RELIABILITY THEORY

A solid foundation in theoretical knowledge surrounding system reliability is funda-
mental to the analysis of telecommunications systems. All modern system reliability
analysis relies heavily on the application of probability and statistics mathematics. This
chapter presents a discussion of the theories, mathematics, and concepts required to
analyze telecommunications systems. It begins by presenting the system metrics that are
most important to telecommunications engineers, managers, and executives. These
metrics are the typical desired output of an analysis, design, or concept. They form the
basis of contract language, system specifications, and network design. Without a target
metric for design or evaluation, a system can be constructed that fails to meet the end
customer’s expectations. System metrics are calculated by making assumptions or
assignments of statistical distributions. These statistical distributions form the basis for
an analysis and are crucial to the accuracy of the system model. A fundamental
understanding of the statistical models used in reliability is important. The statistical
distributions commonly used in telecommunications reliability analysis are presented
from a quantitative mathematical perspective. Review of the basic concepts of proba-
bility and statistics that are relevant to reliability analysis are also presented.

Having developed a clear, concise understanding of the required probability and
statistics theory, this chapter focuses on techniques of reliability analysis. Assumptions
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8 RELIABILITY THEORY

adopted for failure and repair of individual components or systems are incorporated into
larger systems made up of many components or systems. Several techniques exist for
performing system analysis, each with its own drawbacks and advantages. These
analysis techniques include reliability block diagrams (RBDs), Markov analysis, and
numerical Monte Carlo simulation. The advantages and disadvantages of each of the
presented approaches are discussed along with the technical methodology for conduct-
ing each type of analysis.

System sparing considerations are presented in the final section of this chapter.
Component sparing levels for large systems is a common consideration in telecommu-
nications systems. Methods for calculating sparing levels based on the RMA repair
period, failure rate, and redundancy level are presented in this section.

Chapter 1 makes considerable reference to the well-established and foundational
work published in “System Reliability Theory: Models, Statistical Methods and
Applications” by M. Rausand and A. Hgyland. References to this text are made in
Chapter 1 using a superscript’ indicator.

1.1 SYSTEM METRICS

System metrics are arguably the most important topic presented in this book. The
definitions and concepts of reliability, availability, maintainability, and failure rate are
fundamental to both defining and analyzing telecommunications systems. During
the analysis phase of a system design, metrics such as availability and failure rate
may be calculated as predictive values. These calculated values can be used to develop
contracts and guide customer expectations in contract negotiations.

This section discusses the metrics of importance in telecommunications from both a
detailed technical perspective and a practical operational perspective. The predictive
and empirical calculation of each metric is presented along with caveats associated with
each approach.

1.1.1 Reliability

MIL-STD-721C (MILSTD,1981) defines reliability with two different complementary
definitions.

1. The duration or probability of failure-free performance under stated conditions.

2. The probability that an item can perform its intended function for a specified
interval under stated conditions. (For nonredundant items, this is equivalent to
definition 1. For redundant items this is equivalent to the definition of mission
reliability.)

Both MIL-STD-721C definitions of reliability focus on the same performance
measure. The probability of failure-free performance or mission success refers to the
likelihood that the system being examined works for a stated period of time. In order to
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quantify and thus calculate reliability as a system metric, the terms “stated period” and
“stated conditions” must be clearly defined for any system or mission.

The stated period defines the duration over which the system analysis is valid.
Without definition of the stated period, the term reliability has no meaning. Reliability is
a time-dependent function. Defining reliability as a statistical probability becomes a
problem of distribution selection and metric calculation.

The stated conditions define the operating parameters under which the reliability
function is valid. These conditions are crucial to both defining and limiting the scope
under which a reliability analysis or function is valid. Both designers and consumers of
telecommunications systems must pay particular attention to the “stated conditions” in
order to ensure that the decisions and judgments derived are correct and appropriate.

Reliability taken from a qualitative perspective often invokes personal experience and
perceptions. Qualitative analysis of reliability should be done as a broad-brush or high-
level analysis based in a quantitative technical understanding of the term. In many cases,
qualitative reliability is defined as a sense or “gut feeling” of how well a system can or will
perform. The true definition of reliability as defined in MIL-STD-721C is both statistical
and technical and thus any discussion of reliability must be based in those terms.

Quantitative reliability analysis requires a technical understanding of mathematics,
statistics, and engineering analysis. The following discussion presents the mathematical
derivation of reliability and the conditions under which its application are valid with
specific discussions of telecommunications systems applications.

Telecommunications systems reliability analysis has limited application as a useful
performance metric. Telecommunications applications for which reliability is a useful
metric include nonrepairable systems (such as satellites) or semirepairable systems
(such as submarine cables). The reliability metric forms the foundation upon which
availability and maintainability are built and thus must be fully understood.

1.1.1.1 The Reliability Function. The reliability function is a mathematical
expression analytically relating the probability of success to time. In order to completely
describe the reliability function, the concepts of the state variable and time to failure
(TTF) must be presented.

The operational state of any item at a time ¢ can be defined in terms of a state
variable X(f). The state variable X(#) describes the operational state of a system, item, or
mission at any time ¢. For the purposes of the analysis presented in this section, the state
variable X(¢) will take on one of two values.'

(1.1)

X(t) = {1 if the item state is functional or successful
0 if the item state is failed or unsuccessful

The state variable is the fundamental unit of reliability analysis. All of the future analyses
will be based on one of two system states at any given time, functional or failed (X(r) = 1 or
X(#) = 0). Although this discussion is limited to the “functional” and “failed” states, the
analysis can be expanded to allow X(¢) to assume any number of different states. It is not
common for telecommunications systems to be analyzed for partial failure conditions,
and thus these analyses are not presented in this treatment.
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We can describe the operational functionality of an item in terms of how its
operational state at time ¢ translates to a TTFE. The discrete TTF is a measure of the
amount of time elapsed before an item, system, or mission fails. It should be clear that
the discrete, single-valued TTF can be easily extended to a statistical model. In
telecommunications reliability analysis, the TTF is almost always a function of elapsed
time. The TTF can be either a discrete or continuous valued function.

Let the time to failure be given by a random variable 7. We can thus write that
probability that the time to failure T'is greater than # = 0 and less than a time ¢ (this is also
known as the CDF F(¢) on the interval [0,7)) as'

F(t)=Pr(T < t) forl0,1) (1.2)

Recall from probability and statistics that the CDF can be derived from the probability
density function (PDF) by evaluating the relationship

F(t) = Jf(u) du forallt >0 (1.3)
0

where f(u) is the PDF of the time to failure. Conceptually, the PDF represents a
histogram function of time for which f{¢) represents the relative frequency of occurrence
of TTF events.

The reliability of an item is the probability that an item does not fail for an interval
(0, 7]. For this reason, the reliability function R(?) is also referred to as the survivor
function since the item “survives” for a time f. Mathematically, we can write the
survivor function R(7) as’

R(t)=1—F(t) fort>0 (1.4)

Recall that F(¢) represents the probability that an item fails on the interval (0, 7] so
logically that the reliability is simply one minus that probability. Figure 1.1 shows the
familiar Gaussian CDF and the associated reliability function R(%).

1.1.2 Availability

In the telecommunications environment, the metric most often used in contracts,
designs, and discussion is availability. The dictionary defines available as “present
or ready for immediate use.” This definition has direct applicability in the world of
telecommunications. When an item or a system is referred to as being “available,” it is
inherently implied that the system is working. When the item or system is referred to as
“unavailable,” it is implied that the system has failed. Thus, when applied to a
telecommunications item or system, the term availability implies how ready a system
is for use. The technical definition of availability (according to MIL-STD-721C) is:

“ A measure of the degree to which an item or system is in an operable
and committable state at the start of a mission when the mission is
called for an unknown (random) time.”
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Figure 1.1. Gaussian CDF and associated reliability function R(t).

Both the technical definition and the qualitative dictionary definition have the same
fundamental meaning. This meaning can be captured by asking the question: “Is the
system ready for use at any particular instant in time?” The answer to this question can
clearly be formulated in terms of a statistical probability of readiness.

1.1.2.1 Availability Calculations. When examined as a statistical quantity,
the availability of an item or a system can take on two different quantitative definitions.
The average availability of an item or a system is the statistical probability of that item
or system working over a defined period of time. For example, if an item’s or a system’s
life cycle is considered to be 5 years and the availability of that item or system is of
interest, then the availability of that item or system can be calculated as

A item or system uptime (1.5)
~ item or system operational time '

In this case, the availability of the item or system is defined in terms of the percentage of
time the item or system is working with respect to the amount of time the item or system
has been in operation. (Note that the term “item” is used as shorthand to denote any
item, system, or subsystem being analyzed.) This form of calculation of availability
provides an average or mean availability over a specific period of time (defined by the
operational time). One interesting item of note in this calculation is that the average
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availability as presented above provides very little insight with regard to the duration
and/or frequency of outages that might occur, particularly in cases of long operational
periods. When specifying average availability as a metric or design criteria, it is
important to also specify maximum outage duration and failure frequency. Availability
lifecycle or evaluation period must be carefully considered, particularly when availa-
bility is used as a metric for contract language. Availability targets that are achievable on
an annual basis may be very difficult or impossible to achieve on monthly or even
quarterly intervals. The time to repair and total system downtime have a great impact on
availability over short intervals.

In order to visualize this concept, consider two different system designs, both of
which achieve the same life-cycle availability. First, consider a system design with a
replacement life cycle of 20 years. The system is designed to provide an average life-
cycle availability of 99.9%. That is, the probability that the system is available at any
particular instant in time is 0.999. The first system consists of a design with many
redundant components. These individual components have a relatively poor reliability
and need replacement on a regular basis. As a result, there are relatively frequent, short-
duration outages that result from the dual failure of redundant components. This system
is brought back online quickly, but has frequent outages. In the second system design,
the components in use are extremely reliable but due to design constraints repair is
difficult and therefore time consuming. This results in infrequent, long outages. Both
systems achieve the same life-cycle availability but they do so in very different manners.
The customer that uses the system in question would be well advised to understand both
the mean repair time for a system failure as well as the most common expected failure
modes in order to ensure that their expectations are met. Figure 1.2 provides a graphical

Frequent outages, short duration

System state

Time (h)

Infrequent outages, long duration

System state

Time (h)

Figure 1.2. Average availability for system 1 (short duration, frequent outages) and system 2
(long duration, infrequent outages).
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sketch of the scenario described above (note that the time scale has been exaggerated for
emphasis).

The technical definition of availability need not be limited to the average or mean
value. Availability can also be defined in terms of a time-dependent function A(7) given by

A(t)=Pr(X(t)=1) forallt >0 (1.6)

The term A(?) specifies availability for a moment in time and is thus referred to as the
instantaneous availability. The introduction of time dependence to the calculation of
availability implies that the availability of an item can change with time. This could be
due to a number of factors including early or late item failures, maintenance/repair
practice changes, or sparing considerations. In most telecommunications system analy-
ses, the steady-state availability is commonly used for system design or for contract
language definitions. This assumption may not be appropriate for systems that require
burn in or significant troubleshooting during system turn-up. Likewise, the system may
become more unavailable as the system ages and vendors discontinue the manufacture of
components or items begin to see late failures. The instantaneous availability A(?) is
related to the average availability A by the expression’

5]
1
Apverage = JA(t)dt (L.7)
h — 1

h

The most familiar form that availability takes in telecommunications system analysis is
in relation to the mean time between failures (MTBF) and the mean time to repair
(MTTR). These terms refer to the average (mean) amount of time that an item or a system
is functioning (MTBF) between failure events and the average (mean) amount of time
that it takes to place the item or system back into service. The average availability of a
system can thus be determined by calculating’

MTBF
(MTBF + MTTR)

AAverage = (1.8)

Availability is the average time between failures (operational time) divided by the
average downtime plus the operational time (total time).

Unavailability is defined as the probability that the system is not functional at any
particular instant in time or over a defined period of time. The expression for
instantaneous unavailability is

U(t) = Pr(X(r) =0) forallt >0 (1.9)
where U(?) represents time-dependent unavailability. The average value of unavailability
is given by

MTTR
(MTBF + MTTR)

UAverage =1- AAverage = (1.10)
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It should be clear to the reader that calculations performed using the average expressions
above are broad brush averages and do not give much insight into the variability of repair
or failure events in the item or system. Calculation of availability using the expression
above assumes that the sample set is very large and that the system achieves the average
behavior. The applicability of this average availability value varies from system to system.
In cases of relatively small-deployed component counts, this number may significantly
misrepresent the actual achieved results of a system. For example, if the availability of a
particular device (only one device is installed in the network of interest) is calculated using
the average value based on a vendor provided MTBF and an assumed MTTR, one might be
led to believe that the device availability is within the specifications desired. Consider a
case where the MTTR has a high variability (statistical variance). Also consider that the
device MTBF is very large, such that it might only be expected to fail once or twice in its
lifetime. The achieved availability and the average availability could have very different
values in this case since the variability of the repair period is high and the sample set is very
small. The availability analyst must make careful consideration of not only the average
system behavior but also the boundary behavior of the system being analyzed.

