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CHAPTER 1
Discount Rates and Returns

The most powerful force in the universe is compound interest.
—Albert Einstein

EST IMAT ING R ETURNS

The total return on an investment in any security is the percentage change in
the value of the asset including dividends over a specific interval of time.
Assuming asset value is captured in the market price P and dividends by d,

then the one period total return, r1, is equal to 100 � P1 þ d1 �P0ð Þ
P0

percent, in

which the subscripts index time. For simplicity, we will ignore dividends,
which gives us the price return, which, in decimal form, is equal to

r1 ¼ P1 �P0ð Þ
P0

¼ P1

P0

� �
� 1. Thus, 1þ r1 ¼ P1

P0

� �
is the gross return (the return

plus the initial one-dollar outlay in the security) on the investment for one
period, and r1 is the net return; it is the return on a $1 investment. We can
geometrically link returns to get the time equivalent of a longer-term invest-
ment. For example, suppose that the period under study is one month and

that 1þ r1 ¼ P1

P0

� �
is therefore the one-month return. We can annualize this

return by assuming the investment returns this amount in each month.
Compounding this for one year is a product yielding the amount:

rA ¼ 1þ r1ð Þ12 � 1

Here, r1 is the monthly return, while rA is the annualized equivalent.
On the other hand, we may observe a time series of past monthly returns
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(called trailing returns), which we geometrically link to estimate an annu-
alized figure, that is, the previous 12 monthly returns generate an annual
return given by:

1þ rA ¼ 1þ r1ð Þ 1þ r2ð Þ 1þ r3ð Þ � � � 1þ r11ð Þ 1þ r12ð Þ

We can similarly link quarterly returns to estimate an annual equiva-
lent, for example, 1þ rA ¼ 1þ r1ð Þ 1þ r2ð Þ 1þ r3ð Þ 1þ r4ð Þ, and we can do
the same for weekly, daily, or any frequency for that matter, to achieve a
lower frequency equivalent return. Focusing once again on monthly gross
returns, annualization is a compounded return that is the product of
monthly relative prices, each measuring price appreciation from the previ-
ous month, that is, by generalizing from the fact that if 1þ r1 ¼ P1

P0

� �
, then

the following must also be true:

1þ rA ¼ P1

P0

� �
P2

P1

� �
P3

P2

� �
� � � P11

P10

� �
P12

P11

� �

Upon canceling, this reduces to the following, which is consistent with
our definition of gross return given earlier.

1þ rA ¼ P12

P0

This suggests that we can calculate the gross return over any period by
taking the ratio of the market values and ignoring all intermediate market
values. Similarly, we can solve for any intervening periodic average return
by using the power rule; in this case, if the annual return is 1þ rA, then the
geometric averagemonthly return rM must be

1þ rAð Þ 1
12 ¼ 1þ rMð Þ

For example, the average monthly return necessary to compound
to a 15 percent annual return must be approximately 1.17 percent per
month:

1:15ð Þ 1
12 ¼ 1:011715ð Þ

2 INVESTMENT THEORY AND RISK MANAGEMENT
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EXAMPLE 1 . 1

Quarterly returns to the Russell 3000 Domestic Equity Index for the
years 2005 to 2007 are given in Table 1.1.

a. Geometrically link these quarterly returns to generate annual
returns.

b. Calculate the return for the three-year period.

c. What is the arithmetic average annual return for these three years?

d. What is the arithmetic average quarterly return over this three-year
period?

SOLUTIONS

(Refer to Table 1.2)

a. Annual Return (Column E) ¼Qnþ3
n¼0 Column Cð Þ � 1

b. The return for the three-year period ¼Q
Column C½ � � 1 ¼ 0:29 ¼

29%; annualized, this is
Q

Column C½ �13 � 1 ¼ 1:088896� 1 ¼
8:9% geometric average.

c. The arithmetic average annual return ¼ AVG Column Eð Þ ¼ 9:0%.

d. The arithmetic average quarterly return¼ AVG Column B½ � ¼ 2:2%.
(continued )

TABLE 1.1 Russell 3000 Dom Eq Index

Date Return (%)

2005Q1 –2.20
2005Q2 2.24
2005Q3 4.01
2005Q4 2.04
2006Q1 5.31
2006Q2 –1.98
2006Q3 4.64
2006Q4 7.12
2007Q1 1.28
2007Q2 5.77
2007Q3 1.55
2007Q4 –3.34

