
  CHAPTER 1 

RELIABILITY AND HAZARD FUNCTIONS     
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    1.1    INTRODUCTION 

 One of the quality characteristics that consumers require from the manufacturer of products is 
reliability. Unfortunately, when consumers are asked what reliability means, the response is 
usually unclear. Some consumers may respond by stating that the product should always work 
properly without failure or by stating that the product will always function properly when 
required for use, while others will completely fail to explain what reliability means to them. 

 What is reliability from your viewpoint? Take, for instance, the example of starting your 
car. Would you consider your car reliable if it starts immediately? Would you still consider 
your car reliable if it takes you two times to turn on the ignition key for the car to start? How 
about three times? As you can see, without quantifi cation, it becomes more diffi cult to defi ne 
or measure reliability. We defi ne reliability later in this chapter, but for now, to further illustrate 
the importance of reliability as a fi eld of study and research, we present the following cases. 

 On April 9, 1963, the USS  Thresher , a nuclear submarine, slipped beneath the surface 
of the Atlantic and began a run for deep waters (1000 feet below surface).  Thresher  exceeded 
its maximum test depth and imploded. Its hull collapsed, causing the death of 129 crewmembers 
and civilians. It should be noted that the  Thresher  had been the most advanced submarine of 
its day, with a destructive power beyond that of the Navy ’ s entire submarine force in World 
War II. Though it was designed to sustain stresses at this depth, it failed catastrophically. 

 In 1979, a DC - 10 commercial aircraft crashed, killing all passengers aboard. The cause 
of failure was poor maintenance procedure. The engineers specifi ed that the engine should have 
been taken off before the engine mounting assembly, because of the excessive weight of the 
engines. Apparently, those guidelines were not followed when maintenance was conducted, 
causing excessive stresses and forces that cracked the engine mounts. 

 On December 2, 1982, a team of doctors and engineers at Salt Lake City, Utah, performed 
an operation to replace a human heart by a mechanical one — the Jarvik heart. Two days later, 
the patient underwent further operations due to a malfunction of the valve of the mechanical 
heart. Here, a failure of the system may directly affect one human life at a time. In January 
1990, the Food and Drug Administration stunned the medical community by recalling the 
world ’ s fi rst artifi cial heart because of defi ciencies in manufacturing quality, training, and other 
areas. This heart affected the lives of 157 patients over an eight - year period. Now, consider the 
following case, where the failures of the systems have a much greater effect. 
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2 CHAPTER 1 RELIABILITY AND HAZARD FUNCTIONS

 On April 26, 1986, two explosions occurred at the newest of the four operating nuclear 
reactors at the Chernobyl site in the former USSR. It was the worst commercial disaster in the 
history of the nuclear industry. A total of 31 site workers and members of the emergency crew 
died as a result of the accident. About 200 people were treated for symptoms of acute radiation 
syndrome. Economic losses were estimated at $3 billion, and the full extent of the long - term 
damage has yet to be determined. 

 More recently, on July 25, 2000, a Concorde aircraft while taking off at a speed of 175 
knots ran over a strip of metal from a DC - 10 airplane, which had taken off a few minutes 
before. This strip cut the tire on wheel No. 2 of the left landing gear resulting in one or more 
pieces of the tire, which were thrown against the underside wing fuel tank. This led to the 
rupture of the tank causing fuel leakage and consequently resulting in a fi re in the landing gear 
system. Fire spread to both engines of the aircraft causing loss of power and crash of the air-
craft. Clearly, such fi eld condition was not considered in the design process. This type of failure 
has ended the operation of the Concorde fl eet indefi nitely. 

 The explosions of the space shuttle  Challenger  in 1986 and the space shuttle  Columbia  
in 2003, as well as the loss of the two external fuel tanks of the space shuttle  Columbia  in an 
earlier fl ight (at a cost of $25 million each), are other examples of the importance of reliability 
in the design, operation, and maintenance of critical and complex systems. Indeed, fi eld condi-
tions similar to those of the Concorde aircraft have lead to the failure of the  Columbia . The 
physical cause of the loss of  Columbia  and its crew was a breach in the Thermal Protection 
System of the leading edge of the left wing. The breach was initiated by a piece of insulating 
foam that separated from the left bipod ramp of the External Tank and struck the wing in the 
vicinity of the lower half of Reinforced Carbon - Carbon panel 8 at 81.9 seconds after launch. 
During the reentry, reheated air penetrated the leading - edge insulation and progressively melted 
the aluminum structure until increasing aerodynamic forces caused loss of control, failure of 
the wing, and breakup of the Orbiter (Walker and Grosch,  2004 ). 

 Reliability plays an important role in the service industry. For example, to provide virtu-
ally uninterrupted communications for its customers,  American Telephone and Telegraph 
Company  ( AT & T ) installed the fi rst transatlantic cable with a reliability goal of a maximum 
of one failure in 20 years of service. The cable surpassed the reliability goal and was replaced 
by new fi ber optic cables for economic reasons. The reliability goal of the new cables is one 
failure in 80 years of service! 

 Another example of the reliability role in structural design is illustrated by the Point 
Pleasant Bridge (West Virginia/Ohio border), which collapsed on December 15, 1967, causing 
the death of 46 persons and the injuries of several dozen persons. The failure was attributed to 
the metal fatigue of a crucial eyebar, which started a chain reaction of one structural member 
falling after another. The bridge failed before its designed life. 

 The failure of a system can have a widespread effect and a far reaching impact on many 
users and on the society as a whole. On August 14, 2003, the largest power blackout in North 
American history affected eight U.S. states and the Province of Ontario, leaving up to 50 million 
people with no electricity. Controllers in Ohio, where the blackout started, were overextended, 
lacked vital data, and failed to act appropriately on outages that occurred more than an hour 
before the blackout. When energy shifted from one transmission line to another, overheating 
caused lines to sag into a tree. The snowballing cascade of shunted power that rippled across 
the Northeast in seconds would not have happened had the grid not been operating so near to 



RELIABILITY DEFINITION AND ESTIMATION 3

its transmission capacity and assessment of the entire power network reliability when operating 
at its peak capacity were carefully estimated (The Industrial Physicist,  2003 ; U.S. - Canada 
Power System Outage Task Force,  2004 ). 

 Most of the above examples might imply that failures and their consequences are due to 
hardware. However, many systems ’  failures are due to human errors and software failures. For 
example, the Therac - 25, a computerized radiation therapy machine, massively overdosed 
patients at least six times between June 1985 and January 1987. Each overdose was several times 
the normal therapeutic dose and resulted in the patient ’ s severe injury or even death (Leveson 
and Turner,  1993 ). Overdoses, although they sometimes involved operator error, occurred pri-
marily because of errors in the Therac - 25 ’ s software and because the manufacturer did not 
follow proper software engineering practices. Other software errors might result from lack of 
validation of the input parameters. For example, in 1998, a crew member of the guided - missile 
cruiser USS Yorktown mistakenly entered a zero for a data value, which resulted in a division 
by zero. The error cascaded and eventually shut down the ship ’ s propulsion system. The ship 
was dead in the water for several hours because a program did not check for valid input. 

 Another recent example of software reliability includes the Mars Polar Lander which 
was launched in January 1999 and was intended to land on Mars in December of that year. 
Legs were designed to deploy prior to landing. Sensors would detect touchdown and turn off 
the rocket motor. It was known and understood that the deployment of the landing legs gener-
ated spurious signals of the touchdown sensors. The software requirements, however, did not 
specifi cally describe this behavior and the software designers therefore did not account for it. 
The motor turned off at too high an altitude and the probe crashed into the planet at 50   mi/h 
and was destroyed. Mission costs exceeded $120 million (Gruhn,  2004 ). Reliability also has a 
great effect on the consumers ’  perception of a manufacturer. For example, consumers ’  experi-
ences with car recalls, repairs, and warranties will determine the future sales and survivability 
of that manufacturer. Most manufactures have experienced car recalls and extensive warranties 
that range from as low as 1.2% to 6% of the revenue. Some car recalls are extensive and costly 
such as the recall of 8.6 million cars due to the ignition causing small engine fi res. In 2010, 
an extensive recall of several car models due to sudden acceleration resulted in the shutdown 
of the entire production system and hundreds of lawsuits. One of the causes of the recall is 
lack of thoroughness in testing new cars and car parts under varying weather conditions; the 
gas - pedal mechanism tended to stick more as humidity increased. Clearly, the number and 
magnitude of the recalls are indicative of the reliability performance of the car and potential 
survivability of the manufacturer.  

   1.2    RELIABILITY DEFINITION AND ESTIMATION 

 A formal defi nition of reliability is given as follows: 

   1.2.1    Reliability 

 Reliability is the probability that a product will operate or a service will be provided properly 
for a specifi ed period of time (design life) under the design operating conditions (such as 
temperature, load, volt  . . . ) without failure. 
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 In other words, reliability may be used as a measure of the system ’ s success in providing 
its function properly during its design life. Consider the following. 

 Suppose  n o   identical components are subjected to a design operating conditions test. 
During the interval of time ( t     −     Δ  t ,  t ), we observed  n f  ( t ) failed components, and  n s  ( t ) surviving 
components [ n f  ( t )    +     n s  ( t )    =     n o  ]. Since reliability is defi ned as the cumulative probability func-
tion of success, then at time  t , the reliability  R ( t ) is

    R t
n t

n t n t

n t

n
s

s f

s

o

( )
( )

( ) ( )

( )
.=

+
=     (1.1)   

 In other words, if  T  is a random variable denoting the time to failure, then the reliability func-
tion at time  t  can be expressed as

    R t P T t( ) ( ).= >     (1.2)   

 The cumulative distribution function (CDF) of failure  F ( t ) is the complement of  R ( t ), that is,

    R t F t( ) ( ) .+ = 1     (1.3)   

 If the time to failure,  T , has a  probability density function  ( p.d.f. )  f ( t ), then Equation  1.3  can 
be rewritten as

    R t F t f d
t

( ) ( ) ( ) .= − = − ∫1 1
0

ζ ζ     (1.4)   

 Taking the derivative of Equation  1.4  with respect to  t , we obtain

    
dR t

dt
f t

( )
( ).= −     (1.5)   

 For example, if the time to failure distribution is exponential with parameter   λ  , then

    f t e t( ) ,= −λ λ     (1.6)  

  and the reliability function is

    R t e d e
t

t( ) .= − =− −∫1
0
λ ζλζ λ     (1.7)   

 From Equation  1.7 , we express the probability of failure of a component in a given interval of 
time [ t  1 ,  t  2 ] in terms of its reliability function as

    f t dt R t R t
t

t

( ) ( ) ( ).
1

2

1 2∫ = −     (1.8)   

 We defi ne the failure rate in a time interval [ t  1 ,  t  2 ] as the probability that a failure per unit time 
occurs in the interval given that no failure has occurred prior to  t  1 , the beginning of the interval. 
Thus, the failure rate is expressed as
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 If we replace  t  1  by  t  and  t  2  by  t     +     Δ  t , then we rewrite Equation  1.9  as

    
R t R t t

tR t

( ) ( )

( )
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− + ∆
∆

    (1.10)   

 The hazard function is defi ned as the limit of the failure rate as  Δ  t  approaches zero. In other 
words, the hazard function or the instantaneous failure rate is obtained from Equation  1.10  as

    h t
R t R t t

t R t R t

d

dt
R t
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( ) lim

( ) ( )

( ) ( )
( )= − + = −
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  or

    h t
f t

R t
( )

( )

( )
.=     (1.11)   

 From Equations  1.5  and  1.11 , we obtain

    R t e
h d

t

( ) ,
( )

= ∫−





ζ ζ
0     (1.12)  

    R t f d
t

( ) ( ) ,= − ∫1
0

ζ ζ     (1.13)  

  and

    h t
f t

R t
( )

( )

( )
.=     (1.14)   

 Equations  1.5 ,  1.12  –  1.14  are the key equations that relate  f ( t ),  F ( t ),  R ( t ), and  h ( t ). 
 The following example illustrates how the hazard rate,  h ( t ), and reliability are estimated 

from failure data.   

 EXAMPLE 1.1 

    A manufacturer of light bulbs is interested in estimating the mean life of the bulbs. Two hundred 
bulbs are subjected to a reliability test. The bulbs are observed, and failures in 1000 - h intervals 
are recorded as shown in Table  1.1 .   

 Plot the failure density function estimated from data  f e  ( t ), the hazard - rate function esti-
mated from data  h e  ( t ), the cumulative probability function estimated from data  F e  ( t ), and the 
reliability function estimated from data  R e  ( t ). The subscript  e  refers to  estimated . Comment on 
the hazard - rate function.  
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  SOLUTION 

 We estimate  f e  ( t ),  h e  ( t ),  R e  ( t ), and  F e  ( t ) using the following equations:

    f t
n t

n t
e

f

o

( )
( )

,=
∆

    (1.15)  

    h t
n t

n t t
e

f
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    R t
f t

h t

t
e

e

e
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( )

( )

( )
,= =     (1.17)  

  and

    F t R te e( ) ( ).= −1     (1.18)   

 Note that  n s  ( t ) is the number of surviving units at the beginning of the period  Δ  t . Summaries of 
the calculations are shown in Tables  1.2  and  1.3 . The plots are shown in Figures  1.1  and  1.2 .
            

  TABLE 1.1    Number of Failures in the Time Intervals 

   Time interval (hours)     Failures in the interval  

  0 – 1000    100  
  1001 – 2000    40  
  2001 – 3000    20  
  3001 – 4000    15  
  4001 – 5000    10  
  5001 – 6000    8  
  6001 – 7000    7  
  Total    200  



RELIABILITY DEFINITION AND ESTIMATION 7

  TABLE 1.2    Calculations of  f e  ( t ) and  h e  ( t ) 

   Time interval (h)     Failure density  f e  ( t )    ×    10  − 4      Hazard rate  h e  ( t )    ×    10  − 4   

  0 – 1000      
100

200 10
5 0

3×
= .       

100
200 10

5 0
3×

= .   

  1001 – 2000      
40

200 10
2 0

3×
= .       

40
100 10

4 0
3×

= .   

  2001 – 3000      
20

200 10
1 0

3×
= .       

20
60 10

3 33
3×

= .   

  3001 – 4000      
15

200 10
0 75

3×
= .       

15
40 10

3 75
3×

= .   

  4001 – 5000      
10

200 10
0 5

3×
= .       

10
25 10

4 0
3×

= .   

  5001 – 6000      
8

200 10
0 4

3×
= .       

8
15 10

5 3
3×

= .   

  6001 – 7000      
7

200 10
0 35

3×
= .       

7
7 10

10 0
3×

= .   

  TABLE 1.3    Calculations of  R e  ( t ) and  F e  ( t ) 

   Time interval     Reliability  R e  ( t )    =     f e  ( t )/ h e  ( t )     Unreliability  F e  ( t )    =    1    −     R e  ( t )  

  0 – 1000      
5 0
5 0

1 000
.
.

.=     0.000  

  1001 – 2000      
2 0
4 0

0 500
.
.

.=     0.500  

  2001 – 3000      
1 0
3 33

0 300
.
.

.=     0.700  

  3001 – 4000      
0 75
3 75

0 200
.
.

.=     0.800  

  4001 – 5000      
0 5
4 0

0 125
.
.

.=     0.875  

  5001 – 6000      
0 4
5 3

0 075
.
.

.=     0.925  

  6001 – 7000      
0 35
10 0

0 035
.
.

.=     0.965  
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     FIGURE 1.1     Plots of  f e  ( t )    ×    10  − 4  and  h e  ( t )    ×    10  − 4  versus time.  
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 The above example shows the hazard - rate function is constant for a period of time and 
then linearly increases with time. In other situations, the hazard - rate function may be decreas-
ing, constant, or increasing, and the rate at which the function decreases or increases may be 
constant, linear, polynomial, or exponential with time. The following example is an illustration 
of an exponentially increasing hazard - rate function.   

�

     FIGURE 1.2     Plots of  R e  ( t )and  F e  ( t ) versus time.  
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 As shown in Figure  1.1 , the hazard rate is constant until time of 5000   h and then increases 
linearly with  t . Thus,  h e  ( t ) can be expressed as

    h t
t

t t
e( )

,

,
,=

≤ ≤
>





λ
λ

0

1

0 6 000

6 000
 

  where   λ   0  and   λ   1  are constants.  
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     FIGURE 1.3     The principle of a fax machine.  

