
Chapter 1

Integers and Permutations

God made the integers, and all the rest is the work of man.

—Leopold Kronecker

The use of arithmetic is a basic aspect of human culture. Anthropologists tell us
that even the most primitive societies, because of their desire to count objects, have
developed some sort of terminology for the numbers 1, 2, and 3, although many go
no further. As a culture develops, it needs more sophisticated counting to deal with
commerce, warfare, the calendar, and so on. This leads to methods of recording
numbers often (but by no means always) based on groups of 10, presumably from
counting on the fingers. Then the recording of numbers by making marks or notches
becomes important (in bookkeeping, for example), and a variety of systems have
been constructed for doing so. Many of these systems were not very useful for adding
or multiplying (try multiplying with Roman numerals), and the development of our
positional system, originating with the Babylonians using base 60 rather than 10,
was a great advance.

In this chapter we assume the validity of the elementary arithmetic properties of
the integers and use them to derive some more subtle facts related to divisibility and
primes. Then two fundamental algebraic systems are described: the integers modulo
n and the permutations of the set {1, 2, . . . , n}. These are, respectively, excellent
examples of rings and groups, two of the basic algebraic structures presented in
detail in Chapters 2 and 3.

Introduction to Abstract Algebra, Fourth Edition. W. Keith Nicholson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

23

CO
PYRIG

HTED
 M

ATERIA
L



24 1. Integers and Permutations

1.1 INDUCTION

Great fleas have little fleas upon their backs to bite ’em, And little fleas have lesser fleas,
and so ad infinitum.

—Augustus De Morgan

Consider the sequence of equations:

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

...

It is clear there is a pattern. The right sides are the squares 12, 22, 32, 42, . . . , and,
when the right side is n2, the left side is the sum of the first n odd integers. As the
nth odd integer is 2n − 1, the following expression is true for n = 1, 2, 3, and 4:

1 + 3 + 5 + · · · + (2n − 1) = n2. (pn)

Now it is almost irresistible to ask whether the statement (pn) is true for every
n ≥ 1. There is no hope of separately verifying all these statements, because there
are infinitely many of them. A more subtle approach is required.

The idea is to prove that pk ⇒ pk+1 for every k ≥ 1. Then the fact that p1 is
true implies that p2 is true, which in turn implies that p3 is true, then p4, and so
on. This is one of the most important axioms for the integers.

Principle of Mathematical Induction6. Let pn be a statement for each integer
n ≥ 1. Suppose that the following conditions are satisfied:

(1) p1 is true.
(2) pk ⇒ pk+1 for every k ≥ 1.

Then pn is true for every n ≥ 1.

In the proof that pk ⇒ pk+1, we assume that pk is true and use it to prove that pk+1

is also true. The assumption that pk is true is called the induction hypothesis.
For a graphic illustration, consider an infinite row of dominoes labeled 1, 2, 3, . . .

standing so that if one is knocked over, it will knock the next one over. If pk is the
statement that domino k falls over, this means that pk ⇒ pk+1 for each k ≥ 1. The
principle of induction asserts that knocking domino 1 over causes them all to fall.

As another illustration, let pn be the statement 1 + 3 + 5 + · · · + (2n − 1) = n2

mentioned above. Then p1 has already been verified. To prove that pk ⇒ pk+1 for
each k ≥ 1, we assume that pk is true (the induction hypothesis) and use it to
simplify the left side of the sum pk+1:

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = k2 + (2k + 1) = (k + 1)2.

6One of the earliest uses of the principle is in the work of Francesco Maurolico in the
16th century. Augustus De Morgan coined the name mathematical induction in 1838.



1.1. Induction 25

This expression shows that pk+1 is true and hence, by the induction principle, that
pn is true for all n ≥ 1.

Example 1. Prove Gauss’ Formula7: 1 + 2 + · · · + n = 1
2n(n + 1) for all n ≥ 1.

Solution. Let pn denote the statement 1 + 2 + · · · + n = 1
2n(n + 1). Then p1 is true

because 1 = 1
2 (1 + 1). If we assume that pk is true for some k ≥ 1, we get

1 + 2 + 3 + · · · + k + (k + 1) = 1
2k(k + 1) + (k + 1) = 1

2 (k + 1)(k + 2),

which shows that pk+1 is true. Hence, pn is true for all n ≥ 1 by the principle of
mathematical induction. �

Example 2 gives an inductive proof of a useful formula for the sum of a geometric
series 1 + x + · · · + xn. We use the convention that x0 = 1 for all numbers x.

Example 2. If x is any real number, show that

(1 − x)(1 + x + · · · + xn−1) = 1 − xn, for all n ≥ 1.

Solution. Let pn be the given statement. Then p1 is (1 − x)1 = 1 − x1, which is
true. If we assume that pk is true for some k ≥ 1, then the left side of pk+1 becomes

(1 − x)(1 + x + · · · + xk−1 + xk) = (1 − x)(1 + x + · · · + xk−1) + (1 − x)xk

= (1 − xk) + (1 − x)xk

= 1 − xk+1.

This proves that pk+1 is true and so completes the induction. �
Example 3. Let wn denote the number of n-letter words that can be formed using
only the letters a and b. Show that wn = 2n for all n ≥ 1.

Solution. Clearly, a and b are the only such words with one letter, so w1 = 2 = 21.
If k ≥ 1, we obtain each such word of k + 1 letters by adjoining an a or a b to a
word of k letters, and there are wk of each type. Hence, wk+1 = 2wk for each k ≥ 1
so, if we assume inductively that wk = 2k, we get wk+1 = 2wk = 2 · 2k = 2k+1, as
required. �

The principle of induction starts at 1 in the sense that if p1 is true and pk ⇒ pk+1

for all k ≥ 1, then pk is true for all k ≥ 1. There is nothing special about 1.

Theorem 1. If m is any integer, let pm, pm+1, pm+2, . . . be statements such that

(1) pm is true.
(2) pk ⇒ pk+1 for every k ≥ m.

Then pn is true for each n ≥ m.

7This formula was probably known to the ancient Greeks. However, the great mathematician
Carl Friedrich Gauss is said to have derived a special case of the formula (n = 100) at age 7 by
writing the sum 1 + 2 + · · · + 100 in two parts:

1 + 2 + · · · + 49 + 50

100 + 99 + · · · + 52 + 51

and observing that each pair of terms, 1 + 100, 2 + 99, . . . , 50 + 51, adds to 101. As there are 50
such pairs, the sum is 50 · 101 = 5050.
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Proof. Let tn = pm+n−1 for each n ≥ 1. Then t1 = pm is true, and tk ⇒ tk+1

because pm+k−1 ⇒ pm+k. Hence, tn is true for all n ≥ 1 by induction; that is, pn is
true for all n ≥ m. �
Example 4. If n ≥ 8, show that any postage of n cents can be made exactly using
only 3- and 5 cent stamps.

Solution. The assertion clearly holds if n = 8. If it holds for some k ≥ 8, we consider
two cases:

Case 1. One or more 5 cent stamps are used to make up k cents postage.
Then replace one of them with two 3 cent stamps.

Case 2. Three or more 3 cent stamps are used to make up k cents postage.
Then replace three of them with two 5 cent stamps.

Because one of these cases must occur (as k ≥ 8), the assertion holds for k + 1 cents
in both cases and the induction goes through. �

If n ≥ 1 is an integer, the integer n! (read n-factorial) is defined to be the
product

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1

of all the integers from n to 1. Thus, 1! = 1, 2! = 2, 3! = 6, and so on. Clearly,

(n + 1)! = (n + 1)n!, for each n ≥ 1,

which we extend to n = 0 by defining

0! = 1.

Example 5. Show that 2n < n! for all n ≥ 4.

Solution. If pk is the statement 2k < k!, note that p1, p2, and p3 are actually false,
but p4 is true because 24 = 16 < 24 = 4!. If pk is true where k ≥ 4, then 2k < k! so

2k+1 = 2 · 2k < 2 · k! < (k + 1)k! = (k + 1)!

Hence, pk+1 is true and the induction is complete. �
Let n and r be integers with 0 < r ≤ n. The binomial coefficient

(
n
r

)
is defined

as follows: (
n
r

)
= n!

r!(n−r)! .

As 0! = 1, we have
(
n
0

)
= 1 =

(
n
n

)
and

(
n
2

)
= n(n−1)

2 . It is easy to verify that

(
n
r

)
=

(
n

n−r

)
, whenever 0 ≤ r ≤ n.

We leave the proof of the following formula (the Pascal identity) as Exercise 13.

(
n

r−1

)
+

(
n
r

)
=

(
n+1

r

)
, whenever 1 ≤ r ≤ n.
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The name honors Blaise Pascal. The identity leads to a way of displaying the
binomial coefficients known as Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

The nth row of the triangle is
(
n
0

) (
n
1

) (
n
2

)
· · ·

(
n

n−1

) (
n
n

)
, starting at n = 0. The

Pascal identity shows that each entry in a given row (except at the ends) can
be found by adding the two entries adjacent to it in the row above. Hence, Pascal’s
triangle is easy to write down row by row.8

The entries in each row also arise in another way. The formulas

(1 + x)2 = 1 + 2x + x2,

(1 + x)3 = 1 + 3x + 3x2 + x3,

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4,

are easily verified, and the coefficients on the right side in each case are the integers
in rows 2, 3, and 4 of Pascal’s triangle. The general result follows by induction, and
will be used several times in this book.

Example 6. Prove the Binomial Theorem:

(1 + x)n =
(
n
0

)
+

(
n
1

)
x +

(
n
2

)
x2 + · · · +

(
n
n

)
xn, for all n ≥ 0.

Solution. The theorem holds if n = 0 because
(
0
0

)
= 1 and (1 + x)0 = 1. If it holds

for some k ≥ 0 then, using the Pascal identity, we obtain

(1 + x)k+1 = (1 + x)(1 + x)k

= (1 + x)
[(

k
0

)
+

(
k
1

)
x + · · · +

(
k

k−1

)
xk−1 +

(
k
k

)
xk

]
=

(
k
0

)
+

[(
k
0

)
+

(
k
1

)]
x + · · · +

[(
k

k−1

)
+

(
k
k

)]
xk +

(
k
k

)
xk+1

=
(
k+1
0

)
+

(
k+1
1

)
x + · · · +

(
k+1

k

)
xk +

(
k+1
k+1

)
xk+1,

which completes the induction. �
When proving inductively that statements pm, pm+1, . . . , pk are true, the most

difficult part is usually showing that pk ⇒ pk+1 for each k ≥ m. Clearly, this task
would be easier if we could assume the truth of pm, . . . , pk−1 in addition to the
truth of pk when deducing pk+1. This assumption leads to a useful variant of the
principle of induction (in fact, it is equivalent to it).

8Note that this shows the binomial coefficients are all integers, a fact that is not clear from the
definition.
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Theorem 2. Principle of Strong Induction. Let m be an integer and, for each
n ≥ m, let pn be a statement. Suppose the following conditions are satisfied.

(1) pm is true.
(2) If k ≥ m and all of pm, pm+1, . . . , pk are true, then pk+1 is also true.

Then pn is true for every n ≥ m.

Proof. For each n ≥ m, let tn be the statement that pm, pm+1, . . . , pn are all true.
Then, tm is true by (1). If tk is true for some k ≥ m, then (2) implies that pk+1 is
true, so tk+1 is also true. Hence, tn is true for all n ≥ m by Theorem 1, so certainly
pn is true for all n ≥ m. �

In the next example, we use strong induction to prove an important fact about
primes that would be more difficult to deduce using (ordinary) induction. Recall
that a prime number (or prime) is an integer p ≥ 2 that cannot be factored as a
product of two smaller positive integers.

Example 7. Show that every integer n ≥ 2 is a product of (one or more) primes.

Solution. This assertion is true if n = 2 because 2 is a prime. If k ≥ 2, we assume
inductively that 2, 3, . . . , k are all products of primes. To apply strong induction,
we must show that k + 1 is a product of primes. This is clear if k + 1 is itself prime;
otherwise, let k + 1 = ab, where 2 ≤ a ≤ k and 2 ≤ b ≤ k. Then both a and b are
products of primes by the (strong) induction hypothesis, so k + 1 = ab is also a
product of primes. �

We conclude with an intuitively clear property of Z that is equivalent to the
principle of induction, and which is usually taken as an axiom.

Well-Ordering Principle. Every nonempty set of nonnegative integers has a
smallest member.

Proof. If the principle is false, let X ⊆ {0, 1, 2, . . .} be a nonempty set that has
no smallest member. For each n ≥ 0, let pn be the statement “n /∈ X.” It suffices
to show that pn is true for all n ≥ 0—since then X is empty, contrary to our
assumption. We prove this by strong induction. First, p0 is true because if 0 ∈ X,
then it is the smallest member of X (because X ⊆ {0, 1, 2, . . .}). Now assume in-
ductively that p0, p1, . . . , pk are all true, so that none of 0, 1, . . . , k is in X. This
implies that k + 1 /∈ X since otherwise it would be the smallest member of X. This
means pk+1 is true, and so completes the induction. �

The way the well-ordering principle is used can be illustrated by the following
frivolous example: Suppose that we want to show that every positive integer is
interesting. If this assertion were false, the set of uninteresting positive integers
would be nonempty and so would contain a smallest member by the axiom. But
the smallest uninteresting integer would surely be interesting—a contradiction! This
technique can also be applied to serious situations.

For example, the well-ordering principle implies the induction principle. Indeed,
let p1, p2, p3, . . . be statements such that p1 is true and pk ⇒ pk+1 for every k ≥ 1.
If X = {n ≥ 1 | pn is false}, we must show that X is empty. But if not, then X has
a smallest member, which leads to a contradiction. The details are in Exercise 15.
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We have proved the following implications (the first is Theorem 2):

Induction ⇒ Strong Induction ⇒ Well Ordering.

Moreover, well ordering implies induction (see above), so the three principles are
logically equivalent. The validity of these principles is one of the basic Peano
axioms9 for the integers.

Inductive Definition

Many arguments in algebra (in fact, in mathematics generally) refer to sequences
a0, a1, a2, a3, · · · , an, · · · from a set A where each ai is an element of A called
the ith term of the sequence. Hence 1, 2, 4, 8, 16, . . . are the first five terms of the
sequence an = 2n from Z. This sequence can be compactly described as follows:

a0 = 1 and an = 2an−1 for each n ≥ 1. (*)

These conditions uniquely describe the sequence (the formula an = 2n for n ≥ 0
can be proved by induction), and for this reason (*) is called an inductive definition
of the sequence. More generally, a sequence is said to be defined inductively if
the first term is specified and each later term is uniquely determined by the earlier
terms (often by a formula). It is usually very difficult to give an explicit formula for
the nth term an in terms of the earlier terms; nevertheless, the following theorem
shows that such a sequence always exists and is uniquely determined.

Theorem 3. Recursion Theorem. Given a set A and a ∈ A, there is exactly one
sequence a0, a1, a2, a3, . . . , an, . . . from A that satisfies the following requirements:

(1) a0 = a.

(2) For each n ≥ 1, the term an is uniquely determined by the preceding terms
a0, a1, a2, . . . , an−1.

Proof. The existence of such a sequence is given in Appendix D; we prove uniqueness
by strong induction on n ≥ 0. Clearly, a0 is uniquely determined by (1). If each of
a0, a1, a2, . . . an−1 has been uniquely specified, then an is uniquely determined by
(2). Hence, the sequence is uniquely determined by (1) and (2). �

Exercises 1.1

1. Prove each equation by induction on n.

(a) 1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1) for all n ≥ 1.

(b) 12 + 22 + · · · + n2 = 1
6
n(n + 1)(2n + 1) for all n ≥ 1.

(c) 13 + 23 + · · · + n3 = 1
4
n2(n + 1)2 for all n ≥ 1.

