω) ≤ Y (ω) for all ω, then xi ≤ yj if Ai ∩ Bj is nonempty, and hence
�ij xi P(Ai ∩ Bj ) ≤ �ij yj P(Ai ∩ Bj ). Expected value therefore preserves order :

E [X ] ≤ E [Y ] if X ≤ Y . (5.22)

(It is enough that X ≤ Y on a set of probability 1.) Two applications of (5.22)
give E [−|X |] ≤ E [X ] ≤ E [|X |], so that by linearity,

|E [X ]| ≤ E [|X |]. (5.23)

And more generally,
|E [X − Y ]| ≤ E [|X − Y |]. (5.24)

The relations (5.17) through (5.24) will be used repeatedly, and so will the
following theorem on expected values and limits. If there is a finite K such that
|Xn(ω)| ≤ K for all ω and n , the Xn are uniformly bounded .

Theorem 5.4
If {Xn} is uniformly bounded, and if X = limn Xn with probability 1, then E [X ] =
limn E [Xn].

Proof. By Theorem 5.2(ii), convergence with probability 1 implies conver-
gence in probability: Xn →P X . And in fact the latter suffices for the present
proof. Increase K so that it bounds |X | (which has finite range) as well as all
the |Xn |; then |X − Xn | ≤ 2K . If A = [|X − Xn | ≥ ε], then

|X (ω) − Xn(ω)| ≤ 2KIA(ω) + εIAc (ω) ≤ 2KIA(ω) + ε

for all ω. By (5.17), (5.18), (5.21), and (5.22),

E [|X − Xn |] ≤ 2KP [|X − Xn | ≥ ε] + ε.
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But since Xn →P X , the first term on the right goes to 0, and since ε is arbitrary,
E [|X − Xn |] → 0. Now apply (5.24). ■

Theorems of this kind are of constant use in probability and analysis. For the
general version, Lebesgue’s dominated convergence theorem, see Section 16.

EXAMPLE 5.7
On the unit interval, take X (ω) identically 0, and take Xn(ω) to be n2 if 0 <

ω ≤ n−1 and 0 if n−1 < ω ≤ 1. Then Xn(ω) → X (ω) for every ω, although
E [Xn] = n does not converge to E [X ] = 0. Thus Theorem 5.4 fails without
some hypothesis such as that of uniform boundedness. See also Example 7.7.

An extension of (5.21) is an immediate consequence of Theorem 5.4:

Corollary. If X = �nXn on an F -set of probability 1, and if the partial sums
of �nXn are uniformly bounded, then E [X ] = �nE [Xn].

Expected values for independent random variables satisfy the familiar prod-
uct law. For X and Y as in (5.20), XY = �ij xi yj IAi ∩Bj . If the xi are distinct and
the yj are distinct, then Ai = [X = xi ] and Bj = [Y = yj ]; for independent X and
Y , P(Ai ∩ Bj ) = P(Ai )P(Bj ) by (5.9), and so E [XY ] = �ij xi yj P(Ai )P(Bj ) =
E [X ]E [Y ]. If X, Y, Z are independent, then XY and Z are independent by the
argument involving (5.10), so that E [XYZ ] = E [XY ]E [Z ] = E [X ]E [Y ]E [Z ].
This obviously extends:

E [X1 · · · Xn] = E [X1] · · · E [Xn] (5.25)

if X1, . . . , Xn are independent.
Various concepts from discrete probability carry over to simple random

variables. If E [X ] = m , the variance of X is

Var[X ] = E [(X − m)2] = E [X 2] − m2; (5.26)

the left-hand equality is a definition, the right-hand one a consequence of
expanding the square. Since αX + β has mean αm + β, its variance is E [((αX +
β) − (αm + β))2] = E [α2(X − m)2]:

Var[αX + β] = α2 Var[X ]. (5.27)

If X1, . . . , Xn have means m1, . . . , mn , then S = �n
i=1Xi has mean m = �n

i=1mi ,
and E [(S − m)2] = E [(�n

i=1(Xi − mi ))
2] = �n

i=1E [(Xi − mi )
2] + 2�1≤i<j≤n
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E [(Xi − mi )(Xj − mj )]. If the Xi are independent, then so are the Xi − mi ,
and by (5.25) the last sum vanishes. This gives the familiar formula for the
variance of a sum of independent random variables:

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [ Xi ]. (5.28)

Suppose that X is nonnegative; order its range: 0 ≤ x1 < x2 < · · · < xk .
Then

E [X ] =
k∑

i=1

xi P [X = xi ]

=
k−1∑
i=1

xi (P [X ≥ xi ] − P [X ≥ xi+1]) + xk P [X ≥ xk ]

= x1P [X ≥ x1] +
k∑

i=2

(xi − xi−1)P [X ≥ xi ].

Since P [X ≥ x ] = P [X ≥ x1] for 0 ≤ x ≤ x1 and P [X ≥ x ] = P [X ≥ xi ] for
xi−1 < x ≤ xi , it is possible to write the final sum as the Riemann integral of a
step function:

E [X ] =
∫ ∞

0
P [X ≥ x ] dx . (5.29)

This holds if X is nonnegative. Since P [X ≥ x ] = 0 for x > xk , the range of
integration is really finite.

There is for (5.29) a simple geometric argument involving the “area over
the curve.” If pi = P [X = xi ], the area of the shaded region in the figure is the
sum p1x1 + · · · + pk xk = E [X ] of the areas of the horizontal strips; it is also
the integral of the height P [X ≥ x ] of the region.

P[X ≥ x]

0

1

x1 x2 x3 xk − 1

pk − 1

p3

p2

p1

xk

pk

x
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Inequalities

There are for expected values several standard inequalities that will be needed.
If X is nonnegative, then for positive α (sum over the range of X ) E [X ] =
�x xP [X = x ] ≥ �x : x≥αxP [X = x ] ≥ α�x : x≥αP [X = x ]. Therefore,

P [X ≥ α] ≤ 1

α
E [X ] (5.30)

if X is nonnegative and α positive. A special case of this is (1.20). Applied to
|X |k , (5.30) gives Markov’s inequality ,

P [|X | ≥ α] ≤ 1

αk
E [|X |k ], (5.31)

valid for positive α. If k = 2 and m = E [X ] is subtracted from X , this becomes
the Chebyshev (or Chebyshev–Bienaymé) inequality :

P [|X − m| ≥ α] ≤ 1

α2
Var[X ]. (5.32)

A function ϕ on an interval is convex [A32] if ϕ(px + (1 − p)y) ≤ pϕ(x) +
(1 − p)ϕ(y) for 0 ≤ p ≤ 1 and x and y in the interval. A sufficient condition
for this is that ϕ have a nonnegative second derivative. It follows by induction
that ϕ(�1

i=1pi xi ) ≤ �1
i=1piϕ(xi ) if the pi are nonnegative and add to 1 and the

xi are in the domain of ϕ. If X assumes the value xi with probability pi , this
becomes Jensen’s inequality ,

ϕ(E [X ]) ≤ E [ϕ(X )], (5.33)

valid if ϕ is convex on an interval containing the range of X .
Suppose that

1

p
+ 1

q
= 1, p > 1, q > 1. (5.34)

Hölder’s inequality is

E [|XY |] ≤ E 1/p[|X |p] · E 1/q [|Y |q ]. (5.35)

If, say, the first factor on the right vanishes, then X = 0 with probability 1,
hence XY = 0 with probability 1, and hence the left side vanishes also. Assume
then that the right side of (5.35) is positive. If a and b are positive, there exist
s and t such that a = ep−1s and b = eq−1t . Since ex is convex, ep−1s+q−1t ≤
p−1es + q−1et , or

ab ≤ ap

p
+ bq

q
.
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This obviously holds for nonnegative as well as for positive a and b. Let u
and v be the two factors on the right in (5.35). For each ω,∣∣∣∣X (ω)Y (ω)

uv

∣∣∣∣ ≤ 1

p

∣∣∣∣X (ω)

u

∣∣∣∣
p

+ 1

q

∣∣∣∣Y (ω)

v

∣∣∣∣
q

Taking expected values and applying (5.34) leads to (5.35).
If p = q = 2, Hölder’s inequality becomes Schwarz’s inequality :

E [|XY |] ≤ E 1/2[X 2] · E 1/2[Y 2]. (5.36)

Suppose that 0 < α < β. In (5.35) take p = β/α, q = β/(β − α), and
Y (ω) = 1, and replace X by |X |α. The result is Lyapounov’s inequality ,

E 1/α[|X |α] ≤ E 1/β[|X |β], 0 < α ≤ β. (5.37)

PROBLEMS

5.1. .(a) Show that X is measurable with respect to the σ -field G if and
only if σ(X ) ⊂ G . Show that X is measurable σ(Y ) if and only if
σ(X ) ⊂ σ(Y ).

(b) Show that, if G = {Ø, �}, then X is measurable G if and only if X
is constant.

(c) Suppose that P (A) is 0 or 1 for every A in G . This holds, for example,
if G is the tail field of an independent sequence (Theorem 4.5),
or if G consists of the countable and cocountable sets on the unit
interval with Lebesgue measure. Show that if X is measurable G ,
then P [X = c] = 1 for some constant c.

5.2. 2.19 ↑ Show that the unit interval can be replaced by any nonatomic
probability measure space in the proof of Theorem 5.3.

5.3. Show that m = E [X ] minimizes E [(X − m)2].

5.4. Suppose that X assumes the values m − α, m , m + α with probabilities
p, 1 − 2p, p, and show that there is equality in (5.32). Thus Chebyshev’s
inequality cannot be improved without special assumptions on X .

5.5. Suppose that X has mean m and variance σ 2.
(a) Prove Cantelli’s inequality

P [X − m ≥ α] ≤ σ 2

σ 2 + α2
, α ≥ 0.
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(b) Show that P [|X − m| ≥ α] ≤ 2σ 2/(σ 2 + α2). When is this better
than Chebyshev’s inequality?

(c) By considering a random variable assuming two values, show that
Cantelli’s inequality is sharp.

5.6. The polynomial E [(t |X | + |Y |)2] in t has at most one real zero. Deduce
Schwarz’s inequality once more.

5.7. .(a) Write (5.37) in the form Eβ/α[|X |α] ≤ E [|X |α)β/α] and deduce it
directly from Jensen’s inequality.

(b) Prove that E [1/X p] ≥ 1/E p[X ] for p > 0 and X a positive random
variable.

5.8. .(a) Let f be a convex real function on a convex set C in the plane. Sup-
pose that (X (ω), Y (ω)) ∈ C for all ω and prove a two-dimensional
Jensen’s inequality:

f (E [X ], E [Y ]) ≤ E [f (X , Y )]. (5.38)

(b) Show that f is convex if it has continuous second derivatives that
satisfy

f11 ≥ 0, f22 ≥ 0, f11 f22 ≥ f 2
12. (5.39)

5.9. ↑ Hölder’s inequality is equivalent to E [X 1/pY 1/q ] ≤ E 1/p[X ] · E 1/q [Y ]
(p−1 + q−1 = 1), where X and Y are nonnegative random variables.
Derive this from (5.38).

5.10. ↑ Minkowski’s inequality is

E 1/p[|X + Y |p] ≤ E 1/p[|X |p] + E 1/p[|Y |p], (5.40)

valid for p ≥ 1. It is enough to prove that E [(X 1/p + Y 1/p)p] ≤
(E 1/p[X ] + E 1/p[Y ])p for nonnegative X and Y . Use (5.38).

5.11. For events A1, A2, . . ., not necessarily independent, let Nn = �n
k=1IAk be

the number to occur among the first n . Let

αn = 1

n

n∑
k=1

P(Ak ), βn = 2

n(n − 1)

∑
1≤j<k≤n

P(Aj ∩ Ak ). (5.41)

Show that

E [n−1Nn] = αn , Var[n−1Nn] = βn − α2
n + αn − βn

n
. (5.42)
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Thus Var[n−1Nn] → 0 if and only if βn − α2
n → 0, which holds if the An

are independent and P(An) = p (Bernoulli trials), because then αn = p
and βn = p2 = α2

n .

5.12. Show that, if X has nonnegative integers as values, then E [X ] =
�∞

n=1P [X ≥ n].

5.13. Let Ii = IAi be the indicators of n events having union A. Let Sk =
�Ii1 · · · Iik , where the summation extends over all k -tuples satisfying
1 ≤ i1 < · · · < ik ≤ n . Then sk = E [Sk ] are the terms in the inclusion-
exclusion formula P(A) = s1 − s2 + · · · ± sn . Deduce the inclusion-
exclusion formula from IA = S1 − S2 + · · · ± Sn . Prove the latter
formula by expanding the product �n

i=1(1 − Ii ).

5.14. Let fn(x) be n2x or 2n − n2x or 0 according as 0 ≤ x ≤ n−1 or n−1 ≤
x ≤ 2n−1 or 2n−1 ≤ x ≤ 1. This gives a standard example of a sequence
of continuous functions that converges to 0 but not uniformly. Note that∫ 1

0 fn(x)dx does not converge to 0; relate to Example 5.7.

5.15. By Theorem 5.3, for any prescribed sequence of probabilities pn , there
exists (on some space) an independent sequence of events An satisfying
P(An) = pn . Show that if pn → 0 but �pn = ∞, this gives a counterex-
ample (like Example 5.4) to the converse of Theorem 5.2(ii).

5.16. ↑ Suppose that 0 ≤ pn ≤ 1 and put αn = min{pn , 1 − pn}. Show that,
if �αn converges, then on some discrete probability space there exist
independent events An satisfying P(An) = pn . Compare Problem 1.1(b).

5.17. .(a) Suppose that Xn →p X and that f is continuous. Show that
f (Xn) →p f (X ).

(b) Show that E [|X − Xn |] → 0 implies Xn →p X . Show that the con-
verse is false.

5.18. 2.20 ↑ The proof given for Theorem 5.3 for the special case where the
μn are all the same can be extended to cover the general case: use
Problem 2.20.

5.19. 2.18 ↑ For integers m and primes p, let αp(m) be the exact power of p
in the prime factorization of m: m = �ppαp (m). Let δp(m) be 1 or 0 as p
divides m or not. Under each Pn (see (2.34)) the αp and δp are random
variables. Show that for distinct primes p1, . . . , pu ,

Pn[αpi ≥ ki , i ≤ u] = 1

n

⌊
n

pk1
1 · · · pku

u

⌋
→ 1

pk1
1 · · · pku

u

(5.43)

and

Pn[αpi = ki , i ≤ u] → �u
i=1

(
1

pki
i

− 1

pki +1
i

)
. (5.44)
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Similarly,

Pn[δpi = 1, i ≤ u] = 1

n

⌊
n

p1 · · · pu

⌋
→ 1

p1 · · · pu
. (5.45)

According to (5.44), the αp are for large n approximately independent
under Pn , and according to (5.45), the same is true of the δp .

For a function f of positive integers, let

En[f ] = 1

n

n∑
m=1

f (m) (5.46)

be its expected value under the probability measure Pn . Show that

En[αp] =
∞∑

k=1

1

n

⌊
n

pk

⌋
→ 1

p − 1
; (5.47)

this says roughly that (p − 1)−1 is the average power of p in the factor-
ization of large integers.

5.20. ↑
(a) From Stirling’s formula, deduce

En[log] = log n + O(1). (5.48)

From this, the inequality En[αp] ≤ 2/p, and the relation log m =
�pαp(m) log p, conclude that �pP−1 log p diverges and that there
are infinitely many primes.

(b) Let log∗ m = �pδp(m) log p. Show that

En[log∗] =
∑

p

1

n

⌊
n

p

⌋
log p = log n + O(1). (5.49)

(c) Show that �2n/p
 − 2�n/p
 is always nonnegative and equals 1
in the range n < p ≤ 2n . Deduce E2n[log∗] − En[log∗] = O(1) and
conclude that ∑

p≤x

log p = O(x). (5.50)

Use this to estimate the error removing the integral-part brackets
introduces into (5.49), and show that∑

p≤x

p−1 log p = log x + O(1). (5.51)
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(d) Restrict the range of summation in (5.51) to θx < p ≤ x for an
appropriate θ , and conclude that∑

p≤x

log p � x , (5.52)

in the sense that the ratio of the two sides is bounded away from 0
and ∞.

(e) Use (5.52) and truncation arguments to prove for the number π(x)

of primes not exceeding x that

π(x) � x

log x
. (5.53)

(By the prime number theorem the ratio of the two sides in fact goes
to 1.) Conclude that the r th prime pr satisfies pr � r log r and that

∑
p

1

p
= ∞. (5.54)

SECTION 6 THE LAW OF LARGE NUMBERS

The Strong Law

Let X1, X2, . . . be a sequence of simple random variables on some probability
space (�, F , P ). They are identically distributed if their distributions (in the
sense of (5.12)) are all the same. Define Sn = X1 + · · · + Xn . The strong law of
large numbers:

Theorem 6.1
If the Xn are independent and identically distributed and E [Xn] = m, then

P [lim
n

n−1Sn = m] = 1. (6.1)

Proof. The conclusion is that n−1Sn − m = n−1 ∑n
i=1(Xi − m) → 0 with

probability 1. Replacing Xi by Xi − m shows that there is no loss of generality
in assuming that m = 0. The set in question does lie in F (see (5.5)), and by
Theorem 5.2(i), it is enough to show that P [|n−1Sn | ≥ ε i.o.] = 0 for each ε.

Let E [X 2
i ] = σ 2 and E [X 4

i ] = ξ 4. The proof is like that for Theorem 1.2.
First (see (1.26)), E [S 4

n ] = ∑
E [XαXβXγ Xδ], the four indices ranging indepen-

dently from 1 to n . Since E [Xi ] = 0, it follows by the product rule (5.25) for
independent random variables that the summand vanishes if there is one index
different from the three others. This leaves terms of the form E [X 4

i ] = ξ 4, of
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which there are n , and terms of the form E [X 2
i X 2

j ] = E [X 2
i ]E [X 2

j ] = σ 4 for
i �= j , of which there are 3n(n − 1). Hence

E [S 4
n ] = nξ 4 + 3n(n − 1)σ 4 ≤ Kn2, (6.2)

where K does not depend on n .
By Markov’s inequality (5.31) for k = 4, P [|Sn | ≥ nε] ≤ Kn−2ε−4, and so

by the first Borel–Cantelli lemma, P [|n−1Sn | ≥ ε i.o.] = 0, as required. ■

EXAMPLE 6.1
The classical example is the strong law of large numbers for Bernoulli trials.
Here P [Xn = 1] = p, P [Xn = 0] = 1 − p, m = p; Sn represents the number of
successes in n trials, and n−1Sn → p with probability 1. The idea of probability
as frequency depends on the long-range stability of the success ratio Sn/n .

EXAMPLE 6.2
Theorem 1.2 is the case of Example 6.1 in which (�, F , P ) is the unit interval
and the Xn(ω) are the digits dn(ω) of the dyadic expansion of ω. Here p = 1

2 .
The set (1.21) of normal numbers in the unit interval has by (6.1) Lebesgue
measure 1; its complement has measure 0 (and so in the terminology of Section
1 is negligible).

The Weak Law

Since convergence with probability 1 implies convergence in probability
(Theorem 5.2(ii)), it follows under the hypotheses of Theorem 6.1 that
n−1Sn →P m . But this is of course an immediate consequence of Chebyshev’s
inequality (5.32) and the rule (5.28) for adding variances:

P [|n−1Sn − m| ≥ ε] ≤ Var[Sn]

n2ε2
= nVar[X1]

n2ε2
→ 0.

This is the weak law of large numbers .
Chebyshev’s inequality leads to a weak law in other interesting cases as

well:

EXAMPLE 6.3
Let �n consist of the n! permutations of 1, 2, . . . , n , all equally probable, and let
Xnk (ω) be 1 or 0 according as the k th element in the cyclic representation of ω ∈
�n completes a cycle or not. This is Example 5.6, although there the dependence
on n was suppressed in the notation. The Xn1, . . . , Xnn are independent, and Sn =
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Xn1 + · · · + Xnn is the number of cycles. The mean mnk of Xnk is the probability
that it equals 1, namely (n − k + 1)−1, and its variance is σ 2

nk = mnk (1 − mnk ).
If Ln = ∑n

k=1 k−1, then Sn has mean
∑n

k=1 mnk = Ln and variance∑n
k=1 mnk (1 − mnk ) < Ln . By Chebyshev’s inequality,

P

[∣∣∣∣Sn − Ln

Ln

∣∣∣∣ ≥ ε

]
<

Ln

ε2L2
n

= 1

ε2Ln
→ 0.

Of the n! permutations on n letters, a proportion exceeding 1 − ε−2L−1
n thus

have their cycle number in the range (1 ± ε)Ln . Since Ln = log n + O(1), most
permutations on n letters have about log n cycles. For a refinement, see Example
27.3.

Since �n changes with n , it is the nature of the case that there cannot be a
strong law corresponding to this result.

Bernstein’s Theorem

Some theorems that can be stated without reference to probability nonethe-
less have simple probabilistic proofs, as the last example shows. Bernstein’s
approach to the Weierstrass approximation theorem is another example.

Let f be a function on [0, 1]. The Bernstein polynomial of degree n asso-
ciated with f is

Bn(x) =
n∑

k=0

f

(
k

n

)(
n
k

)
xk (1 − x)n−k (6.3)

Theorem 6.2
If f is continuous, Bn(x) converges to f (x ) uniformly on [0, 1].

According to the Weierstrass approximation theorem, f can be uniformly
approximated by polynomials; Bernstein’s result goes further and specifies an
approximating sequence.

Proof. Let M = supx |f (x)|, and let δ(ε) = sup[|f (x) − f (y)|: |x − y | ≤ ε]
be the modulus of continuity of f . It will be shown that

sup
x

|f (x) − Bn(x)| ≤ δ(ε) + 2M

nε2
. (6.4)

By the uniform continuity of f , limε→0 δ(ε) = 0, and so this inequality (for
ε = n−1/3, say) will give the theorem.

Fix n ≥ 1 and x ∈ [0, 1] for the moment. Let X1, . . . , Xn be independent
random variables (on some probability space) such that P [Xi = 1] = x
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and P [Xi = 0] = 1 − x ; put S = X1 + · · · + Xn . Since P [S = k ] = (n
k

)
xk

(1 − x)n−k , the formula (5.19) for calculating expected values of functions of
random variables gives E [f (S /n)] = Bn(x). By the law of large numbers, there
should be high probability that S/n is near x and hence (f being continuous)
that f (S/n) is near f (x); E [f (S /n)] should therefore be near f (x ). This is the
probabilistic idea behind the proof and, indeed, behind the definition (6.3)
itself.

Bound |f (n−1S ) − f (x)| by δ(ε) on the set [|n−1S − x | < ε] and by 2M on
the complementary set, and use (5.22) as in the proof of Theorem 5.4. Since
E [S ] = nx , Chebyshev’s inequality gives

|Bn(x) − f (x)| ≤ E [|f (n−1S ) − f (x)|]
≤ δ(ε)P [|n−1S − x | < ε] + 2MP [|n−1S − x | ≥ ε]

≤ δ(ε) + 2M Var[S ]/n2ε2;

since Var[S ] = nx(1 − x) ≤ n , (6.4) follows. ■

A Refinement of the Second Borel–Cantelli Lemma

For a sequence A1, A2, . . . of events, consider the number Nn = IA1 + · · · + IAn

of occurrences among A1, . . . , An . Since [An i.o.] = [ω: supn Nn(ω) =
∞], P [An i.o.] can be studied by means of the random variables Nn .

Suppose that the An are independent. Put pk = P(Ak ) and mn = p1 + · · · +
pn . From E [IAk ] = pk and Var[IAk ] = pk (1 − pk ) ≤ pk follow E [Nn] = mn and
Var[Nn] = ∑n

k=1 Var[IAk ] ≤ mn . If mn > x , then

P [Nn ≤ x ] ≤ P [|Nn − mn | ≥ mn − x ] (6.5)

≤ Var[Nn]

(mn − x)2
≤ mn

(mn − x)2
.