 EXAMPLE 1.2 

    Facsimile (fax) machines are designed to transmit documents, fi gures, and drawings between 
locations via telephone lines. The principle of a fax machine is shown in Figure  1.3 . The docu-
ment on the sending unit drum is scanned in both the horizontal and rotating directions. The 
document is divided into graphic elements, which are converted into electrical signals by a 
photoelectric reading head. The signals are transmitted via telephone lines to the receiving end 
where they are demodulated and reproduced by a recording head.   

 The quality of the received document is affected by the reliability of the photoelectric 
reading head in converting the graphic elements of the document being sent into proper elec-
trical signals. A manufacturer of fax machines performs a reliability test to estimate the 
mean life of the reading head by subjecting 180 heads to repeated cycles of readings. 
The threshold times, at which the quality of the received document is unacceptable, are 
recorded in Table  1.4 .   

 Estimate the hazard rate and reliability function of the machines.  

  TABLE 1.4    Failure Data of the Facsimile Machines 

  Time interval (hours)    0 – 150    151 – 300    301 – 450    451 – 600    601 – 750    751 – 900  
  Number of failures    20    28    27    32    33    40  

  SOLUTION 

 Using Equations  1.15  – 1.17, we calculate  f e  ( t ),  h e  ( t ), and  R e  ( t ) as shown in Table  1.5 . Plots of 
the hazard rate and the reliability function are shown in Figures  1.4  and  1.5 , respectively.     
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  TABLE 1.5    Calculations for  f e  ( t ),  h e  ( t ), and  R e  ( t ) 

    t       f e  ( t )    ×    10  − 4       h e  ( t )    ×    10  − 4       R e  ( t )  

  0 – 150    7.407    7.407    1.000  
  151 – 300    10.370    11.666    0.889  
  301 – 450    10.000    13.636    0.733  
  451 – 600    11.852    20.317    0.583  
  601 – 750    12.222    30.137    0.406  
  751 – 900    14.815    66.667    0.222  

     FIGURE 1.4     Plot of the hazard - rate function versus time.  

0

10

20

30

40

50

60

70

0–150 151–300 301–450 451–600 601–750 751–900

Time in Hours

h e
(t

)

     FIGURE 1.5     Plot of the reliability function versus time.  
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 In some situations, it is possible to observe the exact failure time of every unit (component). 
In such situations, we utilize order statistics to obtain a  “ distribution free ”  reliability function 
and its associated characteristics. There are several approaches to do so starting with the  “ na ï ve ”  
estimator followed by median rank estimators. Since all these estimators utilize the order of 
the observations (failure times) only, we refer to them as ordered statistics, and the empirical 
estimate of  F ( t ), denoted as   F̂ t( ), is referred to as rank estimator which is then used to generate 
the density plot and reliability function plot. We present the commonly used rank estimators 
(mean and median) as follows. 

 We begin by ordering the failure times in an increasing order such that  t  1     ≤     t  2     ≤     . . .   
  ≤     t i    − 1     ≤     t i      ≤     t i    + 1     ≤     . . .     ≤     t n    − 1     ≤     t   n   where  t i   is the failure time of the  i  th  unit. Since we are interested 
in obtaining the na ï ve rank estimator   F̂ t( ), we assign a probability mass of 1/ n  to each of the 
 n  failure times and set   ˆ ( )F t0 0= . The na ï ve mean rank estimator  F̂ t( ) is expressed as

    ˆ ( ) .F t
i

n
t t ti i= ≤ ≤ −1   

 This estimator has a defi ciency in that, for  t     ≥     t n  ,   ˆ ( ) .F t = 1 0. Therefore, improvements are 
introduced that result in a more accurate estimate. 

 Among them is the most commonly used Herd – Johnson estimator (Herd,  1960 ; Johnson, 
 1964 ) which is expressed as

    ˆ ( ) , , , ,F t
i

n
i ni =

+
=

1
0 1 2… .   

 Others propose the use of the median rank instead. Several estimates of the median rank are 
commonly used; among them are Bernard ’ s median rank estimator (Bernard and Bosi -
 Levenbach,  1953 ) and Blom ’ s ( 1958 ) median rank estimator. They are expressed as 

 Bernard ’ s estimator of   ˆ ( )F ti  is

    ˆ ( )
.

.
, , , ,F t

i

n
i ni = −

+
=0 3

0 4
0 1 2… .   

 Blom ’ s estimator is

    ˆ ( )
/

/
, , , ,F t

i

n
i ni = −

+
=3 8

1 4
0 1 2… .   

 The corresponding p.d.f., reliability function, and the hazard - rate function are derived as follows. 
 We consider the mean rank estimator (the approach is also valid for median rank estima-

tors). The mean rank estimator is

    ˆ ( ) , , , ,F t
i

n
i ni =

+
=

1
0 1 2… .   

 The reliability expression is 

   R t F t
n i

n
t t t i ni i i i( ) ( ) , , ,...,= − = + −

+
≤ ≤ =+1

1

1
0 1 21 .  
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 Since the p.d.f. is the derivative of the CDF, then

    ˆ( )
ˆ ( ) ˆ ( )

f t
F t F t

t
t t ti

i i

i
i i i= − = −+

+
1

1∆
∆  

  or

    ˆ( )
.( )

.f t
t n

i
i

=
+

1

1∆
  

 The hazard rate is   h t
f t

R t t n i
i

i

i i

( )
( )

( ) ( )
= =

+ −
1

1∆
.   

 EXAMPLE 1.3 

    Nine light bulbs are observed, and the exact failure time of each is recorded as 70, 150, 250, 
360, 485, 650, 855, 1130, and 1540. Estimate the CDF, reliability function, p.d.f., and hazard -
 rate function. Plot these functions with time.    

  SOLUTION 

 Figures  1.6 – 1.8  show  R ( t ),  f ( t ), and  h ( t ) graphs, and the corresponding calculations are given 
in Table  1.6 .    

     FIGURE 1.6     Plot of the reliability function versus time.  
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     FIGURE 1.7     Plot of the probability density function versus time.  
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     FIGURE 1.8     Plot of the hazard - rate function versus time.  
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  TABLE 1.6     F ( t ),  R ( t ),  f ( t ), and  h ( t ) Calculations 

    i       t i        t i    + 1        F̂ t
i

i( ) =
10

       R t
i

i( ) =
10

10
-

       f t
t n

i
i

( )
( )

=
1

1D +        h t
t n i

i
i

( )
( )

=
1
+1D -   

  0    0    70    0.0    1.0    0.001429    0.001429  
  1    70    150    0.1    0.9    0.001250    0.001389  
  2    150    250    0.2    0.8    0.001000    0.001250  
  3    250    360    0.3    0.7    0.000909    0.001299  
  4    360    485    0.4    0.6    0.000800    0.001333  
  5    485    650    0.5    0.5    0.000606    0.001212  
  6    650    855    0.6    0.4    0.000488    0.001220  
  7    855    1,130    0.7    0.3    0.000364    0.001212  
  8    1,130    1,540    0.8    0.2    0.000244    0.001220  
  9    1,540     –     0.9    0.1     –      –   

 �
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 The hazard - rate estimates using the mean rank and median rank are expressed respec-
tively as

    h t
n i t t

mean rank i
i i

−
+

=
− + −

( )
( )( )

1

1 1

 

  and

    h t
n i t t

median rank i
i i

−
+

=
− + −

( )
( . )( )

.
1

0 7 1

  

 There are other estimates of the hazard rate such as Kaplan – Meier (to be discussed in Chapter 
 5 ) and Martz and Waller  (1982)  which is expressed as 

    h t
n i t t

i
i i

( )
( . )( )

.
Martz Waller− +

=
− + −

1

0 625 1

 

 Martz and Waller ’ s estimate is suitable when the sample size is small. It should be noted that 
hazard rates estimated by the above three estimators differ only slightly especially when the 
number of observed failure - time data is large. 

 Analysis of the historical data of failed products, components, devices, and systems 
resulted in widely used expressions for  h ( t ) and  R ( t ). We now consider the most commonly 
used expressions for  h ( t ).   

   1.3    HAZARD FUNCTIONS 

 The  hazard function  or  hazard rate h ( t ) is the conditional probability of failure in the interval 
 t  to ( t     +     dt ), given that there was no failure at  t  divided by the length of the time interval  dt . It 
is expressed as

    h t
f t

R t
( )

( )

( )
.=     (1.19)   

 The  cumulative hazard function H ( t ) is the conditional probability of failure in the interval 0 
to  t . It is also the total number of failures during the time interval 0 to  t .

    H t h d
t

( ) ( ) .= ∫ ζ ζ
0

    (1.20)   

 The hazard rate is also referred to as the instantaneous failure rate. The hazard - rate expression 
is of the greatest importance for system designers, engineers, and repair and maintenance 
groups. The expression is useful in estimating the time to failure (or time between failures), 
repair crew size for a given repair policy, the availability of the system, and in estimating the 
warranty cost. It can also be used to study the behavior of the system ’ s failure with time. 

 As shown in Equation  1.19 , the hazard rate is a function of time. One may ask what type 
of function does the hazard rate exhibit with time? The general answer to this question is the 
bathtub - shaped function as shown in Figure  1.9 . To illustrate how this function is obtained, 
consider a population of identical components from which we take a large sample  N  and place 
it in operation at time  T     =    0. The sample experiences a high failure rate at the beginning of the 
operation time due to weak or substandard components, manufacturing imperfections, design 
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errors, and installation defects. As the failed components are removed, the time between failures 
increases which results in a reduction in the failure rate. This period of decreasing failure rate 
(DFR) is referred to as the  “ infant mortality region, ”  the  “ shakedown ”  region, the  “ debugging ”  
region, or the  “ early failure ”  region. This is an undesirable region from both the manufacturer 
and consumer viewpoints as it causes an unnecessary repair cost for the manufacturer and an 
interruption of product usage for the consumer. The early failures can be minimized by employ-
ing burn - in of systems or components before shipments are made (burn - in is a common process 
where the unit is subjected to a slightly severer stress conditions than those at normal operating 
conditions for a short period), by improving the manufacturing process, and by improving the 
quality control of the products. Time  T  1  represents the end of the early failure - rate region 
(normally this time is about 10 4    h for electronic systems).   

 At the end of the early failure - rate region, the failure rate will eventually reach a constant 
value. During the constant failure - rate region (between  T  1  and  T  2 ), the failures do not follow a 
predictable pattern, but they occur at random due to the changes in the applied load (the load 
may be higher or lower than the designed load). A higher load may cause overstressing of the 
component while a lower load may cause derating (application of a load in the reverse direction 
of what the component experiences under normal operating conditions) of the component and 
both will lead to failures. The randomness of the material fl aws or manufacturing fl aws will 
also lead to failures during the constant failure - rate region. 

 The third and fi nal region of the failure - rate curve is the wear - out region, which starts at  T  2 . 
The beginning of the wear - out region is noticed when the failure rate starts to increase signifi cantly 
more than the constant failure - rate value, and the failures are no longer attributed to randomness 
but are due to the age and wear of the components. Within this region, the failure rate increases 
rapidly as the product reaches its useful (designed) life. To minimize the effect of the wear - out 
region, one must use periodic preventive maintenance or consider replacement of the product. 

 Obviously, not all components exhibit the bathtub - shaped failure - rate curve. Most elec-
tronic and electrical components do not exhibit a wear - out region. Some mechanical compo-

     FIGURE 1.9     The general failure curve.  
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nents may not show a constant failure - rate region but may exhibit a gradual transition between 
the early failure - rate and wear - out regions. The length of each region may also vary from one 
component (or product) to another. The estimates of the times at which the bathtub curve 
changes from one region to another have been of interest to researchers. They are referred to 
as the change - point estimates. One of the approaches for estimating the change point is to 
equate the estimated hazard rate at the end of the region to the estimated hazard rate at the 
beginning of the following region. 

 We now describe the failure - time distributions that exhibit one or more of the regions 
as follows. 

   1.3.1    Constant Hazard 

 Many electronic components — such as transistors, resistors, integrated circuits (ICs), and 
capacitors — exhibit constant failure rate (CFR) during their lifetimes. Of course, this occurs at 
the end of the early failure region, which usually has a time period of 1 year (8760   h). The 
early failure region is usually reduced by performing burn - in of these components. Burn - in is 
performed by subjecting components to stresses slightly higher than the expected operating 
stresses for a short period in order to weed out failures due to manufacturing defects. The 
constant hazard - rate function,  h ( t ), is expressed as

    h t( ) ,= λ     (1.21)  

  where   λ   is a constant. The p.d.f.,  f ( t ), is obtained from Equation  1.19  as

    f t h t h d
t

( ) ( )exp ( )= −



∫ ζ ζ

0
    (1.22)  

  or

    f t e t( ) = −λ λ     (1.23)  

  and

    F t e d e
t

t( ) .= = −− −∫ λ ζλζ λ

0
1     (1.24)   

 The reliability function,  R ( t ), is

    R t F t e t( ) ( ) .= − = −1 λ     (1.25)   

 Plots of  h ( t ),  f ( t ),  F ( t ), and  R ( t ) are shown in Figures  1.10  and  1.11 . At  t     =    1/  λ  ,  f (1/  λ  )    =      λ  / e , 
 F (1/  λ  )    =    1    −    1/ e     =    0.632, and  R (1/  λ  )    =    1/ e     =    0.368. This is an important result since it states that 
the probability of failure of a product by its estimated mean time to failure (MTTF) (1/  λ  ) is 0.632. 
Also, note that the failure time for the constant hazard model is exponentially distributed.      
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 EXAMPLE 1.4 

    A manufacturer performs an  Operational Life Test  ( OLT ) on ceramic capacitors and fi nds that 
they exhibit CFR (used interchangeably with hazard rate) with a value of 3    ×    10  − 8  failures per 
hour. What is the reliability of a capacitor after 10 4    h? In order to accept a large shipment of 
these capacitors, the user decides to run a test for 5000   h on a sample of 2000 capacitors. How 
many capacitors are expected to fail during the test?  

  SOLUTION 

 Using Equations  1.21  and  1.25 , we obtain

    h t( ) = × −3 10 8 failures per hour  

  and

    R e( ) . .10 0 999704 3 10 4= =− × −   

     FIGURE 1.10     Plots of  h ( t ) and  f ( t ).  
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     FIGURE 1.11     Plots of  F ( t ) and  R ( t ).  
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   1.3.2    Linearly Increasing Hazard 

 A component exhibits an increasing hazard rate when it either experiences wearout or when it 
is subjected to deteriorating conditions. Most of mechanical components — such as rotating 
shafts, valves, and cams — exhibit linearly increasing hazard rate due to wearout whereas com-
ponents such as springs and elastomeric mounts exhibit linearly increasing hazard rate due to 
deterioration. Few electrical components such as relays exhibit linearly increasing hazard rate. 
The hazard - rate function is expressed as

    h t t( ) ,= λ     (1.26)  

  where   λ   is constant. The p.d.f.,  f ( t ), is a Rayleigh distribution and is obtained as

    f t te
t

( ) = −λ
λ 2

2     (1.27)  

  and

    F t e
t

( ) .= − −
1

2

2

λ

    (1.28)   

 The reliability function,  R ( t ), is

    R t e
t

( ) .=
−λ 2

2     (1.29)   

 Plots of  h ( t ),  f ( t ),  R ( t ), and  F ( t ) are shown in Figures  1.12  and  1.13 . It should be noted that 
the failure - time distribution of the linearly increasing hazard is a Rayleigh distribution. The 
mean (expected value) and the variance of the distribution are   π λ2  and 2/  λ  (1    −      π  /4), 
respectively.      

 To determine the expected number of failed capacitors during the test, we defi ne the 
following:

   n o        number of capacitors under test,  

  n s        expected number of surviving capacitors at the end of test, and  

  n f        expected number of failed capacitors during the test.    

 Thus,

    n es = × =− × ×−3 10 50008
2000 1999 capacitors  

  and

    nf = − =2000 1999 1 capacitor.          �   
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 EXAMPLE 1.5 

    Rolling resistance is a measure of the energy lost by a tire under load when it resists the force 
opposing its direction of travel. In a typical car, traveling at 60   mi/h, about 20% of the engine 
power is used to overcome the rolling resistance of the tires. A tire manufacturer introduces a 
new material that, when added to the tire rubber compound signifi cantly improves the tire 
rolling resistance but increases the wear rate of the tire tread. Analysis of a laboratory test of 
150 tires shows that the failure rate of the new tire is linearly increasing with time (in hours). 
It is expressed as  h ( t )    =    0.50    ×    10  − 8     t . 