(d) 1 · 2 + 2 · 3 + · · · + n · (n + 1) = 1
3
n(n + 1)(n + 2) for all n ≥ 1.

(e) 1 · 22 + 2 · 32 + · · · + n · (n + 1)2 = 1
12

n(n + 1)(n + 2)(3n + 5) for all n ≥ 1.

(f) 1
1·2 + 1

2·3 + · · · + 1
n·(n+1)

= n
n+1

for all n ≥ 1.

(g) 12 + 32 + · · · + (2n − 1)2 = n
3
(4n2 − 1) for all n ≥ 1.

9Named after Giuseppe Peano, an Italian mathematician and logician who, in 1889, reduced
the theory of the natural numbers N to five simple axioms. For a discussion of this, see R.A.
Beaumont and R.S. Pierce, The Algebraic Foundations of Mathematics, Addison-Wesley, 1963.
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(h) 12 − 22 + 32 − · · · + (−1)n+1n2 = 1
2
(−1)n+1n(n + 1) for all n ≥ 1.

(i) 1
2!

+ 2
3!

+ 3
4!

+ · · · + n
(n+1)!

= 1 − 1
(n+1)!

for all n ≥ 1.

2. Prove each inequality by induction on n.

(a) n < 2n for all n ≥ 0.

(b) n2 ≤ 2n for all n ≥ 4.

(c) n! ≤ 2n2
for all n ≥ 4 (compare with Example 5).

(d) 1
12 + 1

22 + · · · + 1
n2 ≤ 2 − 1

n
for all n ≥ 1.

(e) 1√
1

+ 1√
2

+ · · · + 1√
n
≥

√
n for all n ≥ 1.

(f) 1√
1

+ 1√
2

+ · · · + 1√
n
≤ 2

√
n − 1 for all n ≥ 1.

3. Prove each statement by induction on n.

(a) n3 + (n + 1)3 + (n + 2)3 is a multiple of 9 for all n ≥ 1.

(b) n3 − n is a multiple of 3 for all n ≥ 1.

(c) 32n+1 + 2n+2 is a multiple of 7 for all n ≥ 0.

4. Show that
(
1 − 1

22

) (
1 − 1

32

)
· · ·

(
1 − 1

n2

)
= n+1

2n
for all n > 2.

5. Show that 33n + 1 is a multiple of 7 for all odd n ≥ 1.

6. Suppose that n straight lines in the plane are positioned so that no two are parallel

and no three pass through the same point. Show that they divide the plane into
1
2
(n2 + n + 2) distinct regions.

7. Show that there are 3n positive integers with n digits, where each digit must be 4, 5,

or 6.

8. A polygon in the plane is called convex if every line joining two vertices is either an

edge or lies entirely within the polygon. If n ≥ 3, show that the sum of the interior

angles of an n-sided convex polygon equals (n − 2) · 180◦.

9. A straight line segment joining two distinct points on a circle is called a secant. For

n ≥ 1, draw n secants with no two identical. Show that the resulting regions can be

unambiguously colored black and white (where unambiguously means that no two

regions sharing a straight line boundary are of the same color).

10. (a) Show that any postage of n ≥ 2 cents can be made of 2 and 3 cent stamps.

(b) Show that any postage of n ≥ 12 cents can be made of 3 and 7 cent stamps.

(c) Show that any postage of n ≥ 18 cents can be made of 4 and 7 cent stamps.

(d) Can you generalize from the results in (a)–(c)?

11. Let an = 23n − 1 for n ≥ 0. Guess a common divisor of each an and prove your

assertion.

12. (a) Try to prove the statement “13 + 23 + · · · + n3 is a perfect square” by induction.

Now look at Exercise 1(c).

(b) Try to prove that 1 + 1
2

+ 1
4

+ · · · + 1
2n < 2 by induction. Now formulate a stronger

equality for the sum on the left, prove it by induction, and use it to deduce the

inequality.

13. Prove the Pascal identity:
(

n
r−1

)
+

(
n
r

)
=

(
n+1

r

)
for 1 ≤ r ≤ n.

14. (a) Show that
(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · · +

(
n
n

)
= 2n for all n ≥ 0.

(b) Show that
(

n
0

)
−

(
n
1

)
+

(
n
2

)
− · · · ±

(
n
n

)
= 0 if n > 0.

15. Use the well-ordering principle to prove the principle of induction. [Hint: See the

discussion following the well-ordering principle.]

16. Let X be a nonempty set of integers. Then X is said to be bounded below (bounded

above) if an integer m exists such that m ≤ x for all x ∈ X (respectively m ≥ x for

all x ∈ X).
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(a) If X is bounded below, show that it has a smallest member.

(b) If X is bounded above, show that it has a largest member.

17. Use strong induction to prove that every integer n ≥ 2 has a prime factor.

18. In each case, conjecture a formula for an and prove it by induction.

(a) a0 = 2, an+1 = −an, n ≥ 0.

(b) a0 = 1, a1 = −2, an+2 = 2an − an+1, n ≥ 0.

(c) a0 = 1, an+1 = 1 − an, n ≥ 0.

(d) a0 = 3, an+1 = (an)2, n ≥ 0.

19. Let n lines in the plane be such that no two are parallel and no three are concurrent.

Find the number an of regions into which the plane is divided by first showing that

an+1 = an + (n + 1).

20. Prove the following induction principle.

Let m be an integer and let pn be a statement for all n ≥ m. Assume that

(1) pm and pm+1 are true.

(2) If k ≥ m and both pk and pk+1 are true, then pk+2 is true.

Then pn is true for all n ≥ m.

21. Let an denote a number for each integer n ≥ 0 and assume that an+2 = an+1 + 2an

holds for every n ≥ 0. Use the principle in Exercise 20 to prove each assertion.

(a) If a0 = 1 and a1 = −1, then an = (−1)n for each n ≥ 0.

(b) If a0 = 1 and a1 = 2, then an = 2n for each n ≥ 0.

(c) If a0 = p and a1 = q, then an = 1
3
[(p + q)2n + (2p − q)(−1)n] for each n ≥ 0.

22. Let pn denote the statement: “3n + 2 is a multiple of 3.” Show that pk ⇒ pk+1 for

all k ≥ 1. What does this say about Theorem 1?

23. Let pn denote the statement: “In any class of n algebra students, every student

obtains the same grade.” Then p1 is clearly true. If pn is satisfied for n > 1, suppose

that x1, x2, . . . , xn+1 denotes a class of n + 1 students. Then x1, x2, . . . , xn all have

the same grade (by induction) as do x2, x3, . . . , xn+1. Thus x1, x2, . . . , xn+1 all have

the same grade (the same as xn), so pn+1 is true. Hence, pn is true for all n. What

is wrong with this argument?

24. Suppose that pn is a statement about n for each n ≥ 1. In each case what must be

done to prove that pn is true for all n ≥ 1?

(a) pn ⇒ pn+2 for each n ≥ 1.

(b) pn ⇒ pn+8 for each n ≥ 1.

(c) pn ⇒ pn+1 for each n ≥ 10.

25. If pn is a statement about n for each n ≥ 1, argue that pn is true for all n ≥ 1 if

pn ⇒ pn−1 for each n ≥ 2 and pn is true for infinitely many values of n.

26. For a sequence a1, a2, . . . , suppose that a1 + a2 + · · · + an is to be evaluated.

(a) If a sequence b1, b2,. . . can be found such that an = bn+1 − bn for all n > 1,

prove by induction that a1 + a2 + · · · + an = bn+1 − b1.

(b) Use the technique in (a) to evaluate 1 · 2 · 3 + 2 · 3 · 4 + · · · + n(n + 1)(n + 2).

[Hint: Try bn = (n − 1)n(n + 1)(n + 2).]

27. Suppose that a sequence a0, a1, . . . is given.

(a) Show that the sequence s0, s1, . . . exists where s0 = a0 and sn is the sum of the

first n + 1 of ai.

(b) Show that the sequence p0, p1, . . . exists where p0= a0 and pn is the product of

the first n + 1 of the ai.
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1.2 DIVISORS AND PRIME FACTORIZATION

Mathematics is the queen of the sciences and number theory is the queen of
mathematics.

—Carl Friedrich Gauss

The set Z of integers will be used in several ways throughout this book: as a major
source of examples of algebraic systems; to state definitions and prove theorems
(often by induction); and as a prototype for results about more general systems.
For the most part, the properties of Z that we need are familiar facts about addition,
multiplication, and ordering of the integers, although we present a more detailed
look at these properties in Section 3.2. However, we also utilize several less familiar
properties of divisibility and primes in Z and so devote this section to them.

The Greatest Common Divisor

When we write 22/7 in the form 31
7 we are using the fact that 22 = 3 · 7 + 1; that is,

22 leaves a remainder of 1 when divided by 7. The general result is a consequence
of the well-ordering axiom.

Theorem 1. Division Algorithm. Let n and d ≥ 1 be integers. There exist
uniquely determined integers q and r such that

n = qd + r and 0 ≤ r < d.

Proof. Let X = {n − td | t ∈ Z, n − td ≥ 0}. Then X is nonempty. In fact,
if n ≥ 0, then n = n − 0d is in X; if n < 0, then n − nd = n(1 − d) is in X.
Hence, by the well-ordering principle, let r be the smallest member of X. Then
r = n − qd for some q and r ≥ 0, so it remains to show that r < d. But if r ≥ d,
then 0 ≤ r − d = n − (q + 1)d. This means that r − d is in X, contradicting the
minimality of r. This result proves the existence of q and r.

To prove uniqueness, suppose also that n = q′d + r′ with 0 ≤ r′ < d. Assume
r ≤ r′ (the case r′ ≤ r is similar). Then (q − q′)d = r′ − r is a nonnegative, integral
multiple of d that is less than d (because r′ − r ≤ r′ < d). This can occur only if
r = r′, which implies that q = q′ and so proves uniqueness. �

For n and d ≥ 1, the integers q and r in Theorem 1 are called the quotient
and remainder, respectively. Thus, for example, if we divide n = −17 by d = 5,
the result is −17 = (−4) · 5 + 3, so the quotient is −4 and the remainder is 3.

The division algorithm can also be seen
geometrically. If the real line is marked off
in multiples of d, n clearly falls either on
a multiple qd of d or between qd and (q + 1)d

n

r

qd (q+1)d

(see the diagram). Hence, qd ≤ n < (q + 1)d, so 0 ≤ n − qd < d, and we take
r = n − qd.

If both n and d are positive and a calculator is available, the quotient q and the
remainder r can be easily found as follows: Calculate n

d and let q denote the largest
integer that is less than or equal to n

d . Hence,

0 ≤ n
d − q < 1.

If we multiply through by d, we get 0 ≤ n − qd < d, so take r = n − qd.
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Example 1. Find the quotient and remainder if n = 4187 and d = 129.

Solution. We have n
d = 32.457 approximately, so q = 32. Then r = n − dq = 59,

and so 4187 = 32 · 129 + 59, as desired. �
If n and d are integers, d is called a divisor of n if n = qd for some integer q.

When this is the case, we write d|n. If d|n is not true, we write d � n. Thus, 7|84 but
7 � 85. Note that 1|n and n|0 for all integers n. The following properties of divisors
will be used frequently.

Theorem 2. Let m, n and d denote integers.

(1) n|n for all n.

(2) If d|m and m|n, then d|n.

(3) If d|n and n|d, then d = ±n.

(4) If d|n and d|m, then d|(xn + ym) for all integers x and y.

Proof. The proofs of (1) and (2) are left to the reader. In (3), let n = qd and d = pn
for integers p and q. If d = 0, then n = qd = 0 = d. If d /= 0, then d = pn = pqd,
which implies that 1 = pq. As p and q are integers, this means that p = q = 1 or
p = q = −1, and so d = n or d = −n, which proves (3). As to (4), if n = ad and
m = bd in (4), then xn + ym = (xa + yb)d, so d|(xn + ym), as required. �
Expressions of the form xn + ym, where x and y are integers, are called linear
combinations of n and m.

Example 2. If d ≥ 1 is such that d|(3k + 5) and d | (7k + 2) for some k, show that
d = 1 or d = 29.

Solution. The hypotheses and (4) of Theorem 2 imply that d divides the linear
combination 7(3k + 5) − 3(7k + 2) = 35 − 6 = 29. Hence, d is a positive divisor of
29, so d = 1 or d = 29. �

An integer d is called a common divisor of two integers m and n if d|m and
d|n. To motivate the next theorem, consider the positive divisors of 36 and 84:

• Positive divisors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
• Positive divisors of 84: 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84
• Common divisors: 1, 2, 3, 4, 6, 12

We wish to focus attention on the fact that the largest common divisor 12 is actually
a multiple of all the other positive common divisors. This idea is built into the
following definition. Let m and n be integers.

An integer d is called a greatest common divisor of m and n if:

(1) d ≥ 1
(2) d|m and d|n
(3) If k|m and k|n, then k|d.

When it exists we write d = gcd(m, n).

For example, gcd(18, 30) = 6, gcd(6, 7) = 1, and gcd(−9, 15) = 3.
Conditions (2) and (3) can be stated as follows: gcd(m, n) is a common divisor

of m and n by (2), which is a multiple of every common divisor by (3). If it exists,
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d = gcd(m, n) is unique. In fact, if d′ is another integer satisfying (1), (2), and (3),
then d′|d by (3). Similarly, d|d′ so d = ±d′ by Theorem 2. But then d′ = d because
we insist that greatest common divisors are positive.

The following fundamental theorem shows that, if m and n are not both zero,
then d = gcd(m, n) does indeed exist and, surprisingly, that d is actually a linear
combination of m and n.

Theorem 3. Let m and n be integers, not both zero. Then d = gcd(m, n) exists
and d = xm + yn for some integers x and y.

Proof. Let X = {xm + yn | x, y ∈ Z, xm + yn ≥ 1}. Then X is not empty because
m2 + n2 ∈ X, so let d be the smallest member of X (by the well-ordering principle).
Since d ∈ X, we have d ≥ 1 and d = xm + yn for integers x and y. Also, if k|m
and k|n, then k|(xm + yn) = d by Theorem 2. So it remains to show that d|m and
d|n.

To show that d|m, write m = qd + r where 0 ≤ r ≤ d − 1. Then,

r = m − qd = m − q(xm + yn) = (1 − qx)m + (−qy)n.

Hence, if r ≥ 1, then r ∈ X and r < d, contradicting the choice of d. So r = 0, that
is, m = qd. Thus, d|m, and d|n is proved similarly. �
Note that gcd(m, n) does not exist if m = 0 = n (verify), which explains the
requirement in Theorem 3 that m and n are not both zero. Also, the greatest
common divisor of m and n can be a linear combination of m and n in more than
one way. For example, gcd(2, 3) = 1 and we have 1 = 2 · 1 − 3 and 1 = 3 − 2.

Example 3. If p and q are distinct primes, show that gcd(p, q) = 1.

Solution. Write d = gcd(m, n). Then d|p, so d = 1 or p. Similarly, d = 1 or q, so
d = 1 because, otherwise, p = d = q is contrary to the assumption that p /= q. �

The next example (which is needed later) illustrates how the definition of the
greatest common divisor is used.

Example 4. If m = qn + r, show that gcd(m, n) = gcd(n, r).