Bounding the achievable availability of an item or a system places bounds on the
risk. Risk can be financial, technical, political, and so on, but risk is always present in a
system design. Developing a clear understanding of system failure modes, expected
system performance (both average and boundary value), and system cost reduces risk
significantly and allows all parties involved to make the best, most informed decisions
regarding construction and operations of a telecommunications system.

1.1.3 Maintainability

Maintainability as a metric is a measure of how quickly and efficiently a system can
be repaired in order to ensure performance within the required specifications. MIL-
STD-721C defines maintainability as:

“The measure of the ability of an item to be retained in or restored to
specified condition when maintenance is performed by personnel
having specified skill levels, using prescribed procedures and resources,
at each prescribed level of maintenance and repair.”

The most common metric of maintainability used in telecommunications systems is the
MTTR. This term refers to the average amount of time that a system is “down” or not
operational. This restoral period can apply to either planned or unplanned outage events.
In the telecommunications environment, two types of downtime are typically
tracked or observed. There are downtime events due to planned system maintenance
such as preventative maintenance (PM), system upgrades, and system reconfiguration or
growth. These types of events are typically coordinated with between the system
operator and the customer and commonly fall outside of the contractual availability
calculations. The second type of downtime event is the outage that occurs due to a
failure in the system that results in a service outage. This system downtime is most
commonly of primary interest to system designers, operators, and customers.
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Scheduled or coordinated maintenance activities typically have predetermined
downtime that are carefully controlled to ensure compliance with customer expect-
ations. Such planned maintenance normally has shorter outage durations than
unplanned maintenance or repair. Unplanned outages usually require additional
time to detect the outage, diagnose its location, mobilize the repair activity, and get
to the location of the failure to effect the repair. Unplanned outages that result from
system failures result in downtime with varying durations. The duration and variability
of the outage durations is dependent on the system’s maintainability. A highly
maintainable system will have a mean restoral period that is low relative to the
system’s interfailure period. In addition, the variance of the restoral period will also be
small that ensures consistent, predictable outage durations in the case of a system
failure event.

MTTR is commonly used interchangeably with the term mean downtime (MDT).
MDT represents the sum of the MTTR and the time it takes to identify the failure and to
dispatch for repair. Failure identification and dispatch in telecommunications systems
can vary from minutes to hours depending on the system type and criticality.

In simple analyses, MDT is modeled assuming an exponential statistical
distribution in which a repair rate is specified. Although this simplifying assumption
makes the calculations more straightforward, it can result in significant inaccuracies
in the resulting conclusions. Telecommunications system repairs more accurately
follow normal or lognormal statistical distributions in which the repair of an item
or a system has boundaries on the minimum and maximum values observed. The
boundaries can be controlled by specifying both the mean and standard deviation
of the repair period and by defining the distribution of repair based on those
specifications.

MDT can be empirically calculated by collecting real repair data and applying best-
fit statistical analysis to determine the distribution model and parameters that best
represent the collected dataset.

1.1.4 Mean Time Between Failures, Failure Rates, and FITs

The most fundamental metric used in the analysis, definition, and design of tele-
communications components is the MTBE. The MTBF is commonly specified by
vendors and system engineers. It is a figure of merit describing the expected perform-
ance to be obtained by a component or a system. MTBF is typically provided in hours
for telecommunications systems.

The failure rate metric is sometimes encountered in telecommunications systems.
The failure rate describes the rate of failures (typically in failures per hour) as a function
of time and in the general case is not a constant value. The most common visualization
of failure rate is the bathtub curve where the early and late failure rates are much higher
than the steady-state failure rate of a component (bottom of the bathtub). Figure 1.3
shows a sketch of the commonly observed “bathtub” curve for electronic systems. Note
that although Figure 1.3 shows the failure rates early in system life and late in system
life as being identical, in general, both the rate of failure rate change dz(¢)/dt and the
initial and final values of failure rate are different.
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Failure rate bathtub curve
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Figure 1.3. Bathtub curve for electronic systems.

A special case of the failure rate metric is the failures in time (FITs) metric. FITs are
simply the failure rate of an item per billion hours:

2(1)
FITS = — 1.11
10 (1.11)
where z(¢) is the time-dependent failure rate expression. FITS values provided for
telecommunications items are almost exclusively constant.

1.1.4.1 MTBF. The mean time to failure defines the average or more specifically
the expected value of the TTF of an item, subsystem, or a system. Reliability and
availability models rely upon the use of random variables to model component
performance. The TTF of an item, subsystem or system is represented by a statistically
distributed random variable. The MTTF is the mean value of this variable. In almost all
telecommunications models (with the exception of software and firmware), it is
assumed that the TTF of a component is exponentially distributed and thus the failure
rate is constant (as will be shown in Section 1.2.1). The mean time to failure can be
mathematically calculated by applying (Bain and Englehardt, 1992)

MTTF = E[TTF| = J t-f(1)dt (1.12)
0
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This definition is the familiar first moment or expected value of a random variable. The
commonly used MTBF can be approximated by the MTTF when the repair or restoral
time (MDT) is small with respect to the MTTF. Furthermore, if the MTTF < oo, then we
can write the MTTF as (by applying f{f)= —R’ )"

MTTF = JR(t)dt (1.13)
0

This expression is particularly useful for calculating the MTTF (or MTBF) in many
circumstances.

Telecommunications engineers must be particularly careful when using vendor-
provided MTBF values. In many cases, the MTBF and the failure rate are presented as
interchangeable inverses of each other. This special case is only true if one assumes that
the TTF of a component is exponentially distributed. If the TTF of a component is not
assumed to be exponentially distributed, this condition does not hold.

d

z(1) = dtln R(1) (1.14)
Note that except in the case where the TTF or TTR is exponentially distributed, the
resultant failure rate is not constant. It is typically safe to assume that the MTBF
and failure rate are inverses of each other if steady-state operation is assumed
(see Figure 1.3). In the steady-state operation case, the failure rate is constant and
the assumption of exponentially distributed TTFs holds. Early and late failure rates
are time dependent and the exponential distribution assumption is invalid. Furthermore,
if the system being considered employs redundancy, it does not necessarily hold that the
redundant combination of components is exponentially distributed.

1.1.4.2 Failure Rates and FITs. The mathematical definition of failure rate is
the probability that an item fails on an infinitesimally small interval (Af) given that it has
not failed at time ¢!

Prt<T<t+At|T>1) = Pr(t;r(TTitt;“ A _Fl+ 22)_ FO s

If we take equation 1.15 and divide by an infinitesimally small time Az (on both the LHS
and RHS), then the failure rate z(¢) is given byl

. F+An—F(@) 1 1)
A = i R0~ RO (1.16)

=

=

The failure rate of an item or a component can be empirically determined by examining
the histogram statistics of failure events. Empirical determination of the failure rate of a
component in telecommunications can provide valuable information. It is therefore
important to collect failure data in an organized, searchable format such as a database.
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This allows post processors to determine time to failure and failure mode. Empirical
failure rate determination is of particular value for systems where the deployed
component count is relatively high (generally greater than approximately 25 items
for failure rates observed in nonredundant telecommunications systems). In these cases,
the system will begin to exhibit observable statistical behavior. Observation of these
statistics allows the system operator or system user to identify and address systemic or
recurring problems within the system.

The empirical failure rate of a system can be tabulated by separating the time
interval of interest into k disjoint intervals of duration Atz. Let n(k) be the number of
components that fail on the kth interval and let m(k) be the number of functioning
components on the kth interval. The empirical failure rate is the number of failures per
interval functioning time. Thus, if each interval duration is Ar'

n(k)
2(k) = (k) - Mt (1.17)
In cases of a large number of deployed components, the calculation of empirical failure
rate can allow engineers to validate assumptions about failure distributions and steady-
state conditions. Continuous or ongoing calculations of empirical failure rate can allow
operators to identify infant mortality conditions or wear out proactively and preemp-
tively deal with these issues before they cause major service-affecting outages.
Typical telecommunications engineers commonly encounter failure rates and FITs
values when specifying subsystems or components during the system design process.
Failure rates are rarely specified by vendors as time-dependent values and must be
carefully examined when used in reliability or availability analyses. The engineer must
ask him or herself whether the component failure rate is constant from a practical
standpoint. If the constant failure rate assumption is valid, the engineer must then apply
any redundancy conditions or requirements to the analysis. As will be seen later in this
book, analysis of redundant systems involves several complications and subtleties that
must be considered in order to produce meaningful results.

1.2 STATISTICAL DISTRIBUTIONS

System reliability analysis relies heavily on the application of theories developed in the
field of mathematical probability and statistics. In order to model the behavior of
telecommunications systems, the system analyst must understand the fundamentals of
probability and statistics and their implications to reliability theory. Telecommunica-
tions system and component models typically use a small subset of the modern
statistical distribution library. These distributions form the basis for complex failure
and repair models. This section presents the mathematical details of each distribution of
interest and discusses the applications for which those models are most relevant. The
last section discusses distributions that may be encountered or needed on rare occasions.
Each distribution discussion presents the distribution probability density function (PDF)
and cumulative distribution function (CDF) as well as the failure rate or repair rate of the
distribution.
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1.2.1 Exponential Distribution

The exponential distribution is a continuous statistical distribution used extensively in
reliability modeling of telecommunications systems. In reliability engineering, the
exponential distribution is used because of its memory-less property and its relatively
accurate representation of electronic component time to failure.! As will be shown in
Section 1.3, there are significant simplifications that can be made if a component’s time

to failure is assumed to exponential.
The PDF of the exponential distribution is given by (Bain and Englehardt, 1992)
) = {Ae‘“ forx >0

0 forx <0 (1.18)

Figure 1.4 shows a plot of the exponential PDF for varying values of A. The values of A
selected for the figure reflect failure rates of one failure every 1, 3, or 5 years. These
selections are reasonable expectations for the field of telecommunications and depend
upon the equipment type and configuration.

Recalling that the CDF (Figure 1.5) for the exponential distribution can be
calculated from the PDF (Bain and Englehardt, 1992)

M forx >0

forx <0 (1.19)

Flx) = T F()dx = { (1) -
0

Exponential probability density function
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Figure 1.4. Exponential distribution PDF for varying values of 1.
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Figure 1.5. Exponential distribution CDF for varying values of 1.

Figure 1.5 plots the CDF for the same failure rates presented in Figure 1.4.

When using the exponential distribution to model the time to failure of an electronic
component, there are several metrics of interest to be investigated. The mean time to
failure (MTTF) of an exponential random variable is given by

MTTF = E[X] = Jx- f(x)dx:% (1.20)
0

where X ~ EXP(A) with failure rate given by A. Exponentially distributed random
variables have several properties that greatly simplify analysis. Exponential random
variables do not have a “memory.” That is, the future behavior of a random variable is
independent of past behavior. From a practical perspective, this means that if a
component with an exponential time to failure fails and is subsequently repaired
that repair places the component in “as good as new” condition.

The historical development of component modeling using exponential random
variables is derived from the advent of semiconductors in electronic systems. Semi-
conductor components fit the steady-state constant failure rate model well. After an
initial burn-in period exposes early failures, semiconductors exhibit a relatively constant
failure rate for an extended period of time. This steady-state period can extend for many
years in the case of semiconductor components. Early telecommunications systems
consisted of circuit boards comprised of many discrete semiconductor components.
As will be shown in Section 1.3, the failure rate of a serial system of many exponentially
distributed semiconductor components is simply the sum of the individual component
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failure rates. Furthermore, since the sum of individual exponential random variables is
an exponentially random variable, the failure rate of the resultant circuit board is
exponentially distributed.

Modern telecommunications systems continue to use circuit boards comprised of
many semiconductor devices. Modern systems use programmable components consisting
of complex software modules. This software complicates analysis of telecommunications
systems. Although the underlying components continue to exhibit exponentially distrib-
uted failure rates, the software operating on these systems is not necessarily exponentially
distributed.

Although the exponential distribution is commonly used to model component
repair, it is not well suited for this task. The repair of components typically is much more
accurately modeled by normal, lognormal, or Weibull distributions. The reason that
repair is typically modeled by an exponential random variable is due to the ease of
analysis. As will be shown in Section 1.3, both the reliability block diagram (RBD) and
Markov chain techniques of analysis rely upon the analyst assuming that repairs can be
modeled by an exponential random variable. When the repair period of a system is very
small with respect to the time between failures, this assumption is reasonable. When the
repair period is not insignificant with respect to the time between failures, this
assumption does not hold.