 Determine the reliability of the tire after 1 year of use. What is the mean time to replace 
the tire?  

  SOLUTION 

 Using Equation  1.29  we obtain the reliability after 1 year as

    R e( , ) . .
.

( , )
8 760 0 825

0 5

2
10 8 7608 2

= =
− × ×−   

     FIGURE 1.12     Plots of  h ( t ) and  f ( t ).  

emiTemiT

h(
t)

f(
t)

/1

e

λ

λ

     FIGURE 1.13     Plots of  R ( t ) and  F ( t ).  
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   1.3.3    Linearly Decreasing Hazard 

 Most components (both mechanical and electrical) show decreasing hazard rates during their 
early lives. The hazard rate decreases linearly or nonlinearly with time. In this section, we shall 
consider linear hazard functions while nonlinear functions will be considered in the next 
section. The linearly decreasing hazard - rate function is expressed as

    h t a bt( ) = −     (1.30)  

  and

    a bt≥ ,  

  where  a  and  b  are constants. Similar to the linearly increasing hazard - rate function, we can 
obtain expressions for  f ( t ),  R ( t ), and  F ( t ). The failure model and the reliability of a component 
exhibiting such hazard function depend on the values of  a  and  b .  

   1.3.4    Weibull Model 

 A nonlinear expression for the hazard - rate function is used when it clearly cannot be repre-
sented linearly with time. A typical expression for the hazard function (decreasing or increas-
ing) under this condition is

    h t
t

( ) .= 





−γ
θ θ

γ 1

    (1.31)   

 This model is referred to as the Weibull model, and its  f ( t ) is given as

    f t
t

e t
t

( ) ,= 





>
− −



γ

θ θ

γ
θ

γ1

0     (1.32)  

  where   θ   and   γ   are positive and are referred to as the characteristic life and the shape parameter 
of the distribution, respectively. For   γ      =    1 this  f ( t ) becomes an exponential density. When   γ      =    2, 
the density function becomes a Rayleigh distribution. It is also well known that the Weibull 

 The mean time to replace the tire is

    Mean time h= =
× ×

=−

π
λ

π
2 2 0 5 10

17 724
8.

, ,  

  and the standard deviation of the time to tire replacement is

    σ
λ

π= −





=2
1

4
9 265, .h  

        �   
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p.d.f. approximates to a normal distribution if a suitable value for the shape parameter   γ   is 
chosen. Makino  (1984)  approximated the Weibull distribution to a normal using the mean 
hazard rate and found that the shape parameter that approximates the two distributions is 
  γ      =    3.43927. This value of   γ   is near to the value   γ      =    3.43938, which is the value of the shape 
parameter of the Weibull distribution at which the mean is equal to the median. The p.d.f. ’ s of 
the Weibull distribution for different   γ   ’ s are shown in Figure  1.14 . The distribution and reli-
ability functions of the Weibull distribution  F ( t ) and  R ( t ) are given in Equations  1.34  and  1.35 , 
respectively.

    F t e d
t

( ) = 





− −



∫ γ

θ
ζ
θ

ζ
γ ζ

θ

γ1

0
    (1.33)  

  or

    F t e t
t

( ) = − >
−



1 0θ

γ

    (1.34)  

  and

    R t e t
t

( ) = >
−



θ

γ

0     (1.35)   

 The Weibull distribution is widely used in reliability modeling since other distributions such 
as exponential, Rayleigh, and normal are special cases of the Weibull distribution. Again, the 
hazard - rate function follows the Weibull model:

    h t
f t

F t

t
( )

( )

( )
.=

−
= 





−

1

1γ
θ θ

γ

    (1.36)     

     FIGURE 1.14     The Weibull p.d.f. for different   γ  .  
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 When   γ      >    1, the hazard rate is a monotonically increasing function with no upper bound that 
describes the wear - out region of the bathtub curve. When   γ      =    1, the hazard rate becomes con-
stant (constant failure - rate region), and when   γ      <    1, the hazard - rate function decreases with 
time (the early failure - rate region). This enables the Weibull model to describe the failure rate 
of many failure data in practice. The mean and variance of the Weibull distribution are

    E T time to failure( )[ ] = 





+θ
γ

Γ 1
1

,     (1.37)  

    Var T[ ] = 





− 






















+ +θ

γ γ
2

2

1
2

1
1Γ Γ ,     (1.38)  

  where  Γ ( n ) is the gamma function

    Γ( )n x e dxn x= − −
∞

∫ 1

0
 

  and

    x e dx nn x n− −
∞

∫ =1

0

/ ( ) .θ θΓ  

   

 EXAMPLE 1.6 

    To determine the fatigue limit of specially treated steel bars, the Prot method (Collins,  1981 ) 
for performing fatigue test is utilized. The test involves the application of a steadily increasing 
stress level with applied cycles until the specimen under test fails. The number of cycles to 
failure is observed to follow a Weibull distribution with   θ      =    5 (measurements are in 10 3  cycles) 
and   γ      =    2.

   1.     What is the reliability of a bar at 10 6  cycles? What is the corresponding hazard rate?  

  2.     What is the expected life (in cycles) for a bar of this type?     

  SOLUTION 

 Since the shape parameter   γ   equals 2, the Weibull distribution becomes a Rayleigh distribution, 
and we have a linearly increasing hazard function. Its p.d.f. is given by Equation  1.32 .

   1.     The reliability expression for the Weibull model is given by Equation  1.35 :

    
R e

e

( )

.

( / )

,

10

0

6 10 5 106 3 2

40 000

=
= =

− ×

−
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 In the above example, the Weibull model became a Rayleigh model since the failure rate is 
linearly increasing with time. In the following example, we consider the situation when the 
failure rate is nonlinearly increasing with time. 

 It is assumed that the failure time follows a known Weibull distribution and that the 
parameters of the distribution are known. In actual situations, the actual failure - time observa-
tions are the only known information. In this case, the failure - time data are used to obtain the 
failure - time distribution by fi tting the data to the appropriate probability distribution. This can 
be achieved by plotting the frequency of failure times in a histogram and fi tting a curve to 
them. The fi tted curve is then used as a basis to select appropriate probability distribution that 
fi ts the data. The latter step is accomplished using standard software or probability papers. The 
following example illustrates these procedures.   

 The hazard rate at 10 6  cycles is

    h t
t

( ) = 





= ×





−γ
θ θ

γ 1 62

5000

10

5000
 

  or  h (10 6 )    =    0.08 failures/cycle.  

  2.     The expected life of a bar is

    

E T cycles to failure( )[ ] 











( )


= = ×

=

+θ
γ

Γ Γ1
1

5 10
3

2

5000
1

2

3( )


 =π 4431.

     

 The expected life of a bar from this steel is 4431 cycles.        �   

 EXAMPLE 1.7 

    A manufacturer of a tungsten - carbide cutting tool for highly abrasive rubber materials con-
ducted a tool life experiments on 50 tools. The times to tool failure are given as 

  17    31    58    66    73    73    97    108    111    117  
  132    132    138    140    143    143    145    147    150    157  
  158    161    164    168    171    177    182    185    187    196  
  197    202    223    242    246    249    260    269    276    287  
  298    308    312    314    316    338    349    354    423    529  

 Use probability plot and fi t the data with an appropriate probability distribution.  

  SOLUTION 

 Using a standard software such as STATGRAPHICS ™  or SAS ™ , obtain a frequency distribu-
tion as shown in Figure  1.15 . The fi tted curve indicates an increasing hazard rate similar to the 
Weibull model discussed earlier in this chapter. Since Weibull is one of the most widely used 
distributions for analyzing reliability data, a Weibull probability plot is shown in Figure  1.16 . 
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     FIGURE 1.15     Frequency distribution of the failure times.  
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     FIGURE 1.16     Probability plot of the failure times.  
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The straight line indicates that Weibull distribution is appropriate to describe the failure times. 
The parameters of the model are estimated as   γ      =    2.03 and   θ      =    223 (using the software). Several 
methods for estimating these parameters are described in Chapter  5 .            �

 Alternatively, the parameters of the Weibull model can be obtained by using one the of 
the approaches discussed above for estimating the CDF  F ( t ) from failure data and fi tting a 
linear regression model as described below. 

 The CDF is expressed as

    F t e t
t

( ) .= − >
−



1 0θ

γ
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 EXAMPLE 1.8 

    A manufacturing engineer observes the wear - out rate of a milling machine tool insert and fi ts 
a Weibull hazard model to the tool wear data. The parameters of the model are   γ      =    2.25 and 
  θ      =    30. Determine the reliability of the tool insert after 10   h, the expected life of the insert, 
and the standard deviation of the mean life.  

  SOLUTION 

 The reliability after 10   h of operation is

    
R e( ) . .

.

10 0 919
10

30

2 25

= =
−



   

 The mean life of the insert is

    

Mean life = +





= 





+

θ
γ

Γ

Γ

1
1

30 1
1

2 25.
,

 

  or Mean life    =    30    Γ (1.444)    =    26.572   h. 
 The value of  Γ (1.444) is obtained from the tables of the gamma function given in 

Appendix  A . 
 Using Equation  1.38 , we obtain the variance of the life as

    
Variance = 





− 























=

+ +θ
γ γ

2
2

2

1
2

1
1

30 1

Γ Γ

Γ .8888 1 444 2( ) − ( )[ ]{ }Γ .

 

  or 
 Variance    =    156.140, and the standard deviation of the life is 12.50   h.        �   

 Taking the natural logarithm of 1    −     F ( t ) results in

    ln( ( )) .1− = −





F t
t

θ

γ

  

 Taking the logarithm one more time, we obtain

    ln ln
( )

ln ln .
1

1−












= −
F t

tγ γ θ   

 Fitting a linear regression model to the left hand side of the above expression and ln  t  we can 
then easily obtain the parameters of the Weibull model.  
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   1.3.5    Mixed Weibull Model 

 This model is applicable when components or products experience two or more failure modes. 
For example, a mechanical component, such as a load - carrying bearing or a cutting tool, may 
fail due to wearout or when the applied stress exceeds the design strength of component mate-
rial resulting in catastrophic failure (catastrophic failure is a failure that destroys the system, 
such as a missile failure). Each type of these failures may be modeled by a separate simple 
Weibull model. Since the component or the tool can fail in either of the failure modes, it is 
then appropriate to describe the hazard rate by a mixed Weibull model. It is expressed as

    f t p
t

e p
t

t

( ) = 





+ −( ) 





− −





−γ
θ θ

γ
θ θ

γ
θ

γγ

1

1 1

1
2

2 2

1

1

1
2

1
11

2

2

e
t−



θ

γ

    (1.39)  

  for   θ   1 ,   θ   2     >    0. 
 The quantity  p (0    ≤     p     ≤    1) is the probability that the component or the tool fails in the 

fi rst failure mode, and 1 −  p  is the probability that it fails in the second failure mode. Clearly, 
if a product experiences more than two failure modes, the model given by Equation  1.39  can 
be expanded to include all failure modes and associated probabilities such that   pi

i

n

=
=∑ 1

1
 

where  p i   is the probability that the product fails in the  i th failure mode, and  n  is the total number 
of failure modes. 

 Following Kao  (1959) , the time  t e   at which the proportion of the catastrophic failure is 
equal to that of wear - out failure is obtained as

    
1 11

1

2

2

− = −
−





−



e e

t te e

θ θ

γ γ

 

  or

    te = 





= −
−







−θ
θ

γ θ γ θ
γ γ

γ

γ

γ γ
2

1

1

2 2 1 1

2 1

2

1

2 1
exp

ln ln
.     (1.40)   

 The reliability expression of the mixed Weibull model is

    R t p e p e
t t

( ) ( )= − −












− − −










−





−



1 1 1 11

1

2

2

θ θ

γ γ



.     (1.41)   

 Clearly, if the second failure mode occurs after a delay time   δ  , from the fi rst failure mode, we 
rewrite Equations  1.39  and  1.41  as follows:

    f t p
t

e p
t

d

t

( ) = 





+ −( ) −





− −



γ

θ θ
γ
θ

δ
θ

γ
θ

γ

1

1 1

1
2

2 2

1

1

1

1
γγ δ

θ

γ
2

2

21− − −



e

t

    (1.42)  

  and

    R t p e p ed

t t

( ) ( )= − −












− − −





−





− −
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γ γ








,     (1.43)  

  where the subscript  d  denotes delay.  
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     FIGURE 1.17     Plots of  h ( t ) and  R ( t ).  
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   1.3.6    Exponential Model (the Extreme Value Distribution) 

 The extreme value distribution is closely related to the Weibull distribution. It is useful in 
modeling cases when the hazard function is initially constant and then begins to increase rapidly 
with time. 

 The distribution is used to describe the failure time of products (or components) that will 
operate properly at normal operating conditions and will fail owing to a secondary cause of 
failure (such as overheating or fracture) when subjected to extreme conditions. In other words, 
the interest is in the tails of the failure distribution. Here, the hazard - rate function, the failure -
 time density function, and the reliability function are expressed as

    h t be t( ) = α     (1.44)  

    f t be et
h d

t

( )
( )

= ∫−α ζ ζ
0     (1.45)  

    f t be et
b

e t

( )
( )

=
− −α α

α 1
    (1.46)  

    R t e
b

e t

( ) ,
( )

=
− −

α
α 1

    (1.47)  

  where  b  is a constant and  e  α    represents the increase in failure rate per unit time. For example, 
if it is found that the failure rate of a component increases about 10% each year, then 
 h ( t )    =     b (1.1)  t   where   α      =    ln(1.1)    =    0.0953. The function  f ( t ) as given by Equation  1.46  is also 
known as the  Gompertz distribution . 

 Plots of the hazard rate and the reliability functions of the  extreme value distribution  for 
different values of   α   and  b  are shown in Figure  1.17 . Some electronic components show such 
a hazard function. There are mechanical assemblies that exhibit extreme value hazard functions 
when subjected to high stresses. An example of such assemblies is a gearbox that operates 
properly at the recommended speeds. Excessive speeds may cause wearout of bearings that 
result in misalignments of shafts and an eventual failure of the assembly.      
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 EXAMPLE 1.9 

    Excessive vibrations due to high speed cutting on a  computer numerical control   (CNC ) machine 
may lead to the failure of the cutting tool. The failure time of the tool follows an extreme value 
distribution. The failure rate increases about 15% per hour. Assuming that  b     =    0.01, calculate 
the reliability of the tool at  t     =    10   h.  

  SOLUTION 

 Since the failure rate increases by 15% per hour, then   α      =    ln(1.15)    =    0.1397. Substituting the 
parameters   α   and  b  into Equation  1.47 , we obtain

    R e
e

( )
.

.
( ).

10
0 01

0 1397
10 1397 10

=
− −×

 

    R( ) . .10 0 8042=          �   

   1.3.7    Normal Model 

 There are many practical situations where the failure time of components (or parts) can be 
described by a normal distribution. For example, most of the mechanical components that are 
subjected to repeated cyclic loads, such as a fatigue test, exhibit normal hazard rates. Unlike 
other continuous probability distributions, there are no closed form expressions for the reli-
ability or hazard - rate functions. The CDF of the life of a component is given by

    F t P T t d
t

( ) exp ,= ≤[ ] = − −















−∞∫ 1

2

1

2

2

σ π
τ µ

σ
τ     (1.48)  

  and

    R t F t( ) ( ),= −1  

  where   µ   and   σ   are the mean and the standard deviation of the distribution. Unlike other distri-
butions, the integral of the cumulative distribution cannot be evaluated in a closed form. 
However, the standard normal distribution (  σ      =    1 and   µ      =    0) can be utilized in evaluating the 
probabilities for any normal distribution. The p.d.f. for the standard normal distribution is

    φ
π

( ) exp ,z
z

z= −





− ∞ < < ∞1

2 2

2

    (1.49)  

  where

    z = −τ µ
σ

.   