Discount Rates and Returns 3
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GEOMETR I C AND AR I THMET I C AVERAGES

If things weren’t already complicated enough, we now see that there are two
distinct averages—geometric as well as arithmetic. It is important to under-
stand the difference. If you want to know what an asset actually returned,
then geometrically link the N gross returns over the relevant time. And,
upon doing that, if you then want to know what the average return (geo-
metric) was for each period in the return series, then take the Nth root and
subtract one. Using a trailing series of the past 12 monthly returns as an
example, we get:

1þ rA ¼ 1þ r1ð Þ 1þ r2ð Þ 1þ r3ð Þ � � � 1þ r11ð Þ 1þ r12ð Þ

The annual return is rA. The geometric average of the monthly returns is

ð1þ rAÞ
1
12 ¼ 1þ r1ð Þ 1þ r2ð Þ 1þ r3ð Þ � � � 1þ r11ð Þ 1þ r12ð Þ½ � 112

(continued )

Go to the companion website for more details.

TABLE 1.2 Geometric Returns

Quarter Return (%)

Return/

100 þ 1

Geometric

Mean

Annualized

Return (%)

(A) (B) (C) (D) (E)

2005Q1 –2.20 0.98
2005Q2 2.24 1.02
2005Q3 4.01 1.04
2005Q4 2.04 1.02 1.06 6.10
2006Q1 5.31 1.05
2006Q2 –1.98 0.98
2006Q3 4.64 1.05
2006Q4 7.12 1.07 1.16 15.70
2007Q1 1.28 1.01
2007Q2 5.77 1.06
2007Q3 1.55 1.02
2007Q4 –3.34 0.97 1.05 5.10
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Clearly, this is different from the arithmetic average:

�r ¼ r1 þ r2 þ r3 þ � � � þ r12
12

The difference is not subtle. For example, suppose we observe a
sequence of four returns {0.9, 0.1, –0.9, 0.2}. The arithmetic average
is 0.075 (7.5 percent), while the geometric average is –29 percent! Why
the large discrepancy? If you had a dollar invested over these four
periods, the return you would have received would have been affected
to a greater degree (in a negative way) by the third period’s negative
90 percent return, that is, you would have lost 90 percent of your accu-
mulated investment by the end of the third period and then earned a
20 percent return on whatever was left for the final period. The arith-
metic average, however, places equal weight on all returns and, there-
fore, the impact of the large negative return is diluted by 1/N. As the
sample size increases, the impact of a single bad return declines asymp-
totically and it does not matter if that single bad return occurred early
or late in the sample. In reality, that is not how money is earned and
that is why we use geometric averages. In this example, the investment
indeed earned an average –29 percent return in each period. Had you
invested a dollar at the beginning of the first period, that dollar would
have shrunk to about $0.25 in four periods. This is certainly not an
amount implied by the arithmetic mean.

We will not prove the following formally, but it is intuitive that, in gen-
eral, as the variance in the individual periodic returns declines, so does the
difference between the arithmetic and geometric means. In the limit, if the
four returns in our example were identical, then the arithmetic and geomet-
ric means would also be identical. Otherwise, it can be shown that the arith-
metic mean is always greater than the geometric mean because the
arithmetic mean ignores the correlations across returns over time. The take-
away is that these two measures tend to diverge in value as volatility in
returns rises.

CAVEATS TO RETURN EXTRAPOLAT I ON

Practitioners prefer to compare annualized returns and therefore extrapo-
late higher frequency returns (daily, monthly, and quarterly) to annual
frequency. This practice, though common, can be misleading and it is im-
portant to know why. Consider the set of monthly returns to the S&P 500
index given in Table 1.3. The returns are for the year 2006.

Discount Rates and Returns 5
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We can geometrically link these monthly returns to get an annualized
return, which is computed by taking the product of the gross monthly
returns in column C and subtracting one, yielding 12.23 percent. This is
the return that you would have received had you held the index for those
12 months. The table also geometrically links monthly returns to estimate
quarterly returns, which are given in column D of the table. These quarterly
returns are then geometrically linked by taking their product (and subtract-
ing one) to get an annual return, also equal to 12.23 percent.