Solution. Write d = gcd(m, n) and k = gcd(n, r). Then k divides both n and r and
so divides m = qn + r. Thus, k is a common divisor of m and n, so k|d because
d = gcd(m, n). A similar argument (using r = −qn + m) shows that d|k, so d = ±k
by (3) of Theorem 2. Hence, d = k, because both d and k are positive. �

How do we compute d = gcd(m, n) in general? There is an efficient procedure
for doing so, which also shows how to express d as a linear combination
of m and n. To illustrate how it works, consider the numbers 78 and 30. The idea
is to use the division algorithm repeatedly. First divide 78 by 30:

78 = 2 · 30 + 18
30 = 1 · 18 + 12
18 = 1 · 12 + 6
12 = 2 · 6 + 0

At each stage (after the first) we divide the divisor at the previous stage by the
remainder at that stage. The last nonzero remainder is 6, and this equals gcd(78, 30).
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This is no coincidence as we shall see. To express 6 as a linear combination of 78
and 30, eliminate the remainders from the second last lineup:

6 = 18 − 1 · 12
= 18 − (30 − 1 · 18)
= 2 · 18 − 30
= 2(78 − 2 · 30) − 30
= 2 · 78 − 5 · 30

This procedure is called the euclidean algorithm, and it works in general. For
positive integers m and n, not both zero, we use the division algorithm repeatedly:

m = q1n + r1 r1 < n

n = q2r1 + r2 r2 < r1

r1 = q3r2 + r3 r3 < r2...
...

At each stage we divide the divisor at the previous stage by the remainder, so the
remainders form a decreasing sequence of nonnegative integers:

n > r1 > r2 > r3 > · · · ≥ 0.

Clearly, we must encounter a remainder of 0 (in at most n steps). If rt denotes the
last nonzero remainder, the last two equations are

rt−2 = qtrt−1 + rt and rt−1 = qt+1rt + 0.

Now, repeated application of the result in Example 4 gives

gcd(m, n) = gcd(n, r1) = gcd(r1, r2) = · · · = gcd(rt−1, rt) = rt.

Hence, gcd(m, n) really is the last nonzero remainder.

Example 5. Find gcd(41, 12) and express it as a linear combination of 41 and 12.

Solution. The algorithm is not needed to find gcd(41, 12). In fact, 1 and 41 are
the only positive divisors of 41, so gcd(41, 12) = 1 because 41 does not divide 12.
However, guessing a linear combination 1 = x · 41 + y · 12 is not easy. The euclidean
algorithm gives

41 = 3 · 12 + 5
12 = 2 · 5 + 2
5 = 2 · 2 + 1
2 = 2 · 1 + 0

Hence, gcd(41, 12) = 1 as expected. Elimination of remainders gives

1 = 5 − 2 · 2
= 5 − 2(12 − 2 · 5)
= 5 · 5 − 2 · 12
= 5(41 − 3 · 12) − 2 · 12
= 5 · 41 − 17 · 12

which is the required linear combination. �
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The following definition will be used frequently throughout this book.

Two integers m and n are called relatively prime if gcd(m, n) = 1.

For example, 2 and 3 are relatively prime, as are 20 and 9. Note that 1 is relatively
prime to every integer n. The condition in Theorem 4 is useful.

Theorem 4. Let m and n be integers, not both zero. Then m and n are relatively
prime if and only if 1 = xm + yn for some integers x and y.

Proof. If gcd(m, n) = 1, then 1 = xm + yn by Theorem 3. Conversely, if 1=xm+yn,
then any common divisor of m and n must divide 1. In particular, gcd(m, n) = 1.�
For example, any two consecutive integers k and k + 1 are relatively prime because
(k + 1) − k = 1. Similarly, 5(6k + 5) − 6(5k + 4) = 1 shows that 6k + 5 and 5k + 4
are relatively prime for any integer k.

Corollary. If d = gcd(m, n), m, n ∈ Z, then m
d and n

d are relatively prime.

Proof. If d = xm + yn, x, y ∈ Z, dividing by d gives 1 = xm
d + y n

d . �
The following theorem contains two very useful properties of relatively prime

integers, and will be referred to several times below.

Theorem 5. Let m and n be relatively prime integers.
(1) If m|k and n|k for some integer k, then mn|k.

(2) If m|kn for some integer k, then m|k.

Proof. We first prove (1). By Theorem 4, let 1 = xm + yn, where x and y are
integers. If k = qm and k = pn where p and q are integers, then

k = 1 · k = xmk + ynk = xm(pn) + yn(qm) = (xp + yq)mn.

Hence, mn|k, proving (1). As to (2), let nk = qm where q is an integer. Then,

k = 1 · k = xmk + ynk = xmk + y(qm) = (xk + yq)m.

This shows that m|k, and so proves (2). �

Prime Factorization

Clearly, every integer n ≥ 2 has at least two positive divisors: 1 and n. The integers
for which these are the only positive divisors are important. An integer p is called
a prime if it satisfies the following conditions:

(1) p ≥ 2.

(2) If d|p and d > 0, then either d = 1 or d = p.

Thus, the first few primes are 2, 3, 5, 7, 11, 13, . . . . We know (Example 7 §1.1) that
every integer greater than 1 is a product of primes; the reason for not regarding 1
as a prime is to ensure that this factorization is unique (see Theorem 7).

If the product of two integers is even, one of these integers must be even (because
the product of two odd integers is odd). We can rephrase this statement as follows:
If 2|mn, where m and n are integers, then 2|m or 2|n. This statement holds for any
prime in place of 2.
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Theorem 6. Euclid’s Lemma. Let p denote a prime.

(1) If p|mn where m and n are integers, then p|m or p|n.

(2) If p|m1m2 · · ·mr where each mi is an integer, then p|mi for some i.

Proof. (1) Write d = gcd(m, p). Then d|p, so d = 1 or d = p because p is a prime.
If d = p, then p|m because d|m; if d = 1, then p|n by (2) of Theorem 5.

(2) This assertion follows by induction on r. If r = 1, it is obvious. If (2) holds
for some r ≥ 1, let p|m1m2 · · ·mrmr+1. Then (1) shows that either p|m1 · · ·mr or
p|mr+1. In the first case, p|mi for some i = 1, 2, . . . , r by the induction hypothesis.
Hence, in any case, p|mi for some i = 1, 2, . . . , r + 1, completing the induction. �
Note that Euclid’s lemma fails for nonprimes. For example, 6 is a divisor of 3 · 4,
but 6 does not divide 3 or 4.

It is not too difficult to convince yourself that every integer n ≥ 2 is either a
prime itself or can be factored as a product of primes—just keep factoring as long as
possible. For example, 12 = 22 ·3, 25 = 52, and 360 = 23 ·32 ·5. In fact, every integer
greater than 1 is a product of primes, and this factorization is unique up to the order
of the factors.

Theorem 7. Prime Factorization Theorem.
(1) Every integer n ≥ 2 is a product of (one or more) primes.

(2) This factorization is unique up to the order of the factors. That is, if

n = p1p2 · · · pr and n = q1q2 · · · qs,

where pi and qj are primes, then r = s and qj can be relabeled
so that pi = qi for all i = 1, 2, . . . , r.

Proof. We proved (1) in Example 7 §1.1. If (2) fails, let (by the well-ordering
principle) m ≥ 2 be the smallest integer with two distinct factorizations into primes:

m = p1p2 · · · pr = q1q2 · · · qs.

Then m is not a prime (verify), so r ≥ 2 and s ≥ 2. We have p1|q1q2 · · · qs, so p1|qj

for some j by Euclid’s lemma. By relabeling qj , we may assume that p1|q1. Then
p1 = q1 because both are primes, so

m
p1

= p2 · · · pr = q2 · · · qs

is an integer—smaller than m—that admits two distinct factorizations into primes.
This result contradicts the choice of m, and so proves (2). �
Corollary. Two integers m ≥ 2 and n ≥ 2 are relatively prime if and only if no
prime divides both m and n.

Proof. Write d = gcd(m, n). If d = 1, then any common prime divisor would have to
divide 1, so no such common divisor exists. Conversely, suppose no prime divides
both m and n. If d > 1 and p|d where p is a prime, then p|m and p|n, contrary to
our assumption. So d = 1, that is m and n are relatively prime. �

If n ≥ 2 is an integer and p1, p2, . . . , pr are the distinct prime divisors of n, the
prime factorization theorem asserts that n can be written uniquely in the form

n = pn1
1 pn2

2 · · · pnr
r ,
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where ni ≥ 1 for each i. This means that the primes pi and the integers ni are
uniquely determined by n. For example, 60 = 22 · 3 · 5 and 882 = 2 · 32 · 72.

If n has only one prime divisor, we call it a prime power, examples being
7 = 71, 9 = 32, and 32 = 25. At the other extreme, we say that n is square free
if all the exponents ni = 1. Hence, any prime is square free as are 6 = 2 · 3 and
70 = 2 · 5 · 7.

If n is not prime, it must have a prime divisor p ≤
√

n (it cannot have two prime
divisors greater than

√
n). So to test whether n is prime, it suffices to verify that

it has no prime divisor p ≤
√

n (which is impractical if n is very large).

Example 6. Factor 1591 into primes.

Solution. We start dividing 1591 by the successive primes, 2, 3, 5, 7, . . . . Since√
1591 < 40 (because 402 = 1600), we need go only as high as 37; in fact, the first

prime that divides 1591 is 37. As 1591 = 37 · 43 and 43 is a prime, we have the
required prime factorization. �
Obviously, the method in Example 6 requires that we have a list of the primes.
Although large tables of primes are available, the method clearly fails for very large
numbers. Finding the prime factorization of large integers is very difficult. Even so,
on December 15, 2005 it was announced that 230,402,457 − 1 is a prime with 9,152,052
digits, the largest prime known to that date. Such a result requires a very large
amount of computer time.10

The prime factorization theorem gives a systematic way of listing all the positive
divisors of an integer n when the prime factorization of n is known. For example,
if n = 12 = 23 · 3, these divisors are 1, 2, 3, 4, 6, and 12, and they can be written as

1 = 2030 2 = 2130 4 = 2230

3 = 2031 6 = 2131 12 = 2231

Thus, they can all be expressed as 2r3s, where 0 ≤ r ≤ 2 and 0 ≤ s ≤ 1 (where
p0 = 1 for any prime p). The general situation is as follows:

Theorem 8. Let n be an integer with prime factorization

n = pn1
1 pn2

2 · · · pnr
r ,

where pi are distinct primes and ni ≥ 1 for each i. Then the positive divisors
of n are precisely the integers d of the form:

d = pd1
1 pd2

2 · · · pdr
r ,

where 0 ≤ di ≤ ni holds for each i.

Proof. The prime divisors of d are contained in {p1, . . . , pr} by Euclid’s lemma,
and d cannot contain a higher power of pi than pni

i by Theorem 7. �
In much the same way, the prime factorization theorem provides a simple way

to compute the greatest common divisor of any finite set of positive integers (rather

10On the other hand, in 2002, Maninda Agrawal and two undergraduate students (Neeraj Kayal
and Nitin Saxena) gave a simple algorithm that can decide whether a given integer n is prime or
not. Moreover, the time taken is approximately a polynomial function of n. This is an important
breakthrough in computer science.
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than just two). It also provides the “dual” notion, the least common multiple. The
definitions are as follows. Let n1, n2, . . . , nr be positive integers.

(1) The greatest common divisor gcd(n1, n2, . . . , nr) of these integers is the
positive common divisor that is a multiple of every common divisor.

(2) The least common multiple lcm(n1, n2, . . . , nr) of these integers is the
positive common multiple that is a divisor of every common multiple.

Thus, gcd(4, 6, 10) = 2 and lcm(4, 6, 10) = 60 by inspection. Theorem 9 below shows
that the gcd and lcm always exist. They are uniquely determined in the same way as
the gcd of two integers (see the discussion preceding Theorem 3). The next example
illustrates a systematic method for finding the gcd and lcm.

Example 7. Find d = gcd(12, 20, 18) and m = lcm(12, 20, 18).

Solution. We might find d = 2 by experiment, but m = 180 is not clear. A
systematic method involves writing the prime factorizations as follows:

12 = 22 · 31 · 50

20 = 22 · 30 · 51

18 = 21 · 32 · 50

We have d = 2a · 3b · 5c for some a, b, and c by Theorem 8. We have a ≤ 1 because
d|18, and b = c = 0 because d|20 and d|12. Thus, d = 2 is the largest possibility.
Similarly, write the prime factorization of m as m = 2p · 3q · 5r · k, where k ≥ 1 is
the factor involving primes (if any) other than 2, 3, or 5. Then p ≥ 2 because 12|m
(or because 20|m), q ≥ 2 because 18|m, and r ≥ 1 because 20|m. The smallest
possibility is thus m = 22 · 32 · 51 = 180. �

In Example 7, the power of 2 in d = gcd(12, 20, 18) is the smallest of the powers
of 2 occurring in 12, 20, and 18; the same is true for the powers of 3 and 5 in d.
Similarly, the power of 2 in m = lcm(12, 20, 18) is the largest of the powers of 2 in
12, 20, and 18, with similar statements for the primes 3 and 5. This method works
in general. For finitely many integers a, b, c, . . . , let

max(a, b, c, . . .) and min(a, b, c, . . .)

denote the largest and the smallest of these integers, respectively. For example, we
have max(3, 1,−5, 3) = 3 and min(1, 0, 5) = 0.

Using Theorem 8, the solution to Example 7 extends to a proof of Theorem 9.

Theorem 9. Let {a, b, c, . . .} be a finite set of positive integers, and write

a = pa1
1 pa2

2 · · · par
r

b = pb1
1 pb2

2 · · · pbr
r

c = pc1
1 pc2

2 · · · pcr
r...

where pi are primes dividing at least one of a, b, c, . . . , and where an exponent
is zero if the prime in question does not occur in that number. Then,

gcd(a, b, c, . . .) = pk1
1 pk2

2 · · · pkr
r ,

lcm(a, b, c, . . .) = pm1
1 pm2

2 · · · pmr
r ,

where ki = min(ai, bi, ci, . . .) and mi = max(ai, bi, ci, . . .) for each i.



40 1. Integers and Permutations

Example 8. Find gcd(63, 60, 105) and lcm(63, 60, 105).

Solution. The prime factorizations are

63 = 20325071, 60 = 22315170, and 105 = 20315171.

Hence, gcd(63, 60, 105) = 20315070 = 3 and lcm(63, 60, 105) = 22325171 = 1260. �
Of course we can use Theorem 9 to find lcm(a, b) and gcd(a, b) for two integers

a and b. However, the euclidean algorithm is also available to compute gcd(a, b), so
the next result is useful for finding lcm(a, b).

Corollary. If a and b are positive integers, then lcm(a, b) · gcd(a, b) = ab.

Proof. The assertion follows from Theorem 9 and the fact that, for integers m and
n, max(m, n) + min(m, n) = m + n. �
Note that lcm(a, b, c) · gcd(a, b, c) /= abc can occur (consider Example 8).

We conclude with one last application of the prime factorization theorem.

Theorem 10. Euclid’s Theorem. There are infinitely many primes.

Proof. Suppose, on the contrary, that there are only n primes, denoted p1, p2, . . . , pn.
Then consider the integer m = 1 + p1p2 · · · pn. Since m ≥ 2, some prime divides m
by Theorem 7. But if pi|m, then pi divides m − p1p2 · · · pm = 1, a contradiction.
Hence the assumption that there are only finitely many primes is untenable. �

Euclid’s theorem certainly implies that there are infinitely many odd primes,
that is, primes of the form 2k + 1, k = 0, 1, . . . , and a natural question is whether
there are infinitely many primes of the form mk + n for any positive integers m and
n. This clearly cannot happen unless m and n are relatively prime. However, in this
case it is valid, a result first proved by P.G.L. Dirichlet. One instance of Dirichlet’s
theorem is treated in Exercise 39.

However, there are many unanswered questions about primes, among them the
celebrated Goldbach conjecture, which asserts that every even integer greater
than 2 is the sum of two primes. The conjecture dates from 1742 and originated in
some correspondence between C. Goldbach and L. Euler. It is not known whether
this assertion is true; the question appears to be extremely difficult to answer. The
best result known is that every sufficiently large even number is the sum of a prime
and a number that is the product of at most two primes.