1.2.2 Normal and Lognormal Distributions

The normal (Gaussian) and lognormal distributions are continuous statistical distribu-
tions used to model a multitude of physical and abstract statistical systems. Both
distributions can be used to model a large number of varying types of system repair
behavior. In telecommunications systems, the failure can many times be well repre-
sented by the exponential distribution. Repair is more often well modeled by normal or
lognormal random variables. System analysts or designers typically make assumptions
or collect empirical data to support their system time to repair model selections. It is
common to model the repair of a telecommunications system using a normal random
variable since the normal distribution is completely defined by the mean and variance of
that variable. These metrics are intuitive and useful when modeling system repair. In
cases where empirical data is available, performing a best-fit statistical analysis to
determine the best distribution for the time to repair model is recommended.
The PDF of the normal distribution (Bain and Englehardt, 1992) is given as

1 (-p)?
e 27 (1.21)
V2mro?

The normal distribution should be familiar to readers. The mean value (1) represents the
average value of the distribution while the standard deviation (o) is a measure of the
variability of the random variable. The lognormal distribution is simply the distribution
of a random variable whose logarithm is normally distributed. Figure 1.6 shows the PDF
of a normal random variable with £ =8h and ¢ =2h. These values of mean and
standard deviation represent the time to repair for an arbitrary telecommunications
system.

flx,p,0%) =
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Normal TTR PDF with u=8h, c=2h
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Figure 1.6. Normal distribution PDF of TTR, where n=8h and o=2h.

The CDF of the normal distribution is given by a relatively complex expression
involving the error function (erf) (Bain and Englehardt, 1992).

F(x, t,0%) = % <1 +erf <xai/g)> (1.22)

Figure 1.7 shows the cumulative distribution function of the random variable in
Figure 1.6. The CDF provides insight into the expected behavior of the modeled repair
time. The challenge in application of normally distributed repair models comes from the
combination of these random variables with exponentially distributed failure models.
Neither the reliability block diagram nor the Markov chain techniques allow the analyst
to use any repair distribution but the exponential distribution. The most practical method
for modeling system performance using normal, lognormal, or Weibull distributions is
to apply Monte Carlo methods. Reliability and failure rate calculations are not presented
in this section as it would be very unusual to use a normally distributed random variable
to model the time to failure of a component in a telecommunications system. Exceptions
to this might occur in submarine cable systems or wireless propagation models.

1.2.3 Weibull Distribution

The Weibull distribution is an extremely flexible distribution in the field of reliability
engineering. The flexibility of the Weibull distribution comes from the ability to model
many different lifetime behaviors by careful selection of the shape («) and scale (A)
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Normal TTR CDF with u=8h, c=2h
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Figure 1.7. Normal distribution CDF of TTR, where 4 =8h and o =2h.

parameters. Generally, all but the most sophisticated telecommunications systems
failure performance models use exponentially distributed time to failure. The Weibull
distribution gives the analyst a powerful tool for modeling the time to failure or time to
repair of nonelectronic system components (such as fiber-optic cables or generator sets).
Parameter selection for Weibull distributed random variables requires expert knowledge
of component performance or empirical data to ensure that the model properly reflects
the desired parameter.

The PDF of a Weibull distributed random variable T ~ Weibull(c, A) with @ > 0 and
A >0 is given by equation 1.23 while the CDF of the time to failure T is given by
equation 1.24 (Bain and Englehardt, 1992).

art* e~ for >0
) = 1.23
1) {O otherwise (1.23)
1—e ™" forr>0
F(t)=Pr(T <t) = 1.24
(x) (T <1 {0 otherwise (1.24)

The two parameters in the Weibull distribution are known as the scale () and the shape
(o). When the shape parameter « = 1, the Weibull distribution is equal to the familiar
exponential distribution where A mirrors the failure rate as discussed in Section 1.2.1.
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The reliability function of a Weibull distributed random variable can be calculated
by applying the definition of reliability in terms of the distribution CDF. That is

RO)=1—F()=Pr(T >1t)=¢ ™" fort>0 (1.25)

Recalling that the failure rate of a random variable is given by

Z(t) = ';% =a 2% fort >0 (1.26)

Empirical curve fitting or parameter experimentation are generally the best methods for
selection of the shape and scale parameters for Weibull distributed random variables
applied to telecommunications system models.

Figure 1.8 shows the PDF and CDF of a Weibull distributed random variable
representing the time to repair of a submarine fiber-optic cable.

1.2.4 Other Distributions

The field of mathematical probability and statistics defines a very large number of
statistical distributions. All of the statistical distributions defined in literature have
potential for use in system models. The difficulty is in relating distributions and their
parameters to physical systems.

System analysts and engineers must rely on academic literature, research, and
expert knowledge to guide distribution selection for system models. This book focuses

Weibull TTR submarine fiber cable PDF with scale = 14 days, shape = 0.5 days
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Figure 1.8. Weibull distributed random variable for submarine fiber-optic cable TTR.
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on the presentation of relevant probability and statistics theory, and the concepts
presented here have common practical application to telecommunications systems.
More complex or less relevant statistical distributions not presented here are not
necessarily irrelevant or inapplicable but rather must be used with care as they are
not commonly used to model telecommunications systems.

On the most fundamental level, the entire behavior of a system or component is
dictated by the analyst’s selection of random variable distribution. As such, a significant
amount of time and thought should be spent on the selection and definition of these
statistical models. Care must be taken to ensure that the distribution selected is
appropriate, relevant, and that it accurately reflects either the time to failure or time
to repair behavior of the component of interest. Improper or incorrect distribution
selection invalidates the entire model and the results produced by that model.

1.3 SYSTEM MODELING TECHNIQUES

Analysis of telecommunications systems requires accurate modeling in order to produce
relevant, useful results. The metrics discussed in Section 1.1 are calculated by
developing and analyzing system models. Many different reliability and availability
modeling techniques exist. This book presents the methods and theories that are most
relevant to the modeling and analysis of telecommunications systems. These techniques
include RBD models, Markov chains, and Monte Carlo simulation. Each method has
advantages and disadvantages. RBDs lend themselves to quick and easy results but
sacrifice flexibility and accuracy, particularly when used with complex system top-
ologies. Markov chain analysis provides higher accuracy but can be challenging to
apply and requires models to use exponentially distributed random variables for both
failure and repair rates. Monte Carlo simulation provides the ultimate in accuracy and
flexibility but is the most complex and challenging to apply and is computationally
intensive, even for modern computing platforms.

Availability is the most common metric analyzed in telecommunications systems
design. Although reliability analysis can produce interesting and useful information,
most systems are analyzed to determine the steady-state average (or mean) availability.
RBDs and Markov chains presented in this chapter are limited to providing mean values
of reliability or availability. Monte Carlo simulation techniques can be used to
calculate instantaneous availabilities for components with nonconstant failure rates.
The following sections present model theory and analysis techniques for each method
discussed.

1.3.1 System Reliability

Analysis of system reliability requires the evaluation of interacting component
random variables used to model failure performance of a system. This analysis is
performed by evaluating the state of n discrete binary state variables X;(¢), wherei =1,
2,..., 0.
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Recall that the reliability function of a component is the probability that the
component survives for a time ¢. Thus, the reliability of each component state variable
X,(t) can be written as’

EX;(1)] =0 x Pr(X;(t) =0) + 1 x Pr(X;(t) = 1) = Ri(t) for i=1,2,...,n. (1.27)
Equation 1.27 can be extended to the system case by applying'
Rs(1) = E[S(1)] (1.28)

where S(7) is the structure function of the component state vector X (1) = [X;, X, - . . ,
X,]. If we assume that the components of the system are statistically independent, then it
can be shown that:'

Rs(t) = h(R, (1), Ro(1), . .., Ru(t)) = h(R(t)) (1.29)

1.3.2 Reliability Block Diagrams

RBDs are a common method for modeling the reliability of systems in which the order
of component failure is not important and for which no repair of the system is
considered. Many telecommunications engineers and analysts incorrectly apply parallel
and serial reliability block diagram models to systems in which repair is central to the
system’s operation. Results obtained by applying RBD theory to availability models can
produce varying degrees of inaccuracy in the output of the analysis. RBDs are success-
based networks of components where the probability of mission success is calculated as
a function of the component success probabilities. RBD theory can be understood most
easily by considering the concept of a structure function. Figure 1.9 shows the reliability
block diagram for both a series and a parallel combination of two components.

1.3.2.1 Structure Functions. Consider a system comprised of n independent
components each having an operational state x;. We can write the state of the ith
component as shown in equation 1.30." This analysis considers the component x; to be a
binary variable taking only one of two states (working or failed).

o 1 if the component is working (1.30)
"7 1 0 if the component has failed ’
Thus, the system state vector X can be written as X = (x, X, X3, . . . , X,,). If we assume

that knowledge of the individual states of x; in x implies knowledge of the state of x, we
can write the structure function S(x)'

S(x) = { 1 if the system is working (1.31)

0 if the system has failed
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Series reliability block diagram

e———— Component 1 Component2 ———

Parallel reliability block diagram

Component 1

Component 2

Figure 1.9. Series and parallel reliability block diagrams.’

where S(x) is given by’

S(x) = S(x1, x2, x3..., x) (1.32)

Thus, the structure function provides a resultant output state as a function of
individual component states. It is important to note that reliability block diagrams
are success-based network diagrams and are not always representative of system
functionality. Careful development of RBDs requires the analyst to identify
components and subsystems that can cause the structure function to take on
the “working” or “failed” system state. In many cases, complex systems can be
simplified by removing components from the analysis that are irrelevant. Irrelevant
components are those that do not change the system state regardless of their failure
condition.

RBDs can be decomposed into one of two different constituent structure types
(series or parallel). It is instructive to analyze both of these system structures in order to
develop an understanding of system performance and behavior. These RBD structures
will form the basis for future reliability and availability analysis discussions.

1.3.2.2 Series Structures. Consider a system of components for which
success is achieved if and only if all the components are working. This component
configuration is referred to as a series structure (Figure 1.10). Consider a series
combination of n components. The structure function for this series combination of

o———— Component 1 Component 2 Componentn | ———e

Figure 1.10. Series structure reliability block diagram.
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components can be written as shown in equation 1.33, where x,, is the state variable for
the nth component.'

S(X) =x] XX X ... XX, = Hx,- (1.33)
i1

Series structures of components are often referred to as “single-thread” systems in
telecommunications networks and designs. Single-thread systems are so named because
all of the components in the system must be functioning in order for the system to
function. Single-thread systems are often deployed in circumstances where redundancy
is either not required or not practical. Deployment of single-thread systems in tele-
communications applications often requires a trade-off analysis to determine the benefits
of single-thread system simplicity versus the increased reliability of redundant systems.

The reliability of series structures can be computed by inserting equation 1.33 into
equation 1.29 as shown below'

S(X(1)) = ﬁX,-(t) (1.34)
i=1

ﬁxi(f)

i=1

R(S(t)) =E

_ E[X:(1)] = ﬁRi(t) (1.35)

It is worth noting that the reliability of the system is at most as reliable as the least
reliable component in the system'

R(S(r)) < min(R;(1)) (1.36)

Figure 1.11 shows a single-thread satellite link RF chain and the reliability block
diagram for that system. The reliability of the overall system is calculated below.

System block diagram

Frequency
converter

High-power
amplifier

Reliability block diagram

Digital modem

Frequency High-power
converter amplifier

e——— Digital modem

Figure 1.11. Single-thread satellite link RF chain.
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Table 1.1. RF Chain Model Component Performance

Frequency Converter Digital Modem High-Power Amplifier
MTBF = 95,000 h MTBF = 120,000 h MTBF =75,000h
R(4,380h) =95.5% R(4,380h) =96.4% R(4,380h) =94.3%

Assume that the components of the RF chain have the following representative
failure metrics (Table 1.1). We will calculate the probability that system survives 6
months of operation (1= (365 x 24/2) =4380h).

If we apply equation 1.35, we find that the system reliability is given by:

R(S(I)) = HRi(t) = Rconverter X Rmodem X RSSPA = 868%
i=1

Although the relative reliabilities of the frequency converter, modem, and SSPA
components are similar, the serial combination of the three elements results in a
much lower predicted system reliability. Note that the frequency converter reliability
includes the local oscillator.

1.3.2.3 Parallel Structures. Consider a system of components for which
success is achieved if any of the components in the system are working. This component
configuration is referred to as a parallel structure as shown in Figure 1.12. Consider a
parallel combination of n components. The structure function for this parallel combi-
nation of components can be written as shown in equation 1.37, where x,, is the state
variable for the nth component.'

n

S)=1-(1-x)x(1-x)x...(l-x)=1-J[(1-x) (1.37)

i=1

Component 1

Component 2

I--mmm Component n f------- '

Figure 1.12. Parallel structure reliability block diagram.’



30 RELIABILITY THEORY

System block diagram

HPA 1

Frequency
converter

I HPA 2

High-power amplifier system

Switch —

Digital modem

Reliability block diagram

HPA 1

Frequency
converter

e——Digital modem

HPA 2

Figure 1.13. Parallel satellite RF chain system.