If
∑

pn = ∞, so that mn → ∞, it follows that limn P [Nn ≤ x ] = 0 for each x .
Since

P [sup
k

Nk ≤ x ] ≤ P [Nn ≤ x ], (6.6)

P [supk Nk ≤ x ] = 0 and hence (take the union over x = 1, 2, . . .) P [supk Nk <

∞] = 0. Thus P [An i.o.] = P [supn Ni = ∞] = 1 if the An are independent and∑
pn = ∞, which proves the second Borel–Cantelli lemma once again.
Independence was used in this argument only to estimate Var[Nn]. Even

without independence, E [Nn] = mn and the first two inequalities in (6.5) hold.
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Theorem 6.3
If
∑

P(An) diverges and

lim inf
n

∑
j , k≤n

P(Aj ∩ Ak )

(∑
k≤n

P(Ak )

)2 ≤ 1, (6.7)

then P [An i.o.] = 1.

As the proof will show, the ratio in (6.7) is at least 1; if (6.7) holds, the
inequality must therefore be an equality.

Proof. Let θn denote the ratio in (6.7). In the notation above,

Var[Nn] = E [N 2
n ] − m2

n =
∑

j , k≤n

E [IAj IAk ] − m2
n

=
∑

j , k≤n

P(Aj ∩ Ak ) − m2
n = (θn − 1)m2

n

(and θn − 1 ≥ 0). Hence (see (6.5)) P [Nn ≤ x ] ≤ (θn − 1)m2
n/(mn − x)2 for

x < mn . Since m2
n/(mn − x)2 → 1, (6.7) implies that lim infn P [Nn ≤ x ] = 0.

It still follows by (6.6) that P [supk Nk ≤ x ] = 0, and the rest of the argument
is as before. ■

EXAMPLE 6.4
If, as in the second Borel–Cantelli lemma, the An are independent (or even
if they are merely independent in pairs), the ratio in (6.7) is 1 + �k≤n(pk −
p2

k )/m2
n , so that �P(An) = ∞ implies (6.7).

EXAMPLE 6.5
Return once again to the run lengths ln(ω) of Section 4. It was shown in
Example 4.21 that {rn} is an outer boundary (P [ln ≥ rn i.o.] = 0) if �2−rn <

∞. It was also shown that {rn} is an inner boundary (P [ln ≥ rn i.o.] = 1) if rn

is nondecreasing and �2−rn r−1
n = ∞, but Theorem 6.3 can be used to prove

this under the sole assumption that �2−rn = ∞.
As usual, the rn can be taken to be positive integers. Let An = [ln ≥

rn] = [dn = · · · = dn+rn−1 = 0]. If j + rj ≤ k , then Aj and Ak are indepen-
dent. If j < k < j + rj , then P(Aj |Ak ) ≤ P [dj = · · · = dk−1 = 0|Ak ] = P [dj =
· · · = dk−1 = 0] = 1/2k−j , and so P(Aj ∩ Ak ) ≤ P(Ak )/2k−j . Therefore,∑

j , k≤n

P(Aj ∩ Ak )
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≤
∑
k≤n

P(Ak ) + 2
∑

j<k≤n
j+rj ≤k

P(Aj )P(Ak ) + 2
∑

j<k≤n
k<j+rj

2−(k−j )P(Ak )

≤
∑
k≤n

P(Ak ) +
⎛
⎝∑

k≤n

P(Ak )

⎞
⎠

2

+ 2
∑
k≤n

P(Ak ).

If �P(An) = �2−rn diverges, then (6.7) follows.
Thus {rn} is an outer or an inner boundary according as �2−rn converges

or diverges , which completely settles the issue. In particular, rn = log2 n +
θ log2 log2 n gives an outer boundary for θ > 1 and an inner boundary for θ ≤ 1.

EXAMPLE 6.6
It is now possible to complete the analysis in Examples 4.12 and 4.16 of the
relative error en(ω) in the approximation of ω by �n−1

k=1 dk (ω)2−k . If ln(ω) ≥
− log2 xn(0 < xn < 1), then en(ω) ≤ xn by (4.22). By the preceding example
for the case rn = − log2 xn , �xn = ∞ implies that P [ω: en(ω) ≤ xn i.o.] = 1.
By this and Example 4.12, [ω: en(ω) ≤ xn i.o.] has Lebesgue measure 0 or 1
according as �xn converges or diverges .

PROBLEMS

6.1. Show that Zn → Z with probability 1 if and only if for every positive ε

there exists an n such that P [|Zk − Z | < ε, n ≤ k ≤ m] > 1 − ε for all
m exceeding n . This describes convergence with probability 1 in “finite”
terms.

6.2. Show in Example 6.3 that P [|Sn − Ln | ≥ L1/2+ε
n ] → 0.

6.3. As in Examples 5.6 and 6.3, let ω be a random permutation of 1, 2, . . . , n .
Each k , 1 ≤ k ≤ n , occupies some position in the bottom row of the
permutation ω; let Xnk (ω) be the number of smaller elements (between
1 and k−1) lying to the right of k in the bottom row. The sum Sn =
Xn1 + · · · + Xnn is the total number of inversions —the number of pairs
appearing in the bottom row in reverse order of size. For the permutation
in Example 5.6 the values of X71, . . . , X77 are 0, 0, 0, 2, 4, 2, 4, and
S7 = 12. Show that Xn1, . . . , Xnn are independent and P [Xnk = i ] = k−1

for 0 ≤ i < k . Calculate E [Sn] and Var[Sn]. Show that Sn is likely to be
near n2/4.

6.4. For a function f on [0, 1] write ||f || = supx |f (x)|. Show that, if f has a
continuous derivative f ′, then ||f − Bn || ≤ ε||f ′|| + 2||f ||/nε2. Conclude
that ||f − Bn || = O(n−1/3).
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6.5. Prove Poisson’s theorem: If A1, A2, . . . are independent events, pn =
n−1�n

i=1P(Ai ), and N = �n
i=1IAi , then n−1Nn − pn →P 0.

In the following problems Sn = X1 + · · · + Xn .

6.6. Prove Cantelli’s theorem: If X1, X2, . . . are independent, E [Xn] = 0, and
E [X 4

n ] is bounded, then n−1Sn → 0 with probability 1. The Xn need not
be identically distributed.

6.7. .(a) Let x1, x2, . . . be a sequence of real numbers, and put sn = x1 + · · · +
xn . Suppose that n−2sn2 → 0 and that the xn are bounded, and show
that n−1sn → 0.

(b) Suppose that n−2Sn2 → 0 with probability 1 and that the Xn are uni-
formly bounded (supn ,ω |Xn(ω)| < ∞). Show that n−1Sn → 0 with
probability 1. Here the Xn need not be identically distributed or even
independent.

6.8. ↑ Suppose that X1, X2, . . . are independent and uniformly bounded and
E [Xn] = 0. Using only the preceding result, the first Borel-Cantelli
lemma, and Chebyshev’s inequality, prove that n−1Sn → 0 with
probability 1.

6.9. ↑ Use the ideas of Problem 6.8 to give a new proof of Borel’s normal
number theorem, Theorem 1.2. The point is to return to first principles
and use only negligibility and the other ideas of Section 1, not the
apparatus of Sections 2 through 6; in particular, P (A) is to be taken
as defined only if A is a finite, disjoint union of intervals.

6.10. 5.11 6.7 ↑ Suppose that (in the notation of (5.41)) βn − α2
n = O(1/n).

Show that n−1Nn − αn → 0 with probability 1. What condition on βn −
α2

n will imply a weak law? Note that independence is not assumed here.

6.11. Suppose that X1, X2, . . . are m-dependent in the sense that random vari-
ables more than m apart in the sequence are independent. More precisely,
let A k

j = σ(Xj , . . . , Xk ), and assume that A
k1

j1
, . . . , A

k1
j1

are independent
if ki−1 + m < ji for i = 2, . . . , l . (Independent random variables are 0-
dependent.) Suppose that the Xn have this property and are uniformly
bounded and that E [Xn] = 0. Show that n−1Sn → 0. Hint: Consider the
subsequences X1, Xi+m+1, Xi+2(m+1),... for 1 ≤ i ≤ m + 1.

6.12. ↑ Suppose that the Xn are independent and assume the values x1, . . . , x1

with probabilities p(x1), . . . , p(x1). For u1, . . . , uk a k -tuple of the
xi ’s, let Nn(u1, . . . , uk ) be the frequency of the k -tuple in the first
n + k − 1 trials, that is, the number of t such that 1 ≤ t ≤ n and
Xi = u1, . . . , Xi+k−1 = uk . Show that with probability 1, all asymptotic
relative frequencies are what they should be—that is, with probability
1, n−1Nn(u1, . . . , uk ) → p(u1) · · · p(uk ) for every k and every k -tuple
u1, . . . , uk .
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6.13. ↑ A number ω in the unit interval is completely normal if, for every base
b and every k and every k -tuple of base-b digits, the k -tuple appears in
the base-b expansion of ω with asymptotic relative frequency b−k . Show
that the set of completely normal numbers has Lebesgue measure 1.

6.14. Shannon’s theorem . Suppose that X1, X2, . . . are independent, identically
distributed random variables taking on the values 1, . . . , r with posi-
tive probabilities p1, . . . , pr . If pn(i1, . . . , in) = pi1 . . . pin and pn(ω) =
pn(X1(ω), . . . , Xn(ω)), then pn(ω) is the probability that a new sequence
of n trials would produce the particular sequence X1(ω), . . . , Xn(ω) of
outcomes that happens actually to have been observed. Show that

−1

n
log pn(ω) → h = −

r∑
i=1

pi log pi

with probability 1.
In information theory 1, . . . , r are interpreted as the letters of an

alphabet , X1, X2, . . . are the successive letters produced by an informa-
tion source, and h is the entropy of the source. Prove the asymptotic
equipartition property : For large n there is probability exceeding 1 − ε

that the probability pn(ω) of the observed n-long sequence, or message,
is in the range e−n(h±ε).

6.15. In the terminology of Example 6.5, show that log2 n + log2 log2 n +
θ log2 log2 log2 n is an outer or inner boundary as θ > 1 or θ ≤ 1. Gen-
eralize. (Compare Problem 4.12.)

6.16. 5.20 ↑ Let g(m) = �pδp(m) be the number of distinct prime divisors of
m . For an = En[g] (see (5.46)) show that an → ∞. Show that

En

[(
δp − 1

n

⌊
n

p

⌋)(
δq − 1

n

⌊
n

q

⌋)]
≤ 1

np
+ 1

nq
(6.8)

for p �= q and hence that the variance of g under Pn satisfies

Varn[g] ≤ 3 �
p ≤ n

1

p
. (6.9)

Prove the Hardy-Ramanujan theorem:

lim
n

Pn

[
m:

∣∣∣∣g(m)

an
− 1

∣∣∣∣ ≥ ε

]
= 0. (6.10)

Since an ∼ log log n (see Problem 18.17), most integers under n have
something like log log n distinct prime divisors. Since log log 107 is a
little less than 3, the typical integer under 107 has about three prime
factors—remarkably few.
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6.17. Suppose that X1, X2, . . . are independent and P [Xn = 0] = p. Let Ln be
the length of the run of 0’s starting at the nth place: Ln = k if Xn =
· · · = Xn+k−1 = 0 �= Xn+k . Show that P [Ln ≥ rn i.o.] is 0 or 1 according
as �n

n prn converges or diverges. Example 6.5 covers the case p = 1
2 .

SECTION 7 GAMBLING SYSTEMS

Let X1, X2, . . . be an independent sequence of random variables (on
some (�, F , P )) taking on the two values +1 and −1 with probabilities
P [Xn = +1] = p and P [Xn = −1] = q = 1 − p. Throughout the section, Xn

will be viewed as the gambler’s gain on the nth of a series of plays at unit
stakes. The game is favorable to the gambler if p > 1

2 , fair if p = 1
2 , and

unfavorable if p < 1
2 . The case p ≤ 1

2 will be called the subfair case.
After the classical gambler’s ruin problem has been solved, it will be shown

that every gambling system is in certain respects without effect and that some
gambling systems are in other respects optimal. Gambling problems of the sort
considered here have inspired many ideas in the mathematical theory of proba-
bility, ideas that carry far beyond their origin.

Red-and-black will provide numerical examples. Of the 38 spaces on a
roulette wheel, 18 are red, 18 are black, and 2 are green. In betting either on
red or on black the chance of winning is 18

38 .

Gambler’s Ruin

Suppose that the gambler enters the casino with capital a and adopts the strategy
of continuing to bet at unit stakes until his fortune increases to c or his funds
are exhausted. What is the probability of ruin, the probability that he will lose
his capital, a? What is the probability he will achieve his goal, c? Here a and
c are integers.

Let

Sn = X1 + · · · + Xn , S0 = 0. (7.1)

The gambler’s fortune after n plays is a + Sn . The event

Aa , n = [a + Sn = c] ∩
n−1⋂
k=1

[0 < a + Sk < c] (7.2)

represents success for the gambler at time n , and

Ba , n = [a + Sn = 0] ∩
n−1⋂
k=1

[0 < a + Sk < c] (7.3)



SECTION 7 GAMBLING SYSTEMS 99

represents ruin at time n . If sc(a) denotes the probability of ultimate success,
then

sc(a) = P(

∞⋃
n=1

Aa ,n) =
∞∑

n=1

P(Aa ,n) (7.4)

for 0 < a < c.
Fix c and let a vary. For n ≥ 1 and 0 < a < c, define Aa ,n by (7.2), and

adopt the conventions Aa ,0 = Ø for 0 ≤ a < c and Ac,0 = � (success is impos-
sible at time 0 if a < c and certain if a = c), as well as A0, n = Ac, n = Ø for
n ≥ 1 (play never starts if a is 0 or c). By these conventions, sc(0) = 0 and
sc(c) = 1.

Because of independence and the fact that the sequence X2, X3, . . . is a
probabilistic replica of X1, X2, . . ., it seems clear that the chance of success for
a gambler with initial fortune a must be the chance of winning the first wager
times the chance of success for an initial fortune a+1, plus the chance of losing
the first wager times the chance of success for an initial fortune a−1. It thus
seems intuitively clear that

sc(a) = psc(a + 1) + qsc(a − 1), 0 < a < c. (7.5)

For a rigorous argument, define A′
a ,n just as Aa ,n but with S ′

n = X2 + · · · +
Xn+1 in place of Sn in (7.2). Now P [Xi = xi , i ≤ n] = P [Xi+1 = xi , i ≤ n] for
each sequence x1, . . . , xn of +1’s and −1’s, and therefore P [(X1, . . . , Xn) ∈
H ] = P [(X2, . . . , Xn+1) ∈ H ] for H ⊂ Rn . Take H to be the set of
x = (x1, . . . , xn) in Rn satisfying xi = ±1, a + x1 + · · · + xn = c, and
0 < a + x1 + · · · + xk < c for k < n . It follows then that

P(Aa ,n) = P(A′
a , n). (7.6)

Moreover, Aa , n = ([X1 = +1] ∩ A′
a+1,n−1) ∪ ([X1 = −1] ∩ A′

a−1,n−1) for n ≥ 1
and 0 < a < c. By independence and (7.6), P(Aa , n) = pP(Aa+1,n−1) +
qP(Aa−1,n−1); adding over n now gives (7.5). Note that this argument involves
the entire infinite sequence X1, X2, . . . .

It remains to solve the difference equation (7.5) with the side conditions
sc(0) = 0, sc(c) = 1. Let ρ = q/p be the odds against the gambler. Then [A19]
there exist constants A and B such that, for 0 ≤ a ≤ c, sc(a) = A + Bρa if
p �= q and sc(a) = A + Ba if p = q . The requirements sc(0) = 0 and sc(c) = 1
determine A and B , which gives the solution:

The probability that the gambler can before ruin attain his goal of c from an
initial capital of a is

sc(a) =
{

ρa−1
ρc−1 , 0 ≤ a ≤ c, if ρ = q

p �= 1,
a
c , 0 ≤ a ≤ c, if ρ = q

p = 1.
(7.7)
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EXAMPLE 7.1
The gambler’s initial capital is $900 and his goal is $1000. If p = 1

2 , his chance
of success is very good: s1000(900) = .9. At red-and-black, p = 18

38 and
hence ρ = 20

18 ; in this case his chance of success as computed by (7.7) is only
about .00003.

EXAMPLE 7.2
It is the gambler’s desperate intention to convert his $100 into $20,000.
For a game in which p = 1

2 (no casino has one), his chance of success is
100/20,000 = .005; at red-and-black it is minute—about 3 × 10−911.

In the analysis leading to (7.7), replace (7.2) by (7.3). It follows that (7.7)
with p and q interchanged (ρ goes to ρ−1) and a and c−a interchanged gives
the probability rc(a) of ruin for the gambler: rc(a) = (ρ−(c−a) − 1)/(ρ−c − 1)

if ρ �= 1 and rc(a) = (c − a)/c if ρ = 1. Hence sc(a) + rc(a) = 1 holds in all
cases: The probability is 0 that play continues forever .

For positive integers a and b, let

Ha , b =
∞⋃

n=1

{
[Sn = b] ∩

n−1⋂
k=1

[−a < Sk < b]

}

be the event that Sn reaches +b before reaching −a . Its probability is simply
(7.7) with c = a + b: P(Ha , b) = sa+b(a). Now let

Hb =
∞⋃

a=1

Ha , b =
∞⋃

n=1

[Sn = b] = [sup
n

Sn ≥ b]

be the event that Sn ever reaches +b. Since Ha , b ↑ Hb as a → ∞, it follows
that P(Hb) = lima sa+b(a); this is 1 if ρ = 1 or ρ < 1, and it is 1/ρb if ρ > 1.
Thus

P [sup
n

Sn ≥ b] =
{

1 if p ≥ q ,

(p/q)b if p < q .
(7.8)

This is the probability that a gambler with unlimited capital can ultimately gain
b units .

EXAMPLE 7.3
The gambler in Example 7.1 has capital 900 and the goal of winning b = 100;
in Example 7.2 he has capital 100 and b is 19,900. Suppose, instead, that his
capital is infinite. If p = 1

2 , the chance of achieving his goal increases from .9
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to 1 in the first example and from .005 to 1 in the second. At red-and-black,
however, the two probabilities .9100 and .919900 remain essentially what they
were before (.00003 and 3 × 10−911).

Selection Systems

Players often try to improve their luck by betting only when in the preceding
trials the wins and losses form an auspicious pattern. Perhaps the gambler bets
on the nth trial only when among X1, . . . , Xn−1 there are many more +1’s than
−1’s, the idea being to ride winning streaks (he is “in the vein”). Or he may bet
only when there are many more −1’s than +1’s, the idea being it is then surely
time a +1 came along (the “maturity of the chances”). There is a mathematical
theorem that, translated into gaming language, says all such systems are futile.

It might be argued that it is sensible to bet if among X1, . . . , Xn−1 there is
an excess of +1’s, on the ground that it is evidence of a high value of p. But
it is assumed throughout that statistical inference is not at issue: p is fixed—at
18
38 , for example, in the case of red-and-black—and is known to the gambler, or
should be.

The gambler’s strategy is described by random variables B1, B2, . . . taking
the two values 0 and 1: If Bn = 1, the gambler places a bet on the nth trial; if
Bn = 0, he skips that trial. If Bn were (Xn + 1)/2, so that Bn = 1 for Xn = +1
and Bn = 0 for Xn = −1, the gambler would win every time he bet, but of
course such a system requires he be prescient—he must know the outcome Xn

in advance. For this reason the value of Bn is assumed to depend only on the
values of X1, . . . , Xn−1: there exists some function bn : Rn−1 → R1 such that

Bn = bn(X1, . . . , Xn−1). (7.9)

(Here B1 is constant.) Thus the mathematics avoids, as it must, the question of
whether prescience is actually possible.

Define {
Fn = σ(X1, . . . , Xn), n = 1, 2, . . . ,

F0 = {Ø, �}. (7.10)

The σ -field Fn−1 generated by X1, . . . , Xn−1 corresponds to a knowledge of
the outcomes of the first n−1 trials. The requirement (7.9) ensures that Bn is
measurable Fn−1 (Theorem 5.1) and so depends only on the information actually
available to the gambler just before the nth trial.

For n = 1, 2, . . ., let Nn be the time at which the gambler places his nth bet.
This nth bet is placed at time k or earlier if and only if the number �k

i=1Bi of
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bets placed up to and including time k is n or more; in fact, Nn is the smallest
k for which �k

i=1Bi = n . Thus the event [Nn ≤ k ] coincides with [�k
i=1Bi ≥

n]; by (7.9) this latter event lies in σ(B1, . . . , Bk ) ⊂ σ(X1, . . . , Xk−1) = Fk−1.
Therefore,

[Nn = k ] = [Nn ≤ k ] − [Nn ≤ k − 1] ∈ Fk−1. (7.11)

(Even though [Nn = k ] lies in Fk−1 and hence in F , Nn is, as a function on
�, generally not a simple random variable, because it has infinite range. This
makes no difference, because expected values of the Nn will play no role; (7.11)
is the essential property.)

To ensure that play continues forever (stopping rules will be considered
later) and that the Nn have finite values with probability 1, make the further
assumption that

P [Bn = 1 i.o.] = 1. (7.12)

A sequence {Bn} of random variables assuming the values 0 and 1, having the
form (7.9), and satisfying (7.12) is a selection system .

Let Yn be the gambler’s gain on the nth of the trials at which he does bet:
Yn = XNn . It is only on the set [Bn = 1 i.o.] that all the Nn and hence all the Yn

are well defined. To complete the definition, set Yn = −1, say, on [Bn = 1 i.o.]c ;
since this set has probability 0 by (7.12), it really makes no difference how Yn

is defined on it.
Now Yn is a complicated function on � because Yn(ω) = XNn (ω)(ω).

Nonetheless,

[ω: Yn(ω) = 1] =
∞⋃

k=1

([ω: Nn(ω) = k ] ∩ [ω: Xk (ω) = 1])

lies in F , and so does its complement [ω: Yn(ω) = −1]. Hence Yn is a simple
random variable.

EXAMPLE 7.4
An example will fix these ideas. Suppose that the rule is always to bet on
the first trail, to bet on the second trial if and only if X1 = +1, to bet on the
third trial if and only if X1 = X2, and to bet on all subsequent trails. Here
B1 = 1, [B2 = 1] = [X1 = +1], [B3 = 1] = [X1 = X2], and B4 = B5 = · · · = 1.
The table shows the ways the gambling can start out. A dot represents
a value undetermined by X1, X2, X3. Ignore the rightmost column for the
moment.
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X1 X2 X3 B1 B2 B3 N1 N2 N3 N4 Y1 Y2 Y3 τ

−1 −1 −1 1 0 1 1 3 4 5 −1 −1 · 1
−1 −1 +1 1 0 1 1 3 4 5 −1 +1 · 1
−1 +1 −1 1 0 0 1 4 5 6 −1 · · 1
−1 +1 +1 1 0 0 1 4 5 6 −1 · · 1
+1 −1 −1 1 1 0 1 2 4 5 +1 −1 · 2
+1 −1 +1 1 1 0 1 2 4 5 +1 −1 · 2
+1 +1 −1 1 1 1 1 2 3 4 +1 +1 −1 3
+1 +1 +1 1 1 1 1 2 3 4 +1 +1 +1 ·

In the evolution represented by the first line of the table, the second bet is
placed on the third trial (N2 = 3), which results in a loss because Y2 = XN2 =
X3 = −1. Since X3 = −1, the gambler was “wrong” to bet. But remember that
before the third trial he does not know X3(ω) (much less ω itself); he knows
only X1(ω) and X2(ω). See the discussion in Example 5.5.

Selection systems achieve nothing because {Yn} has the same structure
as {Xn}:
Theorem 7.1
For every selection system, {Yn} is independent and P [Yn = +1] = p, P [Yn =
−1] = q.

Proof. Since random variables with indices that are themselves random
variables are conceptually confusing at first, the ω’s here will not be suppressed
as they have been in previous proofs.