Exercises 1.2

1. In each case find the quotient and remainder when n is divided by d.
(a) n = 391, d = 17 (b) n = 401, d = 19
(c) n = −116, d = 13 (d) n = −162, d = 17

2. In each case write r = n − qd, as in Example 1.

(a) n = 51837, d = 386 (b) n = 39214, d = 871

3. If n and d /= 0 are integers, show that integers q and r exist such that n = qd + r

and 0 ≤ r < |d|.
4. Show that the negative divisors of an integer n are just the negatives of the positive

divisors.
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5. If m and n are odd integers, show that m2 − n2 is divisible by 8.

6. Given three consecutive integers, show that one must be a multiple of 3.

7. (a) If d > 0, d|(11k + 4), and d|(10k + 3) for some integer k, show that d = 1 or

d = 7.

(b) If d > 0, d|(35k + 26), and d|(7k + 3) for some integer k, show that d = 1 or

d = 11.

8. Explain why gcd(0, 0) does not exist. If n > 0, what is gcd(0, n)?

9. In each case, compute gcd(m, n) and express it as a linear combination of m and n.
(a) m = 72, n = 42 (b) m = 41, n = 25
(c) m = 327, n = 54 (d) m = 198, n = 241
(e) m = 377, n = 29 (f) m = 527, n = 31
(g) m = 72, n = −175 (h) m = −231, n = 150

10. If m ≥ 1, show that m|n if and only if gcd(m, n) = m.

11. Let d = gcd(m, n). If k|d, k ≥ 1, show that gcd(m
k

, n
k
) = d

k
.

12. If m and n are relatively prime and k|m, show that k and n are relatively prime.

13. Is n2 + n + 11 prime for all n ≥ 1? Support your answer.

14. Show that gcd(m + n, m) = gcd(m, n).

15. If m|m1 and n|n1, show that gcd(m, n)| gcd(m1, n1).

16. If n|k(n + 1), show that n|k.

17. If gcd(m, n) = 1 and gcd(k, n) = 1, show that gcd(mk, n) = 1.

18. If gcd(m, n) = 1, let d = gcd(m + n, m − n). Show that d = 1 or d = 2.

19. Show that gcd(km, kn) = k gcd(m, n) if k ≥ 1.

20. Show that m and n are relatively prime if and only if no prime divides both.

21. Suppose that p ≥ 2 is an integer with the following property: If m and n are integers

and p|mn, either p|m or p|n. Show that p must be a prime.

22. If d1, . . . , dr are all divisors of n and if gcd(di, dj) = 1 whenever i /= j, show that

d1d2 · · · dr divides n.

23. If d = gcd(a, n), must a
d

and n be relatively prime? Prove or disprove.

24. Show that any two consecutive odd integers are relatively prime.

25. Show that 3, 5, and 7 is the only prime triple (that is, three consecutive odd integers,

each of which is prime). It is not known if there are infinitely many prime pairs.

26. Let p be a prime. If n is any integer, show that either p|n or gcd(p, n) = 1.

27. If gcd(m, p) = 1 and p is a prime, show that gcd(m, pk) = 1 for all k ≥ 1.

28. Show that none of n! + 2, n! + 3, . . . , n! + n are primes for any n ≥ 2. Hence, show

that there are arbitrarily long gaps in the primes.

29. Let ab = a1b1, where a, b, a1, and b1 are positive integers. If gcd(a, b1) = 1 and

gcd(a1, b) = 1, show that a = a1 and b = b1.

30. Find the prime factorizations of the following integers:
(a) 27783 (b) 1331 (c) 2431
(d) 18900 (e) 241 (f) 1457

31. Find the gcd and the lcm of the following pairs of numbers:

(a) 735, 110 (b) 101, 113 (c) 139, 278 (d) 221, 187

32. If d = gcd(a, b) and m = ab/d, show that m = lcm(a, b) using only Theorem 3.

33. Let n be a positive integer with prime factorization n = pn1
1 pn2

2 · · · pnr
r where the pi

are distinct primes and ni ≥ 1 for each i.

(a) Show that n has (n1 + 1)(n2 + 1) . . . (nr + 1) distinct positive divisors.

(b) Write down all the positive divisors of 340, 108, pn, p2q, where p and q are distinct

primes.
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(c) How many positive divisors does n have if n = 25200; n = 41472?

34. If m ≥ 1 and n ≥ 1 are relatively prime integers and nm is the square of an integer,

show that both m and n are squares. Is this result true if m and n are not relatively

prime?

35. If gcd(m, n) = 1, where m ≥ 1 and n ≥ 1, and if d|mn, show that d = m1n1 for

some m1|m and n1|n. [Hint: Theorem 7.]

36. Do Exercise 35 without assuming that gcd(m, n) = 1. [Hint: If 0 ≤ e ≤ f + g,

where f ≥ 0 and g ≥ 0 are integers, show that e can be written e = f1 + g1, where

0 ≤ f1 ≤ f and 0 ≤ g1 ≤ g. Use Theorem 8.]

37. Let a ≥ 1 and b ≥ 1 be integers. Show that there exist integers u ≥ 1 and v ≥ 1

such that u|a, v|b, gcd(u, v) = 1, and lcm(u, v) = ab. [Hint: Theorem 9.]

38. If q is a rational number such that q2 is an integer, show that q is an integer. [Hint:

If m2|n2, show that m|n using Theorem 7.]

39. (a) Show that every prime p > 2 has the form p = 4k + 1 or p = 4k + 3.

(b) Modify the proof of Theorem 10 to show that there are infinitely many primes

of the form 4k + 3.

40. A school has n lockers in a row along one side of a hall. The n students run down

the hall one after the other. The first student closes all the lockers; then the second

opens doors 2, 4, 6, . . . ; the third changes doors 3, 6, 9,. . . (that is, opens a door if it

is closed and closes it if it is open); the fourth student changes doors 4, 8, 12, . . . , and

so on. When all n students have gone through, which locker doors remain closed?

Prove your answer. [Hint: Exercise 33(a).]

41. Compute the following:

(a) gcd(28665, 22869) and lcm(28665, 22869)

(b) gcd(231, 273, 429) and lcm(231, 273, 429)

(c) gcd(1365, 1911, 1155, 1925) and lcm(1365, 1911, 1155, 1925)

42. Show that gcd(a, b, c) = gcd[a, gcd(b, c)].

43. Let d = gcd(a1, a2, a3, . . . , ak), where the ai are positive integers. Show that in-

tegers x1, x2, . . . , xk exist such that d = x1a1 + · · · + xkak. [Hint: Let m be the

smallest member of X = {x1a1+ · · · + xkak| xi∈ Z, x1a1+ · · · + xkak≥ 1}, and

show that m = d. See the proof of Theorem 3.]

44. Let b ≥ 2 be a fixed integer. If n ≥ 0 is any integer, show that n can be written

in the form n = rtb
t + rt−1b

t−1 + · · · + r1b + r0, where t ≥ 0 and 0 ≤ ri < b for

all i. Show further that these integers ri and t are uniquely determined by n. This

expression is called the base b representation of n.

45. Let m ≥ 1 and n ≥ 1 be integers.

(a) If m = qn + r, q, r ∈ Z, 0 ≤ r < n, show that 2m − 1 = x(2n − 1) + (2r − 1) for

some x ∈ Z, where 0 ≤ (2r − 1) < 2n − 1.

(b) If d = gcd(m, n), show that gcd(2m − 1, 2n − 1) = 2d − 1. [Hint: Get d by the

euclidean algorithm and use (a).]

1.3 INTEGERS MODULO n

Two integers a and b are said to have the same parity if both are even or both are
odd, that is, if 2|(a − b). The following definition extends this idea and introduces
an important equivalence on the set Z of integers. Let n ≥ 2 be an integer.
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Then integers a and b are said to be congruent modulo n if n|(a − b).
In this case we write a ≡ b (mod n) and refer to n as the modulus.

Thus, we have 2 ≡ 5 (mod 3), 21 ≡ 16 (mod 5), and −4 ≡ 2 (mod 6). The expression
21832 ≡ 32 (mod 100) explains why we can test whether an integer is divisible by
100 by looking at the last two digits. Note that a ≡ 0 (mod n) if and only if n | a.
We assume that n ≥ 2 because congruence modulo 0 or 1 is of no interest (verify).

As the notation ≡ suggests, congruence modulo n is an equivalence relation on
Z.11 The notation is justified in Theorem 1 and the proof is left as Exercise 6(a).

Theorem 1. Congruence modulo n is an equivalence on Z; that is:
(1) a ≡ a (mod n) for every integer a.

(2) If a ≡ b (mod n), then b ≡ a (mod n).
(3) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

If a is an integer, its equivalence class [a] with respect to congruence modulo n
is called its residue class modulo n, and we write ā = [a] for convenience:

ā = [a] = {x ∈ Z | x ≡ a (mod n)}.

The following result will be used frequently below.

Theorem 2. Given n ≥ 2, ā = b̄ if and only if a ≡ b (mod n).

Proof. Suppose ā = b̄. Since a ∈ ā, we have a ∈ b̄, so a ≡ b. Conversely, let a ≡ b.
Since ā and b̄ are sets, we must show that ā ⊆ b̄ and b̄ ⊆ ā. If x ∈ ā, then x ≡ a; so,
as a ≡ b, we have x ≡ b by (3) of Theorem 1. This proves that ā ⊆ b̄. Since b ≡ a
by (2) of Theorem 1, a similar proof shows that b̄ ⊆ ā. �
Residue classes are easy to describe. For example, if n = 2,

0̄ = {x ∈ Z | x ≡ 0 (mod 2)} = the set of even integers
1̄ = {x ∈ Z | x ≡ 1 (mod 2)} = the set of odd integers

In general, if a is an integer, the division algorithm gives a = qn + r, where
0 ≤ r ≤ n − 1, so a ≡ r (mod n). Thus every residue class modulo n appears in
the list 0̄, 1̄, 2̄, . . . , n − 1. In fact it appears exactly once.

Theorem 3. Let n ≥ 2 be an integer.
(1) If a ∈ Z, then ā = r̄ for some r where 0 ≤ r ≤ n − 1.

(2) The residue classes 0̄, 1̄, 2̄, . . . , n − 1 modulo n are distinct.

Proof. It remains to verify (2). Suppose r̄ = s̄, where 0≤r≤n − 1 and 0≤s≤n − 1.
We may assume that r ≤ s. Then r̄ = s̄ means that r ≡ s (mod n), so s − r is an
integral multiple of n such that 0 ≤ s − r ≤ n − 1. This implies that r = s. �
The set of all residue classes modulo n is denoted

Zn = {0̄, 1̄, 2̄, . . . , n − 1}

11See Section 0.4 for a discussion on equivalence relations.
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and is called the set of integers modulo n. Thus, (2) of Theorem 3 is the assertion
that |Zn| = n. In particular, Z2 = {0̄, 1̄}, Z3 = {0̄, 1̄, 2̄}, and so on.12

Example 1. Locate 48 and −16 in Z7 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄}.

Solution. It seems that 48 does not appear. However, 48 ≡ 6 (mod 7) means that
48 = 6̄ does indeed occur. Similarly, −16 ≡ 5 (mod 7), so −16 = 5̄ also appears. �
Example 2. If a is an odd integer, show that ā = 1̄ or ā = 3̄ in Z4 = {0̄, 1̄, 2̄, 3̄}.

Solution. We know that ā is one of 0̄, 1̄, 2̄, or 3̄ in Z4. If ā = 2̄, then a ≡ 2 (mod 4),
so a − 2 = 4q for some integer q. This means that a is even, contrary to assumption.
So ā /= 2̄ and, similarly, ā /= 0̄. The only other possibilities are ā = 1̄ and ā = 3̄. �
Example 3. In Zn, show that ā = 0̄ if and only if n|a.

Solution. By Theorem 2, ā = 0̄ means that a ≡ 0 (mod n), that is, n|a. �
Congruence modulo n is compatible with addition and multiplication of integers

in the following sense. Let a, a1, b, and b1 denote integers.

If

{
a ≡ a1(mod n)
b ≡ b1(mod n)

then
a + b ≡ a1 + b1 (mod n)

ab ≡ a1b1 (mod n)
(*)

In fact, let a − a1 = pn and b − b1 = qn, where p and q are integers. Adding these
equations gives (a + b) − (a1 + b1) = (p + q)n, and this implies that a + b ≡ a1 + b1

(mod n). Similarly, multiplying the equations a = a1 + pn and b = b1 + qn gives
ab ≡ a1b1 (mod n).

Condition (*) means that the arithmetic of Z extends naturally to Zn as follows:
We define addition and multiplication of residue classes ā and b̄ in Zn by

ā + b̄ = a + b and āb̄ = ab. (**)

Of course, we must verify that these operations are well defined, that is, we must
check that they do not depend on which generators are used for the residue classes
ā and b̄. More precisely, suppose that

ā = ā1 and b̄ = b̄1,

where a /= a1 and b /= b1 are possible. If we add these classes as ā and b̄, (**) gives
their sum as a + b, but if we represent the classes as ā1 and b̄1, their sum is a1 + b1.
Clearly, the definition of addition makes no sense unless a + b = a1 + b1. But a ≡ a1

and b ≡ b1 by Theorem 2, so a + a1 ≡ b + b1 by (*), so a + b = a1 + b1, as
required. Similarly, (*) shows that ab = a1b1, so the definition of multiplication
also makes sense. In other words, addition and multiplication of residue classes are
well defined by (**).

Example 4. In Z6 compute 3̄ + 5̄ and 3̄ · 5̄.

Solution. The definition gives 3̄ + 5̄ = 8̄ = 2̄, because 8 ≡ 2 (mod 6). Similarly,
3̄ · 5̄ = 15 = 3̄. �

12Note that ā means different things in Z2, Z3, . . ., so to avoid ambiguity, perhaps we should
denote residue classes ā in such a way that the modulus is apparent (say, 2ā and 3ā). However,
this is rarely done in practice as the modulus is usually clear from the context.
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Theorem 4 collects several properties of these operations in Zn, each of which
is the analogue of the corresponding property for Z.

Theorem 4. Let n ≥ 2 be a fixed modulus and let a, b, and c denote arbitrary
integers. Then the following hold in Zn.

(1) ā + b̄ = b̄ + ā and āb̄ = b̄ā.

(2) ā + (b̄ + c̄) = (ā + b̄) + c̄ and ā(b̄c̄) = (āb̄)c̄.
(3) ā + 0̄ = ā and ā1̄ = ā.

(4) ā + −a = 0̄.

(5) ā(b̄ + c̄) = āb̄ + āc̄.