 The CDF is

    Φ( ) exp .τ
π

τ
= −



−∞∫ 1

2 2

2z
dz     (1.50)   

 Therefore, when the failure time of a component is expressed as a normally distributed random 
variable  T , with mean   µ   and standard deviation   σ  , one can easily determine the probability that 
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the component will fail by time  t  (i.e., the unreliability of the component) by using the follow-
ing equation:

    P T t P
T t t

( ) .≤ = − ≤ −





= −





µ
σ

µ
σ

µ
σ

Φ     (1.51)   

 The right side of Equation  1.51  can be evaluated using the standard normal tables. The hazard 
function,  h ( t ), of the normal distribution is

    h t
f t

R t

t

R t
( )

( )

( ) ( )
.= =

−



φ µ

σ
σ

    (1.52)   

 It can be shown that the hazard function for a normal distribution is a monotonically increasing 
function of  t ,

    

h t
f t

F t

h t
F f f

F

( )
( )

( )

( ) .

=
−

′ = −( ) ′ +
−( )

1

1

1

2

2

    (1.53)   

 The denominator is nonnegative for all  t . Hence, it is suffi cient to show that the numerator of 
Equation  1.53  is  ≥ 0:

    1 02−( ) ′ + ≥F f f .     (1.54)   

 The p.d.f. of the normal distribution is

    f t e tt( ) , ,/= − ∞ < < ∞− −( )1

2 2

22 2

πσ
µ σ  

  and Equation  1.54  can be rewritten as

    R t
d

dt
f t f t( ) ( ) ( ) .+ ≥2 0   

 Now, the derivative term is
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  so now the condition that must be satisfi ed is

    f t
t

R t f t( )
( )

( ) ( ) .
− − +





≥µ
σ 2

0   
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 Since  f ( t )    ≥    0 by defi nition and   R t f x dx
t

( ) ( )=
∞

∫ , we may use the condition

    
( )

( )
( )

( ) ( ) ( )
t

f x dx
x

f x dx df x f t
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− ≤ − = − =
∞ ∞ ∞
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    f t
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f x dx
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∫µ
σ 2

  

 So

    f t f x
t

f x dx
t

( ) ( )
( )

( ) ,− −





≥
∞

∫µ
σ 2

0  

  and therefore the Gaussian hazard function is a monotonically increasing function of time. The 
plots of  f ( t ),  F ( t ),  R ( t ), and  h ( t ) for   µ      =    20 are shown in Figure  1.18 .      

     FIGURE 1.18      f ( t ),  F ( t ),  R ( t ), and  h ( t ) for the normal model.  
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   1.3.8    Lognormal Model 

 One of the most widely used probability distributions in describing the life data resulting from 
a single semiconductor failure mechanism or a closely related group of failure mechanisms is 
the lognormal distribution. It is also used in predicting reliability from accelerated life test data. 
The p.d.f. of the lognormal distribution is

    f t
t

t
t( )

ln
, , .= − −













 − ∞ < < ∞ > >1

2

1

2
0 0

2

σ π
µ

σ
µ σexp   

 Figure  1.19  shows the p.d.f. of the lognormal distribution for different   µ   and   σ  .   
 If a random variable  X  is defi ned as  X     =    ln    T , where  T  is lognormal, then  X  is normally 

distributed with mean   µ   and standard deviation   σ  :

    E X E T[ ] = [ ] =ln( ) µ  

    Var VarX T[ ] = [ ] =ln( ) .σ 2   

 Since  T     =     e X  , then the mean of the lognormal can be found by using the normal distribution:

    E T E e x
x

dxX( ) = ( ) = − −
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 EXAMPLE 1.10 

    A component has a normal distribution of failure times with   µ      =    40,000 cycles and   σ      =    2000 
cycles. Find the reliability and hazard function at 38,000 cycles.  

  SOLUTION 

 The reliability function is

    

R t P z
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R P z

P z
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( , )
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,

= > −





= > −
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µ
σ
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 The value of  h  (38,000) is
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 The mean of the lognormal is

    E T( ) .= +





exp µ σ 2

2
  

 The second moment is obtained as

    E T E e X2 2
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2
2

( ) = [ ] = +











exp ,µ σ
 

  and the variance of the lognormal is

    Var( ) .T e e=   − 
+2 2 2

1µ σ σ   

 The distribution function of the lognormal is
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     FIGURE 1.19      f ( t ) of the lognormal distribution for different   µ   and   σ  .  
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 The reliability is

    R t P T t P z
t

( )
ln

.= >[ ] = > −





µ
σ

    (1.55)   

 Thus, the hazard function is

    h t
f t

R t

t

t R t
( )

( )

( )

ln

( )
.= =

−



φ µ

σ
σ

    (1.56)   

 Figure  1.20  shows the reliability and the hazard - rate functions of the lognormal distribution 
for different values of   µ   and   σ  .      

     FIGURE 1.20      R ( t ) and  h ( t ) for the lognormal model.  
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 EXAMPLE 1.11 

    The failure time of a component is lognormally distributed with   µ      =    6 and   σ      =    2. Find the 
reliability of the component and the hazard rate for a life of 200 time units.  

  SOLUTION 

     R P z P z( )
ln

. . .200
200 6

2
0 350 0 6386= > −





= > −[ ] =   

 The hazard function is

    

h( )

ln

.
.
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× ×

= −( )
× ×
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φ ..

.
. .

3752

200 2 0 6386
0 00147

× ×
=  failures per unit time

 

        �   

   1.3.9    Gamma Model 

 Like the Weibull model, the gamma model covers a wide range of the hazard - rate functions: 
decreasing, constant, or increasing hazard rates. The gamma distribution is suitable for describ-
ing the failure time of a component whose failure takes place in  n  stages or the failure time of 
a system that fails when  n  independent subfailures have occurred. 

 The gamma distribution is characterized by two parameters: shape parameter   γ   and scale 
parameter   θ  . When 0    <      γ      <    1, the failure rate monotonically decreases from infi nity to 1/  θ   as 
time increases from 0 to infi nity. When   γ      >    1, the failure rate monotonically increases from 1/  θ   
to infi nity. When   γ      =    1, the failure rate is constant and equals 1/  θ  . 

 The p.d.f. of a gamma distribution is

    f t
t

e
t

( )
( )

.=
− −γ

γ
θ

θ γ

1

Γ
    (1.57)   

 When   γ      >    1, there is a single peak of the density function at time  t     =      θ  (  γ      −    1). The CDF,  F ( t ), is

    F t e d
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∫ τ
θ γ
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0 Γ
  

 Substituting   τ  /  θ      =     µ , we obtain
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  or

    F t I
t

( ) , ,= 



θ

γ  

  where  I ( t /  θ  ,   γ  ) is known as the incomplete gamma function and is tabulated in Pearson  (1957) . 
The reliability function  R ( t ) is
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 When the shape parameter   γ   is an integer  n , the gamma distribution becomes the well - known 
Erlang distribution. In this case, the CDF is written as
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  and the reliability function is
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 The hazard rate of the gamma model, when   γ   is an integer  n , is obtained by dividing Equation 
 1.57  by Equation  1.60 :
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 Figures  1.21 – 1.23  show the gamma density function, the reliability function, and the hazard 
rate for different   γ   values and a constant   θ      =    20.   

 The mean and variance of the gamma distribution are obtained as
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     FIGURE 1.21     Gamma density function with different   γ   values,   θ      =    20.  
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     FIGURE 1.22     Gamma reliability function for different   γ   values,   θ      =    20.  
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     FIGURE 1.23     Gamma hazard rate for different   γ   values,   θ      =    20.  
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 EXAMPLE 1.12 

    A mechanical system requires a constant supply of electric current, which is provided by a 
main battery having life length  T  1  with an exponential distribution of mean 120   h. The main 
battery is supported by two identical backup batteries with mean lives of  T  2  and  T  3 . When the 
main unit fails, the fi rst backup battery provides the necessary current to the system. The second 
backup battery provides the current when the fi rst backup unit fails. In other words, the batteries 
provide the current independently but sequentially. 

 Determine the reliability and the hazard rate of the mechanical system at  t     =    280   h. What 
is the mean life of the system?  

  SOLUTION 

 Since the life lengths of the batteries are independent exponential random variables each with 
mean 120, the distribution of the total life of the mechanical system, T 1 , T 2 , and T 3  has a gamma 
distribution with   γ      =    3 and   θ      =    120. Using Equation  1.60  we obtain

  or

    Mean life =
( )

+( ) =+1
1 1

Γ
Γ

γ θ
γ θ γ θγ

γ .   

 Similar manipulations yield  E [ T   2 ]    =      γ   (  γ      +    1)  θ    2 , and the variance of the life is Var(T)    =   
   γ   (  γ      +    1)  θ    2     −      γ    2   θ    2     =      γ  θ    2 .   
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 The above results can also be obtained using Special Erlang distribution as follows. 
 The Erlang distribution is the convolution of  n  identical units (times) each follows the 

exponential distribution with parameter   λ  . Since  T  1 ,  T  2 , and  T  3  are equal, then we can express 
the density function of the Erlang distribution for  n  units as

    f t
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n

n t n
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 The reliability function of Erlang distribution is
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 The reliability and hazard - rate values obtained for this density function are identical to the 
values above.  

   1.3.10    Log - Logistic Model 

 If  T     >    0 is a random variable representing the failure time of a system and  t  represents a typical 
time instant in its range, we use  Y     ≡    log    T  to represent the log failure time (Kalbfl eisch and 
Prentice,  2002 ). The log - logistic distribution for  T  is obtained if we express  Y     =      α      +      σ    W  and 
 W  has the logistic density

    f w
e

e
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w
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2     (1.62)   
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 The hazard rate at 280   h is obtained by substituting into Equation  1.61 

    
h( )

! .
.280

1
120

280
120

2 6 055
0 003746

2

=







( )
=  failures per houur.

  

 The mean life of the mechanical system is given by

    mean life h= = =γ θ 3 120 360( ) .          �   



40 CHAPTER 1 RELIABILITY AND HAZARD FUNCTIONS

 The logistic density is symmetric with mean    =    0 and variance    =      π   2 /3 with slightly heavier 
tails than the normal density function (Kalbfl eisch and Prentice,  2002 ). The p.d.f. of the failure 
time  t  is

    f t p t tp p( ) ,= ( ) + ( ) 
− −

λ λ λ1 2
1     (1.63)  

  where   λ      =     e   −     α    and  p     =    1/  σ  . 
 The reliability and hazard functions of the log - logistic model are

    R t
t p( ) =

+ ( )
1

1 λ
    (1.64)  

  and

    h t
p t

t

p

p( ) .= ( )
+ ( )

−λ λ
λ

1

1
    (1.65)   

 This model has the same advantage as both the Weibull and exponential models; it has simple 
expressions for  R ( t ) and  h ( t ). 

 Examination of Equation  1.65  reveals that the hazard function is monotonically decreas-
ing when  p     =    1. If  p     >    1, the hazard rate increases from 0 to a peak at  t     =    ( p     −    1) 1/   p  /  λ   and then 
decreases with time thereafter. The hazard rate is monotonically decreasing if  p     <    1. Figures 
 1.24  and  1.25  show the reliability function and the hazard rate for different values of  p  and a 
constant   λ      =    20.    

     FIGURE 1.24     Reliability function for the log - logistic distribution.  
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     FIGURE 1.25     Hazard rate for the log - logistic distribution.  
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   1.3.11    Beta Model 

 The hazard function models discussed thus far are defi ned as nonzero functions over the time 
range of zero to infi nity. However, the life of some products or components may be constrained 
to a fi nite interval of time. In such cases, the beta model is the most appropriate model that 
can describe the reliability behavior of the product during the constrained interval (0, 1). 
Clearly, any fi nite interval can be transformed to a (0, 1) interval. 

 Like other distributions that describe three types of hazard functions — decreasing, con-
stant, and increasing hazard rates — the two parameters of the beta model make it fl exible to 
describe the above hazard rates. The standard form of the density function of the beta model is

    f t
t t t

( )

.

=
+( )

( ) ( )
−( ) < <






− −Γ
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α β
α β

α β1 11 0 1
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 The parameters   α   and   β   are positive. Since

    f t dt( ) ,
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1
Γ Γ
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  for positive   α   and   β  . 



42 CHAPTER 1 RELIABILITY AND HAZARD FUNCTIONS

 In general, there is no closed form expression for the cumulative distribution or the 
hazard - rate function. However, if   α   or   β   is a positive integer, a binomial expansion can be used 
to obtain  F ( t ) and consequently  h ( t ).  F ( t ) will be a polynomial in  t , and the powers of  t  will 
be, in general, positive real numbers ranging from 0 through   α      +      β   − 1. 

 The mean and variance of the beta distribution are

    Mean =
+
α

α β
 

    Variance =
+( ) + +( )

αβ
α β α β2 1

.    

   1.3.12    The Inverse Gaussian Model 

 In most of the models presented so far, the reliability model is often selected based on how 
well the data appear to be fi tted by the model. Clearly, incorporating the failure mechanism or 
the characteristics of the components (temperature effect, electric fi eld effect, fatigue and 
cumulative damage effect, etc.) in the model will result in a more realistic model for the system. 
In other words, it is desirable to use the physical description of a failure to make a choice of 
distribution accordingly. This is demonstrated further in Chapter  6 . 

 The  Inverse Gaussian  ( IG ) distribution is applicable when there is a high occurrence of 
early failures. Its failure rate is nonmonotonic; initially it increases and then decreases with a 
nonzero asymptotic value at the end. In effect the IG distribution is suitable for modeling the 
fi rst two regions of the bathtub curve. Examples of its application are found in accelerated life 
testing and repair time situations whenever early failures dominate the lifetime distribution. 
The lognormal distribution could be used instead except when the asymptotic value of the 
failure rate is zero (Watson and Wells,  1961 ). However, there is diffi culty in justifying the use 
of the lognormal distribution on physical basis (Chhikara and Folks,  1977 ). The physical aspect 
of Brownian motion or any Gaussian process gives rise to the IG as the fi rst passage time 
distribution which implies its applicability in studying life testing or lifetime phenomenon (Cox 
and Miller,  1965 ). Like both the normal and lognormal distributions, the IG has two parameters 
  µ   and   λ  . The p.d.f. is

    f t t t t t( ; , ) / exp( ( ) / ),µ λ λ π λ µ µ= − − >2 2 03 2 2     (1.68)  

  where   µ   and   λ   are assumed to be positive and are referred to as the mean and the shape param-
eters of the distribution. The variance is   µ   3 /  λ   and the p.d.f. is unimodal and skewed. The reli-
ability function  R ( t ) and the hazard - rate function  h ( t ) are given by Equations  1.69  and  1.70  and 
are shown in Figures  1.26  and  1.27 , respectively:
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  where  Φ  denotes the CDF of the standard normal distribution.   
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     FIGURE 1.26     Reliability function for the Inverse Gaussian distribution.  
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     FIGURE 1.27     Hazard - rate function for the Inverse Gaussian distribution.  
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     FIGURE 1.28     Maximum values of  h ( t ) for different   µ   and   λ  .  
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 EXAMPLE 1.13 

    The following failure data are reported on failure times (hours) of electronic capacitors under 
an accelerated test conditions. 1.0, 1.5, 2.5, 2.5, 2.5, 2.5, 3.0, 3.0, 3.5, 3.5, 3.5, 4.0, 4.0, 5.0, 
5.0, 5.0, 5.0, 5.5, 6.5, 7.5, 7.5, 7.5, 7.5, 10.0, 10.0, 11.0, 12.5, 13.5, 15.0, 15.0, 16.5, 16.5, 20.0, 
20.0, 22.5, 23.5, 25.0, 27.0, 27.0, 35.0, 37.5, 44.0, 45.0, 51.5, 110.0, 122.5. Estimate the 
parameters of the IG distribution.  

 As shown in Figure  1.27 , the failure rate is not monotonic for all   µ   and   λ  . However, the 
failure rate might be monotonic for some parameter values. It is also important to note that 
there exists a nonzero asymptotic value of  h ( t ) unlike the failure rate of the lognormal, which 
approaches zero asymptotically. Since the failure rate might increase then decrease with time, 
not common in practice, it becomes desirable to determine the time at which the failure rate is 
maximum in order to assess the system performance at the worst conditions and when it will 
occur. The maximum value of  h ( t ) can be found by differentiating log    h ( t ) with respect to  t  as 
given in Equation  1.71 :

    

d

dt
h t

d

dt
f t

f t

R t

t t
h t

log ( ) log ( )
( )

( )

( ).