Parallel structures of components are often referred to as one-for-one or one-for-n
redundant systems in telecommunications networks and designs. Redundant systems
require the operation of only one of the components in the system for success.
Figure 1.13 is a graphical depiction of a redundant version of the high power amplifier
system portion of the satellite RF chain shown in Figure 1.11. This configuration of
components dramatically increases the reliability of the RF chain but requires increased
complexity for component failure switching. For the purposes of this simple example,
the failure rate of the high-power amplifier switching component will be assumed to
have a negligible impact on the overall system reliability.

Parallel system reliability is calculated by applying equation 1.37 to equation 1.29.
The calculation follows the same procedure as shown in equations 1.34 and 1.35:

n

S(X(1) =1 -1 = X(r)) (1.381)

i=1
where S(X(?)) is the redundancy structure function for the HPA portion of the RF chain.

n

=1-JJ-Rv) (1.39h)

i=1

-0 - x0)

i=1

R(S(t)) = E

Examining the reliability improvement obtained by implementing redundant high-
power amplifiers, we find that the previously low reliability of the single-thread
amplifier now far exceeds that of the reliability of the single-thread modem and
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frequency converter. It can generally be found that the most significant improvement in
system reliability performance can be obtained by adding redundancy to critical system
components. Inclusion of secondary or tertiary redundancy systems continues to
improve performance but does not provide the same initially dramatic increase in
reliability that is observed by the addition of redundancy to a component or a subsystem.

R(S(t)) = Reonverter X Rmodem X Rupa

In this case, Rypa is a redundant system

2
RSSPASys[cm =1- H (1 — RSSPA,v) =1- (1 — RSSPA) X (1 — RHPA) = 997%

i—1
Thus, the total system reliability is now

R(S(t)) = Reonverter X Rmodem X RHPAS),SIEm =91.8%

1.3.2.4 k-Out-of-n Structures. The k-out-of-n structure is a system of com-
ponents for which success is achieved if k£ or more of the n components in the system are
working (this text assumes the “k-out-of-n: working” approach. A second approach is
published in literature (Way and Ming, 2003), where success is achieved if k-out-of-n of
the system components have failed “k-out-of-n: failed.” This approach is not discussed
here although the mathematics of this approach is very similar). This component
configuration is referred to as a k-out-of-n structure. The parallel structure presented is a
special case of the k-out-of-n structure, where k=1 and n =2 (one out of two). The
structure function for this redundant combination of components can be written as
shown in equation 1.40, where x,, is the state variable for the nth component (Way and
Ming, 2003).

1 if Xn:xi >k
i=1

S(X) = - (1.40)
0 if in <k
i=1

k-out-of-n structures occur commonly in telecommunications systems. They are
implemented in multiplexer systems, power rectification and distribution and RF power
amplifiers among other systems. The advantage of implementing a k-out-of-n redun-
dancy structure is cost savings. For example, a one-for-two redundancy configuration
has k=2 and n = 3. The one-for-two redundancy configuration is common in solid state
power amplifier systems and power rectification systems, where modularity allows for
expansion and cost savings. In this configuration, one of the three modules is redundant
and thus k=2. The cost savings that are obtained in this configuration can be
substantial.
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Consider the system where parallel or one-for-one redundancy is implemented.

Total Modules Required = (2working modules) + (2 protection modules) = 4 modules

Now consider the one-for-two configuration.

Total Modules Required = (2 working modules)+( 1 protection module) = 3 modules

The trade-off in this configuration is cost versus failure performance. The one-
for-one configuration represents a 33% increase in component count over the
one-for-two system. As will be shown through system reliability analysis, the
reduction in reliability is relatively small and is often determined to be a reasonable
sacrifice.

Calculation of k-out-of-n system reliability can be performed by observing that
since the component failure events are assumed to be independent, we find that
summation of the component states S(X) is a binomially distributed random
variable'

S(X) = ixi(;) — S(X) ~ bin(n, R(t)) (1.41)
i=1

Note this treatment assumes that all of the components in the redundant system are
identical. Recalling the probability of a specific binomial combination event'

Pr(s(x) =) = (1 JR0) (1 = R 14

In the working k-out-of-n case, we are interested in the probability of the summation
SX)>k.!

n

Pr(s(x) =0 = 3 (RGP (1~ R (1.43)

y=k

Equation 1.43 simply sums all of the discrete binomial probabilities for states in which
the system is working.

Examination of the previously discussed HPA redundant system shows that the
two-out-of-three configuration results in a relatively small reduction in reliability
performance with a large cost savings (see Figure 1.14 for a system block diagram
and the associated reliability block diagram for the 1:2 HPA system).

3
PrS(X) >2) = ZG)RHPA}'U ~ Ripa)”
y=2

Pr(S(X)>2) = <;>0.9432(1 —0.943)" + (§>0.9433 ~99.1%
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System block diagram

HPA 1
HPA 2
Digital modem Frequency Q Switch -
converter
i BU

High-power amplifier system

Reliability block diagram

—| HPA 1 |—| HPA 2 l—
| Digital modem Frequency I HPA 1 |—| BU HPA l——.

—| HPA 2 |—| BU HPA l—

Figure 1.14. One-for-two (1:2) redundant HPA system block diagram.

1.4 SYSTEMS WITH REPAIR

The discussion of system failure performance up to this point has only examined
systems in which repair is not possible or is not considered. Specifically, the term
“reliability block diagram” refers to the success-based network of components
from which system reliability is calculated. It is instructive to recall here that the
definition of reliability is “the probability that an item can perform its intended function
for a specified interval under stated conditions,” as stated in Section 1.1. Thus, by
definition, the behavior of the component or system following the first failure is not
considered. In a reliability analysis, only the performance prior to the first failure is
calculated.

For components (and systems of components), subject to repair after failure,
different system modeling techniques must be used to obtain accurate estimates of
system performance. The most common system performance metric used in repairable
systems is availability. Availability is often used as a key performance indicator in
telecommunications system design and frequently appears in contract service-level
agreement (SLA) language. By specifying availability as the performance metric of
interest, the analyst immediately implies that the system is repairable. Furthermore, by
specifying availability, the applicability of RBDs as an analysis approach must be
immediately discounted.
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This section presents several key concepts related to repairable system analysis.
These concepts include system modeling approaches, repair period models, and
equipment sparing considerations. Each of these concepts plays an important role in
the development of a complete and reasonable system model.

Two distinct modeling approaches are presented: Markov chain modeling and
Monte Carlo simulation. Markov chain modeling is a state-based approach used to
build a model in which the system occupies one of n discrete states at a time ¢. The
probability of being in any one of the n states is calculated, thus resulting in a measure
of system performance based on state occupation. Markov chain modeling is an
extensively treated topic in literature and is useful in telecommunications system
modeling of relatively simple system topologies. This book presents only a simple,
abbreviated treatment of Markov chain analysis and interested readers are encouraged
to do further research. More complex system configurations are better suited to Monte
Carlo simulation-based models. Monte Carlo simulation refers to the use of numerical
(typically computer-based) repetitive simulation of system performance. The Monte
Carlomodelis “simulated” for a specific system life many times and the lifetime failure
statistics across many simulation “samples” are compiled to produce system perform-
ance statistics. Many performance metrics that can be easily derived from simulation
results include failure frequency, time to failure (both mean and standard deviation),
and availability among others. Although powerful results are available from applying
Monte Carlo simulation, the development and execution of these models can be
complex and tedious. An expert knowledge of reliability theory is often required to
obtain confident results. Monte Carlo concepts and basic theory are presented in this
section.

Repairable system models rely not only upon the assumed component TTF
distributions (typically exponential) but also on the time to repair (TTR) distributions.
It is shown in this chapter that one of the major drawbacks of applying Markov chain
analysis techniques is that the TTR distribution must be exponential. This severely
limits the models flexibility. In cases of electronic components or systems with
TTF > TTR, this assumption is often reasonable. It should be clear to the reader
that an exponentially distributed random variable is an inherently poor model of
telecommunications system repairs. Unfortunately, it is often the case in telecommu-
nications systems that the TTF > TTR assumption does not necessarily hold. This
section presents the limitations and drawbacks of assuming an exponentially distributed
TTR. In addition to the exponentially distributed time to repair, this section discusses
Weibull, normal, and lognormal repair distributions and provides applications for these
models.

The last section of this chapter presents the topic of system sparing. The concept of
sparing in telecommunications systems should be familiar to anyone working in the
field. Although the importance of sparing is typically recognized, it is often under-
analyzed. Calculation of required sparing levels based on return material authorization
(RMA) or component replacement period is presented. Cost implications and geo-
graphic considerations are also discussed. Component sparing can have significant
impacts on the availability of a system but because it is not typically considered as part
of the total system model, it is often overlooked and neglected.



MARKOV CHAIN MODELS 35

1.5 MARKOV CHAIN MODELS

Consider a system consisting of a number of discrete states and transitions between
those states. A Markov chain is a stochastic process (stochastic processes have behavior
that is intrinsically nondeterministic) possessing the Markov property. The Markov
property is simply the absence of “memory” within the process. This means that the
current state of the system is the only state that has any influence on future events. All
historical states are irrelevant and have no influence on future outcomes. For this reason,
Markov processes are said to be “memory-less.” It should be noted that Markov chains
are not an appropriate choice for modeling systems where previous behavior has an
affect on future performance.

To form a mathematical framework for the Markov chain, assume a process
{X(7), t> 0} with continuous time and a state space x={0, 1, 2, ..., r}. The state
of the process at a time s is given by X(s) =i, where i is the ith state in state space .
The probability that the process will be in a state j at time 7+ s is given by’

PrX(t+s)=j|X(s) =1), X(u) =x(u),0 <u <ys) (1.44)

where {x(u), 0 <u < s} denotes the processes “history” up to time s. The process is said
to possess the Markov property if'

PrX(t+s)=j|X(s) =1i), X(u) = x(u),

(1.45)
0 <u<s)=Pr(X(t+s)=j|X(s)=i) forallx(u),0<u<s

Processes possessing the behavior shown in equation 1.45 are referred to as Markov
processes. The Markov process treatment presented in this book assumes time-homo-
geneous behavior. This means that system global time does not affect the probability of
transition between any two states i and j. Thus'

PrX(t+s) =jlX(s) =i) =Pr(X(t) =j| X(0) =i) foralls,t (1.46)

Stated simply, equation 1.46 indicates that the probability of moving between states i and
Jj is not affected by the current elapsed time. All moments in time result in the same
probability of transition.

One classic telecommunications system problem is the calculation of availability
for the one-for-one redundant system. Several different operational models exist in the
one-for-one redundant system design. The system can be designed for hot-standby,
cold-standby, or load-sharing operation. Each of these system design choices has an
impact on the achievable system availability and the maintainability of the system. The
Markov chain modeling technique is well suited to model systems of this type as long as
the repair period is much shorter than the interfailure period (time to failure). This
redundancy problem will be used to demonstrate the application and use of Markov
chains in system modeling for the remainder of this section.
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1.5.1 Markov Processes

Assume that a system can be modeled by a Markov process {X(#), t > 0} with state space

x=1{0, 1,2, ..., r}. Recall that the probability of transition between any two states

i and j is time independent (stationary). The probability of a state transition from i to j is
. 1

given by

P;(t) = Pr(X(r) =j|X(0) =i) forall i,j € x (1.47)
That is, Pj; is the probability of being in state j given that the system is in state 7 at time

t=0. One of the most powerful implications of the Markov process technique is the
ability to represent these state transition probabilities in matrix form

Poo(t)  Po(1)
P(1) = Plf(t) . P”:(t) (1.48)
Palt) 1 Py(0)
Since the set of possible states xy ={0, 1,2, . . . ,r}isfinite and i, j € x, forall t > 0, we

find that the sum of all matrix row transition probabilities must necessarily be equal to
unity.

> Pi(t)=1 forallicy (1.49)
=0

The rows in the transition matrix represent the probability of a transition out of state i
(where i # j) while the columns of the matrix represent the probability of transition into
state j (where i # j).

From a practical perspective, the definition of a model using the Markov chain
theory is relatively straightforward and simple. The approach presented here forgoes a
number of mathematical subtleties in the interest of practical clarity. Readers interested
in a more mathematical (and rigorous) treatment of the Markov chain topic are referred
to Rausand and Hgyland (2004).