Proof. We prove (5) and leave the rest as Exercise 6(b). Thus,

ā(b̄ + c̄) = ā(b + c) (definition of addition in Zn)

= a(b + c) (definition of multiplication in Zn)

= ab + ac (property of Z)

= ab + ac (definition of addition in Zn)
= āb̄ + āc̄ (definition of multiplication in Zn),

which proves (5). �
These properties enable us to do arithmetic in Zn in much the same way as in

Z. In particular, (3) shows that 0̄ and 1̄ play roles in Zn analogous to those of 0
and 1 in Z. For this reason, 0̄ and 1̄ are called the zero of Zn and the unity of Zn,
respectively. Similarly, because of (4), −a is called the negative of ā in Zn, and is
denoted −a = −ā. Then subtraction in Zn is defined by

ā − b̄ = ā + −b = a − b,

an operation used much as it is in Z.
Now consider the addition and multiplication tables for Z6 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄}:

+ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
0̄ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
1̄ 1̄ 2̄ 3̄ 4̄ 5̄ 0̄
2̄ 2̄ 3̄ 4̄ 5̄ 0̄ 1̄
3̄ 3̄ 4̄ 5̄ 0̄ 1̄ 2̄
4̄ 4̄ 5̄ 0̄ 1̄ 2̄ 3̄
5̄ 5̄ 0̄ 1̄ 2̄ 3̄ 4̄

× 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
0̄ 0̄ 0̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
2̄ 0̄ 2̄ 4̄ 0̄ 2̄ 4̄
3̄ 0̄ 3̄ 0̄ 3̄ 0̄ 3̄
4̄ 0̄ 4̄ 2̄ 0̄ 4̄ 2̄
5̄ 0̄ 5̄ 4̄ 3̄ 2̄ 1̄

These tables reveal many differences between the arithmetic of Z6 and that
of Z. For example, while 0 and 1 are the only integers k in Z with the property
that k2 = k, each of 0̄, 1̄, 3̄, and 4̄ enjoy this property in Z6. Another difference is
that if ab = ac in Z and a /= 0, then b = c. But 4̄ · 2̄ = 4̄ · 5̄ in Z6, and 4̄ /= 0̄, but
2̄ /= 5̄. Hence, we must be careful about “cancellation” in Zn. In fact, this concern
is related to another difference between Z and Zn. If ab = 0 in Z, then a = 0 or
b = 0. However, this need not hold in Zn. For example, 2̄ · 3̄ = 0̄ in Z6, but 2̄ /= 0̄
and 3̄ /= 0̄.
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In Examples 5–7, we use the arithmetic of Zn to deduce facts about Z. The
connection is the fact (in Theorem 2) that ā = b̄ in Zn means that a ≡ b (mod n).

Example 5. Show that a5 ≡ a (mod 5) holds for all integers a.

Solution. For an integer a, it suffices by Theorem 2 to show that ā5 = ā in Z5.
Because ā equals 0̄, 1̄, 2̄, 3̄, or 4̄, we examine each case separately.

• If ā = 0̄, then ā5 = 0̄5 = 0̄ = ā.

• If ā = 1̄, then ā5 = 1̄5 = 1̄ = ā.

• If ā = 2̄, then ā5 = 2̄5 = 2̄3 · 2̄2 = 3̄ · 4̄ = 2̄ = ā.

• If ā = 3̄, then ā5 = 3̄5 = 9̄ · 27 = 4̄ · 2̄ = 3̄ = ā.

• If ā = 4̄, then ā5 = 4̄5 = 16 · 64 = 1̄ · 4̄ = 4̄ = ā.

Hence, ā5 = ā in every case, so a5 ≡ a (mod 5) for all integers a. �
Example 5 is a special case of Fermat’s theorem, which, for any prime p, asserts

that ap ≡ a (mod p) for all integers a. We return to it later (Theorem 8).

Example 6. What is the remainder when 4119 is divided by 7?

Solution. If we can show that 4119 ≡ r (mod 7), where 0 ≤ r ≤ 6, then r is the
desired remainder. We do the computation in Z7. Note that, as 4̄2 = 2̄ in Z7,
we have 4̄3 = 8̄ = 1̄. With this in mind, divide the exponent 119 by 3 to get
119 = 3 · 39 + 2. Then,

4̄119 = 4̄3·39+2 = (4̄3)39 · 4̄2 = 1̄39 · 2̄ = 2̄.

Hence, 4119 ≡ 2 (mod 7), so the required remainder is 2. �
If a is an integer in decimal notation, it is common knowledge that a is divisible

by 2 or 5 if and only if the same is true of its unit digit. Example 7 gives a similar
test for divisibility by 9.

Example 7. Casting Out Nines. Show that a positive integer is divisible by 9 if
and only if the sum of its digits is divisible by 9.

Solution. If a = drdr−1 . . . d1d0 in decimal notation, where d0, d1, · · · , dr are the
digits, then a = d0 + 10d1 + 102d2 + · · · + 10rdr. Now 10 = 1̄ in Z9, so 10k = 1̄k = 1̄
for each k. Hence, in Z9,

ā = d̄0 + 1̄ · d̄1 + 1̄2 · d̄2 + · · · + 1̄r · d̄r = d0 + d1 + · · · + dr.

Thus, a ≡ d0 + d1 + · · · + dr (mod 9), and the result follows from Example 3. �
These three examples show that the properties in Theorem 4 allow many of the

operations of ordinary arithmetic to be carried out in Zn. However, these properties
tell us nothing about how to solve an equation such as āx = b̄ in Zn. For example,
consider

5̄x = 2̄
in Z17. The desired solution (if there is one) is a residue class x in Z17, so x is one
of 0̄, 1̄, 2̄, . . . , 16. Hence, one method is simply to try all these classes! If we do so,
we find that x = 14 is the only solution. However, this method is impractical if the
modulus is large.

A better approach is as follows. Suppose that a residue class b̄ can be found
such that b̄ · 5̄ = 1̄. Then if we multiply both sides of the equation 5̄x = 2̄ by b̄, the
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result is b̄ · 5̄x = b̄ · 2̄, that is, x = 2̄b̄. The class b̄ (if it exists) can again be found
by trial and error. In fact b̄ = 7̄ works, so x = 2b = 14, as before.

Fortunately, there is a systematic way of finding b̄ in Z17 such that b̄ · 5̄ = 1̄.
Note that 5 and 17 are relatively prime, so the euclidean algorithm can be used to
express gcd(5, 17) = 1 as a linear combination of 5 and 17. In fact, we have

17 = 3 · 5 + 2 and then 5 = 2 · 2 + 1;

so, eliminating remainders, 1 = 5 − 2(17 − 3 · 5) = 7 · 5 − 2 · 17. This implies that
7 · 5 ≡ 1 (mod 17), and so 7̄ · 5̄ = 1̄ in Z17. This gives b̄ = 7̄.

This method clearly generalizes. For a modulus n ≥ 2 and an integer a, a residue
class b̄ in Zn is called an inverse of ā if b̄ā = 1̄ in Zn. If ā has an inverse, that inverse
is unique (Exercise 23) and we say ā is invertible. Theorem 5 characterizes when
an inverse exists, and the proof shows that (as above) the euclidean algorithm can
be used to find it.

Theorem 5. Let a and n be integers with n ≥ 2. Then ā has an inverse in Zn if
and only if a and n are relatively prime.

Proof. If a and n are relatively prime, then 1 = gcd(a, n) is a linear combination of
a and n (by Theorem 4 §1.2), say 1 = ba + cn, where b and c are integers. Hence,
ba ≡ 1 (mod n), so b̄ā = 1̄ by Theorem 2. Conversely, if b exists such that b̄ā = 1̄,
then ba ≡ 1 (mod n). Thus, n|(1 − ba), say 1 − ba = qn for some integer q. But then
1 = ba + qn, so a and n are relatively prime (again by Theorem 4 §1.2). �
Example 8. Find the inverse of 16 in Z35 and use it to solve 16x = 9̄ in Z35.

Solution. The inverse exists as gcd(35, 16) = 1. The euclidean algorithm gives

35 = 2 · 16 + 3 and then 16 = 5 · 3 + 1,

so 1=16 − 5(35 − 2·16)=11·16 − 5·35. Thus, 11·16≡1 (mod 35), and so 11 is the
inverse of 16 in Z35. Now multiply the equation 16x = 9̄ by 11 to obtain
11 · 16x = 11 · 9̄; that is, x = 99 = 29. �
Example 9. Find the elements in Z9 that have inverses.

Solution. The members of Z9 are of the form r̄, where r = 0, 1, 2, · · · , 8. Since 9 = 32,
r is relatively prime to 9 if and only if r is not a multiple of 3. Hence, 1̄, 2̄, 4̄, 5̄, 7̄,
and 8̄ will all have inverses. Indeed, 1̄ and 8̄ are both self-inverse, whereas 2̄ and 5̄
are inverses of each other as are 4̄ and 7̄. �

Example 10. Solve the system

{
5̄x + 8̄y = 2̄
3̄x + 2̄y = 1̄

of equations in Z11.

Solution. The usual techniques apply. Since 4̄ · 3̄ = 1̄, we eliminate y by first
multiplying the second equation by 4̄ to get x + 8̄y = 4̄. Subtract this from the first
equation to get 4̄x = −2̄ = 9̄. Now 3̄ is the inverse of 4̄ in Z11, so multiplication by
3̄ gives x = 3̄ · 9̄ = 5̄. Then the last equation gives 2̄y = 1̄ − 3̄x = 8̄. Finally, 6̄ is the
inverse of 2̄, so y = 6̄ · 8̄ = 4̄. �

If a is a real number, an expression x2 + ax becomes a square if ( 1
2a)2 is added:

x2 + ax +
(

1
2a

)2 =
(
x + 1

2a
)2

. This process is called completing the square, and
it works in Zn provided 2̄ has an inverse in Zn (that is, if n is odd).
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Example 11. Solve the quadratic x2 + 3̄x + 9̄ = 0̄ in Z13.

Solution. First subtract 9̄ from both sides to obtain x2 + 3̄x = −9̄ = 4̄. The inverse
of 2̄ in Z13 is 7̄, so we complete the square on the left by adding (7̄ · 3̄)2 = 8̄2 = 12 to
both sides. The result is x2 + 3̄x + 12 = 4̄ + 12, that is, (x + 8̄)2 = 3̄. Now Z13 has
13 elements and, by inspection, only 2 of them square to 3̄, namely, 4̄ and −4̄ = 9̄.
Hence, x + 8̄ = 4̄ or x + 8̄ = 9̄, and so x = 9̄ and x = 1̄ are the solutions. �
Note that there are two solutions in Example 11. The reason is that 3̄ has two
“square roots” in Z13: 4̄ and −4̄ = 9̄. However, other situations are possible: In Z7,
3̄ has no square root, whereas in Z27, 9̄ has six square roots, 3̄ and −3̄ = 24, 6̄ and
−6̄ = 21, and finally 12 and −12 = 15.

The following fact about congruences is useful in number theory and computer
science, and was known to the Chinese in the fourth century.

Theorem 6. Chinese Remainder Theorem. Let m and n be relatively prime
integers. If s and t are arbitrary integers, there exists a solution x ∈ Z to the
simultaneous congruences

x ≡ s (mod m) and x ≡ t (mod n).

Proof. Since gcd(m, n) = 1, the euclidean algorithm gives p and q in Z such that
1 = mp + nq. Take

x = (mp)t + (nq)s.

Then x − s = mpt + (nq − 1)s = mp(t − s), so x ≡ s (mod m). A similar argument
gives x ≡ t (mod n). �

The nice thing about Theorem 6 is that the proof gives an algorithm for finding
the solution x: The euclidean algorithm gives p and q such that 1 = mp + nq, and
the solution is x = mpt + nqs. Furthermore, this method can be iterated to solve a
system of more than two congruences, provided that only the moduli are relatively
prime in pairs. To illustrate, let m1, m2, and m3 be integers relatively prime in
pairs. Given arbitrary integers s1, s2, and s3, we want to find an integer x such that

x ≡ si (mod mi) for each i = 1, 2, 3.

The Chinese remainder theorem yields a such that a ≡ si (mod mi) for i = 1, 2.
Since m1m2 and m3 are relatively prime, apply the Chinese remainder theorem
again to obtain x such that

x ≡ a (mod m1m2) and x ≡ s3 (mod m3).

But then x ≡ a (mod m1), so since a ≡ s1 (mod m1), we have x ≡ s1 (mod m1).
Similarly, x ≡ s2 (mod m2).

In general, if m1, m2, . . . , mk are relatively prime in pairs, and if s1, s2, . . . , sk

are arbitrary integers, then there exists x ∈ Z such that

x ≡ si (mod mi) for each i = 1, 2, . . . , k.

These general systems of congruences are important in computer science because
they provide a method for doing arithmetic with integers that exceed the word size
of the computer (the largest integer that can be used in machine arithmetic).
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The only elements of Z that have an inverse in Z are 1 and −1 (because 1
k

does not lie in Z if k /= 1,−1). Thus, Z resembles Z6 in this respect (see the table
following Theorem 4). At the other extreme, every nonzero real number x /= 0 has
an inverse 1

x in R. Theorem 7 characterizes when this happens in Zn.

Theorem 7. The following are equivalent for an integer n ≥ 2.

(1) Every element ā /= 0̄ in Zn has an inverse.
(2) If āb̄ = 0̄ in Zn, then either ā = 0̄ or b̄ = 0̄.

(3) n is a prime.

Proof. We prove that (1) ⇒ (2), (2) ⇒ (3), and (3) ⇒ (1).
(1) ⇒ (2). Assume (1) is true and let āb̄ = 0̄ in Zn. If ā = 0̄, there is nothing to

prove. Otherwise, ā has an inverse by (1), say c̄ā = 1̄. Then we multiply both sides
of āb̄ = 0̄ by c̄ to get c̄āb̄ = c̄0̄; that is, b̄ = 0̄.

(2) ⇒ (3). If n is not prime, let n = ab, where 2 ≤ a < n and 2 ≤ b < n. But
then āb̄ = n̄ = 0̄, where ā /= 0̄ and b̄ /= 0̄. This contradicts (2), so the assumption
that n is not prime cannot be valid.

(3) ⇒ (1). If n is prime, let ā /= 0̄ in Zn. Then gcd(a, n) = 1 (because otherwise
gcd(a, n) = n, so n|a). But then 1 = ba + cn for integers b and c (by Theorem 4
§1.2), so ba ≡ 1 (mod n). Thus, b̄ā = 1̄ in Zn, proving (1). �

Hence, if p is a prime, Zp has the property that every nonzero element has an
inverse. This is also true of the real numbers R, and such systems are called fields.

The following consequence of Theorem 7 will be referred to later.

Corollary. Wilson’s Theorem. If p is a prime, then (p − 1)! ≡ −1 (mod p).

Proof. We write ā = a in Zp for convenience. Since p is prime, each element
1, 2, 3, . . . , p − 1 in Zp has an inverse by Theorem 7. Hence, pairs of inverses in the
product (p − 1)! = 1 2 3 · · · (p − 1) will cancel leaving only the self-inverse elements
1 and −1 (Exercise 26). Thus, (p − 1)! = 1 (−1) = −1 in Zp, as required. �
Example 12. Write down the multiplication table of Z5 and illustrate Theorem 7.

Solution. The first row and column of the table
consist entirely of zeros (true for any modulus),
but the fact that no other entry equals 0̄ verifies
(2) of Theorem 7. Similarly, the fact that every
row (or column) except the first contains 1̄
verifies (1) of Theorem 7.

× 0̄ 1̄ 2̄ 3̄ 4̄
0̄ 0̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄ 3̄ 4̄
2̄ 0̄ 2̄ 4̄ 1̄ 3̄
3̄ 0̄ 3̄ 1̄ 4̄ 2̄
4̄ 0̄ 4̄ 3̄ 2̄ 1̄

The simplest situation in which Theorem 7 applies is when n = 2. In this case,
Z2 = {0̄, 1̄} and the addition and multiplication tables are as follows:

+ 0̄ 1̄
0̄ 0̄ 1̄
1̄ 1̄ 0̄

× 0̄ 1̄
0̄ 0̄ 0̄
1̄ 0̄ 1̄

This is binary arithmetic, which is important in the design of computers.
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We conclude with a famous theorem of Pierre de Fermat. In Example 5, we
showed that a5 ≡ a (mod 5) holds for all integers a. In fact, it holds if we replace 5
by any prime.

Theorem 8. Fermat’s Theorem. If p is a prime, then

ap ≡ a (mod p) for all integers a.

In fact, ap−1 ≡ 1 (mod p) for all integers a that are relatively prime to p.

Proof. We must show that āp = ā in Zp. Because this equation is true if ā = 0̄, it
suffices to show that āp−1 = 1̄ in Zp whenever ā /= 0̄. But if ā /= 0̄, then ā has an
inverse in Zp by Theorem 7, say b̄ā = 1̄. Now multiply all the nonzero elements in
Zp by ā to obtain

ā1̄, ā2̄, . . . , ā(p − 1).