Now imagine that it is April 1, 2006, and having just observed the
March return, we estimate the first-quarter return for 2006 at 2.51 percent.
Your supervisor wants to know what this is on an annualized basis. In re-
sponse, you compute 1þ rQ1

� �4 � 1, which upon substitution, computes to
ð1:0251Þ4 � 1 ¼ 10:42 percent. What you have done is extrapolate a higher
frequency return (quarterly) to a lower frequency estimate (annual). The
implicit assumption in extrapolation is that the return observed for the pe-
riod just realized (first quarter 2006) will hold for the remaining three quar-
ters. (This is what is referred to as a na€ıve forecast). In general, this will not
be the case and the extrapolated return will therefore most likely contain
errors. In the example given, you can readily see the error embodied in each
of these quarterly extrapolations by comparing them to the true observed
annual return in column C.

It is also important to realize that extrapolation generates more mea-
surement error the greater the difference in the frequencies we extrapolate
between. For example, if we extrapolate the monthly returns, that is,

TABLE 1.3 Monthly S&P 500 Returns

Month Monthly Return Gross Monthly Return Quarterly Return

(A) (B) (C ¼ B þ 1) (D)

Jan-06 0.0132 1.0132
Feb-06 –0.0016 0.9984
Mar-06 0.0134 1.0134 1.0251
Apr-06 0.0065 1.0065
May-06 –0.0093 0.9907
Jun-06 –0.0286 0.9714 0.9686
Jul-06 0.0056 1.0056
Aug-06 0.0214 1.0214
Sep-06 0.0238 1.0238 1.0515
Oct-06 0.0346 1.0346
Nov-06 0.0185 1.0185
Dec-06 0.0200 1.0200 1.0749

6 INVESTMENT THEORY AND RISK MANAGEMENT
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1þ rMð Þ12 � 1, then clearly, a single extraordinary monthly return will
translate into an even more extraordinary annual return. Practitioners seem
to know this and that is why higher frequency returns (weekly or daily) are
generally never annualized. Returns are random. Extrapolation is not. The
greater the difference between the frequencies we extrapolate between, the
less we believe in randomness and the more we believe that the current ob-
servation portends all future observations. We are all most certainly aware
of this problem but, nevertheless, we continue to extrapolate. It is important
to remind ourselves and our colleagues of the weaknesses in these numbers.

D ISCOUNT ING PRESENT VALUES OF CASH
F LOW STREAMS

As individual consumers, we are always trying to maximize our intertempo-
ral utilities by trading off future and present consumption. That is, we will
consume a dollar’s worth of goods today if we feel that the satisfaction we
receive from doing so exceeds the satisfaction we’d get had we saved that
dollar and consumed it somewhere in the future. The decision to consume
intertemporally therefore depends on our abilities to compare wealth today
with future wealth, which is what we mean when we talk about the time
value of money. A dollar cash amount invested in the future will be worth
C ¼ ð1þ rÞ after, say, one year. Therefore, the present value P of a cash
flow C to be received one period from now is the future C discounted at
rate r:

P ¼ C

1þ rð Þ
Alternatively, investing P for one period at rate r will generate value

equal to Pð1þ rÞ ¼ C. The present value of a cash flow received two time
periods from now is therefore:

P ¼ C

1þ rð Þ2

If the cash flow is received more than once (say, three periods), then it
has present value:

P ¼ C

1þ rð Þ þ
C

1þ rð Þ2 þ
C

1þ rð Þ3

An example of discrete discounting is net present value (NPV), which
is present value minus the initial outlay. The NPV function in Excel

Discount Rates and Returns 7
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is: ¼ NPV(rate, cash flow 1, cash flow 2, . . .). Suppose, for instance, that
you were to undertake an investment that requires an initial cash outlay of
$100 but will return dividends over the next two years in the amount of
$100 per year with certainty. Suppose the opportunity cost of capital is 10
percent (this is the return you could have received had you invested your
$100 in the market instead). Then the net present value is:

NPV ¼ �100þ 100

1:1
þ 100

1:1ð Þ2 ¼ �100þ 90:91þ 82:64 ¼ $73:55

What exactly is the discount rate? It is the rate at which we are willing
to trade present for future consumption. For example, suppose you are
waiting to receive C ¼ $100 one year from now. Rather than wait, you
agree to receive a smaller amount P ¼ $90 now. The smaller amount is
consistent with consumers’ preference for present versus future consump-
tion; it suggests we are impatient, that we discount future gains (for a
whole host of reasons) or more specifically, that we have our own set of
time preferences that determine our individual decisions to consume our
wealth intertemporally. We examine derivation of the discount rate in
more rigorous detail in Chapter 4. The implication in this example is that
the interest rate that is consistent with your time preferences is 11 percent
and that your discount rate is 1

1:11 ¼ 0:9= , which is your willingness to
trade the future $100 for current consumption worth $90. That is, you
discount the future at 10 percent. The converse argument is that you
would be willing to give up $90 today only if you knew you’d receive in
exchange an amount of $100 one year from now.

Discount rates and market returns are obviously linked. Returns are de-
termined by changes in the market prices of assets that more fundamentally
reflect market participants’ utility preferences that manifest themselves
through the interaction of supply and demand. In this sense, returns can be
thought of as an aggregate of all of our revealed preferences, that is, our
attitudes regarding present over future consumption. We discount cash
flows using observed market rates and we use different market rates to dis-
count different types of cash flows, for example, risk-free Treasury rates to
discount riskless bond coupons and more risky equity returns to discount
private equity cash flows. For now, we will abstract from these details and
study only the process of discounting. Generalizing the cash flow discount-
ing problem, then, to t periods, we get a sum of periodic discounted cash
flows:

P ¼
X Ct

1þ rð Þt
� 	

8 INVESTMENT THEORY AND RISK MANAGEMENT
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Note how we index C by time. Suppose, now, that the rate r is com-
pounded discretely m times per year (that is, you receive a fraction r

m per-
cent, m times each year). Instead of t periods, we now have m � t periods
to discount, each at r

m percent. Thus,

P ¼
X Ct

1þ r
m

� �mt

" #

The quantity 1þ r
m

� �m
has a limit as m goes to infinity, that is, as inter-

est is paid continuously. This limit is very important. It is

er ¼ lim
m!1 1þ r

m

�m�

More fundamentally, recall that

e ¼ lim
m!1

�
1þ 1

m

�m

Therefore,

e�rt ¼ lim
m!1

1

1þ r

m

� �mt

Continuous compounding is therefore the limit of discrete compound-
ing. For example, semiannual compounding (that is, interest paid twice
each year) is

1þ r

2

� �2
¼ 1þ r

2

� �
1þ r

2

� �

Compounding interest quarterly over the year,

1þ r

4

� �4
¼ 1þ r

4

� �
1þ r

4

� �
1þ r

4

� �
1þ r

4

� �

Finally, paying interest monthly over the year is equal to the already
familiar geometric return, or annual equivalent, equal to 1þ r

12

� �12
.

Taking the compounding frequency to the limit results in continuous
compounding, er. This means that an amount C received at the end of time
t with continuous compounding has a present value:

P ¼ Ce�rt

Discount Rates and Returns 9
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The discount rate in this case is e�rt. Let me digress a bit on this con-
cept. Assume I have capital to be invested right now in the amount P0, and
at the end of one period, it grows to P1. Thus, P1 ¼ P0e

rt. Taking natural
logs and noting that t ¼ 1 for this example gives us the following:

ln P1ð Þ ¼ ln P0ð Þ þ r

Equivalently,

ln
P1

P0

� �
¼ r

where r in this case is the rate of return on the investment. It also determines
the discount rate in the sense that it represents the opportunity cost of in-
vestment, that is, r is what I give up if I choose to consume P0 today. Had I
invested (saved) it, it would have grown to P1 in one period.

In general then, an equivalent amount C earns the following over time t
with continuous compounding:

C ¼ Pert

Thus, the process of evaluating future obligations as a present value
problem is referred to as discounting. The present value of the future mone-
tary amount (C) to be received is less than the face value of that amount
because the future is discounted, reflecting, among other things, time prefer-
ences (a dollar today is worth more to me than a dollar to be received some-
time in the future).