As shown in equation 1.48, the Markov chain can be represented as a matrix of
values indicating the probability of either entering or leaving a specific state in the state
space x. We introduce the term ‘““sojourn time” to indicate the amount of time spent in
any particular state i. It can be shown that the mean sojourn time in state i can be
expressed as'

E(T)= — (1.50)

where «; is the rate of transition from state i to another state in the state space (rate out
of state 7). Since the process is a Markov chain, it can also be shown that the sojourn
time (and thus the transition rate «;) must be exponentially distributed and that all
sojourn times must be independent. These conditions ensure that the Markov chain’s
memory-less property is maintained. Analyses presented here assume 0 < ;< oo.
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This assumption implies that no states are instantaneous («; — oo) or absorbing
(o; — 0). Instantaneous states have a sojourn time equal to zero while absorbing states
have an infinite sojourn time. We only consider states with finite sojourn durations.

Let the variable a;; be the rate at which the process leaves state i and enters state j.
Thus, the variable a;; is the transition rate from i to it

a; = o; x Py foralli #j (1.51)

Recall that o; is the rate of transition out of state i and P;; is the probability that the
process enters state j after exiting state i. It is intuitive that when leaving state i, the
process must fall into one of the r available states, thus'

-
SEDNT (1.52)

j=0

J#i
Since the coefficients a; can be calculated for each element in a matrix A

by applying equation 1.51, we can define the transition rate matrix as shown in
equation 1.53."

aopo aor
aio ajr

A= . _ (1.53)
arQ Tt Arr

The sum of all transition probabilities P;; for each row must be equal to one, thus we can
write the diagonal elements of A as'

aj — —XX; = — Zalj (154)
Jj=0

i

The diagonal elements of A represent the sum of the departure and arrival rates for a state
i. Markov processes can be visualized using a state transition diagram. This diagram
provides an intuitive method for developing the transition rate matrix for a system model.
It is common in state transition diagrams to represent system states by circles and
transitions between states as directed segments. Figure 1.15 shows a state transition
diagram for a one-for-one redundant component configuration. If both of the redundant
components in the system are identical, the transition diagram can be further simplified
(see Figure 1.16).

The procedure for establishing a Markov chain model transition rate matrix A
involves several steps.
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Figure 1.15. Redundant Markov chain state diagram.
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Figure 1.16. Redundant Markov chain state diagram, identical components.

Step 1.

Step 2.

The first step in developing the transition rate matrix is to identify and
describe all of the system states relevant to operation. Recall that relevant
states are those that can affect the operation of the system. Irrelevant states
are system states that do not affect system operation or failure, regardless
of the condition. The identified relevant system states are then given an
integer state identifier

S;i€x, wherex={0,1,...,r} (1.55)

Having identified the system states to be modeled, the transition rates to
and from each state must be determined. In basic reliability analysis, these
transition rates will almost always correspond to a component failure or
repair rate. Component failure rates can typically be derived from system
documentation, empirical data, or expertise in a field of study. Component
repair rates are often based on assumptions, experience, or system require-
ments. In Figure 1.15, the transition rates {ag, ags, a13, a>3} all represent
component failure transition rates while the rates {ajo, a»o, a3z, azi}
represent repair transition rates. Table 1.2 shows a tabulation of the
transition rate, the common nomenclature used to represent each rate,
and representative values for a 1:1 redundant high-power amplifier system.
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Table 1.2. Markov Chain Transition Rate Matrix Table Example

Transition Rate Commonly Used Term Example Value (Failures/h)
ao1,do2,d13, A3 AHPA 1.33x 107
a10,420,032,431 AHPA 8.33 x 107

Step 3. The values in Table 1.2 are inserted into the transition rate matrix A in their
appropriate positions as shown below.

Qoo dor  do2  d4p3
ajp 4ann  diz 4
axy Az az as
asp dsy azxp  ass

The tabulated failure and repair rates for each transition replace the interstate
coefficients.

apo Agpa  Appa O
A_ | Hupa au 0 Aupa
Uupa O ay  Aupa

0  Uupa  Mupa @33

Step 4. The diagonal elements of the transition rate matrix are populated by
applying equation 1.54 along each row. The resultant, completed transition
rate matrix is shown below.

—(Aupa + Anpa) AHPA AHPA 0
A= HHPA —(AupA + Hupa) 0 AnpA
HupA 0 —(Anpa + Mupa) AHPA
0 HMupA MHPA —(Uupa + Hnpa)

Careful consideration of the relevant states in Step 1 of the transition rate matrix
definition can result in simplifications. Consider the system diagram shown in Figure 1.16.
If the redundant components shown were assumed to be identical (as presented in
Table 1.2), the system model could be shown as having three distinct states instead of four.

The transition rate matrix for Markov chain in Figure 1.16 is given by

—2AHpA 2AHpA 0
A= wuppa  —(Uupa +2Anpa)  Aupa
0 MupA —HMHpA

As Figure 1.16 shows, the complexity of the system model is greatly reduced with no
loss of accuracy in the case where the two redundant components are identical.



40 RELIABILITY THEORY

1.5.2 State Equations

In order to solve the Markov chain for the relative probabilities of occupation for each
system state, we must apply two sets of equations. Through analysis of the Chapman-
Kolmogorov equations, it can be shown' that the following differential equation can be
derived.

P(t) = P(r) - A (1.56)

where P(7) is the time-dependent state transition probability matrix and A is the
transition rate matrix. The set of equations resulting from the matrix in Equation
1.56 are referred to as the Kolmogorov forward equations.

Assuming that the Markov chain is defined to occupy state O at time 7= 0, X(0) =i
and P;(0) = 1 while all other probabilities P;(0) = O for k # i. This simply means that by
defining the system to start in state i at time =0, we have forced the probability of
occupation for state i at time # =0 to be unity while the probability of being in any other
state is zero. By defining the starting state, we can simplify equation 1.56 to the
following form.

aoo aor Py(1) Py(1)
e o Pl.(t) _ | Al (1.57)
a.rO o a'rr Pr'(t) Pr'(t)

Equation 1.57 does not have a unique solution but by applying the initial condition
(Pi0) = 1) and recalling that the sum of each column is equal to one, we can often find a
solution to the set of equations. In practical problems, it is rare that the system of
equations does not result in a real, finite solution.

Solutions to equation 1.57 are time dependent. Analyses performed on telecom-
munications systems are often interested in the steady-state solution to equation 1.57. In
these circumstances, we can further simplify our problem by examining the behavior of
equation 1.57 as t—oc. It can be shown' that after a long time (+—00), the probability of
occupation for a particular system state is not dependent on the initial system state.
Furthermore, if the probability of state occupation is constant, it is clear that the
derivative of that probability is necessarily zero.

lim P;(r) = Py forj=1,2,....r (1.58)
lim Pi(t)y=0 forj=1,2,...,r (1.59)

Thus, we can rewrite equation 1.57 as

ap ~ dor Py 0

apo air P, 0
. = . (1.60)
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Solution of equation 1.60 for each P; relies upon use of linear set of algebraic equations
and the column sum for each column j.

ZP,- =1 (1.61)
j=0

1.5.3 State Equation Availability Solution

The system availability or unavailability is easily calculated once the state equations
have been solved for the vector PP.

Define the set of all possible system states S = {Sy, Sy, . . . , S,}. Define a set Was
the subset of S containing only the states in S where the system is working. Define
another set F' as the subset of § containing only those states where the system has failed.
The availability of the system is the sum of all probabilities in W.'

A=) P, whereWeS (1.62)

jew

The unavailability of the system is likewise the sum of P; over all states where the
system has failed. Alternatively, the unavailability can be calculated by recognizing that
the sum of the availability and unavailability must be unity.

1= P +) P (1.63)

jEw jEF
Replacing the sum in equation 1.63 and rearranging’

1-A=)"P (1.64)

jeF

Thus, calculating the availability immediately provides us with the unavailability as
well.

1.6 PRACTICAL MARKOV SYSTEM MODELS

Markov system models have been used extensively in many industries to model the
reliability of a variety of systems. Within the field of telecommunications and with the
advent of modern computing techniques, the application of Markov chain modeling
methods in telecommunications systems models is limited to a few special cases.

Markov models can provide quick, accurate assessments of redundant system
availabilities for relatively simple topologies. Systems in which the time-to-repair
distribution is not exponential or where the redundancy configuration is complex are not
good candidates for practical Markov models. Complex mathematics and sophisticated
matrix operations in those types of models should lead the engineer to consider Monte
Carlo simulation in those circumstances.

The Markov chain modeling technique is well suited to redundancy models
consisting of a small number of components. The mathematics of analyzing 1:1 or
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1:2 redundancies remains manageable and typically do not require numerical compu-
tation or computer assistance. For this reason, the engineer can usually obtain results
much more quickly than would be possible using a Monte Carlo analysis approach. In
many cases, a full-blown system model is not required and only general guidelines are
desired in the decision-making process.

Although the scope of practical Markov system models is somewhat limited, the
types of problems that are well suited for Markov analysis are common and practical.
This section will present the Markov model for the following system types.

1. Single-component system model
2. Hot-standby redundant system model
3. Cold-standby redundant system model

Each of the models listed above represent a common configuration deployed in
modern telecommunications systems. These models apply to power systems, multi-
plexing systems, amplifier systems, and so on.

1.6.1 Single-Component System Model

The simplest Markov chain model is the model for a single component. This model
consists of two system states S = {Sy, S;}.

Let Sy be the working component state and S; be the failed component state.
Figure 1.17 is the Markov state transition diagram for this system model.

The transition rate matrix is very straightforward, consisting of four coefficients. If
we let the failure rate of a component be defined as A and the repair rate of the
component be defined as p, we have (by applying the steps listed previously)

A: doo 4ol _ —A A
app an w =K

Applying equation 1.60, we can solve the state equations to determine the probabilities
of state occupation P =[P, P,].

= -1 A
P-A=0=[Py P{]-
[Po P < n —u)
The set of linear equations is thus:
—APy+ uP; =0 (1)
APy —puPy =0 (2)
Po+ Pi=1 (3)

ao1

State 0

State 1

failure

working

aio

Figure 1.17. Single-component Markov state transition diagram.
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Solving the equations using (1) and (3), we obtain

A
P 0= L and P 1 =———r
M+ A n+A
Calculation of the component availability is straightforward once the individual state
probabilities have been determined. Let the set W= {Sp} and F={S;}. Thus, the
availability of the system is simply equal to

A=) "P=P

jew

Recall that we earlier made the assumption (in order to preserve the Markov property)
that the state transition probabilities were exponentially distributed random variables
and thus the transition rates A and p are constant, so we can write

1 1
MTBF=—-, MTIR= —
A 1

If we rewrite the expression for Py in terms of MTBF and MTTR, we find

1
Py M _ MTBF
e+ = MTBF + MTTR

This is the same result that was obtained in Section 1.1.

1.6.2 Hot-Standby Redundant System Model

Consider a system consisting of two identical components that are both operating
continuously. This particular system does not implement load sharing but rather one of
the two components carries the entire load at any given time. Upon failure of one of the
components, the system immediately switches from the primary module to the backup
(redundant) module.

In our hot-standby model (Figure 1.18), we have three system states S = {Sy, S,
S,}. Define the systems states as described in Table 1.3.

One of the disadvantages of the hot-standby redundancy configuration is that
during operation, the backup module accumulates life-cycle operational hours that
ultimately lead to the failure of that module. The module is in operation only to ensure
that the system continues to operate if the primary module fails. In a cold-standby
system, the backup module is not operated until such time that the primary module fails.
This “saves” the operational hours of the backup modules for use when the component is
doing real work.

Definition of the transition rate matrix follows the same procedure used previously.

—2 2\ 0
A= n —(u+1r) 2
j 0 —u
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Table 1.3. Hot-Standby System State Descriptions

State System Operating Condition Description
So Working Both modules working,
system in nominal condition
S Working Single module failure,
system operating with one module failed
S5 Failure Dual module failure, system failure

Applying the state equation matrix definition to determine the linear algebraic
equations in terms of state occupation probabilities, P =[Py P; P-].

~ —2A 21 0
P'A:O:[PQ P, Pz]' 12 —(M"‘r}») A
u 0 — i

—2APy + uPi + puPr =0
24Py — (1 + 1Py =0
)\Pl —/LP2:O
Py+P+Pr=1

Solving the simultaneous equations for PP, we find

"
P =
7o +u
201
Pl=—""
(A + )21+ p)
212
P, =

(A + )21 + 1)

We now define the subsets of S for which the system is working and failed. In the
working case, we have W= {S,, S, } and for the failed case, we have F = {S,}. Thus, we

21 @

State 0 State 2

Primary » Primary
working/ ( failure/ m(ijoL}Ir:es
backup -t backup i
failed
standby H working

u

Figure 1.18. Hot-standby redundant Markov state transition diagram.
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can calculate the availability of the system to be

2
W+ 3
ZW T T w2+ )

1.6.3 Cold-Standby Redundant Model

Analysis of the cold-standby redundant model follows the same process that was used in
the hot-standby model. In this case, the assumptions are changed slightly, resulting in a
modified state transition diagram and a different overall result. The diagram shown in
Figure 1.19 shows the modified state transition diagram.