Relabel p and q as p(+1) and p(−1), so that P [ω: Xk (ω) = x ] = p(x)

for x = ±1. If A ∈ Fk−1, then A and [ω: Xk (ω) = x ] are independent, and so
P(A ∩ [ω: Xk (ω) = x ]) = P(A)p(x). Therefore, by (7.11),

P [ω: Yn(ω) = x ] = P [ω: XNn(ω)
(ω) = x ]

=
∞∑

k=1

P [ω: Nn(ω) = k , Xk (ω) = x ]

=
∞∑

k=1

P [ω: Nn(ω) = k ]p(x)

= p(x).
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More generally, for any sequence x1, . . . , xn of ±1’s,

P [ω: Yi (ω) = xi , i ≤ n] = P [ω: XNi (ω)(ω) = xi , i ≤ n]

=
∑

k1<···<kn

P [ω: Ni (ω) = ki , Xki (ω) = xi , i ≤ n],

where the sum extends over n-tuples of positive integers satisfying k1 < · · · <

kn . The event [ω: Ni (ω) = ki , i ≤ n] ∩ [ω: Xki (ω) = xi , i < n] lies in Fkn−1

(note that there is no condition on Xkn (ω)), and therefore

P [ω: Yi (ω) = xi , i ≤ n]

=
∑

k1<···<kn

P([ω: Ni (ω) = ki , i ≤ n]

∩ [ω: Xki (ω) = xi , i < n])p(xn).

Summing kn over kn−1 + 1, kn−1 + 2, . . . brings this last sum to∑
k1<···<kn−1

P [ω: Ni (ω) = ki , Xki (ω) = xi , i < n]p(xn)

= P [ω: XNi (ω)(ω) = xi , i < n] p(xn)

= P [ω: Yi (ω) = xi , i < n]p(xn).

It follows by induction that

P [ω: Yi (ω) = xi , i ≤ n] = �
i ≤ n

p(xi ) = �
i ≤ n

P [ω: Yi (ω) = xi ],

and so the Yi are independent (see (5.9)). ■

Gambling Policies

There are schemes that go beyond selection systems and tell the gambler not
only whether to bet but how much. Gamblers frequently contrive or adopt such
schemes in the confident expectation that they can, by pure force of arithmetic,
counter the most adverse workings of chance. If the wager specified for the nth
trial is in the amount Wn and the gambler cannot see into the future, then Wn

must depend only on X1, . . . , Xn−1. Assume therefore that Wn is a nonnegative
function of these random variables: there is an fn : Rn−1 → R1 such that

Wn = fn(X1, . . . , Xn−1) ≥ 0. (7.13)

Apart from nonnegativity there are at the outset no constraints on the fn , although
in an actual casino their values must be integral multiples of a basic unit. Such a
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sequence {Wn} is a betting system . Since Wn = 0 corresponds to a decision not
to bet at all, betting systems in effect include selection systems. In the double-
or-nothing system, Wn = 2n−1 if X1 = · · · = Xn−1 = −1(W1 = 1) and Wn = 0
otherwise.

The amount the gambler wins on the nth play is WnXn . If his fortune at
time n is Fn , then

Fn = Fn−1 + WnXn . (7.14)

This also holds for n = 1 if F0 is taken as his initial (nonrandom) fortune. It
is convenient to let Wn depend on F0 as well as the past history of play and
hence to generalize (7.13) to

Wn = gn(F0, X1, . . . , Xn−1) ≥ 0 (7.15)

for a function gn : Rn → R1. In expanded notation, Wn(ω) = gn(F0, X1(ω), . . . ,
Xn−1(ω)). The symbol Wn does not show the dependence on ω or on F0,
either. For each fixed initial fortune F0, Wn is a simple random variable; by
(7.15) it is measurable Fn−1. Similarly, Fn is a function of F0 as well as of
X1(ω), . . . , Xn(ω): Fn = Fn(F0, ω).

If F0 = 0 and gn ≡ 1, the Fn reduce to the partial sums (7.1).
Since Fn−1 and σ(Xn) are independent, and since Wn is measurable Fn−1

(for each fixed F0), Wn and Xn are independent. Therefore, E [WnXn] = E [Wn] ·
E [Xn]. Now E [Xn] = p − q ≤ 0 in the subfair case (p ≤ 1

2 ), with equality in
the fair case (p = 1

2 ). Since E [Wn] ≥ 0, (7.14) implies that E [Fn] ≤ E [Fn−1].
Therefore,

F0 ≥ E [F1] ≥ · · · ≥ E [Fn] ≥ · · · (7.16)

in the subfair case, and

F0 = E [F1] = · · · = E [Fn] = · · · (7.17)

in the fair case. (If p < q and P [Wn > 0] > 0, there is strict inequality in (7.16).)
Thus no betting system can convert a subfair game into a profitable enterprise.

Suppose that in addition to a betting system, the gambler adopts some policy
for quitting. Perhaps he stops when his fortune reaches a set target, or his funds
are exhausted, or the auguries are in some way dissuasive. The decision to stop
must depend only on the initial fortune and the history of play up to the present.

Let τ(F0, ω) be a nonnegative integer for each ω in � and each F0 ≥ 0. If
τ = n , the gambler plays on the nth trial (betting Wn) and then stops; if τ = 0,
he does not begin gambling in the first place. The event [ω: τ(F0, ω) = n]
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represents the decision to stop just after the nth trial, and so, whatever value F0

may have, it must depend only on X1, . . . , Xn . Therefore, assume that

[ω: τ(F0, ω) = n] ∈ Fn , n = 0, 1, 2, . . . (7.18)

A τ satisfying this requirement is a stopping time. (In general it has infinite
range and hence is not a simple random variable; as expected values of τ play
no role here, this does not matter.) It is technically necessary to let τ(F0, ω)

be undefined or infinite on an ω-set of probability 0. This has no effect on the
requirement (7.18), which must hold for each finite n . But it is assumed that τ

is finite with probability 1: play is certain to terminate.
A betting system together with a stopping time is a gambling policy . Let π

denote such a policy.

EXAMPLE 7.5
Suppose that the betting system is given by Wn = Bn , with Bn as in
Example 7.4. Suppose that the stopping rule is to quit after the first loss of a
wager. Then [τ = n] = ∪n

k=1[Nk = n , Y1 = · · · = Yk−1 = +1, Yk = −1]. For
j ≤ k ≤ n , [Nk = n , Yj = x ] = ∪n

m=1[Nk = n , Nj = m , Xm = x ] lies in Fn by
(7.11); hence τ is a stopping time. The values of τ are shown in the rightmost
column of the table.

The sequence of fortunes is governed by (7.14) until play terminates, and
then the fortune remains for all future time fixed at Fτ (with value Fτ(F0,ω)(ω)).
Therefore, the gambler’s fortune at time n is

F ∗
n =

{
Fn if τ ≥ n ,

Fτ if τ ≤ n.
(7.19)

Note that the case τ = n is covered by both clauses here. If n − 1 < n ≤ τ ,
then F ∗

n = Fn = Fn−1 + WnXn = F ∗
n−1 + WnXn ; if τ ≤ n − 1 < n , then F ∗

n =
Fτ = F ∗

n−1. Therefore, if W ∗
n = I[τ≥n]Wn , then

F ∗
n = F ∗

n−1 + I[τ≥n]WnXn = F ∗
n−1 + W ∗

n Xn . (7.20)

But this is the equation for a new betting system in which the wager placed
at time n is W ∗

n . If τ ≥ n (play has not already terminated), W ∗
n is the old amount

Wn ; if τ < n (play has terminated), W ∗
n is 0. Now by (7.18), [τ ≥ n] = [τ < n]c

lies in Fn−1. Thus I[τ≥n] is measurable Fn−1, so that W ∗
n as well as Wn is

measurable Fn−1, and {W ∗
n } represents a legitimate betting system. Therefore,

(7.16) and (7.17) apply to the new system:

F0 = F ∗
0 ≥ E [F ∗

1 ] ≥ · · · ≥ E [F ∗
n ] ≥ · · · (7.21)
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if p ≤ 1
2 , and

F0 = F ∗
0 = E [F ∗

1 ] = · · · = E [F ∗
n ] = . . . (7.22)

if p = 1
2 .

The gambler’s ultimate fortune is Fτ . Now limn F ∗
n = Fτ with probability 1,

since in fact F ∗
n = Fτ for n ≥ τ . If

lim
n

E [F ∗
n ] = E [Fτ ], (7.23)

then (7.21) and (7.22), respectively, imply that E [Fτ ] ≤ F0 and E [Fτ ] = F0.
According to Theorem 5.4, (7.23) does hold if the F ∗

n are uniformly bounded.
Call the policy bounded by M (M nonrandom) if

0 ≤ F ∗
n ≤ M , n = 0, 1, 2, . . . . (7.24)

If F ∗
n is not bounded above, the gambler’s adversary must have infinite capital.

A negative F ∗
n represents a debt, and if F ∗

n is not bounded below, the gambler
must have a patron of infinite wealth and generosity from whom to borrow and
so must in effect have infinite capital. In case F ∗

n is bounded below, 0 is the
convenient lower bound—the gambler is assumed to have in hand all the capital
to which he has access. In any real case, (7.24) holds and (7.23) follows. (There
is a technical point that arises because the general theory of integration has been
postponed: Fτ must be assumed to have finite range so that it will be a simple
random variable and hence have an expected value in the sense of Section 5.†)
The argument has led to this result:

Theorem 7.2
For every policy, (7.21) holds if p ≤ 1

2 and (7.22) holds if p = 1
2 . If the policy is

bounded (and Fτ has finite range), then E [Fτ ] ≤ F0 for p ≤ 1
2 and E [Fτ ] = F0

for p = 1
2 .

EXAMPLE 7.6
The gambler has initial capital a and plays at unit stakes until his capital
increases to c(0 ≤ a ≤ c) or he is ruined. Here F0 = a and Wn = 1, and so
Fn = a + Sn . The policy is bounded by c, and Fτ is c or 0 according as the
gambler succeeds or fails. If p = 1

2 and if s is the probability of success, then
a = F0 = E [Fτ ] = sc. Thus s = a/c. This gives a new derivation of (7.7) for
the case p = 1

2 . The argument assumes however that play is certain to terminate.
If p ≤ 1

2 , Theorem 7.2 only gives s ≤ a/c, which is weaker than (7.7).

†See Problem 7.11.
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EXAMPLE 7.7
Suppose as before that F0 = a and Wn = 1, so that Fn = a + Sn , but suppose
the stopping rule is to quit as soon as Fn reaches a+b. Here F ∗

n is bounded
above by a+b but is not bounded below. If p = 1

2 , the gambler is by (7.8)
certain to achieve his goal, so that Fτ = a + b. In this case F0 = a < a + b =
E [Fτ ]. This illustrates the effect of infinite capital. It also illustrates the need
for uniform boundedness in Theorem 5.4 (compare Example 5.7).

For some other systems (gamblers call them “martingales”), see the prob-
lems. For most such systems there is a large chance of a small gain and a small
chance of a large loss.

Bold Play†

The formula (7.7) gives the chance that a gambler betting unit stakes can increase
his fortune from a to c before being ruined. Suppose that a and c happen to be
even and that at each trial the wager is two units instead of one. Since this has
the effect of halving a and c, the chance of success is now

ρa/2 − 1

ρc/2 − 1
= ρa − 1

ρc − 1

ρc/2 + 1

ρa/2 + 1
,

q

p
= ρ �= 1.

If ρ > 1
(
p < 1

2

)
, the second factor on the right exceeds 1: Doubling the stakes

increases the probability of success in the unfavorable case ρ > 1. In the case
ρ = 1, the probability remains the same.

There is a sense in which large stakes are optimal. It will be convenient
to rescale so that the initial fortune satisfies 0 ≤ F0 ≤ 1 and the goal is 1. The
policy of bold play is this: At each stage the gambler bets his entire fortune,
unless a win would carry him past his goal of 1, in which case he bets just
enough that a win would exactly achieve that goal:

Wn =
{

Fn−1 if 0 ≤ Fn−1 ≤ 1
2 ,

1 − Fn−1 if 1
2 ≤ Fn−1 ≤ 1.

(7.25)

(It is convenient to allow even irrational fortunes.) As for stopping, the policy
is to quit as soon as Fn reaches 0 or 1.

Suppose that play has not terminated by time k−1; under the policy (7.25),
if play is not to terminate at time k , then Xk must be +1 or −1 according as
Fk−1 ≤ 1

2 or Fk−1 ≥ 1
2 , and the conditional probability of this is at most m =

max{p, q}. It follows by induction that the probability that bold play continues

†This topic may be omitted.
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beyond time n is at most mn , and so play is certain to terminate (τ is finite with
probability 1).

It will be shown that in the subfair case, bold play maximizes the probability
of successfully reaching the goal of 1. This is the Dubins–Savage theorem . It
will further be shown that there are other policies that are also optimal in
this sense, and this maximum probability will be calculated. Bold play can be
substantially better than betting at constant stakes. This contrasts with Theorems
7.1 and 7.2 concerning respects in which gambling systems are worthless.

From now on, consider only policies π that are bounded by 1 (see (7.24)).
Suppose further that play stops as soon as Fn reaches 0 or 1 and that this
is certain eventually to happen. Since Fτ assumes the values 0 and 1, and
since [Fτ = x ] = ⋃∞

n=0[τ = n] ∩ [Fn = x ] for x = 0 and x = 1, Fτ is a simple
random variable. Bold play is one such policy π .

The policy π leads to success if Fτ = 1. Let Qπ(x) be the probability of
this for an initial fortune F0 = x :

Qπ(x) = P [Fτ = 1] for F0 = x . (7.26)

Since Fn is a function ψn(F0, X1(ω), . . . , Xn(ω)) = �n(F0, ω), (7.26) in
expanded notation is Qπ(x) = P [ω: �τ(x ,ω)(x , ω) = 1]. As π specifies that
play stops at the boundaries 0 and 1,

Qπ(0) = 0, Qπ(1) = 1, (7.27)

0 ≤ Qπ(x) ≤ 1, 0 ≤ x ≤ 1.

Let Q be the Qπ for bold play. (The notation does not show the dependence of
Q and Qπ on p, which is fixed.)

Theorem 7.3
In the subfair case, Qπ(x) ≤ Q(x) for all π and all x.

Proof. Under the assumption p ≤ q , it will be shown later that

Q(x) ≥ pQ(x + t) + qQ(x − t), 0 ≤ x − t ≤ x ≤ x + t ≤ 1. (7.28)

This can be interpreted as saying that the chance of success under bold play
starting at x is at least as great as the chance of success if the amount t is
wagered and bold play then pursued from x+t in case of a win and from x−t
in case of a loss. Under the assumption of (7.28), optimality can be proved as
follows.

Consider a policy π , and let Fn and F ∗
n be the simple random variables

defined by (7.14) and (7.19) for this policy . Now Q(x ) is a real function, and so
Q(F ∗

n ) is also a simple random variable; it can be interpreted as the conditional
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chance of success if π is replaced by bold play after time n . By (7.20), F ∗
n =

x + tXn if F ∗
n−1 = x and W ∗

n = t . Therefore,

Q(F ∗
n ) =

∑
x ,t

I[F∗
n−1=x ,W ∗

n =t]Q(x + tXn),

where x and t vary over the (finite) ranges of F ∗
n−1 and W ∗

n , respectively.
For each x and t , the indicator above is measurable Fn−1 and Q(x + tXn)

is measurable σ(Xn); since the Xn are independent, (5.25) and (5.17) give

E [Q(F ∗
n )] =

∑
x , t

P [F ∗
n−1 = x , W ∗

n = t]E [Q(x + tXn)] (7.29)

By (7.28), E [Q(x + tXn)] ≤ Q(x) if 0 ≤ x − t ≤ x ≤ x + t ≤ 1. As it is
assumed of π that F ∗

n lies in [0, 1] (that is, W ∗
n ≤ min{F ∗

n−1, 1 − F ∗
n−1}), the

probability in (7.29) is 0 unless x and t satisfy this constraint. Therefore,

E [Q(F ∗
n )] ≤

∑
x , t

P [F ∗
n−1 = x , W ∗

n = t]Q(x)

=
∑

x

P [F ∗
n−1 = x ]Q(x) = E [Q(F ∗

n−1)].

This is true for each n , and so E [Q(F ∗
n )] ≤ E [Q(F ∗

0 )] = Q(F0). Since
Q(F ∗

n ) = Q(Fτ ) for n ≥ τ , Theorem 5.4 implies that E [Q(Fτ )] ≤ Q(F0).
Since x = 1 implies that Q(x) = 1, P [Fτ = 1] ≤ E [Q(Fτ )] ≤ Q(F0). Thus
Qπ(F0) ≤ Q(F0) for the policy π , whatever F0 may be.

It remains to analyze Q and prove (7.28). Everything hinges on the func-
tional equation

Q(x) =
{

pQ(2x), 0 ≤ x ≤ 1
2 ,

p + qQ(2x − 1), 1
2 ≤ x ≤ 1.

(7.30)

For x = 0 and x = 1 this is obvious because Q(0) = 0 and Q(1) = 1. The
idea is this: Suppose that the initial fortune is x . If x ≤ 1

2 , the first stake under
bold play is x ; if the gambler is to succeed in reaching 1, he must win the first
trial (probability p) and then from his new fortune x + x = 2x go on to succeed
(probability Q(2x )); this makes the first half of (7.30) plausible. If x ≥ 1

2 , the
first stake is 1 − x ; the gambler can succeed either by winning the first trial
(probability p) or by losing the first trial (probability q) and then going on from
his new fortune x − (1 − x) = 2x − 1 to succeed (probability Q(2x − 1)); this
makes the second half of (7.30) plausible.

It is also intuitively clear that Q(x ) must be an increasing function of x
(0 ≤ x ≤ 1): the more money the gambler starts with, the better off he is. Finally,
it is intuitively clear that Q(x ) ought to be a continuous function of the initial
fortune x .
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A formal proof of (7.30) can be constructed as for the difference equation
(7.5). If β(x) is x for x ≤ 1

2 and 1 − x for x ≥ 1
2 , then under bold play Wn =

β(Fn−1). Starting from f0(x) = x , recursively define

fn(x ; x1, . . . , xn) = fn−1(x ; x1, . . . , xn−1) + β(fn(x ; x1, . . . , xn−1))xn .

Then Fn = fn(F0; X1, . . . , Xn). Now define

gn(x ; x1, . . . , xn) = max
0 ≤ k ≤ n

fk (x ; x1, . . . , xk ).

If F0 = x , then Tn(x) = [gn(x ; X1, . . . , Xn) = 1] is the event that bold play will
by time n successfully increase the gambler’s fortune to 1. From the recursive
definition it follows by induction on n that for n ≥ 1, fn(x ; x1, . . . , xn) =
fn−1(x + β(x)x1; x2, . . . , xn) and hence that gn(x ; x1, . . . , xn) = max{x , gn−1(x +
β(x)x1; x2, . . . , xn)}. Since x = 1 implies gn−1(x + β(x)x1; x2, . . . , xn) ≥ x +
β(x)x1 = 1, Tn(x) = [gn−1(x + β(x)X1; X2, . . . , Xn) = 1], and since the Xi are
independent and identically distributed, P(Tn(x)) = P([X1 = +1] ∩ Tn(x)) +
P([X1 = −1] ∩ Tn(x)) = pP [gn−1(x + β(x); X2, . . . , Xn) = 1] + qP [gn−1(x −
β(x); X2, . . . , Xn) = pP(Tn−1(x + β(x))) + qP(Tn−1(x − β(x))). Letting
n → ∞ now gives Q(x) = pQ(x + β(x)) + qQ(x − β(x)), which reduces to
(7.30) because Q(0) = 0 and Q(1) = 1.

Suppose that y = fn−1(x ; x1, . . . , xn−1) is nondecreasing in x . If xn = +1,
then fn(x ; x1, . . . , xn) is 2y if 0 ≤ y ≤ 1

2 and 1 if 1
2 ≤ y ≤ 1; if xn = −1,

then fn(x ; x1, . . . , xn) is 0 if 0 ≤ y ≤ 1
2 and 2y − 1 if 1

2 ≤ y ≤ 1. In any case,
fn(x ; x1, . . . , xn) is also nondecreasing in x , and by induction this is true for
every n . It follows that the same is true of gn(x ; x1, . . . , xn), of P(Tn(x)), and
of Q(x ). Thus Q(x ) is nondecreasing.

Since Q(1) = 1, (7.30) implies that Q
(1

2

) = pQ(1) = p, Q
(1

4

) = pQ
(1

2

) =
p2, Q

(3
4

) = p + qQ
(1

2

) = p + pq . More generally, if p0 = p and p1 = q , then

Q

(
k

2n

)
=
∑[

pu1 · · · pun :
n∑

i=1

ui

2i
<

k

2n

]
, 0 < k ≤ 2n , n ≥ 1, (7.31)

the sum extending over n-tuples (u1, . . . , un) of 0’s and 1’s satisfying the con-
dition indicated. Indeed, it is easy to see that (7.31) is the same thing as

Q(.u1 . . . un + 2−n) − Q(.u1 . . . un) = pu1pu2 · · · pun (7.32)

for each dyadic rational .u1 . . . un of rank n . If .u1 . . . un + 2−n ≤ 1
2 , then

u1 = 0 and by (7.30) the difference in (7.32) is p0[Q(.u2 . . . un + 2−n+1) −
Q(.u2 . . . un)]. But (7.32) follows inductively from this and a similar relation
for the case .u1 . . . un ≥ 1

2 .
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Therefore Q(k2−n) − Q((k − 1)2−n) is bounded by max{pn , qn}, and so
by monotonicity Q is continuous. Since (7.32) is positive, it follows that Q is
strictly increasing over [0, 1].

Thus Q is continuous and increasing and satisfies (7.30). The inequality
(7.28) is still to be proved. It is equivalent to the assertion that

�(r , s) = Q(a) − pQ(s) − qQ(r) ≥ 0

if 0 ≤ r ≤ s ≤ 1, where a stands for the average: a = 1
2(r + s). Since Q is

continuous, it suffices to prove the inequality for r and s of the form k/2n ,
and this will be done by induction on n . Checking all cases disposes of n = 0.
Assume that the inequality holds for a particular n , and that r and s have the
form k/2n+1. There are four cases to consider.

Case 1. s ≤ 1
2 . By the first part of (7.30), �(r , s) = p�(2r , 2s). Since 2r and

2s have the form k/2n , the induction hypothesis implies that �(2r , 2s) ≥ 0.

Case 2. 1
2 ≤ r . By the second part of (7.30),

�(r , s) = q�(2r − 1, 2s − 1) ≥ 0.

Case 3. r ≤ a ≤ 1
2 ≤ s . By (7.30),

�(r , s) = pQ(2a) − p[p + qQ(2s − 1)] − q[pQ(2r)].

From 1
2 ≤ s ≤ r + s = 2a ≤ 1, follows Q(2a) = p + qQ(4a − 1); and from

0 ≤ 2a − 1
2 ≤ 1

2 , follows Q
(
2a − 1

2

) = pQ(4a − 1). Therefore, pQ(2a) =
p2 + qQ

(
2a − 1

2

)
, and it follows that

�(r , s) = q
[
Q
(
2a − 1

2

)− pQ(2s − 1) − pQ(2r)
]
.

Since p ≤ q , the right side does not increase if either of the two p’s is changed
to q . Hence

�(r , s) ≥ q max[�(2r , 2s − 1), �(2s − 1, 2r)].

The induction hypothesis applies to 2r ≤ 2s − 1 or to 2s − 1 ≤ 2r , as the case
may be, so one of the two �’s on the right is nonnegative.

Case 4. r ≤ 1
2 ≤ a ≤ s . By (7.30),

�(r , s) = pq + qQ(2a − 1) − pqQ(2s − 1) − pqQ(2r).
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From 0 ≤ 2a − 1 = r + s − 1 ≤ 1
2 , follows Q(2a − 1) = pQ(4a − 2); and

from 1
2 ≤ 2a − 1

2 = r + s − 1
2 ≤ 1, follows Q

(
2a − 1

2

) = p + qQ(4a − 2).
Therefore, qQ(2a − 1) = pQ

(
2a − 1

2

)− p2, and it follows that

�(r , s) = p

[
q − p + Q

(
2a − 1

2

)
− qQ(2s − 1) − qQ(2r)

]
.

If 2s − 1 ≤ 2r , the right side here is

p[(q − p)(1 − Q(2r)) + �(2s − 1, 2r)] ≥ 0.

If 2r ≤ 2s − 1, the right side is

p[(q − p)(1 − Q(2s − 1)) + �(2r , 2s − 1)] ≥ 0.