These are all distinct (because ār̄ = ās̄ yields r̄ = s̄ after multiplication by b̄) and
none equals 0̄, so they must be the set of all nonzero elements 1̄, 2̄, . . . , p − 1 in
some order. In particular, the products are the same, and we obtain

āp−1(1̄ 2̄ · · · p − 1) = 1̄ 2̄ · · · p − 1.

But the element 1̄ 2̄ · · · p − 1 is invertible in Zp (Exercise 24). Hence, multiplication
by its inverse gives āp−1 = 1̄, which is what we wanted. �
Note that Fermat’s theorem fails if p is not prime; for example, 24 /≡ 2 (mod 4).

Fermat’s theorem is important in number theory, and the following result will
be referred to several times. To state it, we use the following useful observation
(Exercise 36): If prime p > 2 is a prime, then p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

Corollary. Let p > 2 be a prime.

(1) If p ≡ 1 (mod 4), then x2 = −1̄ in Zp, where x = 1̄ 2̄ · · · 1
2 (p − 1).

(2) If p ≡ 3 (mod 4), then the equation x2 = −1̄ has no solution in Zp.

Proof. Write ā = a in Zp for convenience.
(1) We have (p − 1)! = −1 by the Corollary to Theorem 7. Write

q = 1
2 (p + 1) · · · (p − 2) (p − 1).

Then,
xq = [1 2 · · · 1

2 (p − 1)] [ 12 (p + 1) · · · (p − 2) (p − 1)] = (p − 1)! = −1.

Thus, it suffices to show that q = x. Now observe that we can write q as
follows:

q = (− 1
2 (p − 1)) · · · (−2) (−1).

Since p ≡ 1 (mod 4), the integer 1
2 (p − 1) is even. Hence, q has an even

number of factors, and it follows that q = x after all. This proves (1).
(2) Let p = 4n + 3 in Z. Suppose a ∈ Zp satisfies a2 = −1 in Zp; we look for a

contradiction. Since ap−1 = 1 by Fermat’s theorem, we have

1 = ap−1 = a4n+2 = (a2)2n+1 = (−1)2n+1 = −1 in Zp,

a contradiction because p > 2. So x2 = −1 has no solution in Zp, proving
(2). �
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Clearly, a residue class ā is not the same thing as the integer a. However, because
of the definitions ā + b̄ = a + b and āb̄ = ab in Zn, the arithmetic of Zn closely
resembles that of Z—so much so that in subsequent chapters we adopt the following
convention (used above in the Corollaries to Theorems 7 and 8):

Notational Convention. When working in Zn we frequently write the residue
class ā simply as a.

Then Z5 = {0, 1, 2, 3, 4}, and equations such as 3 · 4 = 2 and 2 + 3 = 0 appear. This
notation is harmless, once everyone knows that we are using it, and it facilitates
hand calculations (the reader as probably been using it already!). Of course, when
the convention causes confusion, we revert to the more formal ā notation.

Pierre De Fermat (1601–1685) Fermat was a lawyer by profession and served in the
parliament in Toulouse, France. His mathematical work was a pastime, and he has been
called “the prince of amateurs.” This appellation should not be taken as diminishing his
stature, because he did first-rate work in several areas. He invented analytic geometry
prior to Descartes and made contributions to the development of calculus. Along with
Pascal, he is credited with starting the theory of probability.

However, he is most remembered for his work in number theory. Theorem 8 first appeared
in a letter in 1640, and a proof was first published much later by Euler. Fermat published
virtually nothing, and his results became known through letters to his friends (many to
Mersenne) and as notes jotted in the margin of his copy of Arithmetica by Diophantus,
usually with no proof. The most famous of these notes is the assertion that, if n ≥ 3,
positive integers x, y, and z do not exist such that xn + yn = zn. This assertion has
become known as “Fermat’s Last Theorem”, and he wrote that “I have found a truly
remarkable proof but the margin was too small to contain it.” His intuition was so good
that every other theorem that he claimed he could prove has been subsequently verified.
However, despite the best efforts of the greatest mathematicians, the “Last Theorem”
remained open for 300 years. But in 1997, in a spectacular display of mathematical
virtuosity, Andrew Wiles of Princeton University finally proved the result. Wiles related
Fermat’s conjecture to a problem in geometry, which he solved.

Exercises 1.3

1. In each case determine whether the statement is true or false.
(a) 40 ≡ 13 (mod 9) (b) −29 ≡ 1 (mod 7)
(c) −29 ≡ 6 (mod 7) (d) 132 ≡ 0 (mod 11)
(e) 8 ≡ 8 (modn) (f) 34 ≡ 1 (mod 5)
(g) 84 ≡ 2 (mod 13)

2. In each case find all integers k making the statement true.
(a) 4 ≡ 2k (mod 7) (b) 12 ≡ 3k (mod 10)
(c) 3k ≡ k (mod 9) (d) 5k ≡ k (mod 15)

3. Find all integers k ≥ 2 such that
(a) −3 ≡ 7 (mod k) (b) 7 ≡ −5 (mod k)
(c) 3 ≡ k2 (mod k) (d) 5 ≡ k (mod k2)

4. Find all integers k ≥ 2 such that k2 ≡ 5k (mod 15).

5. (a) Show that congruence modulo 0 is equality.

(b) What can you say about congruence modulo 1?

6. (a) Prove Theorem 1.

(b) Prove (1)–(4) of Theorem 4.
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7. If a ≡ b (modn) and m|n, show that a ≡ b (modm).

8. Find the remainder when

(a) 10515 is divided by 7 (b) 8391 is divided by 5

9. Find the unit decimal digit of

(a) 31027 (b) 272113

10. Show that the unit decimal digit of k4 must be 0, 1, 5, or 6 for all integers k.

11. If p /= 2, 3 is prime, show that p̄ = 1̄ or p̄ = 5̄ in Z6.

12. (a) If a is an integer, show that a2 ≡ 0 or a2 ≡ 1 (mod 4).

(b) Show that none of 11, 111, 1111, 11111, . . . , is a perfect square.

13. Show that a5 is congruent to 0, 1, or −1 mod 11 for every integer a.

14. Show that ā7 = ā in Z7 for every integer a using the method of Example 5.

15. Show that ā(ā + 1̄)(ā + 2̄) = 0̄ in Z6 for every integer a.

16. Show that a3 + 2 is not divisible by 7 for every integer a.

17. Show that ā3 = ā in Z6 for every integer a.

18. (a) Show that every integer a has a cube root in Z5 (ā = b̄3 for some integer b).

(b) If n ≥ 3, show that some integer has no square root in Zn.

19. (a) Show that no integer of the form k2 + 1 is a multiple of 7.

(b) Find all integers k such that k2 + 1 is a multiple of 17.

20. If a space mission takes exactly 175 hours and the craft blasts off at 8 a.m., at what

hour of the day will it land?

21. Let n = dkdk−1 · · · d2d1d0 be the decimal representation of n.

(a) Show that 3|n if and only if 3 divides (d0 + d1 + · · · + dk).

(b) Show that 11|n if and only if 11 divides (d0 − d1 + d2 − d3 + · · · ± dk).

(c) Show that 6|n if and only if 6 divides [d0 + 4(d1 + d2 + · · · + dk)].

22. (a) In Z35, find the inverse of 13 and use it to solve 13x = 9̄.

(b) In Z25, find the inverse of 7̄ and use it to solve 7̄x = 12.

(c) In Z20, find the inverse of 11 and use it to solve 11x = 16.

(d) In Z16, find the inverse of 9̄ and use it to solve 9̄x = 14.

23. (a) If āb̄ = āc̄ in Zn and if ā has an inverse in Zn, show that b̄ = c̄.

(b). If ā has an inverse in Zn, show that the inverse is unique.

24. (a) If ā and b̄ both have inverses in Zn, show that the same is true for āb̄.

(b) If ā1, ā2, . . . , ām all have inverses in Zn, show that the same is true of their

product ā1ā2 · · · ām.

25. Find all solutions in Zn (as indicated) for each of the given equations.

(a)

{
3̄x + 2̄y = 1̄
5̄x + y = 1̄

in Z11 (b)

{
3̄x + 4̄y = 1̄
2̄x + y = 1̄

in Z7

(c)

{
3̄x + 2̄y = 1̄
5̄x + y = 1̄

in Z7 (d)

{
3̄x + 4̄y = 1̄
2̄x + y = 1̄

in Z5

(e)

{
3̄x + 2̄y = 1̄
5̄x + y = 4̄

in Z7 (f)

{
3̄x + 4̄y = 1̄
2̄x + y = 4̄

in Z5

26. If p is a prime and x2 = ā2 in Zp, show that x = ā or x = −ā.

27. (a) Find all x in Z7 such that x2 + 5̄x + 4̄ = 0̄.

(b) Find all x in Z5 such that x2 + x + 3̄ = 0̄.

(c) Find all x in Z5 such that x2 + x + 2̄ = 0̄.

(d) Find all x in Z9 such that x2 + x + 7̄ = 0̄.

(e) Let n be odd. Show that 2̄ has an inverse r̄ in Zn. Show that x2 + āx + b̄ = 0̄

has a solution in Zn if and only if (r2a2 − b) is a square in Zn.
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28. Find x ∈ Z such that x ≡ 8 (mod 10), x ≡ 3 (mod 9), and x ≡ 2 (mod 7).

29. (a) If āb̄ = 0̄ in Zn and gcd(a, n) = 1, show that b̄ = 0̄.

(b) Show that ā is invertible in Zn if and only if āb̄ = 0̄ implies that b̄ = 0̄.

30. Show that the following conditions on an integer n ≥ 2 are equivalent.

(1) ā2 = 0̄ in Zn implies that ā = 0̄.

(2) n is square free (that is, a product of distinct primes).

[Hint: Theorem 5 §1.2.]

31. Show that the following conditions on an integer n ≥ 2 are equivalent.

(1) If ā is in Zn, then either ā is invertible or āk = 0̄ for some k ≥ 1.

(2) n is a power of a prime.

32. If p ≥ 3 is a prime, show that every element of Zp has a (p − 2)th root. [Hint:

Use Fermat’s theorem to show that f : Zp → Zp is one-to-one, where f(ā) = āp−2.

Apply Theorem 2 §0.3.]

33. Show that 237 − 1 is divisible by 223 and that 232 + 1 is divisible by 641. (Remarkably,
1

223
(237 − 1) is also prime.) Note: If p is a prime, numbers of the form 2p − 1 and

22n
+ 1 are called Mersenne numbers and Fermat numbers, respectively, and

were once thought to be all primes.

34. Let a and n denote integers with n ≥ 2, and write d = gcd(a, n).

(a) Show that ax ≡ b (modn) has a solution if and only if d|b.
(b) If d = ra + sn, r and s integers, show that x0 = r(b/d) is one solution.

(c) If x0 is any solution, show that there are exactly d solutions that are distinct

modulo n:
{
x0, x0 + n

d
, x0 + 2n

d
, . . . , x0 + (d − 1)n

d

}
. [Hint: If ax ≡ b (modn), show

that a(x − x0) ≡ 0 (modn), so (a/d)(x − x0) ≡ 0 [mod(n/d)] by Exercise 11 §1.2.

Conclude that x − x0 ≡ 0 [mod(n/d)].]

(d) Find all solutions to 15x ≡ 25 (mod 35).

(e) Find all solutions to 21x ≡ 14 (mod 35).

(f) Find all solutions to 21x ≡ 8 (mod 33).

35. Let p be a prime. If x2 = 1̄ in Zp, show that x = 1̄ or x = −1̄.

36. Let p be a prime, show that either p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

37. (a) Show that if an ≡ a (modn) holds for all integers a, the modulus n must be square

free, that is, a product of distinct primes.

(b) Show that a561 ≡ a (mod 561) for all integers a. [Hint: Use Theorem 5 §1.2 to

reduce the problem to showing that a561 ≡ a (mod p), where p = 3, 11, or 17. In

each case, use Fermat’s theorem in the form ap−1 ≡ 1 (mod p) whenever p does not

divide a.]

1.4 PERMUTATIONS

A permutation of the numbers 1, 2, and 3 is a rearrangement of these numbers in
a definite order. Thus, the six possibilities are

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

They can also be described as mappings {1, 2, 3} → {1, 2, 3}:
1 → 1
2 → 2
3 → 3

1 → 1
2 → 3
3 → 2

1 → 2
2 → 1
3 → 3

1 → 2
2 → 3
3 → 1

1 → 3
2 → 1
3 → 2

1 → 3
2 → 2
3 → 1
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We use this terminology of mappings to describe permutations.
If X and Y are sets, recall that a mapping α : X → Y is a rule that assigns to

every element x of X exactly one element α(x) of Y, called the image of x under α.
Hence, the diagram

1 → 1
2 → 3
3 → 2

describes the mapping α : {1, 2, 3} → {1, 2, 3} given by the rule α(1) = 1, α(2) = 3,
α(3) = 2.

Now consider a mapping α : {1, 2, . . . , n} → {1, 2, . . . , n}. Because such map-
pings occur frequently, we write α(k) = αk for simplicity. Our interest is in when
the images α1, α2, . . . , αn are a permutation of the numbers 1, 2, . . . , n; that is,
each element of {1, 2, . . . , n} occurs exactly once in the list α1, α2, . . . , αn. In other
words, the function α is both one-to-one and onto (a bijection).13

Given an integer n ≥ 1, write Xn = {1, 2, . . . , n}.

A permutation of Xn is a bijection σ : Xn → Xn.

We call the set Sn of all permutations of Xn the symmetric group of degree n.
Two permutations σ and τ in Sn are equal if they are equal as functions, that is,
if σk = τk for all k in Xn.

To simplify the manipulation of these permutations, a matrix-type notation is
useful. For example, if the permutation σ : X4 → X4 is defined by σ1 = 3, σ2 = 1,
σ3 = 4, and σ4 = 2, we write it as

σ =
(

1 2 3 4

3 1 4 2

)
.

Here the image of each element of X4 = {1, 2, 3, 4} is written below that element.
In general, a permutation σ ∈ Sn is written in matrix form as

σ =
(

1 2 · · · n

σ1 σ2 · · · σn

)
.

Hence, a typical member of Sn takes this form, where σ1, σ2, . . . , σn is the list
of numbers 1, 2, . . . , n in a (possibly) different order.

Example 1. List the elements of S3 in matrix notation.

Solution. There are six different permutations:(
1 2 3

1 2 3

)
,
(

1 2 3

2 3 1

)
,
(

1 2 3

3 1 2

)
,
(

1 2 3

2 1 3

)
,
(

1 2 3

3 2 1

)
,
(

1 2 3

1 3 2

)
.

In general, to construct a permutation

σ =
(

1 2 · · · n

σ1 σ2 · · · σn

)
,

we must choose the numbers σ1, σ2, . . . , σn from Xn so that they are all distinct.
Hence, we have n choices for σ1, then n − 1 choices for σ2, then n − 2 choices for

13A review of one-to-one and onto mappings can be found in Section 0.3.
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σ3, and so on. Thus, σ can be chosen in n(n − 1)(n − 2) · · · 3 · 2 · 1 = n! ways, which
proves the following theorem:

Theorem 1. The set Sn of permutations of Xn has |Sn| = n! elements.

Let σ and τ be permutations in Sn. Both are mappings from Xn to Xn, and we
write them as follows:

Xn
τ→ Xn

σ→ Xn.

We then define the composite στ : Xn → Xn by first applying τ and then σ:

(στ)k = σ(τk), for all k ∈ Xn.

Because both σ and τ are one-to-one and onto, these properties hold for the com-
posite στ (see Theorem 3 §0.3). Hence, στ is again a permutation in Sn.

Example 2. Compute στ if
σ =

(
1 2 3 4

3 4 1 2

)
and τ =

(
1 2 3 4

2 4 3 1

)
.