Note that in this case, we have assumed that a failure of both units will force a repair
that places the working module back into operation and simultaneously repairs the
standby module making it ready for service once again. Also note that during normal
operation, only one of the two modules is accumulating operational hours (ag; = A).

Continuing with the same analysis procedure used in the hot-standby case, we
define each of the system states S= {Sy, Sy, S} as in Table 1.4.

The transition rate matrix is given by

A A 0
A= u —(p+tr) &
17 O —M
State 0 B @ State 2
Primary Primary
Both
working/ ( failure/ modules
backup - backup failed

standby working

u

Figure 1.19. Cold-standby Markov state transition diagram.

Table 1.4. Cold-Standby System State Descriptions

State System Operating Condition Description

So Primary working Primary module working, backup in standby
Backup standby mode, system working

S Primary failed Primary module failure, backup module
Backup working operating, system working

S, Primary failed Primary module failure, backup module

Backup failed failure, system failure
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Applying the state equation matrix definition to determine the linear algebraic equations
in terms of state occupation probabilities, P =[Py P; P-].

. —A A 0
2 0 —u

Solving the simultaneous equations for PP, we find

Py =1
A+
s
Pi=—y—F
W20+
)\2
b= e
A 4200+

As previously mentioned, the availability is calculated by defining the subsets of S for
which the system is working and failed. In the working case, we have W= {S,, S} and
for the failed case, we have F = {S,}. Thus, we can calculate the availability of the
system to be

2
+2A
AZE Pj:PO“V‘Pl:%
o A+ 20+ 1

As a comparison of relative performance between the hot-standby and cold-standby
availabilities, consider a generator system in which the MTBF of a particular generator
set is approximately 8000 h (about 1 year). Assume that the MTTR for the system is
approximately 24 h. In the hot-standby case, we find that the availability is

w? +3au

__ MTOM 99,9982
207 + 3+ 12 ’

Ahot

where we have calculated the values for  and A by applying

1 1
= and A=
MTTR MTBF

"

The cold-standby case provides an increase in availability performance since the
standby component is not operational until the primary unit fails. Even when the
backup unit is called upon to operate, its time in service is very short compared with the
primary unit.

W+ 2au

_ A 99.9991%
W+ 2+ 2 ’

Acold =

It should be noted that in electronic telecommunications systems, the MTBF is generally
very large (typically greater than 150,000 h) and the MTTR is often less than 8h. It
should be clear that the cold-standby redundancy configuration is preferable, particu-
larly in systems where the failure rate is significantly increased in hot-standby
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operation. Within the hot-standby redundancy configuration is an approach known as
monitored hot standby (MHSB). MHSB systems are often preferred when component or
system MTBF values are large because the operator has confidence that the backup
system will be operational when called upon (because it is monitored and has been
known to be operational). A cold standby may not operate and may in fact fail when
called upon suddenly to operate (e.g., when say a high-voltage supply power is applied),
particularly after long durations without in-service testing. Additionally, cold standby
systems may have a “warm-up” time, and thus may not provide uninterrupted service.

1.7 MONTE CARLO SIMULATION MODELS

All of the models presented thus far have assumed that both the TTF and the TTR of an
item or a system follow an exponential distribution. The exponentially distributed
random variable assumption lends mathematical simplicity to both the reliability block
diagram and the Markov chain models. In both cases, the mathematics of analysis is
sufficiently simple that quick results are possible. The results obtained are often useful
for what if analyses and for small system designs.

Unfortunately, the limitations imposed by assuming exponentially distributed time
to failure and time to repair for a system can lead to unrealistic or inaccurate results in
many telecommunications systems. It is in these cases that Monte Carlo simulation is
beneficial. Most system models produced using Monte Carlo simulation involve many
hours of model development and implementation. Engineers considering use of Monte
Carlo simulation for reliability/availability analysis on a particular project should
consider the following questions in order to determine whether Monte Carlo simulation
is the best fit.

1. What is the purpose of the analysis?

2. What is the budget of the project? Can it support the labor costs associated with
the Monte Carlo simulation approach?

3. What is the expertise of the analyst and project team? Will there be sufficient
knowledge to derive the maximum benefit from a sophisticated analysis?

4. What are the specific reasons that reliability block diagrams and/or Markov
chain analysis are not sufficient to meet the analysis requirements?

5. Does the project involve repairs that are not reasonably approximated by an
exponentially distributed random variable?

In many cases, it is possible to make simplifying assumptions in the system model
that allow reasonable results to be obtained without embarking on a full Monte Carlo
system simulation. This section discusses the theory of Monte Carlo simulation.

1.7.1 System Modeling

Analysis using Monte Carlo simulation has the advantage of allowing the analysis of a
system with different failure and repair distributions, thereby creating a more accurate
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model and better representation of system availability performance. In Monte Carlo
simulation, a computer is used to generate and evaluate random variable models. In the
approach presented here, a system is modeled for the duration of its life (or longer, if
necessary, to obtain accurate results). This life simulation is performed for many trials to
obtain a statistical result. This statistical result represents the performance of the system.
Monte Carlo simulation is computationally intensive and requires significant computing
power to complete all but the simplest simulations in a timely manner. Fortunately,
modern computing has advanced to a point where significant computing power is
readily available in off-the-shelf desktop computer platforms. The Monte Carlo
simulation algorithm consists of three major steps.

1. Simulate the State of Individual Components. In this step, the life-cycle state of
each component is modeled. The TTF and TTR are computed as random
variables until the system life has been reached. This model results in a time
series representing each component as a working or failed state for each sample
in time.

2. Evaluate the System State from Individual Component States. A logic function is
developed and applied to the system components to determine the operational
state of the system for each time series sample. An output time series is produced
representing the system state for each time series sample.

3. Compute the Desired System Metrics (Availability, Reliability, MTTF, MTTR,
etc.) from Output System States. Performance metrics for the system are
calculated using the system state time series. Metrics such as availability,
reliability, MTTF, and MTTR are easily computed from the system state
time series.

The simulation algorithm uses the output of each step as an input to the next step to
help modularize the process. Figure 1.20 shows an overview of the algorithm process for
Monte Carlo simulation.

1.7.2 Individual Component Models

Modeling of a system requires the simulation of each individual system component.
Each relevant system component must be represented in order to provide an
accurate assessment of system performance. Recall that relevant components are
defined as those components that impact system performance when a failure occurs.
Irrelevant components are those whose state does not impact the performance of
the system.

1.7.2.1 Step 1. Component Description. Individual components are mod-
eled by representing the component as a combination of two discrete random variables.
Random variable TTF simulates the time to failure of the component. Although this
variable can take on any random process distribution, the failure of electronic compo-
nents is typically modeled as an exponential random process. The exponential distri-
bution is completely defined by the parameter value A. The value A represents the
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Figure 1.20. Monte Carlo system analysis algorithm.

component failure rate and is usually provided by the manufacturer or vendor of the
equipment. This parameter can be specified in units of failures per hour (failure rate),
failures per 10” h (FITs), or hours per failure (MTBF). The TTF random variable is thus
expressed mathematically as

TTF ~ EXP(%) (1.65)

Random variable TTR simulates the time to repair of the component that follows the
failure of that component. This variable can also take on any random process
distribution. In system analysis, the proper selection of the repair distribution
and its parameters is crucial to obtaining an accurate simulation. Many different
techniques for simulating equipment repair exist. These techniques are discussed in
Section 1.6.

The failure and repair random processes are sampled to produce a time domain
representation of the system state based on the sampled values of TTF and TTR. The
algorithm for translating these sampled values into a time domain state vector is
presented in the next section.

1.7.3 Time Series Creation

Component life is modeled over a time period defined by the simulation duration
requirement and is represented by the variable t.,4. The simulation duration must be
long enough to accurately assess the component availability. Highly available compo-
nents can require a simulation duration longer than the system life to produce reliable
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Figure 1.21. Component model.

statistics. A measurable number of failures must have occurred in order for an accurate
availability to be obtained.
Figure 1.21 shows the component as a block that accepts one input and produces
one output. The input to the block is a discrete time series sampled at the interval fg,mpie.
The individual samples of the times series T are given by

i =1iX Tsample (1.66)
These samples are placed into a time series vector
T:[l‘o o Iy... IN] (1.67)

where N is the total number of samples and is defined by the required simulation
duration and the sample period

fen
N =_d (1.68)

14 sample

The output of the block is a component state vector S representing the state of the
component for each time series sample

S =[S 81 S...5] (1.69)

The algorithm for creating the state vector output as a function of time for each
component is as follows.

Sample TTF from failure distribution.
Create “system working” samples.
Sample TTR from repair distribution.
Create “system failed” samples.

M S

Repeat Steps 1-4 until system life (¢ > t.,q) is simulated.

The selection of £g,mple must be such that the sampling period is sufficient to resolve
all failures and repairs of the component. This sampling requirement is given by the
Nyquist relation

1
sample < EMIN(TTF7 TTR) (1.70)

Evaluating the minimum values of TTF and TTR requires knowledge of the distribution for
the random process associated with those variables. In practice, TTF > TTR and only TTR
statistics need to be analyzed. Calculation of the minimum sampled value for TTR can be
performed by analyzing the distribution for TTR and selecting an appropriate sample period.
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The value for fgmpie must be selected such that

TTR > 2. tsample (171)

In terms of the TTR random variable PDF
Pr(TTR > 2 - tgmpie) = P (1.72)

where P is the probability that the value of TTR will be sufficiently large to be resolved
by the sampling period #,mpie- Numerical methods can be used to determine the value of
fsample T€quired to provide the desired probability P. In practice, P should be chosen such
that the probability of not resolving a repair is unlikely. A poorly selected value of fmpie
will result in a sampling error that skews the system availability to an artificially higher
value. This skew is due to the unresolved repairs that do not appear as failures in the
component output.

1.7.4 State Vector Creation

The state vector creation algorithm takes the time series as an input and creates a
component state sample for each time series sample. The state vector defined in this
procedure is a binary vector, taking on values of one and zero. The working state is given
a numerical value of one and the failed state is given a numerical value of zero.

S(working state) = 1

(1.73)
S(failed state) = 0
Figure 1.22 provides a flow chart diagram of the algorithm implementation. The details
of each step are provided below.

1. Algorithm Start. Set the current time value to 0. This step takes as its input the
time series T and the simulation duration tg,q.

2. Sample TTF. Select a random value from the failure distribution model. This
value represents the component time to failure.

3. Sample TTR. Select a random value from the repair distribution model. This
value represents the component repair time. It includes fault diagnosis and
repair.

4. Current Time Iteration (TTF). The current time f.,, i set to the cumulative
(elapsed) time value. The cumulative time is then incremented by the failure
value TTF selected in Step 2.

5. State Vector Assignment (TTF). The value of the state vector for all samples
lying between the current time ., and the cumulative time ?.,, is assigned the
working state value S(working state) = 1.

6. Current Time Iteration (TTR). The current time f.,,, is set to the cumulative
(elapsed) time value. The cumulative time is then incremented by the repair
value TTR selected in Step 3.
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Select new TTF (time to failure) and
TTR (time to repair) values from
specified random distributions.

Reset the current time and increment
the cumulative time by the TTF value.

Set all state vector samples lying between
the current time and the cumulative time
to the working state value (1).

Reset the current time and increment
the cumulative time by the TTR valve.

Set all state vector samples lying between
the current time and the cumulative time
to the failure state value (0).

Determine if the current time has
exceeded the specified end time. If no,
sample the state vector again. If yes, state
vector creation is complete.

Figure 1.22. State vector algorithm flow chart.
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Figure 1.23. Sample state vector algorithm output.

7. State Vector Assignment (TTR). The value of the state vector for all samples
lying between the current time ., and the cumulative time ?.,, is assigned the
failed state value S(failed state) =0.

8. Evaluate Cumulative Time. The cumulative time value f.,, is compared with the
end time value tend supplied to the algorithm. If the end value has not been
exceeded, the procedure is repeated from Step 2. If the end time value has been
exceeded, the process is complete and the algorithm ends.

A sample output (generated in MATLAB) of the state vector algorithm is shown in
Figure 1.23.

1.7.5 Steady-State Availability Assessment

Steady-state availability assessment of the state vector is straightforward. The calcula-
tion can be performed directly from the output state vector. Availability is defined as the
probability that a system (or in this case a component) is operating at any instant in time
(see Section 1.1). The steady-state availability is the average value of the availability
over the system life. This can be expressed mathematically as previously shown:

item uptime

~ item operational time

Numerically, the component model state vector is a binary vector in which a value of
1 represents the “component working” condition and a value of O represents the
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“component failed” condition. The availability of the component can be calculated from
the state vector by applying

=0
v S
N

where N is the total number of state vector samples. This analysis does not require
knowledge of the time series vector, since availability is a ratio of “working” samples to
the total number of samples.