This completes the proof of (7.28) and hence of Theorem 7.3. ■

The equation (7.31) has an interesting interpretation. Let Z1, Z2, . . . be
independent random variables satisfying P [Zn = 0] = p0 = p and P [Zn = 1] =
p1 = q . From P [Zn = 1 i.o.] = 1 and

∑
i > n Zi 2−i ≤ 2−n it follows that

P
[∑∝

i=1 Zi 2−i ≤ k2−n
] ≤ P

[∑n
i=1 Zi 2−i < k2−n

] ≤ P
[∑∞

i=1 Zi 2−i ≤ k2−n
]
.

Since by (7.31) the middle term is Q(k2−n),

Q(x) = P

[ ∞∑
i=1

Zi 2
−i ≤ x

]
(7.33)

holds for dyadic rational x and hence by continuity holds for all x . In Section
31, Q will reappear as a continuous, strictly increasing function singular in the
sense of Lebesgue. On p. 408 is a graph for the case p0 = .25.

Note that Q(x) ≡ x in the fair case p = 1
2 . In fact, for a bounded policy

Theorem 7.2 implies that E [Fτ ] = F0 in the fair case, and if the policy is to stop
as soon as the fortune reaches 0 or 1, then the chance of successfully reaching
1 is P [Fτ = 1] = E [Fτ ] = F0. Thus in the fair case with initial fortune x , the
chance of success is x for every policy that stops at the boundaries, and x is
an upper bound even if stopping earlier is allowed.

EXAMPLE 7.8
The gambler of Example 7.1 has capital $900 and goal $1000. For a fair game(
p = 1

2

)
his chance of success is .9 whether he bets unit stakes or adopts

bold play. At red-and-black
(
p = 18

38

)
, his chance of success with unit stakes is

.00003; an approximate calculation based on (7.31) shows that under bold play
his chance Q(.9) of success increases to about .88, which compares well with
the fair case.
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EXAMPLE 7.9
In Example 7.2 the capital is $100 and the goal $20,000. At unit stakes the
chance of successes is .005 for p = 1

2 and 3 × 10−911 for p = 18
38 . Another

approximate calculation shows that bold play at red-and-black gives the gambler
probability about .003 of success, which again compares well with the fair case.

This example illustrates the point of Theorem 7.3. The gambler enters the
casino knowing that he must by dawn convert his $100 into $20,000 or face
certain death at the hands of criminals to whom he owes that amount. Only
red-and-black is available to him. The question is not whether to gamble—he
must gamble. The question is how to gamble so as to maximize the chance of
survival, and bold play is the answer.

There are policies other than the bold one that achieve the maximum success
probability Q(x ). Suppose that as long as the gambler’s fortune x is less than 1

2
he bets x for x ≤ 1

4 and 1
2 − x for 1

4 ≤ x ≤ 1
2 . This is, in effect, the bold-play

strategy scaled down to the interval
[
0, 1

2

]
, and so the chance he ever reaches

1
2 is Q(2x ) for an initial fortune of x . Suppose further that if he does reach
the goal of 1

2 , or if he starts with fortune at least 1
2 in the first place, then he

continues, but with ordinary bold play. For an initial fortune x ≥ 1
2 , the overall

chance of success is of course Q(x ), and for an initial fortune x < 1
2 , it is

Q(2x)Q
(1

2

) = pQ(2x) = Q(x). The success probability is indeed Q(x ) as for
bold play, although the policy is different. With this example in mind, one can
generate a whole series of distinct optimal policies.

Timid Play†

The optimality of bold play seems reasonable when one considers the effect of
its opposite, timid play. Let the ε-timid policy be to bet Wn = min{ε, Fn−1, 1 −
Fn−1} and stop when Fn reaches 0 or 1. Suppose that p < q , fix an ini-
tial fortune x = F0 with 0 ≤ x < 1, and consider what happens as ε → 0.
By the strong law of large numbers, limn n−1Sn = E [X1] = p − q < 0. There
is therefore probability 1 that supk Sk < ∞ and limn Sn = −∞. Given η > 0,
choose ε so that P [supk (x + εSk ) < 1] > 1 − η. Since P(∪∞

n=1[x + εSn < 0]) =
1, with probability at least 1 − η there exists an n such that x + εSn < 0 and
maxk<n(x + εSk ) < 1. But under the ε-timid policy the gambler is in this cir-
cumstance ruined. If Qε(x) is the probability of success under the ε-timid policy,
then limε→0 Qε(x) = 0 for 0 ≤ x < 1. The law of large numbers carries the
timid player to his ruin.‡

†This topic may be omitted.
‡For each ε, however, there exist optimal policies under which the bet never exceeds ε; see Dubins
& Savage.
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PROBLEMS

7.1. A gambler with initial capital a plays until his fortune increases b units
or he is ruined. Suppose that ρ > 1. The chance of success is multiplied
by 1 + θ if his initial capital is infinite instead of a . Show that 0 < θ <

(ρa − 1)−1 < (a(ρ − 1))−1; relate to Example 7.3.

7.2. As shown on p. 94, there is probability 1 that the gambler either achieves
his goal of c or is ruined. For p �= q , deduce this directly from the
strong law of large numbers. Deduce it (for all p) via the Borel–Cantelli
lemma from the fact that if play never terminates, there can never occur
c successive +1’s.

7.3. 6.12↑ If Vn is the set of n-long sequences of ±1’s, the function bn

in (7.9) maps Vn−1 into {0, 1}. A selection system is a sequence of
such maps. Although there are uncountably many selection systems,
how many have an effective description in the sense of an algorithm or
finite set of instructions by means of which a deputy (perhaps a machine)
could operate the system for the gambler? An analysis of the question
is a matter for mathematical logic, but one can see that there can be
only countably many algorithms or finite sets of rules expressed in finite
alphabets.

Let Y (σ )
1 , Y (σ )

2 , . . . be the random variables of Theorem 7.1 for a par-
ticular system σ , and let Cσ be the ω-set where every k -tuple of ±1’s
(k arbitrary) occurs in Y (σ )

1 (ω), Y (σ )
2 (ω), . . . with the right asymptotic

relative frequency (in the sense of Problem 6.12). Let C be the intersec-
tion of Cσ over all effective selection systems σ . Show that C lies in
F (the σ -field in the probability space (�, F , P) on which the Xn are
defined) and that P(C ) = 1. A sequence (X1(ω), X2(ω), . . .) for ω in C
is called a collective: a subsequence chosen by any of the effective rules
σ contains all k -tuples in the correct proportions.

7.4. Let Dn be 1 or 0 according as X2n−1 �= X2n or not, and let Mk be the time
of the k th 1—the smallest n such that

∑n
i=1 Di = k . Let Zk = X2Mk .

In other words, look at successive nonoverlapping pairs (X2n−1, X2n),
discard accordant (X2n−1 = X2n) pairs, and keep the second element
of discordant (X2n−1 �= X2n) pairs. Show that this process simulates
a fair coin: Z1, Z2, . . . are independent and identically distributed and
P [Zk = +1] = P [Zk = −1] = 1

2 , whatever p may be. Follow the proof
of Theorem 7.1.

7.5. Suppose that a gambler with initial fortune 1 stakes a proportion θ(0 <

θ < 1) of his current fortune: F0 = 1 and Wn = θFn−1. Show that Fn =
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�n
k=1(1 + θXk ) and hence that

log Fn = n

2

[
Sn

n
log

1 + θ

1 − θ
+ log(1 − θ2)

]
.

Show that Fn → 0 with probability 1 in the subfair case.

7.6. In “doubling,” W1 = 1, Wn = 2Wn−1, and the rule is to stop after the first
win. For any positive p, play is certain to terminate. Here Fτ = F0 + 1,
but of course infinite capital is required. If F0 = 2k − 1 and Wn cannot
exceed Fn−1, the probability of Fτ = F0 + 1 in the fair case is 1 − 2−k .
Prove this via Theorem 7.2 and also directly.

7.7. In “progress and pinch,” the wager, initially some integer, is increased
by 1 after a loss and decreased by 1 after a win, the stopping rule being
to quit if the next bet is 0. Show that play is certain to terminate if and
only if p ≥ 1

2 . Show that Fτ = F0 + 1
2W 2

1 + 1
2(τ − 1). Infinite capital is

required.

7.8. Here is a common martingale. Just before the nth spin of the wheel, the
gambler has before him a pattern x1, . . . xk of positive numbers (k varies
with n). He bets x1 + xk , or x1 in case k = 1. If he loses, at the next
stage he uses the pattern x1, . . . , xk , x1 + xk (x1, x1 in case k = 1). If he
wins, at the next stage he uses the pattern x2, . . . , xk−1, unless k is 1
or 2, in which case he quits. Show that play is certain to terminate if
p > 1

3 and that the ultimate gain is the sum of the numbers in the initial
pattern. Infinite capital is again required.

7.9. Suppose that Wk = 1, so that Fk = F0 + Sk . Suppose that p ≥ q and
τ is a stopping time such that 1 ≤ τ ≤ n with probability 1. Show that
E [Fτ ] ≤ E [Fn], with equality in case p = q . Interpret this result in terms
of a stock option that must be exercised by time n , where F0 + Sk

represents the price of the stock at time k .

7.10. For a given policy, let A∗
n be the fortune of the gambler’s adversary

at time n . Consider these conditions on the policy: (i) W ∗
n ≤ F ∗

n−1; (ii)
W ∗

n ≤ A∗
n−1; (iii) F ∗

n + A∗
n is constant. Interpret each condition, and show

that together they imply that the policy is bounded in the sense of (7.24).

7.11. Show that Fτ has infinite range if F0 = 1, Wn = 2−n , and τ is the small-
est n for which Xn = +1.

7.12. Let u be a real function on [0, 1], u(x ) representing the utility of the
fortune x . Consider policies bounded by 1; see (7.24). Let Qπ(F0) =
E [u(Fτ )]: this represents the expected utility under the policy π of an
initial fortune F0. Suppose of a policy π0 that

u(x) ≤ Qπ0(x), 0 ≤ x ≤ 1, (7.34)
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and that

Qπ0(x) ≥ pQπ0(x + t) + qQπ0(x − t), (7.35)

0 ≤ x − t ≤ x ≤ x + t ≤ 1.

Show that Qπ(x) ≤ Qπ0(x) for all x and all policies π . Such a π0 is
optimal.

Theorem 7.3 is the special case of this result for p ≤ 1
2 , bold play in

the role of π0, and u(x) = 1 or u(x) = 0 according as x = 1 or x < 1.
The condition (7.34) says that gambling with policy π0 is at least

as good as not gambling at all; (7.35) says that, although the prospects
even under π0 become on the average less sanguine as time passes, it
is better to use π0 now than to use some other policy for one step and
then change to π0.

7.13. The functional equation (7.30) and the assumption that Q is bounded
suffice to determine Q completely. First, Q(0) and Q(1) must be 0 and 1,
respectively, and so (7.31) holds. Let T0x = 1

2x and T1x = 1
2x + 1

2 ; let
f0x = px and f1x = p + qx . Then Q(Tu1 · · · Tun x) = fu1 · · · fun Q(x). If
the binary expansions of x and y both begin with the digits u1, . . . un , they
have the form x = Tu1 · · · Tun x ′ and y = Tu1 · · · Tun y ′. If K bounds Q and
if m = max{p, q}, it follows that |Q(x) − Q(y)| ≤ Kmn . Therefore, Q
is continuous and satisfies (7.31) and (7.33)

SECTION 8 MARKOV CHAINS

As Markov chains illustrate in a clear and striking way the connection between
probability and measure, their basic properties are developed here in a measure-
theoretic setting.

Definitions

Let S be a finite or countable set. Suppose that to each pair i and j in S there is
assigned a nonnegative number pij and that these numbers satisfy the constraint

∑
j∈S

pij = 1, i ∈ S . (8.1)

Let X0, X1, X2, . . . be a sequence of random variables whose ranges are contained
in S . The sequence is a Markov chain or Markov process if

P [Xn+1 = j [X0 = t0, . . . , Xn = in] (8.2)

= P [Xn+1 = j |Xn = in] = pin j
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for every n and every sequence i0, . . . , in in S for which P [X0 = i0, . . . , Xn =
in] > 0. The set S is the state space or phase space of the process, and the pij

are the transition probabilities . Part of the defining condition (8.2) is that the
transition probability

P [Xn−1 = j [Xn = j ] = pij (8.3)

does not vary with n .†

The elements of S are thought of as the possible states of a system , Xn

representing the state at time n . The sequence or process X0, X1, X2, . . . then
represents the history of the system, which evolves in accordance with the
probability law (8.2). The conditional distribution of the next state Xn+1 given
the present state Xn must not further depend on the past X0, . . . Xn−1. This is
what (8.2) requires, and it leads to a copious theory.

The initial probabilities are

αi = P [X0 = i ]. (8.4)

The αi are nonnegative and add to 1, but the definition of Markov chain places
no further restrictions on them.

The following examples illustrate some of the possibilities. In each one,
the state space S and the transition probabilities pij are described, but the
underlying probability space (�, F , P) and the Xn are left unspecified for now:
see Theorem 8.1.‡

EXAMPLE 8.1
The Bernoulli–Laplace model of diffusion . Imagine r black balls and r white
balls distributed between two boxes, with the constraint that each box contains
r balls. The state of the system is specified by the number of white balls in the
first box, so that the state space is S = {0, 1, . . . , r}. The transition mechanism
is this: at each stage one ball is chosen at random from each box and the two
are interchanged. If the present state is i , the chance of a transition to i−1 is
the chance i /r of drawing one of the i white balls from the first box times the
chance i /r of drawing one of the i black balls from the second box. Together
with similar arguments for the other possibilities, this shows that the transition

†Sometimes in the definition of the Markov chain P [Xn+1 = j |Xn = i ] is allowed to depend on n .
A chain satisfying (8.3) is then said to have stationary transition probabilities , a phrase that will be
omitted here because (8.3) will always be assumed.
‡For an excellent collection of examples from physics and biology, see Feller, Volume 1. Chapter
XV.
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probabilities are

pi ,i−1 =
(

i

r

)2

, pi ,i+1 =
(

r − i

r

)2

, pii = 2
i (r − i )

r2
,

the others being 0. This is the probablistic analogue of the model for the flow
of two liquids between two containers.

The pij form the transition matrix P = [pij ] of the process. A stochastic
matrix is one whose entries are nonnegative and satisfy (8.1); the transition
matrix of course has this property.

EXAMPLE 8.2
Random walk with absorbing barriers . Suppose that S = {0, 1, . . . , r} and

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0 0 0 0
q 0 p 0 . . . 0 0 0 0
0 q 0 p . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . q 0 p 0
0 0 0 0 . . . 0 q 0 p
0 0 0 0 . . . 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

That is, pi ,i+1 = p and pi ,i−1 = q = 1 − p for 0 < i < r and p00 = prr = 1.
The chain represents a particle in random walk . The particle moves one unit to
the right or left, the respective probabilities being p and q , except that each of
0 and r is an absorbing state—once the particle enters, it cannot leave. The
state can also be viewed as a gambler’s fortune; absorption in 0 represents ruin
for the gambler, absorption in r ruin for his adversary (see Section 7). The
gambler’s initial fortune is usually regarded as nonrandom, so that (see (8.4))
αi = 1 for some i .

EXAMPLE 8.3
Unrestricted random walk . Let S consist of all the integers i = 0, ±1, ±2, . . .,
and take pi ,i+1 = p and pi ,i−1 = q = 1 − p. This chain represents a random
walk without barriers, the particle being free to move anywhere on the integer
lattice. The walk is symmetric if p = q .

The state space may, as in the preceding example, be countably infinite. If
so, the Markov chain consists of functions Xn on a probability space (�, F , P),
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but these will have infinite range and hence will not be random variables in the
sense of the preceding sections. This will cause no difficulty, however, because
expected values of the Xn will not be considered. All that is required is that for
each i ∈ S the set [ω: Xn(ω) = i ] lie in F and hence have a probability.

EXAMPLE 8.4
Symmetric random walk in space. Let S consist of the integer lattice points in
k -dimensional Euclidean space Rk ; x = (x1, . . . , xk ) lies in S if the coordinates
are all integers. Now x has 2k neighbors, points of the form y = (x1, . . . , xi ±
1, . . . , xk ); for each such y let pxy = (2k)−1. The chain represents a particle
moving randomly in space; for k = 1 it reduces to Example 8.3 with p = q =
1
2 . The cases k ≤ 2 and k ≥ 3 exhibit an interesting difference. If k ≤ 2, the
particle is certain to return to its initial position, but this is not so if k ≥ 3; see
Example 8.6.

Since the state space in this example is not a subset of the line, the X0, X1, . . .
do not assume real values. This is immaterial because expected values of the
Xn play no role. All that is necessary is that Xn be a mapping from � into
S (finite or countable) such that [ω: Xn(ω) = i ] ∈ F for i ∈ S . There will be
expected values E [f (Xn)] for real functions f on S with finite range, but then
f (Xn(ω)) is a simple random variable as defined before.

EXAMPLE 8.5
A selection problem . A princess must chose from among r suitors. She is definite
in her preferences and if presented with all r at once could choose her favorite
and could even rank the whole group. They are ushered into her presence one
by one in random order, however, and she must at each stage either stop and
accept the suitor or else reject him and proceed in the hope that a better one
will come along. What strategy will maximize her chance of stopping with the
best suitor of all?

Shorn of some details, the analysis is this. Let S1, S2, . . . , Sr be the suit-
ors in order of presentation; this sequence is a random permutation of the set
of suitors. Let X1 = 1 and let X2, X3, . . . be the successive positions of suit-
ors who dominate (are preferable to) all their predecessors. Thus X2 = 4 and
X3 = 6 means that S1 dominates S2 and S3 but S4 dominates S1, S2, S3, and
that S4 dominates S5 but S6 dominates S1, . . . , S5. There can be at most r of
these dominant suitors; if there are exactly m , Xm+1 = Xm+2 = · · · = r + 1 by
convention.

As the suitors arrive in random order, the chance that Si ranks highest
among S1, . . . , Si is (i − 1)!/i ! = 1/i . The chance that Sj ranks highest among
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S1, . . . , Sj and Si ranks next is (j − 2)!/j ! = 1/j (j − 1). This leads to a chain
with transition probabilities†

P [Xn+1 = j |Xn = i ] = i

j (j − 1)
, 1 ≤ i < j ≤ r . (8.5)

If Xn = i , then Xn+1 = r + 1 means that Si dominates Si+1, . . . , Sr as well as
S1, . . . , Si , and the conditional probability of this is

P [Xn+1 = r + 1|Xn = i ] = 1

r
, 1 ≤ i ≤ r . (8.6)

As downward transitions are impossible and r+1 is absorbing, this specifies a
transition matrix for S = {1, 2, . . . , r + 1}.

It is quite clear that in maximizing her chance of selecting the best suitor
of all, the princess should reject those who do not dominate their predecessors.
Her strategy therefore will be to stop with the suitor in position Xr , where
τ is a random variable representing her strategy. Since her decision to stop
must depend only on the suitors she has seen thus far, the event [τ = n] must
lie in σ(X , . . . , Xn). If Xτ = i , then by (8.6) the conditional probability of
success is f (i ) = i/r . The probability of success is therefore E [f (Xτ )], and the
problem is to choose the strategy τ so as to maximize it. For the solution, see
Example 8.17.‡

Higher-Order Transitions

The properties of the Markov chain are entirely determined by the transition
and initial probabilities. The chain rule (4.2) for conditional probabilities gives

P [X0 = i0, X1 = i1, X2 = i2]

= P [X0 = i0]P [X1 = i1|X0 = i0]P [X2 = i2|X0 = i0, X1 = i1]

= αi0pi0t1pi1i2 .

Similarly,
P [Xt = it , 0 ≤ t ≤ m] = αi0pi0i1 · · · pim−1im (8.7)

for any sequence i0, i1, . . . , im of states.
Further,

P [Xm+t = Jt , 1 ≤ t ≤ n|Xsis , 0 ≤ s ≤ m] = pim j1pj1j2 · · · pjn−1jn , (8.8)

†The details can be found in Dynkin & Yushkevich. Chapter III.
‡With the princess replaced by an executive and the suitors by applicants for an office job, this is
known as the secretary problem.
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as follows by expressing the conditional probability as a ratio and applying (8.7)
to numerator and denominator. Adding out the intermediate states now gives
the formula

p(n)
ij = P [Xm+n = j |Xm = i ] (8.9)

=
∑

k1...kn−1

pik1pk1k2 · · · pkn−1j

(the k1 range over S ) for the nth-order transition probabilities .
Notice that p(n)

ij is the entry in position (i, j ) of Pn , the nth power of the
transition matrix P . If S is infinite, P is a matrix with infinitely many rows
and columns; as the terms in (8.9) are nonnegative, there are no convergence
problems. It is natural to put

p(0)
ij = δij =

{
1 if i = j ,

0 if i �= j .

Then P0 is the identity I , as it should be. From (8.1) and (8.9) follow

p(m+n)
ij =

∑
v

p(m)
iv p(n)

vj ,
∑

j

p(n)
ij = 1. (8.10)

An Existence Theorem

Theorem 8.1
Suppose that P = [pij ] is a stochastic matrix and that αi are nonnegative num-
bers satisfying

∑
i∈S αi = 1. There exists on some (�, F , P) a Markov chain

X0, X1, X2, . . . with initial probabilities αi and transition probabilities pij .

Proof. Reconsider the proof of Theorem 5.3. There the space (�, F , P)

was the unit interval, and the central part of the argument was the construction
of the decompositions (5.13). Suppose for the moment that S = {1, 2, . . .}. First
construct a partition I (0)

1 , I (0)
2 , . . . of (0, 1] into countably many† subintervals of

lengths (P is again Lebesgue measure) P(I (0)
i ) = αi . Next decompose each I (0)

i

into subintervals I (1)
ij of lengths P(I (1)

ij ) = αi pij . Continuing inductively gives

a sequence of partitions {I (n)
i0...in

: i0, . . . , in = 1, 2, . . .} such that each refines the

preceding and P(I (n)
i0...in

) = αi0pi0i1 · · · pin−1in .

Put Xn(ω) = i if ω ∈ ⋃
i0...in−1

I (n)
i0...in−1i . It follows just as in the proof of

Theorem 5.3 that the set [X0 = i0, . . . , Xn = in] coincides with the interval
I (n)
i0

. . . in . Thus P [X0 = i0, . . . , Xn = in] = αi0pi0i1 · · · pin−1in . From this it fol-
lows immediately that (8.4) holds and that the first and third members of (8.2)

†If δ1 + δ2 + · · · = b − a and δi ≥ 0, then Ii = (b − ∑
j≤i δj , b − ∑

j<i δj ], i = 1, 2, . . ., decompose
(a, b] into intervals of lengths δi .
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are the same. As for the middle member, it is P [Xn = in , Xn+1 = j ]/P [Xn = in];
the numerator is

∑
αi0pi0i1 · · · pin−1in pin j the sum extending over all i0, . . . , in−1,

and the denominator is the same thing without the factor pin j , which means that
the ratio is pin j , as required.

That completes the construction for the case S = {1, 2, . . .}. For the general
countably infinite S , let g be a one-to-one mapping of {1, 2, . . .} onto S , and
replace the Xn as already constructed by g(Xn); the assumption S = {1, 2, . . .}
was merely a notational convenience. The same argument obviously works if S
is finite.† ■

Although strictly speaking the Markov chain is the sequence X0, X1, . . .,
one often speaks as though the chain were the matrix P together with the initial
probabilities αi or even P with some unspecified set of αi . Theorem 8.1 justifies
this attitude: For given P and αi the corresponding Xn do exist, and the apparatus
of probability theory—the Borel–Cantelli lemmas and so on—is available for
the study of P and of systems evolving in accordance with the Markov rule.

From now on fix a chain X0, X1, . . . satisfying αi > 0 for all i . Denote by Pi

probabilities conditional on [X0 = i ]: Pi (A) = P [A|X0 = i ]. Thus

Pi [Xt = it , 1 ≤ t ≤ n] = pii1pi1,i2 · · · pin−1in (8.11)

by (8.8). The interest centers on these conditional probabilities, and the actual
initial probabilities αi are now largely irrelevant.

From (8.11) follows

Pi [X1 = i1, . . . , Xm = im , Xm+1 = j1, . . . , Xm+n = jn] (8.12)

= Pi [X1 = i1, . . . , Xm = im]Pim [X1 = j1 . . . , Xn = jn].

