
PART I

Introducing XML

 � CHAPTER 1: What Is XML?

 � CHAPTER 2: Well-Formed XML

 � CHAPTER 3: XML Namespaces

c01.indd 1c01.indd 1 05/06/12 2:24 PM05/06/12 2:24 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 05/06/12 2:24 PM05/06/12 2:24 PM

What Is XML?

WHAT YOU’LL WILL LEARN IN THIS CHAPTER:

 ➤ The story before XML

 ➤ How XML arrived

 ➤ The basic format of an XML document

 ➤ Areas where XML is useful

 ➤ A brief introduction to the technologies surrounding, and associated

with, XML

XML stands for Extensible Markup Language (presumably the original authors thought
that sounded more exciting than EML) and its development and usage have followed a com-
mon path in the software and IT world. It started out more than ten years ago and was
originally used by very few; later it caught the public eye and began to pervade the world of
data exchange. Subsequently, the tools available to process and manage XML became more
sophisticated, to such an extent that many people began to use it without being really aware
of its existence. Lately there has been a bit of a backlash in certain quarters over its perceived
failings and weak points, which has led to various proposed alternatives and improvements.
Nevertheless, XML now has a permanent place in IT systems and it’s hard to imagine any
non-trivial application that doesn’t use XML for either its confi guration or data to some
degree. For this reason it’s essential that modern software developers have a thorough under-
standing of its principles, what it is capable of, and how to use it to their best advantage. This
book can give the reader all those things.

1

c01.indd 3c01.indd 3 05/06/12 2:24 PM05/06/12 2:24 PM

4 ❘ CHAPTER 1 WHAT IS XML?

NOTE Although this chapter presents some short examples of XML, you aren’t
expected to understand all that’s going on just yet. The idea is simply to intro-
duce the important concepts behind the language so that throughout the book
you can see not only how to use XML, but also why it works the way it does.

STEPS LEADING UP TO XML: DATA REPRESENTATION

AND MARKUPS

There are two main uses for XML: One is a way to represent low-level data, for example confi gura-
tion fi les. The second is a way to add metadata to documents; for example, you may want to stress a
particular sentence in a report by putting it in italics or bold.

The fi rst usage for XML is meant as a replacement for the more traditional ways this has been done
before, usually by means of lists of name/value pairs as is seen in Windows’ INI or Java’s Property
fi les. The second application of XML is similar to how HTML fi les work. The document text is con-
tained in an overall container, the <body> element, with individual phrases surrounded by <i> or
tags. For both of these scenarios there has been a multiplicity of techniques devised over the years.
The problem with these disparate approaches has been more apparent than ever, since the increased
use of the Internet and extensive existence of distributed applications, particularly those that rely on
components designed and managed by different parties. That problem is one of intercommunication.
It’s certainly possible to design a distributed system that has two components, one outputting data
using a Windows INI fi le and the other which turns it into a Java Properties format. Unfortunately, it
means a lot of development on both sides, which shouldn’t really be necessary and detracts resources
from the main objective, developing new functionality that delivers business value.

XML was conceived as a solution to this kind of problem; it is meant to make passing data between
different components much easier and relieve the need to continually worry about different formats
of input and output, freeing up developers to concentrate on the more important aspects of coding
such as the business logic. XML is also seen as a solution to the question of whether fi les should be
easily readable by software or by humans; XML’s aim is to be both. You’ll be examining the distinc-
tion between data-oriented and document-centric XML later in the book, but for now let’s look a
bit more deeply into what the choices were before XML when there was need to store or communi-
cate data in an electronic format.

This section takes a mid-level look at data representation, without taking too much time to explain
low-level details such as memory addresses and the like. For the purposes here you can store data in
fi les two ways: as binary or as text.

Binary Files

A binary fi le, at its simplest, is just a stream of bits (1s and 0s). It’s up to the application that created
the binary fi le to understand what all of the bits mean. That’s why binary fi les can only be read and
produced by certain computer programs, which have been specifi cally written to understand them.

c01.indd 4c01.indd 4 05/06/12 2:24 PM05/06/12 2:24 PM

For example, when saving a document in Microsoft Word, using a version before 2003, the fi le cre-
ated (which has a doc extension) is in a binary format. If you open the fi le in a text editor such as
Notepad, you won’t be able to see a picture of the original Word document; the best you’ll be able to
see is the occasional line of text surrounded by gibberish rather than the prose, which could be in a
number of formats such as bold or italic. The characters in the document other than the actual text
are metadata, literally information about information. Mixing data and metadata is both common
and straightforward in a binary fi le. Metadata can specify things such as which words should be
shown in bold, what text is to be displayed in a table, and so on. To interpret this fi le you the need
the help of the application that created it. Without the help of a converter that has in-depth knowl-
edge of the underlying binary format, you won’t be able to open a document created in Word with
another similar application such as WordPerfect. The main advantage of binary formats is that they
are concise and can be expressed in a relatively small space. This means that more fi les can be stored
(on a hard drive, for example) but, more importantly nowadays, less bandwidth is used when trans-
porting these fi les across networks.