A= (1.74)

1.7.6 Time-Dependent Availability

The variation of component availability with time can be determined from the time
series vector and the state vector constructed by the model. The time-dependent
availability is determined by calculating the availability of the system for each time
series sample.
i=0 Si
At,) =="— (1.75)

n

where n is the number of samples present on the time interval [0, 7,]. Calculating A(z,,)
for each sample results in the array

A =1[A(to) A(ty) ... A(ty)] (1.76)

where the steady-state availability is the Nth (last) term in the array.

1.7.7 Time-to-Failure/Time-to-Repair Calculations

The TTF and TTR can be calculated for a component or a system using the time series
and the state vector arrays. Calculation of these values is performed by counting the
number of samples for each discrete system event. The steps involved in this algorithm
are as follows.

1. Partition working and failure blocks into discrete bins.
2. Sum the number of samples in each bin.
3. Multiply the summation of those samples by #;mple-

Partitioning of the failures and repairs is the most difficult task in the implementa-
tion of this algorithm and will depend on programming style and the programming
language chosen. Once the state sample sets have been partitioned, the TTF and TTR
values are calculated by applying the equations

k

TTF: = > (S0 = 1) X faample (1.77)
n=j
k

TTR; = Y (Sy = 0) X feample (1.78)

n=j
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where j and k are the start and finish indices of the partitioned bins. The number of TTF
and TTR values will vary by simulation. Averaging over the trial set is recommended to
obtain an accurate assessment of the time to failure and time to repair for the
components.

1.7.8 System Analysis with Multiple Components

The method for translating a set of component state vectors representing a system into a
single system state vector is presented in this section. The algorithm for computing the
system state vector is as follows.

1. Simulate system components using the individual component model.

2. Create a sample vector consisting of individual component sample states for
time 7,,.

3. Evaluate the system state for each sample state vector.

4. Calculate the availability of the system from system state vector.

This procedure assumes a general system comprised of N components. Each of the
N discrete components must be modeled using the same sample period ¢, so that the
component state samples are correlated in time. Each component has a state vector

So(t) = [So(to) So(t1) So(t2) - . So(tm)]

1.79)

SN([) = [SN(to) SN(ll) SN(tz) .. .SN(IM)]

where M is the number of samples in the system life. All values of S are binary (1 or 0).
The system state is assessed for each sample in time. That is

S(tn) = [So(ta)S1(t2)S2(tn) - - . Sn(t)] (1.80)

Thus, the system state is a function of time
Seystem(tn) = F(S(ta)) (1.81)

where F(S(t,)) is the rule set function and is applied to the sample set S(z,,).

1.7.9 System State Synthesis

Determining the state of the system based on the individual component states requires
the development of a rule set that defines the state of the system for all possible sample
sets. This rule set function F() can be defined by developing a flow diagram relationship
between the component states and the system state. In the case of simple component
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combinations, a mathematical relationship between the component states and the
system state may be possible. Use of the flow diagram approach for more complicated
systems simplifies this process as the component count grows and the interactions of the
components become more complex. Definition of the rule set used for a system is highly
dependent on the system and is specific to each system being modeled. As such, two
simple cases are presented in the next sections. The serial combination and parallel
combinations of components can be assessed using mathematical relations. More
complicated systems require the flow diagram approach.

The serial and parallel cases are presented in both mathematical and flow diagram
form to demonstrate the procedure.

1. Serial Components. The rule set for serially connected components put into
words is “if any one component fails, the system has failed”. Since the system
working condition is defined with a numerical value of one, the state of a serially
connected system is the product of the N component states. Consider a system
with N individual components. The system state for these N components
would be

N
System (tn) = [ ] Si(ta) (1.82)
i=0

2. Parallel Components. The rule set for parallel component configurations is more
complicated, since many different types of configurations of component redun-
dancy exist. For the simple case of two components where one is required for
system operation and both operate continuously, the system state rule is “if
either of the components is working, the system is working.” This can be
expressed mathematically as the logical OR operation.

Ssystem(tn) = OR(SI (tn)7 SZ(tn)) (183)

3. Arbitrary Component Configuration. The rule set for an arbitrary system made
up of N different components can be analyzed by developing a system state flow
chart that details failure flow. Although not technically required, the process for
developing the system state flow chart for the serial and parallel configurations
is demonstrated here for clarity. Figure 1.24 shows the system state flow chart
for serially connected components.

In the case of two parallelly connected components, the flow diagram shown in
Figure 1.25 is applied to determine the system state.

As can be seen in Figure 1.25, the benefit of using the flow diagram approach
quickly becomes evident. Since only the outcome of the system state is of interest, the
state of component 2 can be ignored if component 1 is working. This benefit
is multiplied many times as the system becomes more complex. This approach
implicitly applies don’t care conditions to many component state combinations.
Care must be taken such that actual failure modes are not neglected in the flow chart
development.
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Figure 1.24. Serial component state assessment flow diagram.

System state
vector input

System

Component
failure 2

Component
1

failure? failure?

System
working

Figure 1.25. Parallel component state assessment flow diagram.

1.7.10 Failure Mode Sensitivity

When availability analysis is performed during the design phase of a project, it is
desirable to know which components contribute most significantly to the unavailability
of the system. A technique is presented here for quantifying that contribution.
Development of the system state rule set establishes conditions on which “system
working” or “system failed” decisions are made. During evaluation of these conditions,
the numerical count of samples corresponding to the different failure modes can be
summed. For example, in the parallel redundancy configuration presented in
Figure 1.25, only one failure mode exists. This failure mode, labeled “Component 2
Failure?” is what causes a system failure. While this condition is being evaluated in the
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simulation software, whenever this condition evaluates true, a failure mode counter
associated with the system failure is caused by “Component 2 Failure” increments. In
the case where only one failure mode exists, this value will mirror the availability
calculation. In cases where multiple failure modes exist, a chart can be constructed that
displays the failures that occur most frequently and how many outage hours they
contribute to the system’s total outage hours over the simulation life.

1.8 REPAIR PERIOD MODELS

Modeling the time to repair for a component or system is an important part of the
development of a reliability or availability model. As mentioned in previous sections of
this chapter, the exponentially distributed random variable is often used to model the
time to repair out of necessity. In the case of reliability block diagrams and Markov
chain analyses, an exponentially distributed time-to-repair model is the only option due
to the requirement for the memory-less condition to be met.

This section discusses methods to model time to repair and their implications on
model accuracy. It should be obvious to the reader that the exponential distribution,
while being a good fit for electronic component failure modeling, is not particularly well
suited to model the repair of those components. When reliability models require
accurate modeling of system repair, Monte Carlo simulation is often the only feasible
option.

1.8.1 Downtime

Downtime is the total time period that a component or system is not functioning
following a failure. The downtime of a component or system consists of a number of
constituent elements. Some of these elements are often overlooked in availability
analysis. Let the variable D represent the total downtime of a component or a system
following a failure event. We can write D as

D= Didentify + Ddispatch + Drepair + Dclose—out (1 84)

When considering the downtime of a component, it is important to review and
understand the service-level agreement associated with the service or system being
analyzed. The total system downtime consists of at least the following elements:

Digentity- Downtime associated with the identification of a failure. In telecommu-
nications systems, the time associated with identifying a failure may depend on
human, electronic, or a combination of human and electronic factors. This value
can be as little as seconds in the case of an electronically alarmed network
operations center or could be hours for a service that requires customer feedback
to identify a failure.

Dygispatch- Dispatch downtime is the outage time associated with travel to the
location of the failure. Telecommunications systems are typically implemented
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with a network operation center contacting a field technician or an engineer to
repair a failed component or system. The time to dispatch after the failure that
has been identified can vary dramatically. In urban environments, with well-
staffed technician resources, the dispatch time might be an hour or less. In
remote or rural environments, the time to dispatch can be a day or more when fly
outs or rural travel are required.

Diepair- The repair downtime is often confused with the total downtime or time to
repair. Specifically, the repair downtime refers to the downtime associated with
the actual repair activity. This could be the replacement of an interface module,
repair of a fiber-optic cable break, or the bypass of a service to a backup
configuration. The amount of time required to effect a specific type of repair can
often be modeled accurately but careful consideration is in order.

D1ose-out- Close-out downtime refers to the amount of time required to relay repair
messages back to the appropriate parties. This downtime may be very small in
systems that electronically log system up and down events. In cases where
manual outage logs are contractually required, this time may have a finite and
measureable effect on the total downtime. Normally, a system is returned to
service immediately upon completion of repair. Examples where D¢jose-oue MUSt
be considered and included are, for example, the time to move traffic back to the
primary system if the traffic was manually routed to alternate path. It may also
be the time to achieve customer acceptance that the system is in fact repaired
(the customer may want to test the repaired system and concur that it is indeed
meeting performance requirements).

The four downtime elements listed above are not meant to represent a compre-
hensive list of all possible contributions to downtime for a system or a component.
Rather, these elements are common to most repairs following the failure of a
telecommunications system or a component. Each element provides a distinct
contribution to the total downtime and can be modeled using a different statistical
distribution (in the case of Monte Carlo model). Of particular note is the opportunity to
analyze sensitivity of system performance to changes in downtime element. For
example, by varying the dispatch downtime portion of the total downtime in a Monte
Carlo simulation, one can glean insight into the effect of operational improvements on
downtime performance.

1.8.2 Statistical Models

This chapter presented a number of different statistical models that can be used to model
either the time to failure, time to repair, or both for a component or a system.

In order to better understand how to select an appropriate downtime or time-to-
repair model, we will present an example.

Consider a single component where the downtime to be modeled takes on a one of
four different distributions. Assume that through empirical data collection and process
analysis, the following time-to-repair observations are made.
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1. Mean downtime is 8 h.

2. Downtime variance is 2 h.

3. Downtime never exceeds 24 h.

4. Downtime is always greater than 1h.

The exponential distribution is completely defined by a single parameter. The field of
reliability analysis typically refers to the repair rate of an item as .

The PDF and CDF for an exponentially distributed time to repair with MTTR =8 h
is shown in Figure 1.26. The PDF and CDF for a normal distributed random variable
with an MTTR = 8 h and variance = 2 h are shown in Figure 1.27. Recall that the MTTR
is equal to 1/u for exponential random variables.

If we compare the time-to-repair models in Figures 1.26 and 1.27 to our model
criteria, we find that although the mean value is a good fit, the other criteria are not a
good match. Specifically, neither the target for a not to exceed value of 24 h nor the must
be greater than value of 1 h are both missed. Unfortunately, in the case of the exponential
distribution, one often has to modify the mean value assumptions if the not to exceed or
greater than criteria are particularly important and an exponential distribution is a
requirement.

The exponential distribution model for the time to repair in this example would
therefore not be a particularly good fit. It may be desirable in some circumstances to
proceed with the analysis but having performed the comparison shown in Table 1.5, the

Exponential TTR with MTTR =8 h
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Figure 1.26. Exponentially distributed TTR with MTTR=8h.
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Figure 1.27. Normal distributed TTR with MTTR =8 h, variance=2h.

Table 1.5. Exponential Time-to-Repair Criteria Versus Model

Criteria Exponential Model Value Normal Model Value
Mean downtime is 8 h Mean downtime is 8 h Mean downtime is 8 h
Downtime variance is 2 h Not applicable Variance is 2h
Downtime never exceeds 24 h 95% of values are less than24h  True

Downtime is always greater than 1h  11% of values are less than 1 h True

limitations of this model have been clearly identified and the analyst should proceed
with caution.

1.9 EQUIPMENT SPARING

The concept of equipment sparing is central to operation of telecommunications
networks. In consideration of the importance of equipment sparing, it would seem
obvious that careful attention should be paid to both equipment spares placement and
quantities available for repair. It is unfortunate that equipment sparing design is often
neglected in telecommunications systems. In many cases, sparing levels are determined
by historic “experience” and are not based on quantitative analysis.
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This section discusses optimization of equipment sparing levels, the impact of
sparing levels, and RMA on system downtime and considerations for geographic
placement of spares in long-haul systems.

1.9.1 Sparing-Level Optimization

Selection of sparing levels in telecommunications systems can be a difficult problem
when quantitative analysis tools are not used. Optimization of the spares pool level for
system components has important financial and logistical implications. Selecting the
minimum spares pool quantity for any particular component minimizes the logistical
impact of storage and management of hardware on warehouse staff while also
minimizing capital or operational expenditures.

Consider a system consisting of n discrete, identical components such that S = {1,
2, ..., n} is the set of all components in the system. Assume that the n components in
the system S are in operation at a time # = 0 and operate for a duration 7. Thus, the total
operational time for all components is

Tt =NXT (1.87)

Calculation of the sparing level requires knowledge of the failure characteristics of
each component. Replaceable items within the system must be identified and analyzed to
determine the distribution of failures, failure rate (z(f)), o MTBF. Any of these three
metrics can be utilized for analysis. It is most desirable to use a combination of empirically
collected field data in conjunction with calculated failure rates. This provides the best
combination of academic and empirical experience. Without knowledge of the failure
behavior of system components, it is impossible to determine optimal sparing levels.