Suppose that I is a set (finite or infinite) of m-long sequences of states, J is a
set of n-long sequences of states, and every sequence in I ends in j . Adding
both sides of (8.12) for (i1, . . . , im) ranging over I and (j1, . . . , jn) ranging over
J gives

Pi [(X1, . . . , Xm) ∈ I , (Xm+1, . . . , Xm+n) ∈ J ] (8.13)

= Pi [(X1, . . . , Xm) ∈ I ]Pj [(X1, . . . , Xn) ∈ J ].

For this to hold it is essential that each sequence in I end in j . The formulas
(8.12) and (8.13) are of central importance.

†For a different approach in the finite case, see Problem 8.1.
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Transience and Persistence

Let
f (n)
ij = Pi [X1 �= j , . . . , Xn−1 �= j , Xn = j ] (8.14)

be the probability of a first visit to j at time n for a system that starts in i , and
let

fij = Pi (

∞⋃
n=1

[Xn = j ]) =
∞∑

n=1

f (n)
ij (8.15)

be the probability of an eventual visit. A state i is persistent if a system starting
at i is certain sometime to return to i : fii = 1. The state is transient in the
opposite case: fii < 1.

Suppose that n1, . . . , nk are integers satisfying 1 ≤ n1 < · · · < nk and con-
sider the event that the system visits j at times n1 . . . nk but not in between; this
event is determined by the conditions

X1 �= j , . . . , Xn1−1 �= j , Xn1 = j ,
Xn1+1 �= j , . . . , Xn2 − 1 �= j , Xn2 = j ,

...

Xnk −1 + 1 �= j , . . . , Xnk −1 �= j , Xnk = j .

Repeated application of (8.13) shows that under Pi the probability of this
event is f (n1)

ij f (n2−n1)

ij · · · f
(nk −nk−1)

ij . Add this over the k -tuples n1, . . . , nk : the
Pi -probability that Xn = j for at least k different values of n is fij f

k−1
ij . Letting

k → ∞ therefore gives

Pi [Xn = j i.o.] =
{

0 if fij < 1,

fij if fij = 1.
(8.16)

Recall that i.o. means infinitely often . Taking i = j gives

Pi [Xn = i i.o.] =
{

0 if fii < 1,

fii if fii = 1.
(8.17)

Thus Pi [Xn = i i.o.] is either 0 or 1; compare the zero–one law (Theorem 4.5),
but note that the events [Xn = i ] here are not in general independent.†

Theorem 8.2
(i) Transience of i is equivalent to Pi [Xn = i i.o.] = 0 and to

∑
n p(n)

ii < ∞.

(ii) Persistence of i is equivalent to Pi [Xn = i i.o.] = 1 and to
∑

n p(n)
ii = ∞.

†See Problem 8.35.
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Proof. By the first Borel–Cantelli lemma,
∑

n p(n)
ii < ∞ implies Pi [Xn =

i i.o.] = 0, which by (8.17) in turn implies fii < 1. The entire theorem will be
proved if it is shown that fii < 1 implies

∑
n p(n)

ii < ∞.
The proof uses a first-passage argument: By (8.13),

p(n)
ij = Pi [Xn = j ] =

n−1∑
s=0

Pi [X1 �= j , . . . , Xn−s−1 �= j , Xn−s = j , Xn = j ]

=
n−1∑
s=0

Pi [X1 �= j , . . . , Xn−s−1 �= j , Xn−s = j ]Pj [Xs = j ]

=
n−1∑
s=0

f (n−s)
ij p(s)

jj .

Therefore,
n∑

t=1

p(t)
ii =

n∑
t=1

t−1∑
s=0

f (t−s)
ii p(s)

ii

=
n−1∑
s=0

p(s)
ii

n∑
t=s+1

f (t−s)
ii ≤

n∑
s=0

p(s)
ii fii .

Thus (1 − fii )
∑n

i=1 p(t)
ii ≤ fii , and if fii < 1, this puts a bound on the partial

sums
∑n

t=1 p(t)
ii . ■

EXAMPLE 8.6
Pólya’s theorem . For the symmetric k -dimensional random walk (Example 8.4),
all states are persistent if k = 1 or k = 2, and all states are transient if k ≥ 3.
To prove this, note first that the probability p(n)

ii of return in n steps is the same
for all states i ; denote this probability by a(k)

n to indicate the dependence on
the dimension k . Clearly, a(k)

2n+1 = 0. Suppose that k = 1. Since return in 2n
steps means n steps east and n steps west,

a(1)
2n =

(
2n
n

)
1

22n
.

By Stirling’s formula, a(1)
2n ∼ (πn)−1/2. Therefore,

∑
n a(1)

n = ∞, and all states
are persistent by Theorem 8.2.

In the plane, a return to the starting point in 2n steps means equal numbers
of steps east and west as well as equal numbers north and south:

a(2)
2n =

n∑
u=0

(2n)!

u!u!(n − u)!(n − u)!

1

42n
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= 1

42n

(
2n
n

) n∑
u=0

(
n
u

)(
n

n − u

)
.

It can be seen on combinatorial grounds that the last sum is

(
2n
n

)
, and so

a(2)
2n = (a(1)

2n )2 ∼ (πn)−1. Again,
∑

n a(2)
n = ∞ and every state is persistent.

For three dimensions,

a(3)
2n =

∑ (2n)!

u!u!v!v!(n − u − v)!(n − u − v)!

1

62n
,

the sum extending over nonnegative u and v satisfying u + v ≤ n . This reduces
to

a(3)
2n =

n∑
i=0

(
2n
2l

)(
1

3

)2n−2l (2

3

)2l

a(1)

2n−2l a
(2)

2l , (8.18)

as can be checked by substitution. (To see the probabilistic meaning of this
formula, condition on there being 2n − 2l steps parallel to the vertical axis and
2l steps parallel to the horizontal plane.) It will be shown that a(3)

2n = O(n−3/2),
which will imply that

∑
n a(3)

n < ∞. The terms in (8.18) for l = 0 and l = n are
each O(n−3/2) and hence can be omitted. Now a(1)

u ≤ Ku−1/2 and a(2)
u ≤ Ku−1,

as already seen, and so the sum in question is at most

K 2
n−1∑
l=1

(
2n
2l

)(
1

3

)2n−2l (2

3

)2l

(2n − 2l)−1/2(2l)−1.

Since (2n − 2l)−1/2 ≤ 2n1/2(2n − 2l)−1 ≤ 4n1/2(2n − 2l + 1)−1 and (2l)−1 ≤
2(2l + 1)−1, this is at most a constant times

n1/2 (2n)!

(2n + 2)!

n−1∑
l=1

(
2n + 2
2l − 1

)(
1

3

)2n−2l+1 (2

3

)2l+1

= O(n−3/2).

Thus
∑

n a(3)
n < ∞, and the states are transient. The same is true for k = 4, 5,

. . ., since an inductive extension of the argument shows that a(k)
n = O(n−k/2).

It is possible for a system starting in i to reach j (fij > 0) if and only if
p(n)

ij > 0 for some n . If this is true for all i and j , the Markov chain is irreducible.

Theorem 8.3
If the Markov chain is irreducible, then one of the following two alternatives
holds.
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(i) All states are transient, Pi (
⋃

j [Xn = j i.o.]) = 0 for all i, and
∑

n p(n)
ij < ∞

for all i and j.

(ii) All states are persistent, Pi (
⋂

j [Xn = j i.o.]) = 1 for all i, and
∑

n p(n)
ij = ∞

for all i and j.

The irreducible chain itself can accordingly be called persistent or transient.
In the persistent case the system visits every state infinitely often. In the transient
case it visits each state only finitely often, hence visits each finite set only finitely
often, and so may be said to go to infinity.

Proof. For each i and j there exist r and s such that p(r)
ij > 0 and p(s)

ji > 0.
Now

p(r+s+n)
ii ≥ p(r)

ij p(n)
ij p(s)

ji , (8.19)

and from p(r)
ij p(s)

ji > 0 it follows that
∑

n p(n)
ii < ∞ implies

∑
n p(n)

jj < ∞ : if
one state is transient, they all are. In this case (8.16) gives Pi [Xn = j i.o.] = 0
for all i and j , so that Pi (

⋃
j [Xn = j i.o.]) = 0 for all i . Since

∑∞
n=1 p(n)

ij =∑∞
n=1

∑n
ν=1 f (ν)

ij p(n−ν)
jj = ∑∞

v=1 f (ν)
ij

∑∞
m=0 p(m)

jj ≤ ∑∞
m=0 p(m)

jj , it follows that if

j is transient, then (Theorem 8.2)
∑

n p(n)
ij converges for every i .

The other possibility is that all states are persistent. In this case Pj [Xn =
j i.o.] = 1 by Theorem 8.2, and it follows by (8.13) that

p(m)
ji = Pj ([Xm = i ] ∩ [Xn = j i.o.])

≤
∑

n > m

Pj [Xm = i , Xm+1 �= j , . . . , Xn−1 �= j , Xn = j ]

=
∑

n > m

p(m)
ji f (n−m)

ij = p(m)
ji fij .

There is an m for which p(m)
ji > 0, and therefore fij = 1. By (8.16), Pi [Xn =

j i.o.] = fij = 1. If
∑

n p(n)
ij were to converge for some i and j , it would follow

by the first Borel–Cantelli lemma that Pi [Xn = j i.o.] = 0. ■

EXAMPLE 8.7
Since

∑
j p(n)

ij = 1, the first alternative in Theorem 8.3 is impossible if S is
finite: a finite, irreducible Markov chain is persistent.

EXAMPLE 8.8
The chain in Pólya’s theorem is certainly irreducible. If the dimension is 1 or
2, there is probability 1 that a particle in symmetric random walk visits every
state infinitely often. If the dimension is 3 or more, the particle goes to infinity.
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EXAMPLE 8.9
Consider the unrestricted random walk on the line (Example 8.3). According to
the ruin calculation (7.8), f01 = p/q for p < q . Since the chain is irreducible,
all states are transient. By symmetry, of course, the chain is also transient if
p > q , although in this case (7.8) gives f01 = 1. Thus fij = 1(i �= j ) is possible
in the transient case.†

If p = q = 1
2 , the chain is persistent by Pólya’s theorem. If n and j−i have

the same parity,

p(n)
ij =

(
n

n+j−i
2

)
1

2n
, |j − i | ≤ n.

This is maximal if j = i or j = i ± 1, and by Stirling’s formula the maximal
value is of order n−1/2. Therefore, limn p(n)

ij = 0, which always holds in the tran-
sient case but is thus possible in the persistent case as well (see Theorem 8.8).

Another Criterion for Persistence

Let Q = [qij ] be a matrix with rows and columns indexed by the elements of a
finite or countable set U . Suppose it is substochastic in the sense that qij ≥ 0
and

∑
j qij ≤ 1. Let Qn = [q (n)

ij ] be the nth power, so that

q (n+1)
ij =

∑
v

qivq (n)
vj , q (0)

ij = δij . (8.20)

Consider the row sums

σ
(n)
i =

∑
j

q (n)
ij . (8.21)

From (8.20) follows

σ
(n+1)
i =

∑
j

qij σ
(n)
j . (8.22)

Since Q is substochastic σ
(1)
i ≤ 1, and hence σ

(n+1)
i = ∑

j

∑
v q (n)

iv qvj =∑
v q (n)

iv σ (1)
v ≤ σ

(n)
i . Therefore, the monotone limits

σi = lim
n

∑
j

q (n)
ij (8.23)

†But for each j there must be some i �= j for which fij<1; see Problem 8.7.
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exist. By (8.22) and the Weierstrass M -test [A28], σi = ∑
j qij σj . Thus the σi

solve the system ⎧⎨
⎩

xi = ∑
j∈U

qij xj , i ∈ U ,

0 ≤ xi ≤ 1, i ∈ U .

(8.24)

For an arbitrary solution, xi = ∑
j qij xj ≤ ∑

j qij = σ
(1)
i , and xi ≤ σ

(n)
i for

all i implies xi ≤ ∑
j qij σ

(n)
j = σ

(n+1)
i by (8.22). Thus xi ≤ σ

(n)
i for all n by

induction, and so xi ≤ σi . Thus the σi give the maximal solution to (8.24):

Lemma 1. For a substochastic matrix Q the limits (8.23) are the maximal solu-
tion of (8.24)

Now suppose that U is a subset of the state space S . The pij for i and j in
U give a substochastic matrix Q . The row sums (8.21) are σ

(n)
i = ∑

pij1pj1j2 · · ·
pjn−1jn , where the j1, . . . , jn range over U , and so σ

(n)
i = Pi [Xt ∈ U , t ≤ n]. Let

n → ∞:

σi = Pi [Xt ∈ U , t = 1, 2 . . .], i ∈ U . (8.25)

In this case, σi is thus the probability that the system remains forever in U ,
given that it starts at i . The following theorem is now an immediate consequence
of Lemma 1.

Theorem 8.4
For U ⊂ S the probabilities (8.25) are the maximal solution of the system⎧⎨

⎩
xi = ∑

j∈U
pij xj , i ∈ U ,

0 ≤ xi ≤ 1, i ∈ U ,
(8.26)

The constraint xi ≥ 0 in (8.26) is in a sense redundant: Since xi ≡ 0 is a
solution, the maximal solution is automatically nonnegative (and similarly for
(8.24)). And the maximal solution is xi ≡ 1 if and only if

∑
j∈U pij = 1 for all

i in U , which makes probabilistic sense.

EXAMPLE 8.10
For the random walk on the line consider the set U = {0, 1, 2, . . .}. The system
(8.26) is

xi = pxi+1 + qxi−1, i ≥ 1,

x0 = px1.
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It follows [A19] that xn = A + An if p = q and xn = A − A(q/p)n+1 if p �=
q . The only bounded solution is xn ≡ 0 if q ≥ p, and in this case there is
probability 0 of staying forever among the nonnegative integers. If q < p, A = 1
gives the maximal solution xn = 1 − (q/p)n+1 (and 0 ≤ A < 1 gives exactly the
solutions that are not maximal). Compare (7.8) and Example 8.9.

Now consider the system (8.26) with U = S − {i0} for an arbitrary single
state i0: ⎧⎨

⎩
xi = ∑

j �=i0

pij xj , i �= i0,

0 ≤ xi ≤ 1, i �= i0.
(8.27)

There is always the trivial solution—the one for which xi ≡ 0.

Theorem 8.5
An irreducible chain is transient if and only if (8.27) has a nontrivial solution.

Proof. The probabilities

1 − fii0 = Pi [Xn �= i0, n ≥ 1], i �= i0, (8.28)

are by Theorem 8.4 the maximal solution of (8.27). Therefore (8.27) has a non-
trivial solution if and only if fii0 < 1 for some i �= i0. If the chain is persistent,
this is impossible by Theorem 8.3(ii).

Suppose the chain is transient. Since

fi0i0 = Pi0[X1 = i0 +
∞∑

n=2

∑
i �=i0

Pi0[X1 = i , X2 �= i0, . . . , Xn−1 �= i0, Xn = i0]

= pi0i0 +
∑
i �=i0

pi0i fii0 ,

and since fi0i0 < 1, it follows that fii0 < 1 for some i �= i0. ■

Since the equations in (8.27) are homogeneous, the issue is whether they
have a solution that is nonnegative, nontrivial, and bounded . If they do, 0 ≤
xi ≤ 1 can be arranged by rescaling.†

†See Problem 8.9.
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EXAMPLE 8.11
In the simplest of queueing models the state space is {0, 1, 2, . . .} and the tran-
sition matrix has the form⎡

⎢⎢⎢⎢⎢⎢⎣

t0 t1 t2 0 0 0 · · ·
t0 t1 t2 0 0 0 · · ·
0 t0 t1 t2 0 0 · · ·
0 0 t0 t1 t2 0 · · ·
0 0 0 t0 t1 t2 · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

If there are i customers in the queue and i ≥ 1, the customer at the head
of the queue is served and leaves, and then 0, 1, or 2 new customers arrive
(probabilities t0, t1, t2), which leaves a queue of length i − 1, i , or i+1. If i =
0, no one is served, and the new customers bring the queue length to 0, 1, or
2. Assume that t0 and t2 are positive, so that the chain is irreducible.

For i0 = 0 the system (8.27) is

x1 = t1x1 + t2x2, (8.29)

xk = t0xk−1 + t1xk + t2xk+1, k ≥ 2.

Since t0, t1, t2 have the form q(1 − t), t , p(1 − t) for appropriate p, q, t , the
second line of (8.29) has the form xk = pxk+1 + qxk−1, k ≥ 2. Now the solution
[A19] is A + B(q/p)k = A + B(t0/t2)k if t0 �= t2(p �= q) and A + Bk if t0 =
t2(p = q), and A can be expressed in terms of B because of the first equation
in (8.29). The result is

xk =
{

B((t0/t2)k − 1) if t0 �= t2,

Bk if t0 = t2.

There is a nontrivial solution if t0 < t2 but not if t0 ≥ t2.
If t0 < t2, the chain is thus transient, and the queue size goes to infinity

with proability 1. If t0 ≥ t2, the chain is persistent. For a nonempty queue the
expected increase in queue length in one step is t2 − t0, and the queue goes out
of control if and only if this is positive.

Stationary Distributions

Suppose that the chain has initial probabilities πi satisfying

∑
i∈ S

πi pij = πj , j ∈ S . (8.30)
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It then follows by induction that∑
i ∈ S

πi p
(n)
ij = πj , j ∈ S , n = 0, 1, 2, . . . . (8.31)

If πi is the probability that X0 = i , then the left side of (8.31) is the probability
that Xn = j , and thus (8.30) implies that the probability of [Xn = j ] is the same
for all n . A set of probabilities satisfying (8.30) is for this reason called a
stationary distribution . The existence of such a distribution implies that the
chain is very stable.

To discuss this requires the notion of periodicity. The state j has period
t if p(n)

jj > 0 implies that t divides n and if t is the largest integer with this
property. In other words, the period of j is the greatest common divisor of the
set of integers

[n: n ≥ 1, p(n)
jj > 0]. (8.32)

If the chain is irreducible, then for each pair i and j there exist r and s for
which p(r)

ij and p(s)
ji are positive, and of course

p(r+s+n)
ii ≥ p(r)

ij p(n)
jj p(s)

ji . (8.33)

Let ti and tj be the periods of i and j . Taking n = 0 in this inequality shows
that ti divides r + s; and now it follows by the inequality that p(n)

jj > 0 implies
that ti divides r + s + n and hence divides n . Thus ti divides each integer
in the set (8.32), and so ti ≤ tj . Since i and j can be interchanged in this
argument, i and j have the same period. One can thus speak of the period of
the chain itself in the irreducible case. The random walk on the line has period
2, for example. If the period is 1, the chain is aperiodic

Lemma 2. In an irreducible, aperiodic chain, for each i and j, p(n)
ij > 0 for all

n exceeding some n0(i , j )

Proof. Since p(m+n)
jj ≥ p(m)

jj p(n)
jj , if M is the set (8.32) then m ∈ M and

n ∈ M together imply m + n ∈ M . But it is a fact of number theory [A21] that
if a set of positive integers is closed under addition and has greatest common
divisor 1, then it contains all integers exceeding some n1. Given i and j , choose
r so that p(r)

ij > 0. If n > n0 = n1 + r , then p(n)
ij ≥ p(r)

ij p(n−r)
jj > 0. ■

Theorem 8.6
Suppose of an irreducible, aperiodic chain that there exists a stationary
distribution—a solution of (8.30) satisfying πi ≥ 0 and

∑
i πi = 1. Then the

chain is persistent,

lim
n

p(n)
ij = πj (8.34)

for all i and j, the πj are all positive, and the stationary distribution is unique.
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The main point of the conclusion is that the effect of the initial state wears
off. Whatever the actual initial distribution {αi } of the chain may be, if (8.34)
holds, then it follows by the M-test that the probability

∑
i αi p

(n)
ij of [Xn = j ]

converges to πj .

Proof. If the chain is transient, then p(n)
ij → 0 for all i and j by Theorem 8.3,

and it follows by (8.31) and the M -test that πj is identically 0, which contradicts∑
i πi = 1. The existence of a stationary distribution therefore implies that the

chain is persistent.
Consider now a Markov chain with state space S × S and transition proba-

bilities p(ij , kl) = pik pjl (it is easy to verify that these form a stochastic matrix).
Call this the coupled chain; it describes the joint behavior of a pair of inde-
pendent systems, each evolving according to the laws of the original Markov
chain. By Theorem 8.1 there exists a Markov chain (Xn , Yn), n = 0, 1, . . ., having
positive initial probabilities and transition probabilities

P [(Xn+1, Yn+1) = (k , l)|(Xn , Yn) = (i , j )] = p(ij , kl).

For n exceeding some n0 depending on i , j , k , l , the probability p(n)(ij , kl) =
p(n)

ik p(n)

jl is positive by Lemma 2. Therefore, the coupled chain is irreducible.
(This proof that the coupled chain is irreducible requires only the assumptions
that the original chain is irreducible and aperiodic, a fact needed again in the
proof of Theorem 8.7.)

It is easy to check that π(ij ) = πiπj forms a set of stationary initial prob-
abilities for the coupled chain, which, like the original one, must therefore
be persistent . It follows that, for an arbitrary initial state (i , j ) for the chain
{(Xn , Yn)} and an arbitrary i0 in S , one has Pij [(Xn , Yn) = (i0, i0) i.o.] = 1. If τ

is the smallest integer such that Xτ = Yτ = i0, then τ is finite with probability
1 under Pij . The idea of the proof is now this: Xn starts in i and Yn starts in
j ; once Xn = Yn = i0 occurs, Xn and Yn follow identical probability laws, and
hence the initial states i and j will lose their influence.

By (8.13) applied to the coupled chain, if m ≤ n , then

Pij [(Xn , Yn) = (k , l), τ = m]

= Pij [(Xi , Yt ) �= (i0, i0), t < m , (Xm , Ym) = (i0, i0)]

× Pi0i0[(Xn−m , Yn−m) = (k , l)]

= Pij [τ = m]p(n−m)

i0k p(n−m)

i0l .

Adding out l gives Pij [Xn = k , τ = m] = Pij [τ = m]p(n−m)

i0k , and adding out k

gives Pij [Yn = l , τ = m] = Pij [τ = m]p(n−m)

i0l . Take k = l , equate probabilities,
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and add over m = 1, . . . , n:

Pij [Xn = k , τ ≤ n] = Pij [Yn = k , τ ≤ n].

From this follows

Pij [Xn = k ] ≤ Pij [Xn = k , τ ≤ n] + Pij [τ > n]

= Pij [Yn = k , τ ≤ n] + Pij [τ > n]

≤ Pij [Yn = k ] + Pij [τ > n].

This and the same inequality with X and Y interchanged give

|p(n)

ik − p(n)

jk | = |Pij [Xn = k ] − Pij [Yn = k ]| ≤ Pij [τ > n].

Since τ is finite with probability 1,

lim
n

|p(n)

ik − p(n)

jk | = 0. (8.35)

(This proof of (8.35) goes through as long as the coupled chain is irreducible
and persistent—no assumptions on the original chain are needed. This fact is
used in the proof of the next theorem.)

By (8.31), πk − p(n)

jk = ∑
i πi (p

(n)

ik − p(n)

jk ), and this goes to 0 by the M-test if

(8.35) holds. Thus limn p(n)

jk = πk . As this holds for each stationary distribution,
there can be only one of them.

It remains to show that the πj are all strictly positive. Choose r and s so that
p(r)

ij and p(s)
ji are positive. Letting n → ∞ in (8.33) shows that πi is positive if

πj is; since some πj is positive (they add to 1), all the πi must be positive. ■

EXAMPLE 8.12
For the queueing model in Example 8.11 the equations (8.30) are

π0 = π0 t0 + π1t0,

π1 = π0 t1 + π1t1 + π2t0,

π2 = π0 t2 + π1t2 + π2t1 + π3t0,

πk = πk−1t2 + πk t1 + πk+1t0, k ≥ 3.