= +

= − − + +λ
µ

λ
2

3

2 22 2

    (1.71)   

 The maximum value of  h ( t ) is obtained at  t *   by setting Equation  1.71  to zero. Figure  1.28  
shows the maximum values of  h ( t ) for different values of the distribution parameters.      
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  SOLUTION 

 Let  T i  ( i     =    1, 2,    . . .    ,  n ) be a random sample from an IG distribution. The  maximum likelihood 
estimate  ( MLE  ’ s) of   µ   and   λ   are

    µ̂ = =
=

∑T
n

Ti

i

n1

1

 

    ˆ .λ−

=

= −
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1

1 1 1

n T Tii
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 The MLE of the variance is given by
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ii

n   

 Using the above expressions, we obtain   ˆ . ,µ = 18 032 61,   ˆ .λ = 8 11398, and   ˆ .σ 2 722 67301= .     �   

   1.3.13    The Frechet Model 

 The Frechet distribution is the only distribution defi ned on the nonnegative real numbers that 
is a well - defi ned limiting distribution for the maxima of random variables. Let { t i  :1    ≤     i     ≤     n } 
be a collection of independent and identically distributed random variables characteristic of a 
critical variable in an engineering or physical application. Often the essence of the application 
is dependent upon the statistical behavior of the maximum  M n      =    max{ t i  :1    ≤     i     ≤     n } or the 
 m n      =    min{ t i  :1    ≤     i     ≤     n }, especially for large  n . Classical extreme value theory is concerned with 
the distributions for  M n   and  m n  , when  n  is large. Of all possible nondegenerate limiting distribu-
tions, only Frechet distribution for  M n   and the Weibull distribution for  m n   are concentrated on 
the nonnegative real numbers (Harlow,  2001 ). This is useful in reliability applications when, 
for example, we are interested in estimating the time that a characteristic such as crack length 
will reach a maximum length that will cause failure (Lor é n,  2003 ). The two - parameter Frechet 
p.d.f. (Kotz and Nadarajah,  2000 ) is

    f t
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e t
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  and its hazard rate  h ( t ) is given as
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  where   θ   and   γ   are positive and are referred to as the characteristic scale and the shape param-
eters of the distribution, respectively. The p.d.f. ’ s and hazard function of the Frechet distribution 
with different   γ    ’ s are shown in Figures  1.29  and  1.30 , respectively. 

 The distribution and reliability functions of the Frechet distribution  F ( t ) and  R ( t ) are 
given by Equations  1.74  and  1.75 , respectively.

     FIGURE 1.30     The hazard function of Frechet distribution for different   γ  .  
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     FIGURE 1.29     The Frechet p.d.f. for different   γ  .  
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 Equation  1.74  is also referred to as CDF of the Inverse Weibull distribution. The reliability and 
distribution function of the Frechet distribution with different   γ    ’ s are shown in Figures  1.31  
and  1.32 , respectively.   

 Again, the hazard rate of the Frechet distribution is given as
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  which is not monotonic. It initially increases to a maximum value and subsequently decreases. 
It can be shown that the maximum is unique, but its value must be determined numerically. 
Thus, like the IG distribution, the Frechet distribution may not be appropriate to describe the 
failure rate of many components or systems in the classical reliability modeling. However, 
it is commonly used in modeling the inclusion size distribution (inclusions are nonmetallic 
particles) to determine the mechanical properties of hard and clean metals. It is also used to 
model the extreme bursts (large fi le size, sudden increase in traffi c) in network traffi c. 

     FIGURE 1.31     The reliability function of Frechet distribution for different   γ  .  
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     FIGURE 1.32     The CDF of Frechet distribution for different   γ  .  
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 The  k th moment of the Frechet distribution is given as

    E T t f t dt
kk k k[ ] ( ) ,= = −





∞

∫0
1θ

γ
Γ  

  where  Γ ( x ) is the gamma function. Notice that  E [ T k  ] only exists if  k     <      γ  . In particular, the mean 
and variance, and coeffi cient of variation  CV  could be derived as follows:
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 Again,  E [ T (time to failure)] may be estimated from the above equation if   γ      >    1, and likewise 
for  Var [ T ] and  CV  if   γ      >    2. Using simple curve fi tting, the  CV  is well approximated by

    CV ≈ − >1 1 55 2 20 7/[ . ( ) ], ..γ γ   
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 Since  CV  depends on   γ   only, it is indicative of variability. As   γ   increases, the scatter decreases, 
and vice versa. If   γ   is suffi ciently large,   θ   is approximately equal to the mean  E [ T ].  

   1.3.14    Birnbaum – Saunders ( BS ) Distribution 

 In some engineering applications, it is observed that the failure rate increases with time until 
it reaches a peak value then it begins to decrease; that is, it is unimodal. This type of behavior 
was observed by Birnbaum and Saunders  (1969)  who noted that the failure of units subject to 
fatigue stresses occurs when the crack length reaches a prespecifi ed limit. It is assumed that 
the  jth  fatigue cycle increases the crack length by  x j  . The cumulative growth in the crack length 
after  n  cycles is   ∑ =j

n
jx1  which follows a normal distribution with mean  n µ   and variance  n σ   2 . 

The probability that the crack does not exceed a critical length   ω   is expressed as

    Φ Φω µ
σ

ω
σ

µ
σ

−





= −










n

n n

n
.     (1.76)   

 Assume that the unit fails when the crack length exceeds   ω   and that the lifetime is  T  (expressed 
either in time or number of fatigue cycles). The reliability at time  t  is then expressed as
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    (1.77)   

 Substituting   β      =      ω  /  µ   and   α σ ωµ= , Equation  1.77  can be written as
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β α β     (1.78)   

 Where  Φ (.) is the CDF of the standard normal,   α   is the shape parameter and   β   is the scale 
parameter. Following Kundu et al.  (2008) , the p.d.f. of the two - parameter BS random variable 
 T  corresponding to the complementary CDF of Equation  1.78  is
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    (1.79)   

 This distribution is used to model situations when the maximum hazard rate occurs after several 
years of operations and then it decreases slowly over a fi xed period. It is also applicable for 
modeling self - healing material or systems where its hazard rate increases up to a point of time 
then slowly decreases. The p.d.f. ’ s for different values of   α   and   β      =    1 are shown in Figure  1.33 .   

 Kundu et al.  (2008)  consider the following transformation of a random variable  T  that 
follows BS (  α  ,   β  )
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  which is equivalent to

    T X X X= + + +β ( ( ) ).1 2 2 12 2
1

2   

 Then  X  is normally distributed with mean zero and variance (  α   2 /4). The above relationship is 
utilized to obtain several characteristics of the BS distribution (Johnson et al.,  1995 ). They are

    E T( ) .= +
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 Note that Equation  1.80  is the mean life (or MTTF). 
 The hazard rate  h ( t ) is obtained by dividing Equation  1.79  by Equation  1.78 . There is 

no closed form for  h ( t ), but it can be estimated numerically. Figure  1.34  shows the hazard - rate 
function for different values of   α  .   

 Kundu et al.  (2008)  show that the hazard rate is unimodal, and it increases to a peak 
value then slowly decreases with time. Assuming   β      =    1, they show that the change point of the 
hazard rate occurs approximately at

    c( )
( . . )

.α
α

=
− +

1

0 4604 1 8417 2   

 This approximation is for   α      >    0.25 and works quite well for   α      >    0.60. The change point moves 
closer to zero as the shape parameter increases which implies that the units exhibit a decreasing 

     FIGURE 1.33     Probability density function of BS distribution.  
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hazard rate as the shape parameter increases and the BS distribution might not be appropriate 
to model such hazard function. Indeed, a Weibull model with shape parameter less than one 
will result in a better fi t. On the other hand, the distribution tends to normality as   α   tends to 
zero. The relationship between   α   and the change point is shown in Figure  1.35 .   

 One of the interesting properties of the BS (  α  ,   β  ) is that  T   − 1  also follows a BS distribu-
tion with parameters   α   and   β    − 1 . The reliability function of BS (3,1) is shown in Figure  1.36 .   

     FIGURE 1.34     The hazard - rate function of the BS distribution.  
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     FIGURE 1.35     Effect of   α   on the change point of the hazard - rate function.  
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     FIGURE 1.36     Reliability function of BS (3,1).  
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 Assume that  n  time observations ( t  1 ,  t  2 ,    . . .    ,  t n  ) corresponding to crack growth are 
recorded until the crack length reaches a critical threshold. These observations follow a BS 
distribution, and its parameters are estimated as follows (Kundu et al.,  2008 ). 

 Let s and  r  denote the arithmetic mean and harmonic mean of the observations, 
respectively:

    s
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 The modifi ed moment estimator of the distribution parameters are
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    (1.84)  

  and

    ˆ ( ) /β = sr 1 2     (1.85)   

 Due to the bias of the sample size, Kundu et al.  (2008)  obtain the bias - corrected modifi ed 
moment estimators as
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    �
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 The reliability function and the hazard rate can be readily obtained.  

 EXAMPLE 1.14 

    An engineer conducts an axial fatigue test on a sample of alloy steel and measures the crack 
growth. The incremental increases in the length are set to equal values, and the corresponding 
times are recorded as follows: 

 200, 300, 390, 485, 560, 635, 695, 755, 810, 860, 905, 945, 985, 1020, 1053, 1100, 1150, 
1200, 1280, 1370, 1400, 1600 

 Assume that a BS distribution fi ts these data. Determine the parameters of the distribution 
and plot the reliability function.  

  SOLUTION 

 The parameters of the distribution are obtained using Equation  1.84  and  1.85 . The shape 
and scale parameters are   ˆ .α = 1 1845 and   ˆ .β = 783 94. The unbiased estimates are   �α = 1 2409.  
  ˆ .β = 89 93. 

 Using the unbiased estimates, we obtain the reliability function shown in Figure  1.37 .    
        

     FIGURE 1.37     The reliability function of Example  1.14 .    
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   1.3.15    Other Forms 

   1.3.15.1    The Generalized Pareto Model     When the hazard rate is either monotonically 
increasing or monotonically decreasing, it can be described by a three - parameter distribution 
with a hazard - rate function of the form

    h t
t

( ) ,= +
+

α β
λ

    (1.86)  

  where   α  ,   β  , and   λ   are the parameters of the model.  

   1.3.15.2    The Gompertz – Makeham Model     This is a generalized model of the Gomp-
ertz hazard model with hazard rate

    h t e t( ) ,= +ρ ρ ρ
0 1

2     (1.87)  

  where   ρ   0 ,   ρ   1 , and   ρ   2  are the parameters of the model.  

   1.3.15.3    The Power Series Model     There are many practical situations where none of 
the above - mentioned models is suitable to accurately fi t the hazard - rate values. In such a case, 
a general power series model can be used to fi t the hazard - rate values. Clearly, the number of 
terms in the power series model relates to the desired level of fi tness of the model to the empiri-
cal data. A good measure for the appropriateness of fi tting the model to the data is the mean 
squared error between the hazard values obtained from the model and the actual data. The 
hazard - rate function of the power series model is

    h t a a t a t a to n
n( ) .= + + + +1 2

2 …     (1.88)   

 The reliability function,  R ( t ), is

    R t a t
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3 1
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 EXAMPLE 1.15 

    Electromigration is a common failure mechanism in semiconductor devices. It is a phenomenon 
whereby a metal line in a device  “ grows ”  a link to another line or creates an open condition, 
due to movement (migration) of metal ions toward the anode at high temperatures or current 
densities (Comeford,  1989 ). Two hundred ICs are subjected to an elevated temperature of 
250 ° C to accelerate their failures. The number of failures observed due to electromigration 
during the test intervals are given in Table  1.7 .   

 Assume that the hazard - rate function is expressed as a power series function. Determine 
the hazard rate and the reliability after 10   h of operation at the same elevated temperature.  
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  TABLE 1.7    Failure Data for the Integrated Circuits 

   Time interval (hours)     Failures in the interval  

  0 – 100    10  
  101 – 200    20  
  201 – 300    35  
  301 – 400    40  
  401 – 500    45  
  501 – 600    50  
  Total    200  

  SOLUTION 

 We calculate the hazard rate from the data as shown in Table  1.8 .   
 We use the above hazard - rate data in Table  1.8  to fi t the model given by Equation  1.88  

using the least squares method to obtain

    h t t t( ) . . .= × − × + ×− − −3 653 10 0 171 10 4 86 103 4 8 2  

    h 10 3 484 10 3h( ) = × −. .   

 The reliability is obtained using Equation  1.89  as
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. .
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10 3 653 10
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2
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3
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2 2 5= − × − × + ×











=

− − −

99649.

 

         

   1.4    MULTIVARIATE HAZARD RATE 

 When a system is composed of two or more components, the joint life lengths are described 
by a multivariate distribution whose nature depends on the individual component life length. 
For example, consider a two - component system connected in parallel with each component 
having an exponentially distributed life length. The system fails when the two components fail. 

  TABLE 1.8    Hazard - Rate Calculation for Example  1.15  

   Time interval (hours)     Failures in the interval     Hazard rate  ×  10  − 3   

  0 – 100    10    10/(200    ×    100)    =    0.50  
  101 – 200    20    20/(190    ×    100)    =    1.05  
  201 – 300    35    35/(170    ×    100)    =    2.05  
  301 – 400    40    40/(135    ×    100)    =    2.92  
  401 – 500    45    45/(95    ×    100)    =    4.73  
  501 – 600    50    50/(50    ×    100)    =    10.00  

�
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When the effect of the operating conditions is accounted for, the joint life lengths of the com-
ponents are shown to have a bivariate distribution whose marginals are univariate Paretos. 

 Assume that   λ  i   is the parameter of component  i ( i     =    1, 2). If the lives of the two compo-
nents are assumed to be independent, then the reliability of the system is

    R t e e et t t( ) .= + −− − − +( )λ λ λ λ1 2 1 2   

 Suppose that the operating conditions affect the parameter   λ  i   by a common positive factor   η  . 
Then the system reliability is expressed as

    R t e e et t t( ) .= + −− − − +( )ηλ ηλ η λ λ1 2 1 2   

 Following Lindley and Singpurwalla  (1986) , if   η   is an unknown quantity whose uncertainty is 
described by the distribution function  G (  η  ), then the system reliability becomes

    R t G t G t G t( ) ,= ( ) + ( ) − +( )[ ]* * *λ λ λ λ1 2 1 2  

  where

    G y y dG*( ) = −( ) ( )∫exp η η  

  is the Laplace transform of  G . 
 When  G (  η  ) is a gamma distribution with density,
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 The joint density of  T  1  and  T  2 , the times to failure of the two components at  t  1  and  t  2 , respec-
tively, is
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+     (1.92)   

 Plots of Equation  1.92  for different values of   λ   1 ,   λ   2 ,   α  , and   β   are shown in Figures  1.38  
and  1.39 .   

 The bivariate hazard rate of the system is

    h t t
t t

1 2 1 2
1 2

1 1 2 2
2

1 2
, , , , , .λ λ α β α α λ λ
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    (1.93)   
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     FIGURE 1.38     Plot of the bivariate gamma density (  λ   1     =    0.5,   λ   2     =    0.3,   α   1     =    0.6,   β      =    0.9).  
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     FIGURE 1.39     Plot of the bivariate gamma density (  λ   1     =    0.9,   λ   2     =    0.3,   α      =    0.3,   β      =    0.9).  
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     FIGURE 1.40     Plot of the bivariate hazard rate (  λ   1     =    0.5,   λ   2     =    0.3,   α      =    0.6,   β      =    0.9).  
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     FIGURE 1.41     Plot of the bivariate hazard rate (  λ   1     =    0.9,   λ   2     =    0.3,   α      =    0.8,   β      =    0.9).  
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 The plots of the bivariate hazard rates for different   λ   1 ,   λ   2 ,   α  , and   β   are shown in Figures  1.40  
and  1.41 . Like univariate hazard rates, the bivariate hazard exhibits similar shapes — decreasing, 
constant, and increasing hazard rate.   

 The marginal density function of  t  1  is obtained by integrating Equation  1.92  with respect 
to  t  2  which yields
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    f t
t

1 1
1

1

1 1
2

1
, , , .λ α β λ α β

λ β

α

α( ) = +( )
+( )

+

+     (1.94)   

 The density function given by Equation  1.94  is a Pearson Type VI whose mean and variance 
exist only for certain values of the shape parameter   α  . This distribution is also referred to as 
the  “ Pareto distribution of the second kind ”  (Lindley and Singpurwalla,  1986 ). Johnson and 
Kotz  (1972)  refer to Equation  1.94  as the  Lomax distribution .  