I define the k-period discount rate in discrete time as

dk ¼ 1þ r

m

� ��mk

In continuous time, we have

dk ¼ e�rk

It should be obvious that future value is the inverse function of present
value. For example, let C1;C2; . . .Cnð Þ refer to a cash flow stream. Assume
each cash flow is received at the beginning of the period and that the interest
rate is constant at r. Then the future value (FV) is the sum of the com-
pounded cash flow values:

FV ¼ C1 1þ rð Þn þ C2 1þ rð Þn�1 þ � � � þ Cn

10 INVESTMENT THEORY AND RISK MANAGEMENT
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Likewise, it should be clear that FV has present value P equal to FV
1þrð Þn,

that is,

P ¼ C1 þ C2

1þ r
þ � � � þ Cn

1þ rð Þn

And, therefore, with compoundingm times per period:

P ¼
Xn
k¼0

Ck

1þ r

m

� �mk

2
64

3
75

This relationship can be written more compactly with continuous com-
pounding:

P ¼
X

Cke
�rk

Although we develop this concept more fully in Chapter 2, this is our
first pricing model. It is a simple discounted cash flow model with certain
(riskless) cash flows.

I N T ERNAL RATE OF RETURN AND Y I E LD
TO MATUR I TY

We now assume that the discount rate is endogenous, in which case we
solve for the rate that equates two sets of cash flows. Suppose you make an
investment in a business equal to P0 dollars. This investment is expected to
yield a stream of cash flows for n periods equal to C1;C2; . . .Cn. The inter-
nal rate of return (IRR) is the discount rate, which makes the two streams,
the outflow P0 and the present value of the inflows C1;C2; . . .Cn, equiva-
lent. That is, the IRR is the value of r that discounts the following set of
cash flows to the initial outlay P0:

P0 ¼ C1

1þ rð Þ þ
C2

1þ rð Þ2 þ � � � þ Cn

1þ rð Þn

Since P0 is an outlay, hence, a negative cash flow, then the preceding equa-
tion is the same as:

0 ¼ �P0 þ C1

1þ rð Þ þ
C2

1þ rð Þ2 þ � � � þ Cn

1þ rð Þn

Discount Rates and Returns 11
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Notice that this is a net present value, too, but with the important
exception that the discount rate is exogenous in NPV problems. The inter-
nal rate of return, on the other hand, is the solution objective. The internal
rate of return gets its name from understanding that it is the interest rate
implied by the internal cash flow stream to the firm. In a sense, it is the
firm’s required rate of return necessary to achieve a breakeven level on its
investments. It is therefore not a market rate. Firms use the IRR most often
to compare alternative investments.

In general, the IRR is difficult to solve because it doesn’t have an ana-
lytic solution; rather, one must resort to iterative techniques to arrive at a
solution. Most software packages’ solvers use some form of Newton’s
method to solve for the IRR (see the IRR and XIRR functions in Microsoft
Excel).

EXAMPLE 1 . 2

Let’s put numbers in Example 1.1. Assume the initial outlay is $100
and we expect to receive cash flows in years 1 to 4 equal to ($50, $0,
$100, $100). Then the IRR is the rate that solves:

0 ¼ �100þ 50

1þ rð Þ þ
0

1þ rð Þ2 þ
100

1þ rð Þ3 þ
100

1þ rð Þ4

This is equal to:

0 ¼ �100þ 50Cþ 100C3 þ 100C4

where C ¼ 1
1þ rð Þ. This is a polynomial of order four. The solution

is r ¼ IRR ¼ 39 percent, whose details can be found on the chap-
ter spreadsheet.

What does this mean? Well, suppose again that this is your firm.
Then this rate discounts your cash flows to a present value equal to
your outlay of $100. This is a pretty good rate of return if all other
investments generate cash flows with IRRs less than 39 percent.
Thinking differently, if your firm requires an annual rate of return
over four years on their cash flows equal to 39 percent, then a $100
investment with the stated cash flows will meet that requirement.

12 INVESTMENT THEORY AND RISK MANAGEMENT
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EXAMPLE 1 . 3

Suppose the required return is 39 percent on a $100, four-year invest-
ment with expected cash flows in each of the four years given by
($0, $0, $100, $150). What is the estimated IRR (r in the denominator
of the following equation) and will this investment be undertaken?