Again write t0, t1, t2, as q(1 − t), t , p(1 − t). Since the last equation here is
πk = qπk+1 + pπk−1, the solution is

πk =
{

A + B(p/q)k = A + B(t2/t0)k if t0 �= t2,

A + Bk if t0 = t2
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for k ≥ 2. If t0 < t2 and
∑

πk converges, then πk ≡ 0, and hence there is no
stationary distribution; but this is not new, because it was shown in Example
8.11 that the chain is transient in this case. If t0 = t2, there is again no stationary
distribution, and this is new because the chain was in Example 8.11 shown to
be persistent in this case.

If t0 > t2, then
∑

πk converges, provided A = 0. Solving for π0 and π1 in the
first two equations of the system above gives π0 = Bt2 and π1 = Bt2(1 − t0)/t0.
From

∑
k πk = 1 it now follows that B = (t0 − t2)/t2, and the πk can be written

down explicitly. Since πk = B(t2/t0)k for k ≥ 2, there is small chance of a large
queue length.

If t0 = t2 in this queueing model, the chain is persistent (Example 8.11) but
has no stationary distribution (Example 8.12). The next theorem describes the
asymptotic behavior of the p(n)

ij in this case.

Theorem 8.7
If an irreducible, aperiodic chain has no stationary distribution, then

lim
n

p(n)
ij = 0 (8.36)

for all i and j.

If the chain is transient, (8.36) follows from Theorem 8.3. What is interesting
here is the persistent case.

Proof. By the argument in the proof of Theorem 8.6, the coupled chain is
irreducible. If it is transient, then

∑
n(p

(n)
ij )2 converges by Theorem 8.2, and the

conclusion follows.
Suppose, on the other hand, that the coupled chain is (irreducible and) persis-

tent. Then the stopping-time argument leading to (8.35) goes through as before.
If the p(n)

ij do not all go to 0, then there is an increasing sequence {nu} of inte-

gers along which some p(n)
ij is bounded away from 0. By the diagonal method

[A14], it is possible by passing to a subsequence of {nu} to ensure that each
p(nu )

ij converges to a limit, which by (8.35) must be independent of i . Therefore,

there is a sequence {nu} such that limu p(nu )
ij = tj exists for all i and j , where

tj is nonnegative for all j and positive for some j . If M is a finite set of states,
then

∑
j ∈ M tj = limu

∑
j ∈ M p(nu )

ij ≤ 1, and hence 0 < t = ∑
j tj ≤ 1. Now∑

k ∈ M p(nu )

ik pkj ≤ p(nu+1)
ij = ∑

k pik p(nu )

kj ; it is possible to pass to the limit (u →
∞) inside the first sum (if M is finite) and inside the second sum (by the M -
test), and hence

∑
k ∈ M tk pkj ≤ ∑

k pik tj = tj . Therefore,
∑

k tk pkj ≤ tj ; if one
of these inequalities were strict, it would follow that

∑
k tk = ∑

j

∑
k tk pkj <
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∑
j tj , which is impossible. Therefore

∑
k tk pkj = tj for all j , and the ratios

πj = tj /t give a stationary distribution, contrary to the hypothesis. ■

The limits in (8.34) and (8.36) can be described in terms of mean return
times. Let

μj =
∞∑

n=1

nf (n)
jj ; (8.37)

if the series diverges, write μj = ∞. In the persistent case, this sum is to be
thought of as the average number of steps to first return to j , given that X0 = j .†

Lemma 3. Suppose that j is persistent and that limn p(n)
jj = u. Then u > 0 if and

only if μj < ∞, in which case u = 1/μj .

Under the convention that 0 = 1/∞, the case u = 0 and μj = ∞ is consis-
tent with the equation u = 1/μj .

Proof. For k ≥ 0 let ρk = ∑
n > k f (n)

jj ; the notation does not show the depen-
dence on j , which is fixed. Consider the double series

f (1)
jj + f (2)

jj + f (3)
jj + · · ·

+f (2)
jj + f (3)

jj + · · ·
+f (3)

jj + · · ·
+ · · · .

The k th row sums to ρk (k ≥ 0) and the nth column sums to nf (n)
jj (n ≥ 1), and

so [A27] the series in (8.37) converges if and only if
∑

k ρk does, in which case

μj =
∞∑

k=0

ρk . (8.38)

Since j is persistent, the Pj -probability that the system does not hit j up to time
n is the probability that it hits j after time n , and this is ρn . Therefore,

1 − P (n)
jj = Pj [Xn �= j ]

= Pj [X1 �= j , . . . , Xn �= j ] +
n−1∑
k=1

Pj [Xk = j , Xk+1 �= j , . . . , Xn �= j ]

†Since in general there is no upper bound to the number of steps to first return, it is not a simple
random variable. It does come under the general theory in Chapter 4, and its expected value is indeed
μj (and (8.38) is just (5.29)), but for the present the interpretation of μj as an average is informal.
See Problem 23.11.
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= ρn +
n−1∑
k=1

p(k)
jj ρn−k ,

and since ρ0 = 1,

1 = ρ0p(n)
jj + ρ1p(n−1)

jj + · · · + ρn−1p(1)
jj + ρnp(0)

jj .

Keep only the first k+1 terms on the right here, and let n → ∞; the result
is 1 ≥ (ρ0 + · · · + ρk )u . Therefore u > 0 implies that

∑
k ρk converges, so that

μj < ∞.
Write xnk = ρk p(n−k)

jj for 0 ≤ k ≤ n and xnk = 0 for n < k . Then 0 ≤ xnk ≤
ρk and limn xnk = ρk u . If μj < ∞, then

∑
k ρk converges and it follows by the

M-test that 1 = ∑∞
k=0 xnk → ∑∞

k=0 ρk u . By (8.38), 1 = μj u , so that u > 0 and
u = 1/μj . ■

The law of large numbers bears on the relation u = 1/μj in the persistent
case. Let Vn be the number of visits to state j up to time n . If the time from
one visit to the next is about μj , then Vn should be about n/μj : Vn/n ≈ 1/μj .
But (if X0 = j ) Vn/n has expected value n−1 ∑n

k=1 p(k)
jj , which goes to u under

the hypothesis of Lemma 3 [A30].
Consider an irreducible, aperiodic, persistent chain. There are two possibil-

ities. If there is a stationary distribution, then the limits (8.34) are positive, and
the chain is called positive persistent . It then follows by Lemma 3 that μj < ∞
and πj = 1/μj for all j . In this case, it is not actually necessary to assume per-
sistence, since this follows from the existence of a stationary distribution. On
the other hand, if the chain has no stationary distribution, then the limits (8.36)
are all 0, and the chain is called null persistent . It then follows by Lemma 3 that
μj = ∞ for all j . This, taken together with Theorem 8.3, provides a complete
classification:

Theorem 8.8
For an irreducible, aperiodic chain there are three possibilities:

(i) The chain is transient; then for all i and j, limn p(n)
ij = 0 and in fact∑

n p(n)
ij < ∞.

(ii) The chain is persistent but there exists no stationary distribution (the null
persistent case); then for all i and j, p(n)

ij goes to 0 but so slowly that∑
n p(n)

ij = ∞, and μj = ∞.

(iii) There exist stationary probabilities πj and (hence) the chain is persistent
(the positive persistent case); then for all i and j, limn p(n)

ij = πj > 0 and
μj = 1/πj < ∞.
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Since the asymptotic properties of the p(n)
ij are distinct in the three cases,

these asymptotic properties in fact characterize the three cases.

EXAMPLE 8.13
Suppose that the states are 0, 1, 2, . . . and the transition matrix is⎡

⎢⎢⎣
q0 p0 0 0 . . .

q1 0 p1 0 . . .

q2 0 0 p2 . . .

. . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎦

where pi and qi are positive. The state i represents the length of a success
run, the conditional chance of a further success being pi . Clearly the chain is
irreducible and aperiodic.

A solution of the system (8.27) for testing for transience (with i0 = 0) must
have the form xk = x1/p1 · · · pk−1. Hence there is a bounded, nontrivial solution,
and the chain is transient, if and only if the limit α of p0 · · · pn is positive. But
the chance of no return to 0 (for initial state 0) in n steps is clearly p0 · · · pn−1;
hence f00 = 1 − α, which checks: the chain is persistent if and only if α = 0.

Every solution of the steady-state equations (8.30) has the form πk =
π0p0 · · · pk−1. Hence there is a stationary distribution if and only if

∑
k p0 · · · pk

converges; this is the positive persistent case. The null persistent case is that in
which p0 · · · pk → 0 but

∑
k p0 · · · pk diverges (which happens, for example, if

qk = 1/k for k > 1).
Since the chance of no return to 0 in n steps is p0 · · · pn−1, in the persistent

case (8.38) gives μ0 = ∑∞
k=0 p0 · · · pk−1. In the null persistent case this checks

with μ0 = ∞; in the positive persistent case it gives μ0 = ∑∞
k=0 πk/π0 = 1/π0,

which again is consistent.

EXAMPLE 8.14
Since

∑
j p(n)

ij = 1, possibilities (i) and (ii) in Theorem 8.8 are impossible in
the finite case: A finite, irreducible, aperiodic Markov chain has a stationary
distribution.

Exponential Convergence†

In the finite case, p(n)
ij converges to πj at an exponential rate:

†This topic may be omitted.



SECTION 8 MARKOV CHAINS 139

Theorem 8.9
If the state space is finite and the chain is irreducible and aperiodic, then there
is a stationary distribution {πi }, and

|p(n)
ij − πj | ≤ Aρn ,

where A ≥ 0 and 0 ≤ ρ < 1.

Proof.† Let m(n)
j = mini p(n)

ij and M (n)
j = maxi p(n)

ij . By (8.10),

m(n+1)
j = min

i

∑
ν

piνp(n)
νj ≥ min

i

∑
v

piνm(n)
j = m(n)

j ,

M (n+1)
j = max

i

∑
ν

piνp(n)
νj ≤ max

i

∑
ν

piνM (n)
j = M (n)

j ,

Since obviously m(n)
j ≤ M (n)

j ,

0 ≤ m(1)
j ≤ m(2)

j ≤ · · · ≤ M (2)
j ≤ M (1)

j ≤ 1. (8.39)

Suppose temporarily that all the pij are positive. Let s be the number of states
and let δ = minij pij . From

∑
j pij ≥ sδ follows 0 < δ ≤ s−1. Fix states u and

v for the moment; let
∑′ denote the summation over j in S satisfying puj ≥ pvj

and let
∑′′ denote summation over j satisfying puj < pvj . Then

′∑
(puj − pvj ) +

′′∑
(puj − pvj ) = 1 − 1 = 0. (8.40)

Since
∑′ pvj +∑′′ puj ≥ sδ.

′∑
(puj − pvj ) = 1 −

′′∑
Puj −

′∑
pvj ≤ 1 − sδ. (8.41)

Apply (8.40) and then (8.41):

p(n+1)

uk − p(n+1)

vk =
∑

j

(puj − pvj )p
(n)

jk

≤
′∑

(puj − pvj )M
(n)

k +
′′∑

(puj − pvj )m
(n)

k

=
′∑

(ρuj − pvj )(M
(n)

k − m(n)

k )

≤ (1 − sδ)(M (n)

k − m(n)

k ).

†For other proofs, see Problems 8.18 and 8.27.
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Since u and v are arbitrary,

M (n+1)

k − m(n+1)

k ≤ (1 − sδ)(M (n)

k − m(n)

k ).

Therefore, M (n)

k − m(n)

k ≤ (1 − sδ)n . It follows by (8.39) that m(n)
j and M (n)

j
have a common limit πj and that

|p(n)
ij − πj | ≤ (1 − sδ)n . (8.42)

Take A = 1 and ρ = 1 − sδ. Passing to the limit in
∑

i p(n)
νi pij = p(n+1)

νj shows
that the πi are stationary probabilities. (Note that the proof thus far makes almost
no use of the preceding theory.)

If the pij are not all positive, apply Lemma 2: Since there are only
finitely many states, there exists an m such that p(m)

ij > 0 for all i and j . By

the case just treated, M (mt)
j − m(mt)

j ≤ ρt . Take A = ρ−1 and then replace ρ

by ρ1/m . ■

EXAMPLE 8.15
Suppose that

P =

⎡
⎢⎢⎣

p0 p1 · · · ps−1

ps−1 p0 · · · ps−2

. . . . . . . . . . . . . . . .

p1 p2 · · · p0

⎤
⎥⎥⎦ .

The rows of P are the cyclic permutations of the first row: pij = pj−i , j − i
reduced modulo s . Since the columns of P add to 1 as well as the rows,
the steady-state equations (8.30) have the solution πi ≡ s−1. If the pi are all
positive, the theorem implies that p(n)

ij converges to s−1 at an exponential rate. If
X0, Y1, Y2, . . . are independent random variables with range {0, 1, . . . , s − 1}, if
each Yn has distribution {p0, . . . , ps−1}, and if Xn = X0 + Y1 + · · · + Yn , where
the sum is reduced modulo s , then P [Xn = j ] → s−1. The Xn describe a random
walk on a circle of points, and whatever the initial distribution, the positions
become equally likely in the limit.

Optimal Stopping†

Assume throughout the rest of the section that S is finite. Consider a func-
tion τ on � for which τ(ω) is a nonnegative integer for each ω. Let Fn =

†This topic may be omitted.
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σ(X0, X1, . . . , Xn); τ is a stopping time or a Markov time if

[ω: τ(ω) = n] ∈ Fn (8.43)

for n = 0, 1, . . .. This is analogous to the condition (7.18) on the gambler’s
stopping time. It will be necessary to allow τ(ω) to assume the special value
∞, but only on a set of probability 0. This has no effect on the requirement
(8.43), which concerns finite n only.

If f is a real function on the state space, then f (X0), f (X1), . . . are simple ran-
dom variables. Imagine an observer who follows the successive states X0, X1, . . .
of the system. He stops at time τ , when the state is Xτ (or Xτ(ω)(ω)), and receives
an reward or payoff f (Xτ ). The condition (8.43) prevents prevision on the part
of the observer. This is a kind of game, the stopping time is a strategy, and
the problem is to find a strategy that maximizes the expected payoff E [f (Xτ )].
The problem in Example 8.5 had this form; there S = {1, 2, . . . , r + 1}, and the
payoff function is f (i ) = i/r for i ≤ r (set f (r + 1) = 0).

If P(A)> 0 and Y = ∑
j yj IBj is a simple random variable, the Bj forming

a finite decomposition of � into F -sets, the conditional expected value of Y
given A is defined by

E [Y |A] =
∑

yi P(Bj |A).

Denote by Ei conditional expected values for the case A = [X0 = i ]:

Ei [Y ] = E [Y |X0 = i ] =
∑

j

yj Pi (Bj ).

The stopping-time problem is to choose τ so as to maximize simultaneously
Ei [f (Xτ )] for all initial states i . If x lies in the range of f , which is finite,
and if τ is everywhere finite, then [ω: f (Xτ(ω)(ω)) = x ] = ⋃∞

n = 0[ω: τ(ω) =
n , f (Xn(ω)) = x ] lies in F , and so f (Xτ ) is a simple random variable. In order
that this always hold, put f (Xτ(ω)(ω)) = 0, say, if τ(ω) = ∞ (which happens
only on a set of probability 0).

The game with payoff function f has at i the value

v(i ) = sup Ei [f (Xτ )]. (8.44)

the supremum extending over all Markov times τ . It will turn out that the
supremum here is achieved: there always exists an optimal stopping time. It
will also turn out that there is an optimal τ that works for all initial states i .
The problem is to calculate v(i ) and find the best τ . If the chain is irreducible,
the system must pass through every state, and the best strategy is obviously to
wait until the system enters a state for which f is maximal. This describes an
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optimal τ , and v(i ) = max f for all i . For this reason the interesting cases are
those in which some states are transient and others are absorbing (pii = 1).

A function ϕ on S is excessive or superharmonic, if†

ϕ(i ) ≥
∑

j

pij , ϕ(J ), i ∈ S . (8.45)

In terms of conditional expectation the requirement is ϕ(i ) ≥ Ei [ϕ(X1)].

Lemma 4. The value function v is excessive.

Proof. Given ε, choose for each j in S a “good” stopping time τj satisfying
Ej [f (Xτj )] > v(j ) − ε. By (8.43), [τj = n] = [(X0, . . . , Xn) ∈ Ijn] for some set
Ijn of (n + 1)-long sequences of states. Set τ = n + 1(n ≥ 0) on the set [X1 =
j ] ∩ [(X1, . . . , Xn+1) ∈ Ijn]; that is, take one step and then from the new state X1

add on the “good” stopping time for that state. Then τ is a stopping time and

Ei [f (Xτ )] =
∞∑

n=0

∑
j

∑
k

Pi [X1 = j , (X1, . . . , Xn+1) ∈ Ijn , Xn+1 = k ]f (k)

=
∞∑

n=0

∑
j

∑
k

pij pj [(X0, . . . , Xn) ∈ Ijn , Xn = k ]f (k)

=
∑

j

pij Ej [f (Xτ j )].

Therefore, v(i ) ≥ Ei [f (Xτ )] ≥ ∑
j pij (v(j ) − ε) = ∑

j pij v(j ) − ε. Since ε was
arbitrary, v is excessive. ■

Lemma 5. Suppose that ϕ is excessive.

(i) For all stopping times τ , ϕ(i ) ≥ Ei [ϕ(Xτ )].

(ii) For all pairs of stopping times satisfying σ ≤ τ , Ei [ϕ(Xσ )] ≥ Ei [ϕ(Xτ )].

Part (i) says that for an excessive payoff function, τ ≡ 0 represents an
optimal strategy.

Proof. To prove (i), put τN = min{τ , N }. Then τN is a stopping time, and

Ei [ϕ(XτN )] =
N −1∑
n=o

∑
k

Pi [τ = n , Xn = k ]ϕ(k) (8.46)

+
∑

k

Pi [τ ≥ N , XN = k ]ϕ(k).

†Compare the conditions (7.28) and (7.35).
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Since [τ ≥ N ] = [τ < N ]c ∈ FN −1, the final sum here is by (8.13)∑
k

∑
j

Pi [τ ≥ Ni , XN −1 = j , XN = k ]ϕ(k)

=
∑

k

∑
j

Pi [τ ≥ N , XN −1 = j ]pjkϕ(k) ≤
∑

j

Pi [τ ≥ N , XN −1 = j ]ϕ(j ).

Substituting this into (8.46) leads to Ei [ϕ(XτN )] ≤ Ei [ϕ(XτN −1)]. Since τ0 =
0 and Ei [ϕ(X0)] = ϕ(i ), it follows that Ei [ϕ(XτN )] ≤ ϕ(i ) for all N . But for
τ(ω) finite, ϕ(XτN (ω)

(ω)) → ϕ(Xτ(ω)(ω)) (there is equality for large N ), and so
Ei [ϕ(XτN )] → Ei [ϕ(Xτ )] by Theorem 5.4.

The proof of (ii) is essentially the same. If τN = min{τ , σ + N }, then τN is
a stopping time, and

Ei [ϕ(XτN )] =
∞∑

m=0

N −1∑
n=0

∑
k

Pi [σ = m , τ = m + n , Xm+n = k ]ϕ(k)

+
∞∑

m=0

∑
k

Pi [σ = m , τ ≥ m + N , Xm+N = k ]ϕ(k).

Since [σ = m , τ ≥ m + N ]= [σ = m] − [σ = m , τ < m + N ] ∈ Fm + N −1, again
Ei [ϕ(XτN )] ≤ Ei [ϕ(XτN −1)] ≤ Ei [ϕ(Xτ0)]. Since τ0 = σ , part (ii) follows from
part (i) by another passage to the limit. ■

Lemma 6. If an excessive function ϕ dominates the payoff function f, then it
dominates the value function v as well

By definition, to say that g dominates h is to say that g(i ) ≥ h(i ) for all i .

Proof. By Lemma 5, ϕ(i ) ≥ Ei [ϕ(Xτ )] ≥ Ei [f (Xτ )] for all Markov times
τ , and so ϕ(i ) ≥ v(i ) for all i . ■

Since τ ≡ 0 is a stopping time, v dominates f . Lemmas 4 and 6 immediately
characterize v:

Theorem 8.10
The value function v is the minimal excessive function dominating f.

There remains the problem of constructing the optimal strategy τ . Let M be
the set of states i for which v(i ) = f (i ); M , the support set , is nonempty, since
it at least contains those i that maximize f . Let A = ∩∞

n=0[Xn /∈ M ] be the event
that the system never enters M . The following argument shows that Pi (A) = 0
for each i . As this is trivial if M = S , assume that M �= S . Choose δ > 0 so that
f (i ) ≤ v(i ) − δ for i ∈ S − M . Now Ei [f (Xτ )] = ∑∞

n=0

∑
k Pi [τ = n , Xn =



144 PROBABILITY

k ]f (k); replacing the f (k ) by v(k ) or v(k) − δ according as k ∈ M or k ∈ S − M
gives Ei [f (Xτ )] ≤ Ei [v(Xτ )] − δPi [Xτ ∈ S − M ] ≤ Ei [v(Xτ )] − δPi (A) ≤
v(i ) − δPi (A), the last inequality by Lemmas 4 and 5. Since this holds for
every Markov time, taking the supremum over τ gives Pi (A) = 0. Whatever
the initial state, the system is thus certain to enter the support set M .

Let τ0(ω) = min[n: Xn(ω) ∈ M ] be the hitting time for M . Then τ0 is a
Markov time, and τ0 = 0 if X0 ∈ M . It may be that Xn(ω) /∈ M for all n , in
which case τ0(ω) = ∞, but as just shown, the probability of this is 0.

Theorem 8.11
The hitting time τ0 is optimal: Ei [f (Xτ0)] = v(i ) for all i.

Proof. By the definition of τ0, f (Xτ0) = v(Xτ0). Put ϕ(i ) = Ei [f (Xτ0)] =
Ei [v(Xτ0)]. The first step is to show that ϕ is excessive. If τ1 = min[n: n ≥
1, Xn ∈ M ], then τ1 is a Markov time and

Ei [v(Xτ1)] =
∞∑

n=1

∑
k∈M

Pi [X1 /∈ M , . . . , Xn−1 /∈ M , Xn = k ]v(k)

=
∞∑

n=1

∑
k∈M

∑
j∈S

pij Pj [X0 /∈ M , . . . , Xn−2 /∈ M , Xn−1 = k ]v(k)

=
∑

j

pij Ej [v(Xτ0)].

Since τ0 ≤ τ1, Ei [v(Xτ0)] ≥ Ei [v(Xτ1)] by Lemmas 4 and 5.
This shows that ϕ is excessive. And ϕ(i ) ≤ v(i ) by the definition (8.44). If

ϕ(i ) ≥ f (i ) is proved, it will follow by Theorem 8.10 that ϕ(i ) ≥ v(i ) and hence
that ϕ(i ) = v(i ). Since τ0 = 0 for X0 ∈ M , if i ∈ M , then ϕ(i ) = Ei [f (X0)] =
f (i ). Suppose that ϕ(i ) < f (i ) for some values of i in S − M , and choose i0
to maximize f (i ) − ϕ(i ). Then ψ(i ) = ϕ(i ) + f (i0) − ϕ(i0) dominates f and is
excessive, being the sum of a constant and an excessive function. By Theorem
8.10, ψ must dominate v, so that ψ(i0) ≥ v(i0), or f (i0) ≥ v(v0). But this
implies that i0 ∈ M , a contraction. ■

The optimal strategy need not be unique. If f is constant, for example, all
strategies have the same value.

EXAMPLE 8.16
For the symmetric random walk with absorbing barriers at 0 and r (Example 8.2)
a function ϕ on S = {0, 1, . . . , r} is excessive if ϕ(i ) ≥ 1

2ϕ(i − 1) + 1
2ϕ(i + 1)

for 1 ≤ i ≤ r − 1. The requirement is that ϕ give a concave function when
extended by linear interpolation from S to the entire interval [0, r]. Hence v

thus extended is the minimal concave function dominating f . The figure shows
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the geometry: the ordinates of the dots are the values of f and the polygonal
line describes v. The optimal strategy is to stop at a state for which the dot lies
on the polygon.

0 0r r

If f (r) = 1 and f (i ) = 0 for i < r , then v is a straight line; v(i ) = i/r . The
optimal Markov time τ0 is the hitting time for M = {0, r}, and v(i ) = Ei [f (Xτ0)]
is the probability of absorption in the state r . This gives another solution of the
gambler’s ruin problem for the symmetric case.