Assume that the MTBF of each component is given by M. The predicted average
failure count for the system in time period T can thus be calculated as

Total

(1.88)
where M is the empirical or calculated mean time between failures. The average failure
count can be used to determine the predicted number of spares required for each time
period T. It should be noted that many telecommunications utilize maintenance agree-
ments in which failed components are repaired by a vendor at a rate determined within a
prearranged contract. This maintenance agreement can complicate sparing-level deter-
mination. The maintenance agreement contract must have specific provisions for turn-
around time period in equipment repair. This turnaround time 7yenqor Mmust be weighed
against the time between system events. The failure rate of that system can be calculated as

Fsys
F==z (1.89)

where fis expressed in failures per hour. With knowledge of the failure rate f and the
maintenance agreement turnaround time 7yenqor, We can calculate the required spares.
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Consider a system F\enqor failure events per time period Tyendor

Fendor :f X T yendor (190)

The number of required spares Ngyares must be greater than or equal to the number of
failures expected to occur during the vendor repair period.

Nspares 2 Fvendor (1 9 1)

In cases where a vendor maintenance agreement does not exist, the sparing levels must
be selected such that a sufficient number of spares is purchased so that all failures can be
repaired within a give period of time 7. In this case, the calculation of Ngyares 1S
straightforward:

Nspares > Fsys (1.92)

where Fgy is the number of predicted failures in the system over a time period 7.

As an example, consider a wireless cellular network consisting of 100 base station
transceiver elements. Through empirical analysis and vendor interaction, it is determined
that the MTBF for the base station transceiver element is approximately 55,000h of
continuous operation. It is desired to analyze the sparing levels required for both design in
which no maintenance agreement is assumed and for a system with a maintenance
agreement where the turnaround time 740, = 8 Weeks for a 1-year period (8760 h). First,
we will calculate the total number of operational hours in the system consisting of 100 base
station transceiver elements. The total system operational time is

T = N xT =100 x 8760 = 876000 h

The predicted average number of annual failures can thus be calculated as

_ Tlotal _ 876000 ~

Feovo = = ~ 159
M 55000

Thus, the number of expected annual failures per year is approximately 16 under steady-
state operation. The number of required spares for the case in which spares are annually
purchased and allocated is given by

Nspares > Fsys - Nspares > 16

Thus, the number of spares required for steady-state operation is 16. It should be noted
that this analysis assumed average behavior. It is always good practice to select sparing
levels such that anomalies can be accommodated. A reasonable sparing compliment for
one year on the system above might be a value 16 < Nyp,es < 20. Because the failure rate
of the system Fy, is a statistical value, the number of failures in any given year can vary.
The number of spares purchased in one year may be insufficient while another year it
may be too great. This variation tends to disappear as the number of deployed
components becomes large and the statistics become stationary in time.
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In the case where a maintenance agreement exists with Tyenqor = 1344 h, we must
first calculate the system failure rate f as
_ Fy 159

_ -3
T = 3760 1.8 x 10 per h

f

The number of failures that might occur during a vendor repair or replacement period is
thus

Fuyendor = f X Tyendor = (1.8 x 107%) x 1344 ~ 2.4

By applying the spares count rule, we find that
Nspares > Fvendor - Nspares > 3

Clearly, in the maintenance agreement model, the number of spares required is
significantly smaller than in the self-repaired case. The trade-off analysis between
maintenance agreement costs and the equipment costs is now easy.

Assume that the base station transceiver element has an equipment cost of $40,000
per element and that the annual maintenance agreement cost is $350,000 (Table 1.6).

The maintenance agreement approach to this particular problem is clearly the less-
expensive solution. Although a telecommunications provider may opt to select a self-
repaired model for finance or business reasons, it is easy to see the cost trade-offs after
the sparing analysis is complete.

1.9.2 Geographic Considerations for Spares Placement

Analysis of the geographic placement of spare components is often required in order to
achieve the required time to repair for systems covering large geographic areas or
having very difficult terrain.

Telecommunications networks generally cover large geographic areas due to the
nature of their mission. Whether the system is a long-haul submarine fiber-optic
network, a backbone microwave system, or an urban cellular wireless network, the
area being served typically covers a large geographic region. Because of this large area
being served, it is important to consider the optimal sparing levels and placement to
ensure that both the time to repair and the number of spares available maintain the
necessary levels.

Table 1.6. Spares Cost Comparison Between Self-Repaired and Vendor-Repaired Models

Self-Repaired System (No Vendor-Repaired System

Maintenance Agreement) (Maintenance Agreement)
Spares cost 16 x $40,000 = $640,000 3 x $40,000 = $120,000
Maintenance agreement cost ~ N/A $350,000

Total annual cost $640,000 $470,000
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Figure 1.28. Centralized warehousing and dispatch sparing approach.

A number of different approaches for locating spare equipment are provided

below:

1.

Centralized Warehousing and Dispatch. In a centralized warehousing approach
(Figure 1.28), all system spares are located in a central warehouse or depot and
are picked up or shipped from this location in the event of a failure. For systems
implementing full redundancy, this approach is often the most convenient since
the time to repair can be relaxed enough (because of component redundancy) to
support the logistics time required to place a spare unit on site. In cases where
the shipping or logistics time causes the time to repair to exceed the requirement,
this approach may be unacceptable.

Systems implementing a relatively small number of deployed components
can also benefit from a reduced spare equipment count. Consider a fiber-optic
network consisting of a total of eight optical interface modules (four working,
four protection). Assume that the sparing level analysis results in a requirement
for one spare optical interface module. In the centralized sparing model, only
one spare interface module would be purchased and placed in the warehouse.
This module would be deployed when any failure occurs in the system.

. Territorial Warehousing and Dispatch. Territorial warehousing places spare

equipment at strategically selected locations, reducing the logistics time to place
units on site while keeping the spare unit costs at a reasonable level. In the case
of a unit failure in the system, the spare unit would be dispatched from a
predetermined location that provides the minimal logistics dispatch time.

Examination of the system presented above using a territorial approach to
sparing results in an increased spare unit requirement of one additional spare is
shown in Figure 1.29. Warehouses A and B would both store one spare optical
interface module each. If Node 1 was at a significant geographic distance from
Nodes 2 and 3 (e.g., in a submarine fiber-optic network), this approach would
represent a good compromise of performance versus cost.

. On-Site Sparing. The last sparing approach to be considered is the on-site

sparing model (Figure 1.30). In this model, every site houses the spares required
to restore the system in the case of an outage or failure. This approach to sparing
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Figure 1.29. Territorial warehousing and dispatch sparing approach.
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Figure 1.30. On-site sparing approach.

provides the highest attainable performance since the logistics time to place a
spare on site is zero. On-site sparing comes at the highest cost as well. It is
common in systems operating with on-site spares to see a dramatically increased
sparing cost because of spares redundancy required to place spare equipment on
site. In the case of the example presented here, on-site sparing would result in
three spare interface modules (one at each location). This is three times the
sparing level calculated due to expected failures.

QUESTIONS

1.1.

1.2

1.3.

Create a flow chart that graphically depicts the development of reliability engineering in the
twentieth century.

Modern reliability engineering analysis utilizes what type of mathematics for analysis?
What is the purpose of this type of mathematical analysis?

What role does empirical data play in modern reliability analysis? What specific impli-
cations does reliability engineering have on telecommunications systems?
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1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

1.16.

Enumerate your goals as a reader of this book. What benefits do you hope to derive from the
study of telecommunications reliability analysis?

Define the term reliability and give three practical examples of reliability applications.
Ensure that the examples provide both the duration and the conditions for which the
reliability is defined.

Describe the time to failure and its relationship with the reliability function.

Define availability and give three examples of its use in telecommunications design,
operation, and business.

Explain the difference between average and instantaneous availability. Provide examples
where the average and instantaneous availability are the same and are different.

A particular network element’s datasheet indicates an MTBF of 65,000 h. Calculate the
network element availability (in percent) if the expected mean downtime is 12h.

If 25 of the network elements described in Q1.9 are placed into service at time ¢ = 0, what is
the expected number of element failures annually?

Explain maintainability in terms of an operational telecommunications system. Why is the
maintainability metric a critical performance measure? Describe qualitatively how down-
time and maintainability are related.

A vendor provides an MTBF in their equipment cutsheet indicating a value of 125,000 h.
Convert the MTBF to both failure rate (in failures/h) and FITS.

A system of 100 telecommunications nodes is deployed and operates for 5 years. The table
below enumerates the annual failures per year. Calculate the annual failure rate (in
failures/h and FITS) for each year and the average failure rate (in failures/h and FITS)
for the 5-year period.

Year Failures
1 6

2

3 8

4 7

5 3

An interface card for a multiplexer has an MTBF of 95,000 h as defined on a vendor
datasheet. Assuming that the TTF for the card is exponentially distributed, write the TTF,
PDF, and CDF functions. Plot the PDF and CDF functions using a graphing calculator or
computer analysis tool.

Why is an exponentially distributed random variable beneficial for analyzing telecom-
munications systems hardware? What is the failure rate of an exponentially distributed
random variable.

Why is the exponential distribution poorly suited for modeling time to repair? What
distributions are well suited to model system downtime?
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1.17. The time to repair of a network is characterized by a mean value of 24 h. Assuming that

1.18.

1.19.

1.20.

1.21.

1.22.

1.23.

1.24.

1.25

90% of the variability of the TTR is contained with the range of 12-36 h, develop normal,
lognormal, and Weibull distribution models for the TTR. Plot the PDF of each distribution.

Empirical data collection has tabulated the date and downtime for repair of a system.
Develop a Weibull TTR model for the data shown in the table below. Plot the CDF and PDF
of the model developed. Calculate the MTBF of the system.

Date Downtime (h)
6/15/2001 11
9/3/2002 3
12/5/2002 14
7/5/2003 5
11/2/2003 9
2/6/2004 20
4/29/2004 2
8/4/2004 7
10/21/2004 3
12/16/2004 13

What flexibility does the use of Monte Carlo simulation provide in system analysis? What
are the advantages of using reliability block diagrams or Markov chains?

Define “relevance” as it relates to a reliability block diagram analysis. What is the impact of
a relevant component on the reliability performance of a system? What impact does an
irrelevant component have on system performance?

A telecommunications network consists of three discrete components that are combined to
form a single-thread network. If the reliability of each constituent component is 99.9%,
99.99%, and 99.95%, respectively, what is the maximum achievable reliability of the
system (based only on observation of the constituent component reliabilities and without
performance a calculation)?

Applying the serial combination structure function definition for system reliability,
calculate the actual reliability of the single-thread system described in Q1.21.
Calculate the reliability of the following two system designs.

a. Serial combination of 1:1 redundant components in Q1.21.

b. Parallel combination of serial components in Q1.21.

Redundancy is being considered for a telecommunications subsystem. If the modular

system costs $15,000 per module and four active modules are required, calculate the
following (assume that each module has an MTBF of 40,000 h).

a. The cost difference between a 1:1 and a 1:4 system design.

b. The reliability after 2 years for each system.

. Explain why reliability is not applicable as a performance metric in repairable system
analysis. For what types of systems is reliability a good metric?
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1.26.
1.27.

1.28.

1.29.
1.30.

1.31.

1.32.

1.33.

1.34.

1.35.

Describe Monte Carlo simulation and give a specific example of a simulation.

Describe the Markov chain analysis technique in your own words. What condition must
exist in order for a process to possess the “Markov property.” For what conditions is the
Markov chain analysis technique best suited within a telecommunications environment?

Develop a Markov transition diagram for a system consisting of two redundant components
operating in a hot-standby configuration with the same failure rate. Assume that both
components have a failure rate of A =4 x 10> failures/h. Repair of each component takes
16 h on average. Indicate the failure rate and repair rate of each transition. Assume that a
repair of a system failure returns the system to fully redundant operation.

Write the transition rate matrix for the transition diagram developed in Q1.28.

Assuming a steady-state solution, solve the Chapman-Kolmogorov equations to determine
the probability of state occupation for the states identified in Q1.28.

Determine the availability and unavailability of the system described in Q1.28 using the
results of Q1.30.

Develop a Monte Carlo simulation for the system identified in Q1.28. Assume a system life
of 8 y for the simulation. Model the repair as a random variable TTR ~ NORM(16, 2).
Provide an analysis algorithm overview indicating the system components, evaluation
logic, and metrics to be computed.

Develop a system state flow diagram for the operation of the system model in Q1.32.
Implement logic to compute the state of the system for the two input system.

Simulate the system in Q1.33 for 5000 sample life cycles. Compute the life-cycle
availability. Provide a histogram plot of availability.

Compare the Monte Carlo and Markov chain results. What are the simulation differences
and similarities?