0 ¼ �100þ 0

1þ rð Þ þ
0

1þ rð Þ2 þ
100

1þ rð Þ3 þ
150

1þ rð Þ4

Example 1.3 Table

Initial Outlay –100
Year 1 Cash Flow 0
Year 2 Cash Flow 0
Year 3 Cash Flow 100
Year 4 Cash Flow 150

Required Rate of Return (RRR) 39%
Internal Rate of Return 29%
RRR ¼ IRR FALSE

Check the IRR Calculation
Initial Outlay –100
C ¼ 0
C2 ¼ 0
C3 ¼ 46.289
C4 ¼ 53.711
SUM ¼ 0

In this example, the IRR ¼ 29 percent, which is below the re-
quired return of 39 percent. Therefore, the investment should not be
undertaken.

Now let’s briefly jump ahead and look at the similarity between
the IRR and what bond analysts call the yield to maturity. Suppose
you lend $100 for a period of five years. The borrower promises to
pay you $25 in each of those five years to expunge his debt. What is
the rate of return that equates the present value of the creditor’s pay-
ments to the loan amount? We set this up as:

100 ¼ 25

1þ rð Þ þ
25

1þ rð Þ2 þ
25

1þ rð Þ3 þ
25

1þ rð Þ4 þ
25

1þ rð Þ5
(continued )

Discount Rates and Returns 13
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REAL AND NOM INAL RETURNS

Inflation erodes the real returns on cash flows. For example, if the inflation
rate is 4 percent, then a nominal cash flow of $1 has a real inflation-adjusted
value of $1:00

$1:04
¼ $0:96. Using our discounting rules already developed, we

can generalize that a nominal gross return 1þ rð Þ has an equivalent real
gross return of:

1þ r0 ¼ 1þ r

1þ f

where f is the inflation rate (in our example, 4 percent) and r0 is the real net
return.

Note that if the inflation rate is f ¼ 0, then the nominal return is identi-
cal to the real return. Also, note that we can simplify this equation for the
real gross return to get at the net return as follows:

r0 ¼ r� fð Þ
1þ fð Þ

The important point is that inflation affects the relevant discount rate
that one uses to value a cash flow stream. We return to this topic when we
look at Treasury Inflation Protected Securities, or TIPS, in the next chapter.

SUMMARY

Returns measure growth rates in asset value over time. They are the ob-
served reward to postponing present for future consumption. Returns may
be measured discretely over any frequency such as daily, monthly, or

(continued )
The IRR that solves this problem is 8 percent. As a lender, you

therefore receive an 8 percent annual return on your investment—
in this case, a loan. This is essentially a bond, and in the world of
bonds, the 8 percent is the yield to maturity. The yield to maturity is a
return that is equal to an IRR. Thus, bond yields are IRRs.

Go to the companion website for more details.

14 INVESTMENT THEORY AND RISK MANAGEMENT
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quarterly and higher frequency returns can be converted into lower frequen-
cies—annualizing monthly returns is one such case. The notion of com-
pounding is linked to how often interest is paid; thus, annual returns can
represent a single yearly payment, or higher frequency returns can be geo-
metrically linked, or compounded, to form annualized equivalents. In the
limit, continuously compounded returns represent the continuous payment
of interest. In sum, we can work with returns over any interval and extrap-
olate those returns to either any longer interval of time or average them to
any subinterval of time. An example of extrapolation is annualizing discrete
monthly returns, and an example of averaging is finding the geometric aver-
age monthly return from an annual return. Caveats relate to the implicit
assumption that observed returns will hold into the future.

Discounting links cash flows over time. The discounted present value of
a cash flow to be received in the future is the result of finding the amount of
cash in present dollars that, when invested at the discount rate, will grow to
an amount stipulated by the future cash flow. Discount rates are intimately
linked to returns; in the simplest case, the discount rate is the reciprocal of
the gross return and the discount rate may be applied discretely or continu-
ously. The role that discount rates play in the trade-off of present over fu-
ture consumption is a topic that I develop more fully in Chapter 4.

The internal rate of return is an application of discounting in cash man-
agement and the yield-to-maturity on a coupon-paying bond is itself an in-
ternal rate of return. We can thus link the subject of Chapter 2 on bond
pricing to the discount function developed in this chapter. In fact, almost all
asset-pricing models will rely on some form of discounting since they all
involve the valuation of cash flows that occur over time.

Finally, we recognize the impact that inflation has on the value of cash
flows, which requires us to distinguish between inflation adjusted (real) re-
turns and nominal returns and model them accordingly.

Discount Rates and Returns 15



C01 03/05/2012 14:33:47 Page 16