EXAMPLE 8.17
For the selection problem in Example 8.5, the pij are given by (8.5) and (8.6)
for 1 ≤ i ≤ r , while pr+1,r+1 = 1. The payoff is f (i ) = i/r for i ≤ r and f (r +
1) = 0. Thus v(r + 1) = 0, and since v is excessive,

v(i ) ≥ g(i ) =
r∑

j=i+1

i

j (j + 1)
v(j ), 1 ≤ i < r . (8.47)

By Theorem 8.10, v is the smallest function satisfying (8.47) and v(i ) ≥ f (i ) =
i/r , 1 ≤ i ≤ r . Since (8.47) puts no lower limit on v(r), it follows that v(r) =
f (r) = 1, and r lies in the support set M . By minimality,

v(i ) = max{f (i ), g(i )}, 1 ≤ i < r . (8.48)

If i ∈ M , then f (i ) = v(i ) ≥ g(i ) ≥ ∑r
j=i+1 ij −1(j − 1)−1f (j ) = f (i )

∑r
j=i+1

(j − 1)−1, and hence
∑r

j=i+1(j − 1)−1 ≤ 1. On the other hand, if this inequal-
ity holds and i + 1, . . . , r all lie in M , then g(i ) = ∑r

j=i+1 ij −1(j − 1)−1

f (j ) = f (i )
∑r

j=i+1(j − 1)−1 ≤ f (i ), so that i ∈ M by (8.48). Therefore,
M = {ir , ir + 1, . . . , r , r + 1}, where ir is determined by

1

ir
+ 1

ir + 1
+ · · · + 1

r − 1
≤ 1 <

1

ir − 1
+ 1

ir
+ · · · + 1

r − 1
(8.49)

If i < ir , so that i /∈ M , then v(i )> f (i ) and so, by (8.48),

v(i ) = g(i ) =
ir −1∑

j=i+1

i

j (j − 1)
v(j ) +

r∑
j=ir

i

j (j − 1)
f (j )
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=
ir −1∑

j=i+1

i

j (j − 1)
v(j ) + i

r

(
1

ir − 1
+ · · · + 1

r − 1

)
.

It follows by backward induction starting with i = ir − 1 that

v(i ) = pr = ir − 1

r

(
1

ir − 1
+ · · · + 1

r − 1

)
(8.50)

is constant for 1 ≤ i < ir .
In the selection problem as originally posed, X1 = 1. The optimal strategy

is to stop with the first Xn that lies in M . The princess should therefore reject
the first ir − 1 suitors and accept the next one who is preferable to all his
predecessors (is dominant). The probability of success is pr as given by (8.50).
Failure can happen in two ways. Perhaps the first dominant suitor after ir is
not the best of all suitors; in this case the princess will be unaware of failure.
Perhaps no dominant suitor comes after ir ; in this case the princess is obliged
to take the last suitor of all and may be well aware of failure. Recall that the
problem was to maximize the chance of getting the best suitor of all rather than,
say, the chance of getting a suitor in the top half.

If r is large, (8.49) essentially requires that log r − log ir be near 1, so that
ir ≈ r/e. In this case, pr ≈ 1/e.

Note that although the system starts in state 1 in the original problem,
its resolution by means of the preceding theory requires consideration of all
possible initial states.

This theory carries over in part to the case of infinite S , although this requires
the general theory of expected values, since f (Xτ ) may not be a simple random
variable. Theorem 8.10 holds for infinite S if the payoff function is nonnegative
and the value function is finite.† But then problems arise: Optimal strategies
may not exist, and the probability of hitting the support set M may be less than
1. Even if this probability is 1, the strategy of stopping on first entering M may
be the worst one of all.‡

PROBLEMS

8.1. Prove Theorem 8.1 for the case of finite S by constructing the appropri-
ate probability measure on sequence space S ∞: Replace the summand on

†The only essential change in the argument is that Fatou’s lemma (Theorem 16.3) must be used in
place of Theorem 5.4 in the proof of Lemma 5.
‡See Problems 8.36 and 8.37.
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the right in (2.21) by αu1pu1u2 , · · · pun−1un , and extend the arguments pre-
ceding Theorem 2.3. If Xn(·) = zn(·), then X1, X2, . . . is the appropriate
Markov chain (here time is shifted by 1).

8.2. Let Y0, Y1, . . . be independent and identically distributed with P [Yn =
1] = p, P [Yn = 0] = q = 1 − p, p �= q . Put Xn = Yn + Yn+1 (mode 2).
Show that X0, X1, . . . is not a Markov chain even though P [Xn+1 =
j |Xn−1 = i ] = P [Xn+1 = j ]. Does this last relation hold for all Markov
chains? Why?

8.3. Show by example that a function f (X0), f (X1), . . . of a Markov chain
need not be a Markov chain.

8.4. Show that

fij

∞∑
k=0

p(k)
jj =

∞∑
n=1

n∑
m=1

f m
ij p(n−m)

jj =
∞∑

n=1

p(n)
ij ,

and prove that if j is transient, then
∑

n p(n)
ij < ∞ for each i (compare

Theorem 8.3(i)). If j is transient, then

fij =
∞∑

n=1

p(n)
ij

/(
1 +

∞∑
n=1

p(n)
jj

)
.

Specialize to the case i = j : in addition to implying that i is transient
(Theorem 8.2(i)), a finite value for

∑∞
n=1 p(n)

ii suffices to determine fii
exactly.

8.5. Call {xi } a subsolution of (8.24) if xi ≤ ∑
j qij xj and 0 ≤ xi ≤ 1, i ∈ U .

Extending Lemma 1, show that a subsolution {xi } satisfies xi ≤ σi : The
solution {σi } of (8.24) dominates all subsolutions as well as all solutions.
Show that if xi = ∑

j qij xj and −1 ≤ xi ≤ 1, then {|xi |} is a subsolution
of (8.24).

8.6. Show by solving (8.27) that the unrestricted random walk on the line
(Example 8.3) is persistent if and only if p = 1

2 .

8.7. .(a) Generalize an argument in the proof of Theorem 8.5 to show that
fik = pik +∑

j �=k pij fjk . Generalize this further to

fik = f (1)

ik + · · · + f (n)

ik

+
∑
j �=k

Pi [X1 �= k , . . . , Xn−1 �= k , Xn = j ]fjk .

(b) Take k = i . Show that fij > 0 if and only if Pi [X1 �= i , . . . , Xn−1 �=
i , Xn = j ] > 0 for some n , and conclude that i is transient if and only
if fji < 1 for some j �= i such that fij > 0.
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(c) Show that an irreducible chain is transient if and only if for each i
there is a j �= i such that fji < 1.

8.8. Suppose that S = {0, 1, 2, . . .}, p00 = 1, and fi0 > 0 for all i .
(a) Show that Pi (∪∞

j=1[Xn = j i.o.]) = 0 for all i .
(b) Regard the state as the size of a population and interpret the condi-

tions p00 = 1 and fi0 > 0 and the conclusion in part (a).

8.9. 8.5↑ Show for an irreducible chain that (8.27) has a nontrivial solution
if and only if there exists a nontrivial, bounded sequence {xi } (not nec-
essarily nonnegative) satisfying xi = ∑

j �=i0
pij xj , i �= i0. (See the remark

following the proof of Theorem 8.5.)

8.10. ↑ Show that an irreducible chain is transient if and only if (for arbitrary
i0) the system yi = ∑

j pij yj , i �= i0 (sum over all j ), has a bounded,
nonconstant solution {yi , i ∈ S }.

8.11. Show that the Pi -probabilities of ever leaving U for i ∈ U are the min-
imal solution of the system.⎧⎨

⎩
zi = ∑

j∈U
pij zj + ∑

j /∈U
pij , i ∈ U ,

0 ≤ zi ≤ 1, i ∈ U .

(8.51)

The constraint zi ≤ 1 can be dropped: the minimal solution automatically
satisfies it, since zi ≡ 1 is a solution.

8.12. Show that supij n0(i , j ) = ∞ is possible in Lemma 2.

8.13. Suppose that {πi } solves (8.30), where it is assumed that
∑

i |πi | < ∞,
so that the left side is well defined. Show in the irreducible case that the
πi are either all positive or all negative or all 0. Stationary probabilities
thus exist in the irreducible case if and only if (8.30) has a nontrivial
solution {πi } (

∑
i πi absolutely convergent).

8.14. Show by example that the coupled chain in the proof of Theorem 8.6
need not be irreducible if the original chain is not aperiodic.

8.15. Suppose that S consists of all the integers and

p0,−1 = p0,0 = p0,+1 = 1
3 ,

pk ,k−1 = q , pk ,k+1 = p, k ≤ −1,

pk ,k−1 = p, pk ,k+1 = q , k ≥ 1.

Show that the chain is irreducible and aperiodic. For which p’s is the
chain persistent? For which p’s are there stationary probabilities?

8.16. Show that the period of j is the greatest common divisor of the set

[n: n ≥ 1, f (n)
ij > 0]. (8.52)
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8.17. ↑ Recurrent events . Let f1, f2, . . . be nonnegative numbers with f =∑∞
n=1 fn ≤ 1. Define u1, u2, . . . recursively by u1 = f1 and

un = f1un−1 + · · · + fn−1u1 + fn . (8.53)

(a) Show that f < 1 if and only if
∑

n un < ∞.
(b) Assume that f = 1, set μ = ∑∞

n=1 nfn , and assume that

gcd[n: n ≥ 1, fn > 0] = 1. (8.54)

Prove the renewal theorem: Under these assumptions, the limit u =
limn un exists, and u > 0 if and only if μ < ∞, in which case u =
1/μ.

Although these definitions and facts are stated in purely analytical
terms, they have a probabilistic interpretation: Imagine an event E

that may occur at times 1, 2, . . .. Suppose fn is the probability E

occurs first at time n . Suppose further that at each occurrence of
E the system starts anew, so that fn is the probability that E next
occurs n steps later. Such an E is called a recurrent event . If un

is the probability that E occurs at time n , then (8.53) holds. The
recurrent event E is called transient or persistent according as f < 1
or f = 1, it is called aperiodic if (8.54) holds, and if f = 1, μ is
interpreted as the mean recurrence time.

8.18. .(a) Let τ be the smallest integer for which Xr = i0. Suppose that the
state space is finite and that the pij are all positive. Find a ρ such
that maxi (1 − pii0) ≤ ρ < 1 and hence Pi [τ > n] ≤ pn for all i .

(b) Apply this to the coupled chain in the proof of Theorem 8.6: |p(n)

ik −
p(n)

jk | ≤ pn . Now give a new proof of Theorem 8.9.

8.19. A thinker who owns r umbrellas wanders back and forth between home
and office, taking along an umbrella (if there is one at hand) in rain
(probability p) but not in shine (probability q). Let the state be the
number of umbrellas at hand, irrespective of whether the thinker is at
home or at work. Set up the transition matrix and find the stationary
probabilities. Find the steady-state probability of his getting wet, and
show that five umbrellas will protect him at the 5% level against any
climate (any p).

8.20. .(a) A transition matrix is doubly stochastic if
∑

i pij = 1 for each j . For
a finite, irreducible, aperiodic chain with doubly stochastic transition
matrix, show that the stationary probabilities are all equal.

(b) Generalize Example 8.15: Let S be a finite group, let p(i ) be prob-
abilities, and put pij = p(j · i−1), where product and inverse refer to
the group operation. Show that, if all p(i ) are positive, the states are
all equally likely in the limit.
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(c) Let S be the symmetric group on 52 elements. What has (b) to say
about card shuffling?

8.21. A set C in S is closed if
∑

j∈C pij = 1 for i ∈ C : once the system enters
C it cannot leave. Show that a chain is irreducible if and only if S has
no proper closed subset.

8.22. ↑ Let T be the set of transient states and define persistent states i and j (if
there are any) to be equivalent if fij > 0. Show that this is an equivalence
relation on S − T and decomposes it into equivalence classes C1, C2, . . .,
so that S = T ∪ C1 ∪ C2 ∪ · · ·. Show that each Cm is closed and that
fij = 1 for i and j in the same Cm .

8.23. 8.11 8.21 ↑ Let T be the set of transient states and let C be any closed set
of persistent states. Show that the Pi -probabilities of eventual absorption
in C for i ∈ T are the minimal solution of

⎧⎨
⎩

yi = ∑
j∈T

pij yi + ∑
j∈C

pij , i ∈ T ,

0 ≤ yi ≤ 1, i ∈ T .

(8.55)

8.24. Suppose that an irreducible chain has period t > 1. Show that S decom-
poses into sets S0, . . . , St−1 such that pij > 0 only if i ∈ Sν and j ∈ Sν+1

for some ν (ν + 1 reduced modulo t). Thus the system passes through
the Sν in cyclic succession.

8.25. ↑ Suppose that an irreducible chain of period t > 1 has a stationary dis-
tribution {πj }. Show that, if i ∈ Sν and j ∈ Sν+α (ν + α reduced modulo
t), then limn p(nt+α)

ij = πj . Show that limn n−1 ∑n
m=1 p(m)

ij = πj /t for all
i and j .

8.26. Eigenvalues . Consider an irreducible, aperiodic chain with state space
{1, . . . , s}. Let r0 = (π1, . . . , πs) be (Example 8.14) the row vector of
stationary probabilities, and let c0 be the column vector of 1’s; then r0

and c0 are left and right eigenvectors of P for the eigenvalue λ = 1.
(a) Suppose that r is a left eigenvector for the (possibly complex) eigen-

value λ: rP = λr . Prove: If λ = 1, then r is a scalar multiple of r0

(λ = 1 has geometric multiplicity 1). If λ �= 1, then |λ| < 1 and
rc0 = 0 (the 1 × 1 product of 1 × s and s × 1 matrices).

(b) Suppose that c is a right eigenvector: Pc = λc. If λ = 1, then c is a
scalar multiple of c0 (again the geometric multiplicity is 1). If λ �= 1,
then again |λ| < 1, and r0c = 0.

8.27. ↑ Suppose P is diagonalizable; that is, suppose there is a nonsingular C
such that C −1PC = �, where � is a diagonal matrix. Let λ1, . . . , λs be
the diagonal elements of �, let c1, . . . , cs be the successive columns of
C , let R = C −1, and let r1, . . . , rs be the successive rows of R.
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(a) Show that ci and ri are right and left eigenvectors for the eigenvalue
λi , i = 1, . . . , s . Show that ri cj = δij . Let Ai = ci ri (s × s). Show
that �n is a diagonal matrix with diagonal elements λn

1 , . . . , λn
s and

that Pn = C�nR = ∑s
u=1 λn

uAu , n ≥ 1.
(b) Part (a) goes through under the sole assumption that P is a diago-

nalizable matrix. Now assume also that it is an irreducible, aperiodic
stochastic matrix, and arrange the notation so that λ1 = 1. Show that
each row of A1 is the vector (π1, . . . , πs) of stationary probabilities.
Since

Pn = A1 +
s∑

u=2

λn
uAu (8.56)

and |λu | < 1 for 2 ≤ u ≤ s , this proves exponential convergence
once more.

(c) Write out (8.56) explicitly for the case s = 2.
(d) Find an irreducible, aperiodic stochastic matrix that is not diagonal-

izable.

8.28. ↑
(a) Show that the eigenvalue λ = 1 has geometric multiplicity 1 if there

is only one closed, irreducible set of states; there may be transient
states, in which case the chain itself is not irreducible.

(b) Show, on the other hand, that if there is more than one closed, irre-
ducible set of states, then λ = 1 has geometric multiplicity exceed-
ing 1.

(c) Suppose that there is only one closed, irreducible set of states. Show
that the chain has period exceeding 1 if and only if there is an
eigenvalue other than 1 on the unit circle.

8.29. Suppose that {Xn} is a Markov chain with state space S , and put Yn =
(Xn , Xn+1). Let T be the set of pairs (i , j ) such that pij > 0 and show that
{Yn} is a Markov chain with state space T . Write down the transition
probabilities. Show that, if {Xn} is irreducible and aperiodic, so is {Yn}.
Show that, if πi are stationary probabilities for {Xn}, then πi pij are
stationary probabilities for {Yn}.

8.30. 6.10 8.29↑ Suppose that the chain is finite, irreducible, and aperiodic
and that the initial probabilities are the stationary ones. Fix a state i ,
let An = [Xi = i ], and let Nn be the number of passages through i in
the first n steps. Calculate αn and βn as defined by (5.41). Show that
βn − α2

n = O(1/n), so that n−1Nn → πi with probability 1. Show for
a function f on the state space that n−1 ∑n

k=1 f (Xk ) → ∑
i πi f (i ) with

probability 1. Show that n−1 ∑n
k=1 g(Xk , Xk+1) → ∑

ij πij pij g(i , j ) for
functions g on S × S .
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8.31. 6.14 8.30↑ If X0(ω) = i0, . . . , Xn(ω) = in for states i0, . . . , in , put
pn(ω) = πi0pi0i1 · · · pin−1in , so that pn(ω) is the probability of the obser-
vation observed. Show that −n−1 log pn(ω) → h = −∑

ij πi pij log pij

with probability 1 if the chain is finite, irreducible, and aperiodic.
Extend to this case the notions of source, entropy, and asymptotic
equipartition.

8.32. A sequence {Xn} is a Markov chain of second order if P [Xn+1 =
j |X0 = i0, . . . , Xn = in] = P [Xn+1 = j |Xn−1 = in−1, Xn = in] = pin−1in :j .
Show that nothing really new is involved because the sequence of
pairs (Xn , Xn+1) is an ordinary Markov chain (of first order). Compare
Problem 8.29. Generalize this idea into chains of order r .

8.33. Consider a chain on S = {0, 1, . . . , r}, where 0 and r are absorbing
states and pi ,i+1 = pi > 0, pi ,i−1 = qi = 1 − pi > 0 for 0 < i < r . Iden-
tify state i with a point zi on the line, where 0 = z0 < · · · < z , and the
distance from zi to zi+1 is qi/pi times that from zi−1 to zi . Given a
function ϕ on S , consider the associated function ϕ̂ on [0, zr ] defined
at the zi by ϕ̂(zi ) = ϕ(i ) and in between by linear interpolation. Show
that ϕ is excessive if and only if ϕ̂ is concave. Show that the prob-
ability of absorption in r for initial state i is ti−1/tr−1, where ti =∑i

k=0 q1 · · · qk/p1 · · · pk . Deduce (7.7). Show that in the new scale the
expected distance moved on each step is 0.

8.34. Suppose that a finite chain is irreducible and aperiodic. Show by Theorem
8.9 that an excessive function must be constant.

8.35. A zero–one law . Let the state space S contain s points, and suppose that
εn = supij |p(n)

ij − πj | → 0, as holds under the hypotheses of Theorem
8.9. For a ≤ b, let G b

a be the σ -field generated by the sets [Xa =
ua , . . . , Xb = ub]. Let Ta = σ(

⋃∞
b=a G b

a ) and T = ⋂∞
a=1 Ta . Show that

|P(A ∩ B) − P(A)P(B)| ≤ s(εn + εb+n) for A ∈ G b
0 and B ∈ G b+m

b+n ; the
εb+n can be suppressed if the initial probabilities are the stationary
ones. Show that this holds for A ∈ G b

0 and B ∈ Tb+n . Show that C ∈ T

implies that P (C ) is either 0 or 1.

8.36.† Alter the chain in Example 8.13 so that q0 = 1 − p0 = 1 (the other
pi and qi still positive). Let β = limn p1 · · · pn and assume that β > 0.
Define a payoff function by f (0) = 1 and f (i ) = 1 − fi0 for i > 0. If
X0, . . . , Xn are positive, put σn = n; otherwise let σn be the smallest
k such that Xk = 0. Show that Ei [f (Xσn )] → 1 as n → ∞, so that

†The final three problems in this section involve expected values for random variables with infinite
range.
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v(i ) ≡ 1. Thus the support set is M = {0}, and for an initial state i > 0
the probability of ever hitting M is fi0 < 1.

For an arbitrary finite stopping time τ , choose n so that Pi [τ <

n = σn] > 0. Then Ei [f (Xτ )] ≤ 1 − fi+n ,0Pi [τ < n = σn] < 1. Thus no
strategy achieves the value v(i ) (except of course for i = 0).

8.37. ↑ Let the chain be as in the preceding problem, but assume that β =
0, so that fi0 = 1 for all i . Suppose that λ1, λ2, . . . exceed 1 and that
λ1 · · · λn → λ < ∞; put f (0) = 0 and f (i ) = λ1 · · · λi−1/p1 · · · pi−1. For
an arbitrary (finite) stopping time τ , the event [τ = n] must have the
form [(X0, . . . , Xn) ∈ In] for some set In of (n + 1)-long sequences of
states. Show that for each i there is at most one n ≥ 0 such that (i , i +
1, . . . , i + n) ∈ In . If there is no such n , then Ei [f (Xτ )] = 0. If there is
one, then

Ei [f (Xτ )] = Pi [(X0, . . . , Xn) = (i , . . . , i + n)]f (i + n),

and hence the only possible values of Ei [f (Xτ )] are

0, f (i ), pi f (i + 1) = f (i )λi , pi pi+1f (i + 2) = f (i )λiλi+1, . . . .

Thus v(i ) = f (i )λ/λ1 · · · λi−1 for i ≥ 1; no strategy this value. The
support set is M = {0}, and the hitting time τ0 for M is finite, but
Ei [f (Xτ0)] = 0.

8.38. 5.12 ↑ Consider an irreducible, aperiodic, positive persistent chain. Let
τj be the smallest n such that Xn = j , and let mij = Ei [τj ]. Show that
there is an r such that p = Pj [X1 �= j , . . . , Xr−1 �= j , Xr = i ] is positive;
from f (n+r)

jj ≥ pf (n)
ij and mjj < ∞, conclude that mij < ∞ and mij =∑∞

n=0 Pi [τj . > n]. Starting from p(t)
ij = ∑t

s=1 f (s)
ij p(t−s)

jj , show that

n∑
t=1

(p(t)
ij − p(t)

jj ) = 1 −
n∑

m=0

p(n−m)
jj Pi [τj > m].

Use the M-test to show that

πj mij = 1 +
∞∑

n=1

(p(n)
jj − p(n)

ij ).

If i = j , this gives mjj = 1/πj again; if i �= j , it shows how in princi-
ple mij can be calculated from the transition matrix and the stationary
probabilities.
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SECTION 9 LARGE DEVIATIONS AND THE LAW
OF THE ITERATED LOGARITHM†

It is interesting in connection with the strong law of large numbers to estimate
the rate at which Sn/n converges to the mean m . The proof of the strong law
used upper bounds for the probabilities P [|Sn − m| ≥ α] for large α. Accurate
upper and lower bounds for these probabilities will lead to the law of the iterated
logarithm, a theorem giving very precise rates for Sn/n → m .

The first concern will be to estimate the probability of large deviations from
the mean, which will require the method of moment generating functions. The
estimates will be applied first to a problem in statistics and then to the law of
the iterated logarithm.

Moment Generating Functions

Let X be a simple random variable assuming the distinct values x1, . . . , x1 with
respective probabilities p1, . . . , p1. Its moment generating function is

M (t) = E [etX ] =
1∑

i=1

pi e
txi . (9.1)

(See (5.19) for expected values of functions of random variables.) This function,
defined for all real t , can be regarded as associated with X itself or as associated
with its distribution—that is, with the measure on the line having mass pi at xi

(see (5.12)).
If c = maxi |xi |, the partial sums of the series etX = ∑∞

k=0 t k X k/k ! are
bounded by e|t |c , and so the corollary to Theorem 5.4 applies:

M (t) =
∞∑

k=0

t k

k !
E [X k ]. (9.2)

Thus M (t) has a Taylor expansion, and as follows from the general theory
[A29], the coefficient of t k must be M (k)(0)/k ! Thus

E [X k ] = M (k)(0). (9.3)

Furthermore, term-by-term differentiation in (9.1) gives

M (k)(t) =
1∑

i=1

pi x
k
i etx = E [X k etX ];

†This section may be omitted.
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taking t = 0 here gives (9.3) again. Thus the moments of X can be calculated
by successive differentiation, whence M (t) gets its name. Note that M (0) = 1.

EXAMPLE 9.1
If X assumes the values 1 and 0 with probabilities p and q = 1 − p, as in
Bernoulli trials, its moment generating function is M (t) = pet + q . The first
two moments are M ′(0) = p and M ′′(0) = p, and the variance is p − p2 = pq .