   1.5    COMPETING RISK MODEL AND MIXTURE OF FAILURE RATES 

 Sometimes the failure data cannot be modeled by a single failure - time distribution. This is 
common in situations when a unit fails in different failure modes due to different failure 
mechanisms. For example, it has been shown that humidity has detrimental effects on semi-
conductor devices as it could induce failures due to large increases in threshold current in lasers 
(Osenbach et al.,  1995 ; Chand et al.,  1996 ; Osenbach and Evanosky,  1996 ; Osenbach et al., 
 1997 ) or could induce mechanical stresses due to polymeric layers ’  volume expansion in 
micromechanical devices (Buchhold et al.,  1998 ). Humidity in silver - based metallization in 
microelectronic interconnects has caused metal corrosion and dendrites due to migration 
(Manepalli et al.,  1999 ). In such situations, the failure data can be modeled using competing 
risk models or mixture of failure - rates models. We now discuss the necessary conditions for 
using either type of models. 

   1.5.1    Competing Risk Model 

 The competing failure model (also known as compound model, series system model, or multi-
risk model) plays an important role in reliability engineering as it can be used to model failure 
of units with several failure causes. There are three necessary conditions for this model: (1) 
failure modes are independent of each other, (2) the unit fails when the fi rst of all failure 
mechanisms reaches the failure state, and (3) each failure mode has its own failure - time dis-
tribution. The model is constructed as follows, 

 Consider a unit that exhibits  n  failure modes and that the time to failure  T i   due to failure 
mechanism  i  is distributed according to  F i  ( t ),  i     =    1, 2,    . . .    ,  n . The failure time of the unit is 
the minimum of { T  1 ,  T  2 ,    . . .    ,  T n  }and the distribution function  F ( t ) is

    F t F t F t F tn( ) [ ( )][ ( )] [ ( )].= − − − −1 1 1 11 2 …     (1.95)   

 The reliability function is

    R t R ti

i

n

( ) ( )=
=

∏
1

    (1.96)  
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  and the hazard function is

    h t h ti

i

n

( ) ( ).=
=

∑
1

    (1.97)   

 To illustrate the application of the competing risk model we consider a product that experiences 
two different failure modes and each follows a Weibull distribution. The reliability of the 
product is

    R t R t R t e e
t t

( ) ( ) ( ) ,= =
−





−





1 2
1

1

2

2

θ θ

γ γ

    (1.98)  

  where   θ  i   and   γ  i   are the scale and shape parameters, respectively, of failure mode  i . Upon dif-
ferentiation we obtain the density function as (Jiang and Murthy,  1997 )

    

f t R t f t R t f t

R t
t t

( ) ( ) ( ) ( ) ( )

( )

= +

= 
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−

1 2 2 1

1

1 1

1
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2 2

1γ
θ θ

γ
θ θ

γ















−γ 2 1     (1.99)  

  and the hazard - rate function is

    h t h t h t t t( ) ( ) ( ) .= + = +− − − −
1 2 1 1

1
2 2

11 1 2 2γ θ γ θγ γ γ γ     (1.100)   

 The characteristics of the resultant  f ( t ) and  h ( t ) depend on the values of the parameters   θ   1 ,   θ   2 , 
  γ   1 , and   γ   2 . Of course, the hazard rate  h ( t ) exhibits different characteristics: decreasing, constant, 
and increasing depending on the values and relationships among these parameters.    

 EXAMPLE 1.16 

    Consider a product that fails in two failure modes. Each failure is characterized independently 
by a Weibull model, and the parameters of failure mode 1 are   θ   1     =    10,000 and   γ   1     =    2.0 and the 
parameters of the failure mode 2 are   θ   2     =    15,000 and   γ   2     =    2.5. Plot the reliability function based 
on the competing risk model and compare it with the reliability function of each failure mode 
independently.  

  SOLUTION 

 The reliability function based on the competing risk model is (Fig.  1.42 )

    
R t R t R t e e

t t

( ) ( ) ( ) ., ,

.

= =
−





−





1 2
10 000 15 000

2 2 5

    

 It is obvious that the competing risk model results in more accurate reliability estimates than 
modeling each failure mode separately.         
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 �     FIGURE 1.42     Reliability of the competing risk model.  
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   1.5.2    Mixture of Failure - Rates Model 

 It is obvious that the mixtures of distributions with  decreasing failure rates  ( DFR s) are always 
DFR. On the other hand, it may be intuitive to assume that the mixtures of distributions with 
 increasing failure rates  ( IFR s) are also IFR. Unfortunately, some mixtures of distributions with 
IFR may exhibit DFR. In this section we discuss the conditions that guarantee that mixtures 
of IFR distributions will exhibit a DFR. 

 This is very important since, in practice, different IFR distributions are usually pooled 
in order to enlarge the sample size. In doing so, the analysis of data may actually reverse the 
IFR property of the individual samples to a DFR property for the mixture. Proschan  (1963)  
shows that the mixture of two exponential distributions (each has a CFR) exhibits the DFR 
property. 

 Based on the work of Gurland and Sethuraman  (1993) , we consider mixtures of two 
arbitrary IFR distribution functions  F i  ( t ),  i     =    1, 2. The pooled distribution function of the 
mixture of the two distributions is  F p  ( t )    =     p  1  F  1 ( t )    +     p  2  F  2 ( t ) where  p     =    ( p  1 ,  p  2 )with 0    ≤     p  1 ,  p  2     ≤    1, 
and  p  1     +     p  2     =    1 is a mixing vector. 

 We use the notation

    ′ = ′′ ℜ = =h t H t t p R t ii i i i i( ) ( ) ( ) ( ), , ,and 1 2  

  where  h i  ( t ),  H i  ( t ), and  R i  ( t ) are the hazard - rate function, the cumulative hazard function, 
and the reliability function of component  i  at time  t . From Section  1.2 ,  R i  ( t )    =    1    −     F i  ( t ), 
 H i  ( t )    =     −    ln    R i  ( t ) and   h t H ti i( ) ( ).= ′  

 The reliability function of the mixture of the two IFR distributions is

    R t p R t p R tp( ) ( ) ( ).= +1 1 2 2   
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 But

    H t R tp p( ) ln ( )= −  

    H t p R t p R tp( ) ln ( ) ( )= − +[ ]1 1 2 2  

  and

    

h t H t
p R t h t p R t h t

p R t p R t

t

p p( ) ( )
( ) ( ) ( ) ( )

( ) ( )

(

= ′ = +
+

= ℜ

1 1 1 2 2 2

1 1 2 2

1 )) ( ) ( ) ( )

( ) ( )
.

h t t h t

t t
1 2 2

1 2

+ ℜ
ℜ + ℜ

    (1.101)   

 A hazard - rate function  h p  ( t ) is a DFR if   ′ ≤h tp( ) 0. Therefore, we take the derivative of Equation 
 1.101  with respect to  t  to obtain

    

ℜ + ℜ( ) ′ = ℜ + ℜ ℜ ′ + ℜ ′1 2
2

1 2 1 1 2 2( ) ( ) ( ) [ ( ) ( )]{[ ( ) ( ) ( ) (t t h t t t t h t t h tp ))]

[ ( ) ( ) ( ) ( )]} [ ( ) ( ) ( ) ( )]+ −ℜ − ℜ + ℜ + ℜ

= ℜ
1 1

2
2 2

2
1 1 2 2

2t h t t h t t h t t h t

11 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (t t t h t t h t t t h t h+ ℜ( ) ℜ ′ + ℜ ′( ) − ℜ ℜ − tt) .( )2

   
 (1.102)   

 Using the fact that   ′ℜ = −ℜi i it t h t( ) ( ) ( ) in the above equation, we show that the necessary and 
suffi cient condition for   ′ ≤h tp( ) 0 and thus, for the mixture  F p  ( t ) to be DFR is

    [ ( ) ( )][ ( ) ( ) ( ) ( )] ( ) ( )[ ( )ℜ + ℜ ℜ ′ + ℜ ′ ≤ ℜ ℜ −1 2 1 1 2 2 1 2 1 2t t t h t t h t t t h t h (( )] .t 2     (1.103)  

   

 EXAMPLE 1.17 

    The failure - time distribution of a failure mode of a system is described by a truncated extreme 
distribution whose failure rate is  h  1 ( t )    =      θ e t  . Another mode of the system ’ s failure exhibits a 
CFR  h  2 ( t )    =      λ  . Although one failure mode of the system exhibits IFR while the other is a CFR 
if treated separately, the analyst pools the data from both failure modes to obtain a pooled 
hazard - rate function. Prove that the pooled hazard rate is a DFR.  

  SOLUTION 

 The reliability functions of the failure modes of the system are

    R t e et
1

1( ) ( )= − −θ  

  and

    R t e t
2( ) .= −λ   
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 The class of IFR distributions that, when mixed with an exponential, becomes DFR is large; 
this is referred to as a mixture - reversible by exponential (MRE) distribution. It includes, for 
example, the Weibull, truncated extreme, gamma, truncated normal, and truncated logistic 
distributions. This phenomenon of the reversal of IFRs could be troublesome in practice when 
much of the data conform to an IFR distribution and the remainder (perhaps a small amount) 
of the data conform to an exponential distribution, and yet the overall pooled data would 
conform to a DFR distribution (Gurland and Sethuraman,  1994, 1995 ). For example, consider 
a mixture of an IFR gamma distribution with

    f t
t

e
t

( )
( )

=
− −γ

γ
θ

θ γ

1

Γ
 

  where   γ      >    1 and  t     >    0 with an exponential distribution with parameter   λ   which satisfi es the 
necessary conditions (Eq.  1.102 ) when 1/  θ      >      λ  . Thus, the IFR Gamma is MRE. 

 We note that the mixture failure rate for two populations is extensively studied. Gupta 
and Warren  (2001)  show that the mixture of two gamma distributions with IFRs (but have 
the same scale parameter) can result either in the increasing mixture failure rate or in the 
 modifi ed bathtub  ( MBT ) mixture failure rate (the failure rate initially increases and then 
behaves like a bathtub failure rate). Jiang and Murthy  (1998)  show that the failure rate of 
the mixtures of two Weibull distributions with IFRs is similar to the failure rate of the 
mixture of two gamma distributions with IFRs. Likewise, Navarro and Hernandez  (2004)  state 
that the mixture failure rate of two truncated normal distributions depending on parameters 
involved can also be increasing, bathtub shaped, or MBT - shaped. Block et al.  (2003)  obtain 
explicit conditions for possible shapes of the mixture failure rate for two increasing linear 
failure rates. 

 The corresponding hazard rates are

    h t et
1( ) = θ  

  and

    h t2( ) .= λ   

 Let  F p  ( t )    =    (1    −     p ) F  1 ( t )    +     pF  2 ( t ). Then, the failure rate of the pooled data is

    h t
p R t h t pR t h t

p R t pR t
p( )

( ) ( ) ( ) ( )

( ) ( )
.= −( ) +

−( ) +
1

1
1 1 2 2

1 2
  

 The necessary and suffi cient condition that makes  h p  ( t ) a DFR function is given by Equation 
 1.102 . Substituting the parameters of the individual distributions and   ℜ = −( ) − −

1 1 1( ) ( )t p e etθ  
and  ℜ  2 ( t )    =     pe   −     λ t  , it is easy to check that there is a  t  0 ( p ) such that the derivative of the pooled 
hazard rate with respect to  t  is negative for  t     ≥     t  0 ( p ) for each value of  p . Thus, the mixture is 
DFR.        �   
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 Before concluding the presentation of the hazard functions, it is important to mention 
that some recent work argue that the bathtub curve is not a general failure - rate function that 
describes the failure rate of most, if not all, components. For example, Wong  (1989)  claims 
that the  “ roller - coaster ”  hazard - rate curve is more appropriate to describe the hazard rate of 
electronic systems than the bathtub curve. It is shown that semiconducting devices exhibit a 
generally decreasing hazard - rate curve with one or more humps on the curve. Data from a 
burn - in test of some electronic board assemblies demonstrate the trimodal (hump) characteristic 
on the cumulative failure rate. The wear - out (IFR) region starts immediately at the end of the 
decreasing failure - rate region without experiencing the constant failure - rate region, a main 
characteristic of the bathtub curve.   

   1.6    DISCRETE PROBABILITY DISTRIBUTIONS 

 Before we conclude the continuous probability distributions, we briefl y present and discuss the 
use of discrete probability distributions in the reliability engineering area. 

 As presented so far, reliability is considered a continuous function of time. However, 
there are situations when systems, units, or equipment are only used on demand such as mis-
siles that are normally stored and used when needed. Likewise, when systems operate in cycles, 
only the number of cycles before failure is observed. In such situations, the reliability and 
system performance are normally described by discrete reliability distributions. In this section, 
we briefl y describe relevant distributions for reliability modeling. 

   1.6.1    Basic Reliability Defi nition 

 Assume that a discrete lifetime is the number  K  of system demands until the fi rst failure. Then, 
 K  is a random variable defi ned over the set N of positive integers (Bracquemond and Gaudoin, 
 2003 ). The probability function and CDF are expressed, respectively, as  p ( k )    =     P ( K    =    k ) and 
  F k P K k p i k Ni

k( ) ( ) ( ) .= ≤ = ∑ ∀ ∈=1  Consequently, 
 The reliability of a discrete lifetime distribution is

    R k P K k p i k N
i k

N

( ) ( ) ( ) .= ≥ = ∀ ∈
= +
∑

1

  

 The MTTF is the expectation of the random variable  K  expressed as

    MTTF = =
=

∞

∑E K ip i
i

( ) ( ).
1

  

 Similar to the continuous time case, we defi ne the failure rate as the ratio of the probability 
function and the reliability function, thus
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    h k
P K k

P K k

p k

R k
( )

( )

( )

( )

( )
.= =

≥
=   

 Likewise, we express other reliability characteristics such as the  mean residual life  (MRL) 
function,  L ( k ) as described in Section  1.8 :

    L k E K k K k( ) ( | ).= − >   

 Of course, this can be generalized for the corresponding continuous time distributions. Since 
the practical use of such discrete lifetime distributions is limited, we show the above expres-
sions for the geometric distribution case. Other distributions are found in (Bracquemond and 
Gaudoin,  2003 ).  

   1.6.2    Geometric Distribution 

 This distribution exhibits the memoryless property of the exponential distribution, and the 
system failure probabilities for each event (demand or request for use) are independent and all 
equal to  p . In other words, the failure rate is constant or  P ( K     >     i     +     k | k     >     i )    =     P ( K     >     k ). The 
probability of failure, reliability, and failure rate respectively, are

    

p k p p

R k p

h k
p

p

k

k

( ) ( ) ,

( ) ( ) ,

( ) .

= −
= −

=
−

−1

1

1

1

  

 Other use of discrete probability distributions arise when modeling system reliability, such as 
in the case of a four - engine aircraft, where its reliability is defi ned as the probability of at least 
two out of four engines function properly, and modeling the number of incidences (failures) 
of some characteristic in time as well as modeling warranty policies. We describe two com-
monly used distributions.  

   1.6.3    Binomial Distribution 

 In many situations, the reliability engineer might be interested in assessing system reliability 
by determining the probability that the system functions when  k  or more units out of  n  units 
function properly such as the case of the number of wires in a strand. This can be estimated 
using a binomial distribution. Let  p  be the probability that a unit is working properly;  n  is the 
total number of units; and  k  is the minimum number of units for the system to function properly. 
The probability of  k  units operating properly is

    f k
n

k n k
p q k n q pk n k( )

!

!( )!
, , , .=

−
= = −− 0 1 1…   
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 The reliability of the system is then the sum of the probabilities that  k ,  k    +     1,    . . .     n  units operate 
properly, that is,

    Reliability = 





−

=
∑ n

i
p qi n i

i k

n

,  

  where

    
n

i

n

i n i






=
−
!

!( )!
.   

 The expectation of the distribution is

    E K
kn

k k n k
p q npk n k

k

n

( )
!