Solution. Consider the action of στ on 1: (στ)1 = σ2 = 4. We can compute it
directly from the matrix forms:

στ =
(

1 2 3 4

3 4 1 2

) (
1 2 3 4

2 4 3 1

)
=

(
1 2 3 4

4 2 1 3

)
.

It is important to remember that, in computing στ, we apply τ first and then σ.
Thus, we read 1 τ→ 2 from the matrix for τ, then 2 σ→ 4 from the matrix for σ.
The result is 1 στ→ 4, as indicated. Similarly, 2 τ→ 4 σ→ 2 leads to 2 στ→ 2. We can read
the entire action of στ in this manner. The following diagrams illustrate what is
happening:

The action of στ is read from the first diagram by following the arrows. �
Note that στ /= τσ in general: If σ and τ are as in Example 2,

τσ =
(

1 2 3 4

2 4 3 1

) (
1 2 3 4

3 4 1 2

)
=

(
1 2 3 4

3 1 2 4

)
is not the same as στ (computed in Example 2). If it happens that στ = τσ, we
say that σ and τ commute. Thus, two permutations need not commute (but see
Theorem 3). On the other hand, if σ, τ, and μ are three permutations in Sn then
we always have

(στ)μ = σ(τμ),

which we can easily verify directly (see Theorem 3 §0.3).
The identity permutation ε in Sn is defined as

ε =
(

1 2 · · · n

1 2 · · · n

)
.
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In other words, εk = k holds for every k ∈ Xn. It is easy to verify that

εσ = σ = σε

holds for all σ ∈ Sn, so ε plays the role in Sn that 1 plays for multiplication of
numbers.

Consider the permutation
σ =

(
1 2 3 4

3 4 2 1

)

in S4. The action of σ is obtained by reading down: σ1 = 3, σ2 = 4, σ3 = 2, and
σ4 = 1. There is clearly another permutation in S4 obtained by reading up 3 → 1,
4 → 2, 2 → 3, and 1 → 4. This new permutation is determined uniquely by σ; In
fact, it is the inverse of σ (denoted σ−1 as in Section 0.3). Thus,

σ−1 =
(

1 2 3 4

4 3 1 2

)
.

In general, if σ ∈ Sn, the fact that σ : Xn → Xn is one-to-one and onto implies
(Theorem 6 §0.3) that a uniquely determined permutation σ−1 : Xn → Xn exists
(called the inverse of σ), which satisfies

σ(σ−1k) = k and σ−1(σk) = k, for all k ∈ Xn. (*)

Equations (*) imply that each of σ and σ−1 reverses the action of the other and
hence that we can indeed obtain the action of σ−1 from

σ =
(

1 2 · · · n

σ1 σ2 · · · σn

)

by reading up.

Example 3. Find the inverse of σ =
(

1 2 3 4 5 6 7 8

4 1 8 3 2 5 6 7

)
in S8.

Solution. Reversing the action of σ gives σ−1 =
(

1 2 3 4 5 6 7 8

2 5 4 1 6 7 8 3

)
. �

If σ ∈ Sn, it is related to σ−1 by composition. Indeed, because the identity
permutation ε in Sn satisfies εk = k for all k ∈ Xn, we can write equations (*) as

σσ−1 = ε and σ−1σ = ε.

This and other properties of composition discussed earlier are recorded in the
following theorem for reference.

Theorem 2. Let σ, τ, and μ denote permutations in Sn.

(1) στ is in Sn.

(2) σε = σ = εσ.

(3) σ(τμ) = (στ)μ.

(4) σσ−1 = ε = σ−1σ.
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By virtue of this, Sn is said to be a group under composition that explains the name
“symmetric group.” Groups in general are discussed in Chapter 2.

Example 4. Given

σ =
(

1 2 3 4 5

4 5 1 2 3

)

and

τ =
(

1 2 3 4 5

3 2 1 5 4

)
,

find χ in S5 such that χσ = τ.

Solution. Suppose that χ ∈ Sn exists such that τ = χσ. Multiply on the right by
σ−1 to get τσ−1 = χσσ−1 = χε = χ. Thus,

χ = τσ−1 =
(

1 2 3 4 5

3 2 1 5 4

) (
1 2 3 4 5

3 4 5 1 2

)
=

(
1 2 3 4 5

1 5 4 3 2

)
.

The reader should verify that χ actually works, that is, χσ = τ. �
Let σ ∈ Sn so that σ : Xn → Xn is a bijection. We say that an element k ∈ Xn

is fixed by σ if σk = k. If σk /= k, we say that k is moved by σ, and we write
Mσ = {k ∈ Xn | k is moved by σ}. Two permutations σ and τ are called disjoint
if no element of Xn is moved by both; that is, if Mσ ∩ Mτ = ∅.

Clearly, the identity permutation ε in Sn is the only permutation that fixes
every element of Xn. By contrast,

(
1 2 3 · · · n − 1 n

2 3 4 · · · n 1

)

moves every element of Xn, whereas

(
1 2 3 4 5

3 2 5 4 1

)

moves 1, 3, and 5 and fixes 2 and 4. The following result is needed in the proof of
Theorem 3.

Lemma 114. If k ∈ Mσ then σk ∈ Mσ.

Proof. Otherwise, σk is fixed by σ; that is, σ(σk) = σk. But then the fact that σ is
one-to-one gives σk = k, which is contrary to the hypothesis. �
Theorem 3. If σ and τ in Sn are disjoint, then στ = τσ.

Proof. For k ∈ Xn, we must show that (τσ)k = (στ)k. Since Mσ ∩ Mτ = ∅ by
hypothesis, there are three cases (see the diagram).

14The word “lemma” means a subsidiary proposition used in the proof of another proposition.
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Example 5. Write

τ =
(

1 2 3 4 5 6 7

4 7 1 6 5 2 3

)
in cycle notation.

Solution. τ = (1 4 6 2 7 3). Note that τ fixes 5. �
Example 6. S3 = {ε, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)} from Example 1.
Hence, S3 consists of cycles; however, the same is not true of Sn in general, as
we show later.

Example 7. The only cycle of length 1 is the identity permutation ε.

To reverse the action of a cycle, we simply go around the cycle in the opposite
direction. Thus we obtain

Theorem 4. If σ is an r-cycle, then σ−1 is also an r-cycle. More precisely, if
σ = (k1 k2 · · · kr−1 kr), then σ−1 = (kr kr−1 · · · k2 k1).

Cycle notation is much simpler than two-row matrix notation. However, we must
briefly discuss two ambiguous aspects of cycle notation. First, the same permutation
can be written in several ways in cycle notation. For example, σ = (1 4 2 3) in
S4 can be written as σ = (4 2 3 1) = (2 3 1 4) = (3 1 4 2). This is harmless
once we are aware of it.

The second ambiguity can be illustrated as follows: Given σ = (1 2 4), is it in
S4 (fixing 3) or in S5 (fixing 3 and 5)? We introduce the following convention so
that it does not matter.

Convention. Every permutation in Sn is regarded as a permutation in Sn+1 that
fixes n + 1. Thus,

S1 ⊆ S2 ⊆ S3 ⊆ · · · .

We shall adhere to this convention throughout this book.
Of course, not every permutation is a cycle. For example, consider

σ =
(

1 2 3 4 5 6 7 8 9 10

3 1 7 6 10 4 2 5 9 8

)
in S10. If we represent the action of σ geometrically, we obtain

1

2 3

7 6

4 5

8 10
9

The four cycles are (1 3 7 2), (4 6), (5 10 8), and (9) = ε. These are pairwise
disjoint, so each commutes with the others by Theorem 3. Even more remarkable
is the fact that σ is the product of these cycles (where we omit (9) = ε):

σ = (1 3 7 2)(4 6)(5 10 8).

The reader should check this assertion. In fact, every permutation can be expressed
as a product of disjoint cycles in this way. Here is another example.
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Example 8. Factor

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13

5 12 2 1 9 11 4 3 7 10 13 8 6

)
as a product of (pairwise) disjoint cycles.

Solution. Starting with 1, follow the action of σ: 1 → 5 → 9 → 7 → 4 → 1. Thus, it
has cycled, and the first cycle is (1 5 9 7 4). Now start with any member of X13

not already considered, say 2 → 12 → 8 → 3 → 2; so the next cycle is (2 12 8 3).
However, 6 has still not been used. It provides the cycle (6 11 13). The remaining
member of X13 is 10 that is fixed by σ, so the corresponding cycle is (10) = ε.
Hence,

σ = (1 5 9 7 4)(2 12 8 3)(6 11 13)

is the desired factorization (where we drop the 1-cycles as before). Of course, the
action of σ can be sketched as shown previously. �

The method of Example 8 will express every permutation as a product of disjoint
cycles because each cycle agrees with σ on the elements it moves, and these elements
are fixed by the other cycles. In addition, the factorization is unique up to the order
of the disjoint cycles, and we give a formal inductive proof of the following theorem
at the end of this section.

Theorem 5. Cycle Decomposition Theorem. If σ /= ε is a permutation in Sn,
then σ is a product of (one or more) disjoint cycles of length at least 2. This
factorization is unique up to the order of the factors.

Example 9. List all the elements of S4, each factored into disjoint cycles.

Solution. The 4! = 24 elements are as follows:

ε (1 2) (1 2 3) (1 2)(3 4) (1 2 3 4)
(1 3) (1 2 4) (1 3)(2 4) (1 2 4 3)
(1 4) (1 3 4) (1 4)(2 3) (1 3 2 4)
(2 3) (2 3 4) (1 3 4 2)
(2 4) (1 3 2) (1 4 2 3)
(3 4) (1 4 2) (1 4 3 2)

(1 4 3)
(2 4 3) �

The permutations in Example 9 are classified according to the following notion:
Two permutations in Sn have the same cycle structure if, when they are factored
into disjoint cycles, they have the same number of cycles of each length. We refer
to this notation again later.

The Alternating Group

A cycle of length 2 is called a transposition. Thus, each transposition δ has the
form δ = (m n) where m /= n. Hence,

δ2 = ε and δ−1 = δ, for every transposition δ.
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Note, however, that σ = (1 2)(3 4) also satisfies σ2 = ε and σ−1 = σ, so these
properties do not characterize the transpositions.

One reason for studying transpositions is that every permutation is a product
of transpositions. For example, the cycle (1 2 3 4 5 6) factors as follows:

(1 2 3 4 5 6) = (1 2)(2 3)(3 4)(4 5)(5 6)

as is easily verified. This pattern works in general.

Theorem 6. Every cycle of length r > 1 is a product of r − 1 transpositions:

(k1 k2 · · · kr) = (k1 k2)(k2 k3) · · · (kr−2 kr−1)(kr−1 kr).

Hence, every permutation is a product of transpositions.

Proof. The verification of the cycle factorization is left to the reader. The rest follows
because every permutation is a product of cycles by Theorem 5. �

In contrast to the factorization into cycles, factorizations into transpositions are
not unique. For example,

(2 3)(1 2)(2 5)(1 3)(2 4) = (1 2 4 5) = (1 5)(1 4)(1 2).

Indeed, any factorization into m transpositions gives rise to a factorization into
m + 2 transpositions simply by inserting ε = (1 2)(1 2) somewhere. This gives a
glimpse (admittedly not convincing!) into why the next theorem is true. It asserts
that if a permutation can be factored in one way as a product of an even (or odd)
number of transpositions, then any factorization into transpositions must involve
an even (respectively odd) number of factors.

Two integers m and n are said to have the same parity if they are both even
or both odd; equivalently, if m ≡ n (mod 2).

Theorem 7. Parity Theorem. If a permutation σ has two factorizations

σ = γn · · · γ2γ1 = μm · · ·μ2μ1,

where each γi and μj is a transposition, then m and n have the same parity.

The proof of this astonishing fact is given at the end of this section.
A permutation σ is called even or odd accordingly as it can be written in some

way as the product of an even or odd number of transpositions. The parity theorem
ensures that this is unambiguous, that is no permutation is both even and odd.

The parity of a cycle γ is easy to determine: Theorem 6 shows that γ is even if
its length is odd, and odd if its length is even. When combined with Theorem 5,
this result provides a way to easily compute the parity of any permutation.

Example 10. Determine the parity of σ =
(

1 2 3 4 5 6 7 8 9

5 4 6 1 7 8 2 9 3

)
.

Solution. The factorization of σ into disjoint cycles is σ = (1 5 7 2 4)(3 6 8 9).
Then, (1 5 7 2 4) is even and (3 6 8 9) is odd by Theorem 6, so σ is odd
(because the sum of an even and an odd integer is odd). �
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The set of all even permutations in Sn is denoted An. It is called the alternating
group of degree n and plays an important role in the theory of groups (in Chapter
2). Theorem 8 collects several facts about An that will be needed later.

Theorem 8. If n ≥ 2, the set An has the following properties:
(1) ε is in An and, if σ and τ are in An, then both σ−1 and στ are in An.

(2) |An| = 1
2n!

Proof. (1) ε = (1 2)(1 2), so it is even. If σ and τ are even, write σ = γ1γ2 · · · γn

and τ = δ1δ2 · · · δm, where n and m are even and γi and δj are transpositions.
Then στ = γ1γ2 · · · γnδ1δ2 · · · δm is a product of n + m transpositions, and so is
even. Finally, write μ = γn · · · γ2γ1. The fact that γ2

i = ε for each i implies that
σμ = ε (verify). Hence, σ−1 = σ−1ε = σ−1σμ = εμ = μ. But μ is even because n is
even, so σ−1 is even.

(2) Let On denote the set of odd permutations in Sn. Then Sn = An ∪ On and
the parity theorem guarantees that An ∩ On =∅. Since |Sn| = n!, it suffices to show
that |An| = |On|. We do so by exhibiting a bijection f : An → On. Let γ = (1 2)
and define f by f(σ) = γσ for all σ ∈ An. (Note that γσ is odd if σ is even.) The fact
that γ2 =ε implies that f is a bijection. In fact, γσ=γσ1 gives σ = γ2σ = γ2σ1 = σ1

(so f is one-to-one); if τ ∈ On, then σ = γτ ∈ An and f(σ) = γσ = γ2τ = τ (so f
is onto). Thus, |An| = |On|. �

A set of permutations is called a group if it contains the identity permutation,
the product of any two of its members, and the inverse of any member. Hence, Sn

is a group, and the first part of Theorem 8 shows that An is a group. The general
idea of a group is defined and discussed at length in Chapter 2.

Proof of the Cycle Decomposition Theorem

If σ /= ε is a permutation in Sn, we show it is a product of disjoint cycles by induction
on n ≥ 2. This is clear if n = 2. If n > 2, assume that the result is true for Sn−1

and let σ ∈ Sn. If σn = n, then σ ∈ Sn−1 and we are done. So assume σn /= n and
write m = σ−1n. Then σm = σ(σ−1n) = εn = n, and m /= n (because σn /= n). We
write γ = (m n) and consider τ = σγ. Because γ2 = ε, we have τγ = σγ2 = σε = σ.
Moreover, τn = σγn = σm = n, so τ ∈ Sn−1 and τ is a product of disjoint cycles
by induction. There are two cases:

• Case 1: τm = m. In this case, γ and τ are disjoint (as τn = n) and we are
done because σ = γτ.

• Case 2: τm /= m. Then m is moved by (exactly one) cycle factor of τ. Hence
we can write

τ = μ(m k1 k2 · · · kr),

where μ is a product of disjoint cycles fixing m, k1, k2, . . . , kr (and also fixing
n because τn = n). Finally, it is easy to verify that

σ = τγ = μ(m k1 k2 · · · kr)(m n) = μ(m n k1 · · · kr),

which gives σ as a product of disjoint cycles.
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Turning to the uniqueness, suppose that σ = γa . . . γ2γ1 = δb · · · δ2δ1 are two
factorizations into disjoint cycles. We proceed by induction on max(a, b). If this is
1, then σ = γ1 = δ1. Otherwise, let σ move m. Then m occurs in exactly one γi and
exactly one δj . By reordering the factors if necessary, assume that m occurs in γ1

and in δ1. Hence, we can write

γ1 = (k1 k2 · · · kr) and δ1 = (l1 l2 · · · ls),

where k1 = m = l1. We may assume that r ≤ s. Then, because k1 = l1,

k2 = σk1 = σl1 = l2

k3 = σk2 = σl2 = l3
...