If X1, . . . , Xn are independent, then for each t (see the argument following
(5.10)), etX1 , . . . , etXn are also independent. Let M and M1, . . . , Mn be the respec-
tive moment generating functions of S = X1 + · · · + Xn and of X1, . . . , Xn ; of
course, etS = �i etXi . Since by (5.25) expected values multiply for independent
random variables, there results the fundamental relation

M (t) = M1(t) · · · Mn(t). (9.4)

This is an effective way of calculating the moment generating function of the
sum S . The real interest, however, centers on the distribution of S , and so it
is important to know that distributions can in principle be recovered from their
moment generating functions.

Consider along with (9.1) another finite exponential sum N (t) = ∑
j qj etyj ,

and suppose that M (t) = N (t) for all t . If xi0 = max xi and yj0 = max yj , then
M (t) ∼ pi0eixi0 and N (t) ∼ qj0etyj0 as t → ∞, and so xi0 = yj0 and pi0 = qi0 .
The same argument now applies to

∑
i �=i0

pi etxi = ∑
j �=j0

qj etyj , and it follows
inductively that with appropriate relabeling, xi = yi and pi = qi for each i .
Thus the function (9.1) does uniquely determine the xi and pi .

EXAMPLE 9.2
If X1, . . . , Xn are independent, each assuming values 1 and 0 with probabilities
p and q , then S = X1 + · · · + Xn is the number of successes in n Bernoulli
trials. By (9.4) and Example 9.1, S has the moment generating function

E [etS ] = (pet + q)n =
n∑

k=0

(
n
k

)
pk qn−k etk .

The right-hand form shows this to be the moment generating function of a
distribution with mass

(n
k

)
pk qn−k at the integer k , 0 ≤ k ≤ n . The uniqueness

just established therefore yields the standard fact that P [S = k ] = (n
k

)
pk qn−k .
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The cumulant generating function of X (or of its distribution) is

C (t) = log M (t) = log E [etX ]. (9.5)

(Note that M (t) is strictly positive.) Since C ′ = M ′/M and C ′′ = (MM ′′ −
(M ′)2)/M 2, and since M (0) = 1,

C (0) = 0, C ′(0) = E [X ], C ′′(0) = Var[X ]. (9.6)

Let mk = E [X k ]. The leading term in (9.2) is m0 = 1, and so a formal expansion
of the logarithm in (9.5) gives

C (t) =
∞∑

v=1

(−1)v+1

v

( ∞∑
k=1

mk

k !
t k

)v

. (9.7)

Since M (t) → 1 as t → 0, this expression is valid for t in some neighborhood
of 0. By the theory of series, the powers on the right can be expanded and terms
with a common factor t i collected together. This gives an expansion

C (t) =
∞∑

i=1

ci

i !
t i , (9.8)

valid in some neighborhood of 0.
The ci are the cumulants of X . Equating coefficients in the expansions (9.7)

and (9.8) leads to c1 = m1 and c2 = m2 − m2
1 , which checks with (9.6). Each

ci can be expressed as a polynomial in m1, . . . , mi and conversely, although the
calculations soon become tedious. If E [X ] = 0, however, so that m1 = c1 = 0,
it is not hard to check that

c3 = m3, c4 = m4 − 3m2
2 . (9.9)

Taking logarithms converts the multiplicative relation (9.4) into the additive
relation

C (t) = C1(t) + · · · + Cn(t) (9.10)

for the corresponding cumulant generating functions; it is valid in the presence
of independence. By this and the definition (9.8), it follows that cumulants add
for independent random variables.

Clearly, M ′′(t) = E [X 2etX ] ≥ 0. Since (M ′(t))2 = E 2[XetX ] ≤ E [etX ].
E [X 2etX ] = M (t)M ′′(t) by Schwarz’s inequality (5.36), C ′′(t) ≥ 0. Thus the
moment generating function and the cumulant generating function are both
convex .
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Large Deviations

Let Y be a simple random variable assuming values yj with probabilities pj .
The problem is to estimate P [Y ≥ α] when Y has mean 0 and α is positive.
It is notationally convenient to subtract α away from Y and instead estimate
P [Y ≥ 0] when Y has negative mean.

Assume then that

E [Y ] < 0, P [Y > 0] > 0, (9.11)

the second assumption to avoid trivialities. Let M (t) = ∑
j pj etyj be the moment

generating function of Y . Then M ′(0) < 0 by the first assumption in

1

t

M (t )

r

t

(9.11), and M (t) → ∞ as t → ∞ by the second. Since M (t) is convex, it has
its minimum ρ at a positive argument τ :

inf
t

M (t) = M (τ ) = ρ, 0 < ρ < 1, τ > 0. (9.12)

Construct (on an entirely irrelevant probability space) an auxiliary random
variable Z such that

P [Z = yj ] = eτyj

ρ
P [Y = yj ] (9.13)

for each yj in the range of Y . Note that the probabilities on the right do add to
1. The moment generating function of Z is

E [eiZ ] =
∑

j

eτyj

ρ
pj e

tyj = M (τ + t)

ρ
, (9.14)

and therefore

E [Z ] = M ′(τ )

ρ
= 0, s2 = E [Z 2] = M ′′(τ )

ρ
> 0. (9.15)
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For all positive t , P [Y ≥ 0] = P [etY ≥ 1] ≤ M (t) by Markov’s inequality
(5.31), and hence

P [Y ≥ 0] ≤ ρ. (9.16)

Inequalities in the other direction are harder to obtain. If
∑′ denotes summation

over those indices j for which yj ≥ 0, then

P [Y ≥ 0] =
′∑

pj = ρ

′∑
e−τyj P [Z = yj ]. (9.17)

Put the final sum here in the form e−θ , and let p = P [Z ≥ 0]. By (9.16), θ ≥ 0.
Since log x is concave, Jensen’s inequality (5.33) gives

−θ = log
′∑

e−τyj p−1P [Z = yj ] + log p

≥
′∑

(−τyj )p
−1P [Z = yj ] + log p

= −τ sp−1
′∑ yj

s
P [Z = yj ] + log p.

By (9.15) and Lyapounov’s inequality (5.37),

′∑ yj

s
P [Z = yj ] ≤ 1

s
E [|Z |] ≤ 1

s
E 1/2[Z 2] = 1.

The last two inequalities give

0 ≤ θ ≤ τ s

P [Z ≥ 0]
− log P [Z ≥ 0]. (9.18)

This proves the following result.

Theorem 9.1
Suppose that Y satisfies (9.11). Define ρ and τ by (9.12), let Z be a random
variable with distribution (9.13), and define s2 by (9.15). Then P [Y ≥ 0] =
ρe−θ , where θ satisfies (9.18).

To use (9.18) requires a lower bound for P [Z ≥ 0].

Theorem 9.2
If E [Z ] = 0, E [Z 2] = s2, and E [Z 4] = ξ 4 > 0, then P [Z ≥ 0] ≥ s4/4ξ 4.†

†For a related result, see Problem 25.19.
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Proof. Let Z + = ZI[Z ≥ 0] and Z − = −ZI[Z<0]. Then Z + and Z − are non-
negative, Z = Z + − Z −, Z 2 = (Z +)2 + (Z −)2, and

s2 = E [(Z +)2] + E [(Z −)2]. (9.19)

Let p = P [Z ≥ 0]. By Schwarz’s inequality (5.36),

E [(Z +)2] = E [I[Z ≥ 0]Z
2]

≤ E 1/2[I 2
[Z ≥ 0]]E

1/2[Z 4] = p1/2ξ 2.

By Hölder’s inequality (5.35) (for p = 3
2 and q = 3)

E [(Z −)2] = E [(Z −)2/3(Z −)4/3]

≤ E 2/3[Z −]E 1/3[(Z −)4] ≤ E 2/3[Z −]ξ 4/3.

Since E [Z ] = 0, another application of Hölder’s inequality (for p = 4 and
q = 4

3) gives

E [Z −] = E [Z +] = E [ZI[Z ≥ 0]]

≤ E 1/4[Z 4]E 3/4[I 4/3
[Z ≥ 0]] = ξp3/4.

Combining these three inequalities with (9.19) gives s2 ≤ p1/2ξ 2 + (ξp3/4)2/3

ξ 4/3 = 2p1/2ξ 2. ■

Chernoff’s Theorem†

Theorem 9.3
Let X1, X2, . . . be independent, identically distributed simple random variables
satisfying E [Xn] < 0 and P [Xn > 0] > 0, let M (t) be their common moment gen-
erating function, and put ρ = inft M (t). Then

lim
n→∞

1

n
log P [X1 + · · · + Xn ≥ 0] = log ρ. (9.20)

Proof. Put Yn = X1 + · · · + Xn . Then E [Yn] < 0 and P [Yn > 0] ≥
Pn[X1 > 0] > 0, and so the hypotheses of Theorem 9.1 are satisfied. Define ρn

and τn by inft Mn(t) = Mn(τn) = ρn , where Mn(t) is the moment generating
function of Yn . Since Mn(t) = M n(t), it follows that ρn = ρn and τn = τ ,
where M (τ ) = ρ.

Let Zn be the analogue for Yn of the Z described by (9.13). Its moment gen-
erating function (see (9.14)) is Mn(τ + t)/ρn = (M (τ + t)/ρ)n . This is also the

†This theorem is not needed for the law of the iterated logarithm, Theorem 9.5.



160 PROBABILITY

moment generating function of V1 + · · · + Vn for independent random variables
V1, . . . , Vn each having moment generating function M (τ + t)/ρ. Now each Vi

has (see (9.15)) mean 0 and some positive variance σ 2 and fourth moment ξ 4

independent of i . Since Zn must have the same moments as V1 + · · · + Vn , it
has mean 0, variance s2

n = nσ 2, and fourth moment ξ 4
n = nξ 4 + 3n(n − 1)σ 4 =

O(n2) (see (6.2)). By Theorem 9.2, P [Zn ≥ 0] ≥ s4
n/4ξ 4

n ≥ α for some posi-
tive α independent of n . By Theorem 9.1 then, P [Yn ≥ 0] = ρne−θn , where
0 ≤ θn ≤ τnsnα−1 − log α = τα−1σ

√
n − log α. This gives (9.20), and shows,

in fact, that the rate of convergence is O(n−1/2). ■

This result is important in the theory of statistical hypothesis testing. An
informal treatment of the Bernoulli case will illustrate the connection.

Suppose Sn = X1 + · · · + Xn , where the Xi are independent and assume
the values 1 and 0 with probabilities p and q . Now P [Sn ≥ na] =
P
[∑n

k=1(Xk − a) ≥ 0
]
, and Chernoff’s theorem applies if p < a < 1. In this

case M (t) = E [et(X1−a)] = e−ta(pet + q). Minimizing this shows that the ρ of
Chernoff’s theorem satisfies

− log ρ = K (a , p) = a log
a

p
+ b log

b

q
,

where b = 1 − a . By (9.20), n−1 log P [Sn ≥ na] → −K (a , p); express this as

P [Sn ≥ na] ≈ e−nK (a , p). (9.21)

Suppose now that p is unknown and that there are two competing hypotheses
concerning its value, the hypothesis H1 that p = p1 and the hypothesis H2 that
p = p2, where p1 < p2. Given the observed results X1, . . . , Xn of n Bernoulli
trials, one decides in favor of H2 if Sn ≥ na and in favor of H1 if Sn < na ,
where a is some number satisfying p1 < a < p2. The problem is to find an
advantageous value for the threshold a .

By (9.21),

P [Sn ≥ na|H1] ≈ e−nK (a , p1), (9.22)

where the notation indicates that the probability is calculated for p = p1 —that
is, under the assumption of H1. By symmetry,

P [Sn < na|H2] = e−nK (a , p2). (9.23)

The left sides of (9.22) and (9.23) are the probabilities of erroneously deciding
in favor of H2 when H1 is, in fact, true and of erroneously deciding in favor of
H1 when H2 is, in fact, true—the probabilities describing the level and power
of the test.
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Suppose a is chosen so that K (a , p1) = K (a , p2), which makes the two
error probabilities approximately equal. This constraint gives for a a linear
equation with solution

a = a(p1, p2) = log(q1/q2)

log(p2/p1) + log(q1/q2)
, (9.24)

where qi = 1 − pi . The common error probability is approximately e−nK (a , p1)

for this value of a , and so the larger K (a , p1) is, the easier it is to distinguish
statistically between p1 and p2.

Although K (a(p1, p2), p1) is a complicated function, it has a simple approx-
imation for p1 near p2. As x → 0, log(1 + x) = x − 1

2x2 + O(x3). Using this in
the definition of K and collecting terms gives

K (p + x , p) = x2

2pq
+ O(x3), x → 0. (9.25)

Fix p1 = p, and let p2 = p + t ; (9.24) becomes a function ψ(t) of t , and expand-
ing the logarithms gives

ψ(t) = p + 1

2
t + O(t2), t → 0, (9.26)

after some reductions. Finally, (9.25) and (9.26) together imply that

K (ψ(t), p) = t2

8pq
+ O(t3), t → 0. (9.27)

In distinguishing p1 = p from p2 = p + t for small t , if a is chosen to equalize
the two error probabilities, then their common value is about e−nt2/8pq . For t
fixed, the nearer p is to 1

2 , the larger this probability is and the more difficult it
is to distinguish p from p+t . As an example, compare p = .1 with p = .5. Now
.36nt2/8(.1)(.9) = nt2/8(.5)(.5). With a sample only 36 percent as large, .1 can
therefore be distinguished from .1 + t with about the same precision as .5 can
be distinguished from .5 + t .

The Law of the Iterated Logarithm

The analysis of the rate at which Sn/n approaches the mean depends on the
following variant of the theorem on large deviations.

Theorem 9.4
Let Sn = X1 + · · · + Xn, where the Xn are independent and identically distributed
simple random variables with mean 0 and variance 1. If an are constants satis-
fying

an → ∞,
an√

n
→ 0, (9.28)
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then

P [Sn ≥ an
√

n] = e−a2
n (1+ζn )/2 (9.29)

for a sequence ζn going to 0.

Proof. Put Yn = Sn − an
√

n = ∑n
k=1(Xk − an/

√
n). Then E [Yn] < 0.

Since X1 has mean 0 and variance 1, P [X1 > 0] > 0, and it follows by
(9.28) that P [X1 > an/

√
n] > 0 for n sufficiently large, in which case

P [Yn > 0] ≥ Pn[X1 − an/
√

n > 0] > 0. Thus Theorem 9.1 applies to Yn for all
large enough n .

Let Mn(t), ρn , τn , and Zn be associated with Yn as in the theorem. If m(t) and
c(t) are the moment and cumulant generating functions of the Xn , then Mn(t) is
the nth power of the moment generating function e−tan/

√
nm(t) of X1 − an/

√
n ,

and so Yn has cumulant generating function

Cn(t) = −tan
√

n + nc(t). (9.30)

Since τn is the unique minimum of Cn(t), and since C ′
n(t) = −an

√
n +

nc′(t), τn is determined by the equation c′(τn) = an/
√

n . Since X1 has mean 0
and variance 1, it follows by (9.6) that

c(0) = c′(0) = 0. c′′(0) = 1. (9.31)

Now c′(t) is nondecreasing because c(t) is convex, and since c′(τn) = an/
√

n
goes to 0, τn must therefore go to 0 as well and must in fact be O(an/

√
n). By

the second-order mean-value theorem for c′(t), an/
√

n = c′(τn) = τn + O(τ 2
n ),

from which follows

τn = an√
n

+ O

(
a2

n

n

)
. (9.32)

By the third-order mean-value theorem for c(t),

log ρn = Cn(τn) = −τnan
√

n + nc(τn)

= −τnan
√

n + n

[
1

2
τ 2

n + O
(
τ 3

n

)]
.

Applying (9.32) gives

log ρn = −1

2
a2

n + o(a2
n ). (9.33)

Now (see (9.14)) Zn has moment generating function Mn(τn + t)/ρn and
(see (9.30)) cumulant generating function Dn(t) = Cn(τn + t) − log ρn =
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−(τn + t)αn
√

n + nc(t + τn) − log ρn . The mean of Zn is D ′
n(0) = 0. Its

variance s2
n is D ′′

n (0); by (9.31), this is

s2
n = nc′′(τn) = n(c′′(0) + O(τn)) = n(1 + o(1)). (9.34)

The fourth cumulant of Zn is D ′′′′
n (0) = nc′′′′(τn) = O(n). By the formula

(9.9) relating moments and cumulants (applicable because E [Zn] = 0),
E [Z 4

n ] = 3s4
n + D ′′′′

n (0). Therefore, E [Z 4
n ]/s4

n → 3, and it follows by Theorem
9.2 that there exists an α such that P [Zn ≥ 0] ≥ α > 0 for all sufficiently
large n .

By Theorem 9.1, P [Yn ≥ 0] = ρne−θn with 0 ≤ θn ≤ τnsnα
−1 + log α. By

(9.28), (9.32), and (9.34), θn = O(an) = o(a2
n ), and it follows by (9.33) that

P [Yn ≥ 0] = e−a2
n (1+o(1))/2. ■

The law of the iterated logarithm is this:

Theorem 9.5
Let Sn = X1 + · · · + Xn, where the Xn are independent, identically distributed
simple random variables with mean 0 and variance 1. Then

P

[
lim sup

n

Sn√
2n log log n

= 1

]
= 1. (9.35)

Equivalent to (9.35) is the assertion that for positive ε

P [Sn ≥ (1 + ε)
√

2n log log n i.o.] = 0 (9.36)

and

P [Sn ≥ (1 − ε)
√

2n log log n i.o.] = 1. (9.37)

The set in (9.35) is, in fact, the intersection over positive rational ε of the sets
in (9.37) minus the union over positive rational ε of the sets in (9.36).

The idea of the proof is this. Write

φ(n) =
√

2n log log n. (9.38)

If A±
n = [Sn ≥ (1 ± ε)φ(n)], then by (9.29), P(A±

n ) is near (log n)−(1±ε)2
. If

nk increases exponentially, say nk ∼ θ k for θ > 1, then P(A±
nk

) is of the order

k−(1+ε)2
. Now

∑
k k−(1±ε)2

converges if the sign is + and diverges if the sign
is −. It will follow by the first Borel–Cantelli lemma that there is probability 0
that A+

nk
occurs for infinitely many k . In providing (9.36), an extra argument is

required to get around the fact that the A+
n for n �= nk must also be accounted

for (this requires choosing θ near 1). If the A−
n were independent, it would
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follow by the second Borel–Cantelli lemma that with probability 1, A−
nk

occurs
for infinitely many k , which would in turn imply (9.37). An extra argument is
required to get around the fact that the A−

nk
are dependent (this requires choosing

θ large).
For the proof of (9.36) a preliminary result is needed. Put Mk =

max{S0, S1, . . . , Sk }, where S0 = 0.

Theorem 9.6
If the Xk are independent simple random variables with mean 0 and variance 1,
then for α ≥ √

2.

P

[
Mn√

n
≥ α

]
≤ 2P

[
Sn√

n
≥ α −

√
2

]
. (9.39)

Proof. If Aj = [Mj−1 < α
√

n ≤ Mj ], then

P

[
Mn√

n
≥ α

]
≤ P

[
Sn√

n
≥ α −

√
2

]
+

n−1∑
j=1

P

(
Aj ∩

[
Sn√

n
≤ α −

√
2

])
.

Since Sn − Sj has variance n−j , it follows by independence and Chebyshev’s
inequality that the probability in the sum is at most

P

(
Aj ∩

[ |Sn − Sj |√
n

>
√

2

])
= P(Aj )P

[ |Sn − Sj |√
n

>
√

2

]

≤ P(Aj )
n − j

2n
≤ 1

2
P(Aj ).

Since
⋃n−1

j=1 Aj ⊂ [Mn ≥ α
√

n],

P

[
Mn√

n
≥ α

]
≤ P

[
Sn√

n
≥ α −

√
2

]
+ 1

2
P

[
Mn√

n
≥ α

]
.

■

Proof of (9.36). Given ε, choose θ so that θ > 1 but θ2 < 1 + ε. Let nk =
�θ k
 and xk = θ(2 log log nk )

1/2. By (9.29) and (9.39),

P

[
Mnk√

nk
≥ xk

]
≤ 2 exp

[
−1

2
(xk −

√
2)2(1 + ξk )

]
.

where ξk → 0. The negative of the exponent is asymptotically θ2 log k and
hence for large k exceeds θ log k , so that

P

[
Mnk√

nk
≥ xk

]
≤ 2

k θ
.
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Since θ > 1, it follows by the first Borel–Cantelli lemma that there is probability
0 that (see (9.38))

Mnk ≥ θφ(nk ) (9.40)

for infinitely many k . Suppose that nk−1 < n ≤ nk and that

Sn >(1 + ε)φ(n). (9.41)

Now φ(n) ≥ φ(nk−1) ∼ θ−1/2φ(nk ); hence, by the choice of θ , (1 +
ε)φ(n)> θφ(nk ) if k is large enough. Thus for sufficiently large k , (9.41)
implies (9.40) (if nk−1 < n ≤ nk ), and there is therefore proability 0 that (9.41)
holds for infinitely many n . ■

Proof of (9.37). Given ε, choose an integer θ so large that 3θ−1/2 < ε.
Take nk = θ k . Now nk − nk−1 → ∞, and (9.29) applies with n = nk − nk−1

and an = xk/
√

nk − nk−1, where xk = (1 − θ−1)φ(nk ). It follows that

P [Snk − Snk−1 ≥ xk ] = P [Snk −nk−1 ≥ xk ] = exp

[
−1

2

x2
k

nk − nk−1
(1 + ξk )

]
,

where ξk → 0. The negative of the exponent is asymptotically (1 − θ−1) log k
and so for large k is less than log k , in which case P [Snk − Snk−1 ≥ xk ] ≥ k−1.
The events here being independent, it follows by the second Borel–Cantelli
lemma that with probability 1, Snk − Snk−1 ≥ xk for infinitely many k . On the
other hand, by (9.36) applied to {−Xn}, there is probability 1 that −Snk−1 ≤
2φ(nk−1) ≤ 2θ−1/2φ(nk ) for all but finitely many k . These two inequalities
give Snk ≥ xk − 2θ−1/2φ(nk ) >(1 − ε)φ(nk ), the last inequality because of the
choice of θ . ■

That completes the proof of Theorem 9.5.

PROBLEMS

9.1. Prove (6.2) by using (9.9) and the fact that cumulants add in the presence
of independence.

9.2. In the Bernoulli case, (9.21) gives

P [Sn ≥ np + xn] = exp
[
−nK

(
p + xn

n
, p
)

(1 + o(1))
]

,
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where p < a < 1 and xn = n(a − p). Theorem 9.4 gives

P [Sn ≥ np + xn] = exp

[
− x2

n

2npq
(1 + o(1))

)
,

where xn = an
√

npq . Resolve the apparent discrepancy. Use (9.25) to
compare the two expressions in case xn/n is small. See Problem 27.17.

9.3. Relabel the binomial parameter p as θ = f (p), where f is increas-
ing and continuously differentiable. Show by (9.27) that the distin-
guishability of θ from θ + �θ , as measured by K , is (�θ)2/8p(1 −
p)(f ′(p))2 + O(�θ)3. The leading coefficient is independent of θ if
f (p) = arc sin

√
p.

9.4. From (9.35) and the same result for {−Xn}, together with the uniform
boundedness of the Xn , deduce that with probability 1 the set of limit
points of the sequence {Sn(2n log log n)−1/2} is the closed interval from
−1 to +1.

9.5. ↑ Suppose Xn takes the values ±1 with probability 1
2 each, and show that

P [Sn = 0 i.o.] = 1. (This gives still another proof of the persistence of
symmetric random walk on the line (Example 8.6).) Show more generally
that, if the Xn are bounded by M , then P [|Sn | ≤ M i.o.] = 1.

9.6. Weakened versions of (9.36) are quite easy to prove. By a fourth-moment
argument (see (6.2)), show that P [Sn > n3/4(log n)(1+ε)/4 i.o.] = 0. Use
(9.29) to give a simple proof that P [Sn >(3n log n)1/2 i.o.] = 0.

9.7. Show that (9.35) is true if Sn is replaced by |Sn | or max k≤n Sk or
max k≤n |Sk |.