( )!( )!
.=

− −






=−

=
∑ 1

1

  

 The variance is

    V K E K E K n p np p np np p( ) ( ) ( ) ( ) ( ).= ( ) − [ ] = + − − = −2 2 2 2 21 1    

   1.6.4    Poisson Distribution 

 Poisson distribution describes the probability that an event occurs in time  t . The event may 
represent the number of defectives in a production process or the number of failures of a system 
or group of components. The Poisson distribution is derived based on the binomial distribution. 
This is achieved by taking the limit of the binomial distribution as  n  →  ∞  with  p     =      λ  / n . Substitu-
tion  p     =      λ  / n  in the binomial distribution results in

    p k
n

k n k
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k n k n n
k n k

k n k
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 Taking limit as  n     →     ∞ 
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  which is reduced to

    lim ( )
!
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!

, , ,
n

k

n

n k

p k
k n

e

k
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−
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 Thus, the probability function of the Poisson distribution is

    f k
e

k
k

k

( )
!

, , ,= =
−λλ

0 1 2…   

 Its expectation is

    E K k
e

k

k

y

( )
!

.= 





=
−

=

∞

∑
λλ λ

0

  

 The variance is

    V K E K E K( ) ( ) .= ( ) − [ ] =2 2 λ    

   1.6.5    Hypergeometric Distribution 

 The hypergeometric distribution is used to model systems when successive events must occur 
before the failure of a system. Consider, for example, a system which is confi gured with implicit 
redundancy which requires the failure of two consecutive components for the system to fail. 
In this case, the reliability of the system is assessed using a hypergeometric distribution. Con-
sider a population of size  N  with  k  working devices. A sample of size  n  is taken from the popu-
lation; the number of working devices in the sample ( y ) is a random variable  Y , and its 
probability function is

    p y

k

y

N k

n y
N

n

y n k( ) , , ,min( , ).=







−
−













= 0 1…   

 The expectation and variance are

    

E Y n
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N k
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1

    

   1.7    MEAN TIME TO FAILURE 

 One of the measures of the systems ’  reliability is the MTTF. It should not be confused with 
the  mean time between failures  ( MTBF ). We refer to the expected time between two successive 
failures as the MTTF when the system is nonrepairable. Meanwhile, when the system is repair-
able we refer to it as the MTBF. 

 Now, let us consider  n  identical nonrepairable systems and observe the time to failure 
for them. Assume that the observed times to failure are  t  1 ,  t  2 ,    . . .    ,  t n  . The mean time to failure, 
  MTTF� , is
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    MTTF
n

ti

i

n
� =

=
∑1

1

.     (1.104)   

 Since  t i   is a random variable, then its expected value can be determined by

    MTTF t f t dt=
∞

∫ ( ) .
0

    (1.105)   

 But  R ( t )    =    1    −     F ( t ) and  f ( t )    =     d F ( t )/ dt     =     −  d R ( t )/ dt . Substituting in Equation  1.105 , we obtain

    

MTTF t
d R t

dt
dt

t d R t

t R t R t dt

= −

= −

= − +

∞

∞

∞
∞

∫
∫

∫

( )

( )

( ) ( ) .

0

0

0
0

  

 Since  R ( ∞ )    =    0 and  R (0)    =    1, then the fi rst part of the above equation is 0 and the MTTF is

    MTTF R t dt=
∞

∫ ( ) .
0

    (1.106)   

 The MTTF for a constant hazard - rate model is

    MTTF e dtt= =−
∞

∫ λ

λ0

1
.     (1.107)   

 The MTTF of a linearly increased hazard - rate model is

    MTTF e dt
t

= =







=
−∞

∫
λ

λ
π
λ

2

2

0

1
2

2
2

2

Γ
.     (1.108)   

 Similarly, the MTTF for the Weibull model is

    MTTF e dt
t

=
−





∞

∫ θ

γ

0
.   

 Substituting   x
t= 



θ

γ

,  the above equation becomes

    

MTTF e x dxx=

= 





= +





−
−∞

∫θ
γ
θ
γ γ

θ
γ

γ
1

1

0

1

1
1

Γ

Γ .

    (1.109)  
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 EXAMPLE 1.18 

    The MTTF for a robot controller that will be operating in different stress conditions is specifi ed 
to be warranted for 20,000   h. The hazard - rate function of a typical controller is found to fi t a 
Weibull model with   θ      =    3000 and   γ      =    1.5. Does the controller meet the warranty requirement? 
If not, what should the value of   θ   be to meet the requirement (measurements are in hours)?  

  SOLUTION 

 Substituting   θ      =    3000 and   γ      =    1.5 in Equation  1.109 , we obtain the MTTF as

    MTTF = +





=( )
.

. .3000 1
1

1 5
2700 8Γ   

 Thus, the MTTF is 2700.8   h. The MTTF does not meet the warranty requirement. The char-
acteristic life that meets the requirement is calculated as 20,000    =      θ   Γ (1.666). 

 Thus,   θ   should equal 22,155.        �   

 EXAMPLE 1.19 

    The failure time of an electronic device is described by a Pearson type V distribution. The 
density function of the failure time is

    f t

t e
t

t

( )

.

/

= ( )
>






− +( ) −

−

α β

αβ α

1

0

0

Γ
if

otherwise

  

 The shape parameter   α      =    3 and the scale parameter   β      =    4000   h. Determine the MTTF of the 
device.  

  SOLUTION 

 Using Equation  1.105 , we obtain

    

MTTF
t e

dt

t e dt

t

t

=
( )

=
( )

− −

−
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−
− −
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∫
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1
 

  or

    
MTTF =

−
=

−
=β

α 1

4 000

3 1
2 000

,
, .h

 
        �   



70 CHAPTER 1 RELIABILITY AND HAZARD FUNCTIONS

   1.8    MEAN RESIDUAL LIFE ( MRL ) 

 A measure of the reliability characteristic of a product, component, or a system is the  MRL  
function,  L ( t ). It is defi ned as

    L t E T t T t t( ) | , .= − ≥[ ] ≥ 0     (1.110)   

 In other words, the mean residual function is the expected remaining life,  T     −     t , given that the 
product, component, or a system has survived to time  t  (Leemis,  1995 ). 

 The conditional p.d.f. for any time   τ      ≥     t  is

    f
f

R t
tT T t| .≥ ( ) = ( )

( )
≥τ τ τ     (1.111)   

 The conditional expectation of the function given in Equation  1.111  is

    E T T t f d
f

R t
dT T t

t t
| .|≥[ ] = ( ) = ( )

( )≥

∞ ∞

∫ ∫τ τ τ τ τ τ     (1.112)   

 Since the component, product, or system has survived up to time  t , the MRL is obtained by 
subtracting  t  from Equation  1.112 , thus
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t

( ) =
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( ) −
∞

∫1 τ τ τ .     (1.113)  

    

 EXAMPLE 1.20 

    A manufacturer uses rotary compressors to provide cooling liquid for a power - generating unit. 
Experimental data show that the failure times (between 0 and 1 year) of the compressors follow 
beta distribution with   α      =    4 and   β      =    2. What is the MRL of a compressor given that the com-
pressor has survived 5 months?  

  SOLUTION 

 The p.d.f. of the failure time is

    f t
t t t

( )

,

=
+( )

( ) ( )
−( ) < <






− −Γ
Γ Γ

α β
α β

α β1 11 0 1

0 otherwise

 



TIME OF FIRST FAILURE 71

   1.9    TIME OF FIRST FAILURE 

 The advances in the design and production of medical devices, sensors, and nonmanufacturing 
have resulted in a wide range of medical devices and implants. Most of the implants are metallic 
due to their superior mechanical properties, such as hardness and fatigue strength, but one of 
their drawbacks is that electrochemical reactions take place on metallic surfaces in the human 
body which causes corrosion and degradation of the implants that might lead to extreme con-
sequences. This has generated the interest in a different measure of reliability for such devices. 
One such measure is the time to fi rst failure of  N  devices. In other words, we are interested in 
determining the time when the fi rst failure occurs. 

 Consider a batch of  N  devices and assume that the failure time of a single device follows 
an exponential distribution. Let  f ( t ) be the  p.d.f.  for a single device, that is,

    f t
dF t

dt T
e

t

T( )
( )

,= =
−1     (1.114)  

  where  T  is the design life (duration of interest). We are interested in determining  dF  1 ( t )/ dt  that 
the fi rst failure in a batch of  N  devices occurs in [ t ,  t     +     dt ]. This can be expressed as

    f t
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dt
N f t f t dt
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N

1
1

1
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∞ −

∫     (1.115)  

  where  f ( t ) is the probability that a device fails in [ t ,  t     +     dt ] and   ∫ ′ ′( )∞ −
t

N
f t dt( )

1
 is the probability 

that  N     −     1  devices fail in [ t ,  ∞ ]. Note that  N  is a combinatorial factor giving a number of choices 

  or
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 But   R t F t d
t

( ) = − ( ) = − −( )∫1 1 20 3 4

0
τ τ τ . 

 The value of  t  corresponding to 5 months is 5/12    =    0.416, thus

    R t t dt0 416 1 20 0 9004

0

0 416

. . .
.

( ) = − −( ) =3∫   

 Using Equation  1.113 , we obtain the MRL of a compressor that survived 5 months as

    L t t t dt0 416
20

0 900
0 416 0 2883 4

0 416

1

.
.

. .
.

( ) = −( ) − =∫  

  or the MRL is 3.46 months.        �   
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to the devices which fail in [ t ,  t     +     dt ] (Elsen and Sch ä tzel,  2005 ). Normalization of Equation 
 1.115  yields the mean time of fi rst failure as

    t
dF t

dt
dt tN f t f t dt dt

T

N
t

N

1

0

1

0

( )
( ) ( )





= ′ ′








 =

∞ ∞ −∞

∫ ∫∫     (1.116)   

 The probability of the fi rst failure  f  1 ( t ) for given  N  and  T  can be obtained using Equation  1.115  
and the mean time of the fi rst failure is obtained from Equation  1.116 .   

 EXAMPLE 1.21 

    Historical data show that most transistors exhibit CFR and are widely used in many applica-
tions. Consider the case where a manufacturer has the choice of releasing a batch of 100 or 
200 devices that include one of the transistors and observe the time of the fi rst failure of each 
batch for 5000   h. Show the failure - time distributions.  

  SOLUTION 

 Using Equation  1.115 , we obtain the p.d.f of the fi rst failure in a group of  N  devices over a 
period of time  T  as

    f t
N

T
e

tN

T
1( ) .=

−

  

 The failure - time distributions are shown in Figure  1.43 .           

     FIGURE 1.43     Time of fi rst failure distributions.  
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 Equation  1.115  can be generalized to obtain the time of the  jth  failure for  N  components. For 
example, we calculate the probability  dF  2 ( t )/ dt  that the second failure in a batch of  N  devices 
occurs in [ t ,  t     +     dt ] as

    f t
dF t

dt
N N f t f x dx f y dy

t

t
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2
2

0

2

1( )
( )

( ) ( ) ( ) ( ) .= = −
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∞ −

    (1.117)   

 The time to the second failure is the expectation of  f  2 ( t ). 
 We conclude this chapter by providing a summary of the hazard - rate functions and their 

corresponding parameters, as shown in Table  1.9 .   
 Table  1.9  summarizes the characteristics of the hazard functions discussed in this chapter. 

  TABLE 1.9    Characteristics of the Hazard Functions 

   Hazard function      h ( t  )      f  ( t  )      R  ( t  )     Parameters  

  Constant      λ        λ e   −     λ t       e   −     λ t        λ    
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  PROBLEMS 

       1.1    Determine the mean and the variance of a uniform random variable  X  whose p.d.f. is

    f x b a
a x b( ) = −

< <





1

0 otherwise

    

    1.2    Determine the fi rst and second moments for a normal distribution with parameters   µ   and   σ   2 .   
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  TABLE 1.10    Fatigue Test Results 

   Number of cycles  ×  10 5   
   Cumulative number 
of failed specimens  

  10    35  
  20    59  
  30    72  
  40    84  
  50    93  
  60    100  

    1.3    The p.d.f. of the lognormal distribution is given by

    f t
t

e
t

( ) =
− −{ }1

2

1
2

2

σ π

µ
σ

ln

.   

 Determine the variance and the median. (Hint: Median is defi ned as   f x dx
med

( ) =
∞

∫ 1 2/ ).   

    1.4    A mechanical fatigue test is conducted on 100 specimens of a new polymer. The applied stress is identical 
for all specimens. The number of cycles observed and the corresponding numbers of failed specimens are 
given in Table  1.10 .

   a.     Plot graphs for  f e  ( t ),  R e  ( t ),  h e  ( t ), and  F e  ( t ).  

  b.     Comment on the above results.  

  c.     Derive an analytical expression for  h e  ( t ) and estimate the MTTF of a bar made of the same material 
and is subjected to the same loading conditions.        

  TABLE 1.11    Failure Data for Problem 1.5 

   Hour of operation  ×  10 3      Number of failed disks  

  0 – 10.0    0  
  10.1 – 14.0    10  
  14.1 – 18.0    15  
  18.1 – 22.0    18  
  22.1 – 26.0    20  
  26.1 – 30.0    16  
  30.1 – 34.0    22  
  34.1 – 38.0    20  

    1.5    The reliability of disk drives can be predicted by increasing the operational machine hours accumulated 
in the fi eld or in the laboratory as part of the initial design process. The failures have been accumulated 
and given in Table  1.11 .

   a.     Plot graphs for  f e  ( t ),  R e  ( t ),  h e  ( t ), and F e  ( t ).  

  b.     Comment on the above results.  
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  TABLE 1.12    Failure Data for Problem 1.6 

   Time interval (minutes)     Number of failed units  

  0 – 1.999    10  
  2 – 3.999    15  
  4 – 5.999    22  
  6 – 7.999    34  
  8 – 9.999    49  

  10 – 11.999    63  
  12 – 14    70  

  c.     Derive an analytical expression for  h e  ( t ) and estimate the MTTF of a bar made of the same material 
and is subjected to the same loading conditions.  

  d.     Would you buy a disk produced by the above manufacturer? Why?        

    1.6    One of the modern methods for stress screening is called  highly accelerated stress screening  ( HASS ), 
which use the highest possible stresses (well beyond the normal operating level) to attain time compression 
on the screens. The HASS exhibits an exponential acceleration of screen strength with stress level. A 
manufacturer employs a HASS test on newly designed leaf springs for light trucks. A cyclic load was 
applied on a number of springs and the failure times are recorded in Table  1.12 .

   a.     Fit a nonlinear polynomial hazard function to describe the hazard rate of the springs.  

  b.     What is the reliability at  t     =    8?  

  c.     Assume that we obtained 500 springs that require testing under the same conditions. What is the 
expected time to failure? What is the least time needed to ensure that all units fail under test?        

    1.7    A reliability engineer subjected 10 steel specimens to  High - Cycle Fatigue  ( HCF ) that occurs at relatively 
large numbers of cycles and is caused by high frequency vibrations in both static and rotating hardware. 
The number of cycles to failure is recorded for each specimen and is reported as follows: 

 200,000, 250,000, 280,000, 300,000, 350,000, 370,000, 380,000, 400,000, 420,000, 460,000 

  a.     Use the improved mean rank to obtain the p.d.f.,  R ( t ) and  h ( t ).  

  b.     Use two median rank approaches to obtain the p.d.f.,  R ( t ) and  h ( t ).  

  c.     Compare the results obtained from (a) with those obtained from (b).      

    1.8    Show that the variance of a component whose hazard rate can be described by  h ( t )    =      γ  /  θ  ( t /  θ  )   γ     − 1  is

    Var T[ ] = +
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    1.9    Use the Weibull graph paper to estimate the parameters of a Weibull distribution that fi ts the data given 
in Problem 1.6.   

    1.10    Plot  h ( t ) and  R ( t ) for  t     =    0 to 1000, for different shape parameters of 0.5 – 3.5 with an increment of 0.5 and 
for different characteristic lives of 200 – 300 with an increment of 25. What is the effect of the characteristic 
life on the hazard - rate function? What is the best combination of shape parameter and characteristic life 
that results in the highest reliability at  t     =    1000? (Weibull distribution).   

    1.11    Dhillon  (1979)  proposes a hazard - rate model given by 

   h t k ct k bt ec b tb( ) = + −( )− −λ β β1 11  

for

    b c k t, , , ,β λ > ≤ ≤ ≥0 0 1 0  

  where

   b ,  c          =    shape parameters,  
   β  ,   λ           =    scale parameters, and  
  t          =    time.    