...
kr = σkr−1 = σlr−1 = lr

If r < s, the next step gives

l1 = k1 = σkr = σlr = lr+1,

a contradiction. Thus, r = s and γ1 = δ1. If we write λ = γ1 = δ1, we obtain
σ = γa . . . γ2λ = δb · · · δ2λ. It follows that σλ−1 = γa . . . γ2 = δb · · · δ2 is a product of
a − 1 (and b − 1) disjoint cycles. By induction, a = b and (after possible reordering)
γi = δi for i = 2, 3, · · · , a, which completes the induction.

Proof of the Parity Theorem

The proof depends on two preliminary results about transpositions.

Lemma 2. Let γ1 /= γ2 be transpositions. If γ1 moves k, transpositions δ1 and λ2

exist such that
γ2γ1 = λ2δ1, where δ1 fixes k and λ2 moves k.

Proof. Let γ1 = (k a). Because γ1 /= γ2, the transposition γ2 has one of the forms
(k b), (a b), or (b c) where k, a, b, and c denote distinct integers. In these cases,

γ2γ1 = (k b)(k a) = (k a)(a b)
γ2γ1 = (a b)(k a) = (k b)(a b)
γ2γ1 = (b c)(k a) = (k a)(b c)

Hence the conclusion of Lemma 2 holds in every case. �
Lemma 3. If the identity permutation ε can be written as a product of n ≥ 3
transpositions, then it can be written as a product of n − 2 transpositions.

Proof. Let ε = γn · · · γ4γ3γ2γ1, where n ≥ 3 and γi are transpositions. Suppose that
γ1 moves k. If γ1 = γ2, then γ2γ1 = ε, so ε = γn · · · γ4γ3 and we are done. Otherwise,
Lemma 2 gives γ1γ2 = λ2δ1, where δ1 fixes k and λ2 moves k. Thus,

ε = γn · · · γ4γ3λ2δ1.

Again, we are done if λ2 = γ3, so we let γ3λ2 = λ3δ2, where δ2 fixes k and λ3 moves
k. Hence,

ε = γn · · · γ5γ4λ3δ2δ1.
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Continue in this way. Either we are done at some stage or we finally arrive at a
factorization

ε = λnδn−1 · · · δ2δ1,

where each δi fixes k and λn moves k. But this cannot happen because, if it did,

k = εk = λnδn−1 · · · δ2δ1k = λnk /= k,

a contradiction. This proves Lemma 3. �
Proof of the parity theorem. Suppose a permutation σ has two factorizations into
transpositions:

σ = γn . . . γ2γ1 = μm . . . μ2μ1.

We must show that n and m are both even or both odd. The fact that μ−1
j = μj

for all j gives ε = μ1μ2 . . . μmγn . . . γ2γ1. Hence, it suffices to show that ε cannot be
written as the product of an odd number of transpositions. But if ε is a product of
p transpositions, where p ≥ 3 is odd, then repeating Lemma 3 gives factorizations
into p − 2, p − 4, . . . , transpositions. Ultimately we get a factorization of ε as one
transposition, which is impossible. �

Exercises 1.4

1. Let

σ =
(

1 2 3 4 5

2 1 4 3 5

)
, τ =

(
1 2 3 4 5

3 2 1 5 4

)
, μ =

(
1 2 3 4 5

3 4 5 1 2

)
be permutations. Compute:
(a) τσ (b) στ (c) τ−1

(d) μ−1 (e) μτσ−1 (f) μ−1στ
2. (a) Verify that any two of σ, τ, and μ commute:

σ =
(

1 2 3 4

4 3 2 1

)
, τ =

(
1 2 3 4

2 4 1 3

)
, μ =

(
1 2 3 4

3 1 4 2

)
.

(b) Do (a) by first verifying that σ = τ2 and μ = τ3.

3. Let

σ =
(

1 2 3 4

2 4 1 3

)
and

τ =
(

1 2 3 4

3 4 1 2

)
.

In each case solve for χ in S4.
(a) σχ = τ (b) χτ = σ (c) σ−1χ = τ
(d) χτσ = ε (e) τχσ = ε (f) τχσ−1 = σ

4. Suppose that

τσ =
(

1 2 3 4 5

5 3 1 4 2

)
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and

στ =
(

1 2 3 4 5

2 4 3 5 1

)
in S5. If σ1 = 2, find σ and τ.

5. Show that

τσ =
(

1 2 3 4

2 3 4 1

)
and

στ =
(

1 2 3 4

2 1 4 3

)
is impossible for σ and τ in S4.

6. If σ and τ fix k, show that στ and σ−1 both fix k.

7. (a) How many permutations in S5 fix 1?

(b) How many fix both 1 and 2?

8. (a) If στ = ε in Sn, show that σ = τ−1.

(b) If σ2 = σ in Sn, show that σ = ε.

9. In Sn, show that σ = τ if and only if στ−1 = ε.

10. If σ and τ are disjoint in Sn and στ = ε, what can you say about σ and τ? Support

your answer.

11. Write the following in two-row matrix notation.

(a) (1 8 7 4)(3 6 7 5 9) (b) (1 3 5 7)(4 1 9)

12. Let σ = (1 2 3) and τ = (1 2) in S3.

(a) Show that S3 = {ε, σ, σ2, τ, τσ, τσ2} and that σ3 = ε = τ2 and στ = τσ2.

(b) Use (a) to fill in the multiplication table for S3.

13. Factor each of the following permutations into disjoint cycles, find its parity, and

factor the inverse into disjoint cycles.

(a)
(

1 2 3 4 5 6 7 8 9

4 7 9 8 2 1 6 3 5

)
(b)

(
1 2 3 4 5 6 7 8 9

3 8 9 5 2 1 6 4 7

)
(c)

(
1 2 3 4 5 6 7 8 9

2 8 6 9 4 7 3 1 5

)
(d)

(
1 2 3 4 5 6 7 8 9

6 4 8 9 3 1 7 5 2

)
(e) (1 3)(2 5 7)(3 8 5)

(f) (1 2 3 4 5)(6 7)(1 3 5 7)(1 6 3)

14. If στ = σμ or τσ = μσ in Sn, show that τ = μ. Does στ = μσ imply that τ = μ?

Support your answer.

15. In each of (a) S5, and (b) S6, list one permutation of each possible cycle structure

(see Example 9).

16. If σ = (1 2 3 · · · n), show that σn = ε and that n is the smallest positive integer

with this property.

17. (a) If σ = (1 2 3 4)(5 6 7), factor σ−1 into disjoint cycles.

(b) If σ = γ1γ2 · · · γn, where the γi are disjoint cycles, how is the factorization of

σ−1 into disjoint cycles related to the γi? Support your answer.
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18. Find the parity of

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 11 6 1 15 13 2 9 4 10 14 3 12 7 8

)
.

19. Find the parity of each permutation in Exercise 13.

20. Show that (1 2) is not a product of 3-cycles.

21. (a) If γ1, γ2, · · · , γm are transpositions, show that

(γ1 γ2 · · · γm)−1 = γmγm−1 · · · γ2γ1.

(b) Show that σ and σ−1 have the same parity for all σ in Sn.

(c) Show that σ and τστ−1 have the same parity for all σ and τ in Sn.

22. Show that An+1 ∩ Sn = An for all n ≥ 3 (regard Sn ⊆ Sn+1 in the usual way).

23. Let σ ∈ Sn, σ /= ε. If n ≥ 3, show that γ ∈ Sn exists such that σγ /= γσ. [Hint: If

σk = l with k /= l, choose m /∈ {k, l} and take γ = (k m).]

24. If σ ∈ Sn, show that σ2 = ε if and only if σ is a product of disjoint transpositions.

25. If n ≥ 3, show that every even permutation in Sn is a product of 3-cycles.

26. Let γ be any cycle of length r. If σ ∈ Sn, show that σγσ−1 is also a cycle of length r.

More precisely, if γ = (k1 k2 · · · kr) show that σγσ−1 = (σk1 σk2 · · · σkr).

27. (a) Show that (k1 k2 · · · kr) = (k1 kr)(k1 kr−1) · · · (k1 k2).

(b) Show that each σ ∈Sn is a product of the transpositions (1 2), (1 3), . . . , (1 n).

[Hint: Each transposition is such a product by (a) and Exercise 26.]

(c) Repeat (b) for the transpositions (1 2), (2 3), . . . , (n − 1 n). [Hint: Use (a)

and Exercise 26.]

(d) If σ = (1 2 3 · · · n), show that each element of Sn is a product of the

permutations (1 2), σ, and σ−1. [Hint: Use (b) and Exercise 26.]

28. Let σ = (1 2 3 · · · n) be a cycle of length n ≥ 2.

(a) If n = 2k, find the factorization of σ2 into disjoint cycles.

(b) If n = mq with m ≥ 3 and q ≥ 2, show that σm is a product of m disjoint cycles,

each of length q.

(c) If 1 ≤ m ≤ n, show that σmk ≡ k + m (modn).

(d) If n = p is a prime, show that σm is a cycle of length p for each m = 1, 2, . . . , p − 1.

29. Define the sign of a permutation σ to be

sgnσ =

{
1

−1

if σ is even
if σ is odd

.

Prove that sgn(στ) = sgnσ sgn τ for all σ and τ in Sn.

30. Consider a puzzle made up of five numbered squares in a 2 × 3 frame. Assume that

the squares slide vertically and horizontally so that rearrangements are possible.

For example, arrangement (2) can be obtained from (1) (in four moves). Call an

arrangement “nice” if the lower right position is vacant. Then, the “nice” arrange-

ments correspond to permutations in S5. For example, arrangement (2) corresponds

to (2 5 3).

Show that every “nice” arrangement corresponds to an even permutation.15

15In fact, every even permutation arises in this way. (See Newman, J. R., World of Mathematics,
New York: Simon & Schuster, 1956, p. 2431.)
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1.5 AN APPLICATION TO CRYPTOGRAPHY

How often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth.

—Sir Arthur Conan Doyle

The ability to transmit messages in a way that cannot be recognized by adversaries
has intrigued people for centuries. In this brief section, we outline a method that
uses Fermat’s theorem to encode information in a way that is very difficult to break.
The idea is based on the following consequence of that theorem.

Theorem 1. Let n=pq, where p and q are distinct primes, write m=(p − 1)(q − 1),
and let e > 2 be any integer such that e ≡ 1 (mod m). Then

xe ≡ x (mod n) for all x such that gcd(x, n) = 1.

Proof. Because e ≡ 1 (mod m), write e − 1 = ym, where y is an integer. Then
xe = x · (xm)y, so it suffices to show that xm ≡ 1 (mod n) whenever gcd(x, n) = 1.
This condition certainly implies that p does not divide x. Hence, Fermat’s theorem
shows that xp−1 ≡ 1 (mod p) and so xm = (xp−1)q−1 ≡ 1q−1 ≡ 1 (mod p). Similarly,
xm ≡ 1 (mod q) and so, as p and q are relatively prime, Theorem 5 §1.2 shows that
xm ≡ 1 (mod pq). This is what we wanted. �

The coding process can be described as follows. Two distinct primes p and q
are chosen, each very large in practice. Then the words available for transmission
(and punctuation symbols) are paired with distinct integers x ≥ 2. The integers x
used may be assumed to be chosen relatively prime to p and q if these primes are
large enough and, in practice, to be smaller than each of these primes. The idea is
to use p and q to compute an integer r from x and then to transmit r rather than
x. Clearly, r must be chosen in such a way that x (and hence the corresponding
word) can be retrieved from r. The passage from x to r (called encoding) is carried
out by the sender of a message, the integer r is transmitted, and the computation
of x from r (decoding) is done by the receiver.

Here is how the process works. Given the distinct primes p and q, the cryptog-
rapher denotes

n = pq and m = (p − 1)(q − 1)

and then chooses any integer k ≥ 2 such that gcd(k, m) = 1. The sender is given
only the numbers n and k. If the sender wants to transmit an integer x, he or she
encodes it by reducing xk modulo n, say,

xk ≡ r (mod n), where 0 ≤ r < n.

Then the sender transmits r to the receiver of the message who must use it to
retrieve x. If the receiver knows the inverse k′ of k in Zm, then k′k ≡ 1 (mod m).
Hence, Theorem 1 (with e = k′k) gives xk′k ≡ x (mod n) and

x ≡ xk′k ≡ (xk)k′ ≡ rk′

modulo n. Knowing both r and k′, the receiver can compute x (and hence the
corresponding word in the message).

Note that all the sender really has to know are n and k. A third party intercept-
ing the message r cannot retrieve x without k′, and computing it requires p and q.
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Even if the third party can extract the integers n and k from the sender, factoring
n = pq in practice is very time-consuming if the primes p and q are large, even with
a computer. Hence, the code is extremely difficult to break. Example 1 illustrates
how the process works, although the primes used are small.

Example 1. Let p = 11 and q = 13 so that n = 143 and m = 120. Then let k = 7,
chosen so that gcd(k, m) = 1. Encode the number x = 9 and then decode the result.

Solution. The sender reduces xk = 97 modulo n = 143. Working modulo 143: 92 ≡
81, 93 ≡ 14, 94 ≡ 126, 97 ≡ 48. Hence, r = 48 is transmitted. The receiver then
finds k′, the inverse of k = 7 modulo m = 120. In fact, the euclidean algorithm
gives 1 = 120 − 17 · 7, so k′ ≡ −17 ≡ 103 (mod 120) is the required inverse. Hence,
x is retrieved (modulo n) by x ≡ rk′ ≡ 48103 (mod 143). One fairly efficient way to
compute this is to note that 103 = 1100111 in binary, so 103 = 1 + 2 + 22 + 25 + 26.
Then the receiver computes 48t, where t is a power of 2 by successive squaring of
48 modulo 143:

482 ≡ 16, 4822 ≡ 113, 4823 ≡ 42, 4824 ≡ 48, 4825 ≡ 16, 4826 ≡ 113.

Again working modulo 143 gives

x ≡ 48103 ≡ 481+2+22+25+26 ≡ 48 · 16 · 113 · 16 · 113 ≡ 9,

which retrieves the original 9. �
This system is called the RSA system after its inventors.16 Other, more compre-

hensive coverage of cryptography is available,17 including overviews of the subject,
methods, and bibliographies.

The RSA system works by finding two large primes p and q and computing the
number n = pq. The code is difficult to break because it is difficult to find p and
q given n. However, in 2002, Maninda Agrawal and two undergraduate students
(Neeraj Kayal and Nitin Saxena) gave a simple algorithm that can decide whether
a given integer n is prime or not. Moreover, the time taken is approximately a
polynomial function of n. This is an important breakthrough in computer science,
and certainly affects algorthms like the RSA system.

Cryptography, in general, refers to the transmission of messages where the pri-
mary aim is to disguise the message to make its interpretation by an unauthorized
interceptor very difficult. Coding theory, in contrast, aims at fast and correct trans-
mission of messages; we briefly discuss this topic in Sections 2.11 and 6.7.

16Rivest, R. L., Shamir, A., and Adleman, L., A method for obtaining digital signatures and
public-key cryptosystems, Communication of the ACM, 21 (1978), 120–126.

17For example, see the section on Algebraic Cryptography in Lidl, R. and Pilz, G., Applied Abstract
Algebra, New York: Springer-Verlag, 1983.
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