 Derive the reliability function and determine the conditions that make the hazard rate increasing, decreas-
ing, or constant.   

    1.12    A rolling bearing rotating under load may ultimately suffer from material fatigue. Typically, fatigue 
damage is characterized by a small piece of material breaking away from the raceway leaving a cavity. 
This cavity may then propagate into a crack and the bearing will fail. If a large batch of identical bear-
ings is run under the same conditions until 10% of the batch has failed from the material fatigue damage, 
then the batch is said to have attained its  L  10  life. In other words, the remaining 90% of the bearings in 
the batch will survive for periods longer than the  L  10  life. Consider a rolling bearing which has a hazard -
 rate function in the form

    h t

t

n
t

k

n

k

k

n
( ) =







−( ) ( )

−

=

−

∑

1

1

1

0

1

θ θ
θ

!
/

!

,  

  where  n     =    3 and   θ      =    290   h. Determine the reliability of the bearing at  t     =    100   h. Assuming  L  10     =    100   h, 
determine the MRL of the bearing.   

    1.13    Find  f ( t ),  h ( t ),  R ( t ), and MTTF, assuming

    F t e et t( ) = − +− −1
8

7

1

7
8 .     

    1.14    Find  f ( t ),  F ( t ),  R ( t ), and MTTF, assuming

    h t t( ) = −1

25
1 4/ .   

 If 200 units are placed in operation at the same time, how many failures are expected during 1 year of 
operation?   
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    1.15    The failure rate of a brake system is found to be  h ( t )    =    0.006(1.5    +    2 t     +    3 t  2 ) failures per year.

   a.     What is the reliability at  t     =    10 4    h?  

  b.     If 20 systems are subjected to a test at the same time, how many would have survived at time  t     =    10 3    h? 
What is the expected number of failures in 1 year of operation?      

    1.16    The failure rate of a hydraulic system is found to be  h ( t )    =    0.003(1    +    2.5 e   − 3   t      +     e   −    t   /50 ) failures per year.

   a.     What is the reliability at  t     =    10 5    h?  

  b.     What is the MTTF?  

  c.     If 10 systems are subjected to a test at the same time, how many would have survived at time  t     =    10 3    h. 
What is the expected number of failures in 1 year of operation?      

    1.17    Consider the general hazard failure rate (Hjorth,  1980 ) that is given by  h ( t )    =      δ t     +      θ  /(1    +      β t ). 
 Special cases are

    θ      =    0      The Rayleigh distribution,  

   δ      =      β      =    0      The exponential distribution,  

   δ      =    0      DFR,  

   δ      ≥      θ  β        IFR, and  

 0    ≤      δ      ≤      θ  β        The bathtub curve.    

 The reliability function corresponding to this general hazard rate is

    R t
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 Let  T  have the above reliability function, and defi ne
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0 1
  

 Find the mean and the variance of  T . Plot the hazard rate for different values of the parameters.   

    1.18    The viscosity of a lubricant used in a heavy machinery (at 70 ° C) is measured in centipoise at equal intervals 
of times (days) as shown in Table  1.13 . The lubricant needs to be replaced when the threshold value of 
the viscosity is 1400 centipoise. Assuming that the measurements follow a BS distribution, determine its 
parameters and plot the reliability function with time. Determine the change point of the hazard - rate 
function.     

    1.19    The p.d.f. of the early failure times of the circuit boards used in high - speed modems is found to follow a 
Pearson type V distribution given by
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  where   α   and   β   are the shape and scale parameters, respectively. Find the reliability function, the hazard 
rate, and the MTTF for the special case when   β      =    1 and   α      =    3. Is the hazard rate increasing, decreasing, 
or constant?   
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  TABLE 1.14    Failure Data for Machine A 

   Incident #     Cumulative patients     Patients between failures  

  1    1    1  
  2    7    6  
  3    94    87  
  4    193    99  
  5    217    24  
  6    367    150  
  7    390    23  
  8    411    21  
  9    654    243  

  10    779    125  
  11    1,016    237  
  12    1,035    19  
  13    1,038    3  
  14    1,074    36  

    1.20    Let  t  denote the time to failure of a component whose p.d.f. is given by

    f t
t

t( )
ln

, , , .= < <1

2

1
25 000 50 000 h    

 a.     Verify that  f  is a density for a continuous random variable.  

  b.     What is the hazard function of this component?  

  c.     What is the expected life of the component?      

    1.21    A manufacturer of medical equipment introduces three different prototype machines, Machine A, Machine 
B, and Machine C, all capable of sensing contrast or saline pooling under a patient ’ s skin during a che-
motherapy procedure. This task approximately equals one unit of time for every patient. The manufacturer 
records the incidents of each machine in terms of the number of patients served before the machine fails. 
Assume that when the machine fails it is repaired to be as good as new. The data are shown in Tables 
 1.14 – 1.16 .

  TABLE 1.13    Viscosity Data for Problem 1.18 

  11    28    43    56    84    108    129    170    238    354  
  15    31    44    58    86    109    141    175    246    383  
  15    34    46    59    89    109    146    177    261    396  
  15    36    47    61    90    115    155    177    264    417  
  22    36    47    62    95    119    161    177    272    425  
  23    37    47    62    97    119    162    180    281    448  
  24    38    49    68    97    123    168    184    283    472  
  24    41    50    68    98    127    169    196    301    646  
  25    42    50    79    106    127    169    227    303    777  
  27    42    56    83    108    129    170    238    318    1181  
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  TABLE 1.15    Failure Data for Machine B 

   Incident #     Cumulative patients     Patients between failures  

  1    13    13  
  2    20    7  
  3    59    39  
  4    67    8  
  5    71    4  
  6    91    20  
  7    123    32  
  8    128    5  
  9    129    1  

  10    140    11  
  11    155    15  
  12    166    11  
  13    192    26  
  14    203    11  
  15    241    38  
  16    253    12  
  17    255    2  
  18    282    27  
  19    305    23  
  20    344    39  
  21    356    12  
  22    413    57  
  23    432    19  
  24    485    53  
  25    498    13  
  26    501    3  
  27    518    17  
  28    565    47  
  29    631    66  
  30    651    20  
  31    672    21  
  32    718    46  
  33    761    43  
  34    865    104  
  35    876    11  
  36    913    37  
  37    946    33  
  38    978    32  
  39    1,045    67  
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  TABLE 1.16    Failure Data for Machine C 

   Incident #     Cumulative patients     Patients between failure  

  1    67    67  
  2    178    111  
  3    240    62  
  4    411    171  
  5    427    16  
  6    445    18  
  7    454    9  
  8    457    3  
  9    464    7  

  10    482    18  
  11    524    42  
  12    529    5  
  13    698    169  
  14    706    8  
  15    744    38  
  16    757    13  
  17    780    23  
  18    791    11  
  19    802    11  
  20    815    13  
  21    830    15  
  22    853    23  
  23    860    7  
  24    874    14  
  25    918    44  
  26    935    17  
  27    957    22  
  28    1,016    59  
  29    1,034    18  
  30    1,071    37  
  31    1,075    4  
  32    1,084    9  

   a.     Analyze the failure data and compare the hazard - rate functions for the three machines.  

  b.     Plot the reliability functions and estimate the MTTF for each machine.  

  c.     What are your suggestions to the manufacturer?        

    1.22    In most electronic manufacturing operations, the role of process control has traditionally fallen to auto-
mated board - test systems. These systems are typically placed at the end of the manufacturing line in order 
to monitor fault trends and thus help control the process. The failure data collected at a board - test system 
show that the failure time follows a triangular distribution with the following p.d.f.
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  where  a ,  b , and  c  are real numbers with  a     <     c     <     b .  a  is a location parameter,  b     −     a  is a scale parameter,  c  
is a shape parameter. Assume that  a     =    2,  b     =    4, and  c     =    3. What is the expected MTTF? What is its 
variance?   

    1.23    A manufacturer intends to introduce a new product. Five products are subjected to a reliability test. The 
mean of the failure times is 300   h and the variance is 90,000   h 2 . Since the number of failure data is limited, 
it is diffi cult to determine with an acceptable confi dence level the type of the failure - time distribution.

   a.     What is the expected number of failures at 500   h?  

  b.     The similarity between this product and another product that has already been in the market for the last 
10 years indicates that the failure - time distribution is likely to follow gamma distribution. What is the 
expected number of failures under these conditions at 500   h? Compare the results with (a) above. What 
do you conclude?      

    1.24    The failure time of a new brake drum design is observed to follow a gamma distribution with a p.d.f. of

    f t
t e t

( ) .= ( )
( )

− −λ λ
γ

γ λ1

Γ
  

 For   γ      =    2 and   λ      =    0.0002, determine 

  a.     The expected number of failures in 1 year of operation,  

  b.     The MTTF, and  

  c.     The reliability at t    =    1000   h.      

    1.25    Solve the above problem when   γ      =    3 and   λ      =    0.0002.Compare the results. Which brake system is better? 
Why?   

    1.26    Most fractional horsepower motor controllers use  silicon - controlled rectifi er  ( SCR ) to vary the power 
applied to the motor and thereby control armature voltage and thus the motor ’ s speed. The SCR is made 
of different layers of semiconductor materials. The heat dissipation from the motor increases the failure 
rate of the SCR. Failure data from the fi eld show that the failure time follows a beta distribution with the 
following p.d.f.
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 Assuming that   α      =    1.8 and   β      =    4.7, what is the expected MTTF? What is its variance? What is the expected 
number of failures at  t     =    2.5?   
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    1.27    Consider the case where the failure time of components follows a logistic distribution with p.d.f. of0
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 Determine the expected number of failures in the interval [ t  1 ,  t  2 ].   

    1.28    In order for a manufacturer to determine the length of the warranty period for newly developed ICs, 100 
units are placed under test for 5000   h. The hazard - rate function of the units is  h ( t )    =    5    ×    10  − 9  t  0.9 . 

 What is the expected number of failures at the end of the test? Should the manufacturer make the warranty 
period longer or shorter if the ICs were redesigned and its new hazard - rate function became 
 h ( t )    =    6    ×    10  − 8  t  0.75 ?   

    1.29    The manufacturer of diodes subjects 100 diodes to an elevated temperature testing for a 2 - year period. 
The failed units are found to follow a Weibull distribution with parameters   θ      =    50 and   γ      =    2 (in thousands 
of hours). What is the expected life of the diodes? What is the expected number of failures in a 2 - year 
period?   

    1.30    In Problem 1.29, if a diode survives 1 year of operation, what is its MRL?   

    1.31    The hazard - rate function of a manufacturer ’ s jet engines is a function of the amount of silver and iron 
deposits in the engine oil. If the metal deposit readings are  “ high, ”  the engine is removed from the aircraft 
and overhauled. The hazard - rate function (Jardine and Buzacott,  1985 ) is

    h t z t
t

z t; ( )
.

. .
exp . ( ) .

.

( ) = 





+5 335

3255 19 3255 19
0 506 1 2

4 335

1 55 2z t( ) ,[ ]  

  where    t          =    fl ight hours,  

  z  1 ( t )         =    iron deposits in parts per million at time  t , and  

  z  2 ( t )         =    silver deposits in parts per million at time  t .    

 Analysis of the deposits over time shows that

    z t t1 0 0005 0 00006( ) . .= +  

    z t t t2
8 20 00008 8 10( ) . .= + × −   

 Plot the reliability of the engine against fl ying hours. What is the MTTF?   

    1.32    A mixture model of the Inverse Gaussian (IG) and the Weibull (W) distributions, called the IG - W model, 
is capable of covering six different combinations of failure rates: one of the components has an  upside -
 down bath tub failure rate  ( UBTFR ) or IFR and the other component has a DFR, CFR, or IFR (Al - Hussaini 
and Abd - el - Hakim,  1989 ). The mixture density function of the IG - W model is

    f t p f t q f t( ) ( ) ( ),= +1 2  

  where  p  is the mixing proportion, 0    ≤     p     ≤    1 and  q     =    1    −     p . The density functions  f  1 ( t ) and  f  2 ( t ) are those 
of the Inverse Gaussian  IG (  µ  ,   λ  )and the Weibull  W (  θ  ,   β  ) having the respective forms
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 The reliability function  R ( t ) of the mixed model is

    R t p R t q R t( ) ( ) ( ).= +1 2   

 The hazard - rate function,  h ( t ) of the mixed model is

    h t
f t

R t

p f t q f t

p R t q R t
r t h t r t( )

( )

( )

( ) ( )

( ) ( )
( ) ( ) ( ( )= = +

+
= + −1 2

1 2
1 1 )) ( )h t2  

  where

    r t
g t

g t
q R t

p R t
( )

( )
, ( )

( )

( )
.=

+
=1

1
2

1

  

 Investigate the necessary conditions for an IFR, CFR, and DFR.   

    1.33    A beginner reliability engineer did not realize that the failures of the system should be grouped by type 
instead of having them in one group. The system was observed to fail because of two types of failures: 
electrical ( E ) and mechanical ( M ). The failure data for  E  are 

 316, 138, 87, 923, 921, 1113, 1152, 577, 480, 1401 

 The data for  M  are 

 746, 1281, 1304, 1576, 1386, 671, 2106, 660, 1149, 425 

 The true data for  E  comes from an exponential distribution with mean    =    1000   h, and the data for  M  comes 
from Weibull with   γ      =    2 and   θ      =    1000.

   a.     What is the reliability expression for the true distribution?  

  b.     What is the reliability expression for the combined failures?  

  c.     Is the analysis of the engineer correct? Why?      

    1.34    Determine the mean life and the variance of a component whose failure time is expressed by

    f t p
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1 .   

    1.35    Assume that the mean hazard rate is given by

    E h T h t f t dt( ) ( ) ( )[ ] =
∞

∫0
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  and the MTTF  E [ T ] is

    E T R t dt[ ] =
∞

∫ ( ) .
0

  

 Prove that { E [ h ( t )]    ·     E [ T ]} is an increasing function of the shape parameter of the Weibull model.   

    1.36    Consider a Weibull distribution with a reliability function  R ( t )    =    exp( −   θ   λ t  γ   ) for  t     ≥    0. For   γ      >    1,   θ      >    0, 
and   λ      >    0, the Weibull density becomes an IFR distribution (the wear - out region of the bathtub curve). 
Suppose that the values of   λ   follow a gamma distribution with p.d.f.  f (  λ  ) given by

    f eλ α
β

λ α β λ
β

αλ β( ) =
( )

> > >− −

Γ
1 0 0 0, , .   

 The reliability function of the mixture is given by

    R t R t f dmixture ( ) ( ) ( ) .=
∞

∫ λ λ
0

 

   a.     Show that the failure - rate function of the mixture is as given by (Gurland and Sethuraman,  1994 ),

    h t
t

t
mixture ( ) .=

+

−

β θ γ
α θ

γ

γ

1

   

  b.     Plot  h  mixture ( t ) for large values of  t . What do you conclude?  

  c.     Plot the hazard rate for different values of   α  ,   β  ,   θ  , and   γ  . What are the conditions at which  h  mixture ( t ) is 
an IFR function? A DFR function? A CFR function?      

    1.37    Data from a linearly increasing failure - rate distribution is mixed with some data from a constant failure -
 rate distribution. Assume that the linearly increasing failure rate is a Rayleigh distribution with 
  R eR t t( ) /= −λ 2 2, where   λ   is a constant, and the reliability function of the CFR is  R c  ( t )    =     e   −     θ t  . Investigate 
 h ( t ) of the mixture of the distributions.   

    1.38    The failure time of a component follows a Pareto distribution with a p.d.f. of

    f t
t

t( ) , , , .= > > < < ∞+

γλ λ γ λ
γ

γ 1
0 1   

 Determine the MTTF of the component and its MRL function.   

    1.39    Derive an expression for the probability that the fi rst failure in a batch of  N  devices in [ t ,  t     +     dt ] when 
every device has the same Weibull failure - time distribution. Estimate the mean time of the fi rst failure. 
Plot the probability distribution for 200 devices with shape parameter of 2.5 and scale parameter of 4000.   

    1.40    The probability  dF  2 ( t )/ dt  that the second failure in a batch of  N  devices occurs in [ t ,  t     +     dt ] is expressed 
as

    f t
dF t

dt
N N f t f x dx f y dy

t

t
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2
2
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2
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 Generalize the above expression for the  jth  failure in a batch of  N  devices.      
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