Text Files

The main difference between text and binary fi les is that text fi les are human and machine readable.
Instead of a proprietary format that needs a specifi c application to decipher it, the data is such that
each group of bits represents a character from a known set. This means that many different applica-
tions can read text fi les. On a standard Windows machine you have a choice of Notepad, WordPad,
and others, including being able to use command-line–based utilities such as Edit. Non-Windows
machines have a similar wide range insert of programs available, such as Emacs and Vim.

NOTE The way that characters are represented by the underlying data stream
is referred to as a fi le’s encoding. The specifi c encoding used is often present
as the fi rst few bytes in the fi le; an application checks these bytes upon opening
the fi le and then knows how to display and manipulate the data. There is also a
default encoding if these fi rst few bytes are not present. XML also has other
ways of specifying how a fi le was encoded, and you’ll see these later on.

The ability to be read and understood by both humans and machines is not the only advantage
of text fi les; they are also comparatively easier to parse than binary fi les. The main disadvantage
however, is their size. In order for text fi les to contain metadata (for example, a stretch of text to be
marked as important), the relevant words are usually surrounded by characters denoting this extra
information, which are somehow differentiated from the actual text itself. The most common exam-
ples of this can be found in HTML, where angle brackets are special symbols used to convey the
meaning that anything within them refers to how the text should be treated rather than the actual
data. For example, if I want mark a phrase as important I can wrap it like so:

returns must include the item order number

Steps Leading up to XML: Data Representation and Markups ❘ 5

c01.indd 5c01.indd 5 05/06/12 2:24 PM05/06/12 2:24 PM

6 ❘ CHAPTER 1 WHAT IS XML?

Another disadvantage of text fi les is their lack of support for metadata. If you open a Word docu-
ment that contains text in an array of fonts with different styles and save it as a text fi le, you’ll just
get a plain rendition; all of the metadata has been lost. What people were looking for was some way
to have the best of both worlds — a human-readable fi le that could also be read by a wide range
of applications, and could carry metadata along with its content. This brings us to the subject of
markup.

A Brief History of Markup

The advantages of text fi les made it the preferred choice over binary fi les, yet the disadvantages were
still cumbersome enough that people wanted to also standardize how metadata could be added.
Most agreed that markup, the act of surrounding text that conveyed information about the text,
was the way forward, but even with this agreed there was still much to be decided. The main two
questions were:

 ➤ How can metadata be differentiated from the basic text?

 ➤ What metadata is allowed?

For example, some documents needed the ability to mark text as bold or italic whereas others
were more concerned with who the original document author was, when was it created, and
who had subsequently modifi ed it. To cope with this problem a defi nition called Standard
Generalized Markup Language was released, commonly shortened to SGML. SGML is a step
removed from defi ning an actual markup language, such as the Hyper Text Markup Language,
or HTML. Instead it relays how markup languages are to be defi ned. SGML allows you to
create your own markup language and then defi ne it using a standard syntax such that any
SGML-aware application can consume documents written in that language and handle them
accordingly. As previously noted, the most ubiquitous example of this is HTML. HTML uses
angular brackets (< and >) to separate metadata from basic text and also defi nes a list of
what can go into these brackets, such as em for emphasizing text, tr for table, and td for
representing tabular data.

THE BIRTH OF XML

SGML, although well thought-out and capable of defi ning many different types of markup, suffered
from one major failing: it was very complicated. All the fl exibility came at a cost, and there were
still relatively few applications that could read the SGML defi nition of a markup language and use
it to correctly process documents. The concept was correct, but it needed to be simpler. With this
goal in mind, a small working group and a larger number of interested parties began working in the
mid-1990s on a subset of SGML known as Extensible Markup Language (XML). The fi rst working
draft was published in 1996 and two years later the W3C published a revised version as a recom-
mendation on February 10, 1998.

c01.indd 6c01.indd 6 05/06/12 2:24 PM05/06/12 2:24 PM

NOTE The World Wide Web Consortium (W3C) is the main international stan-
dards organization for the World Wide Web. It has a number of working groups
targeting diff erent aspects of the Web that discuss standardization and docu-
mentation of the diff erent technologies used on the Internet. The standards doc-
uments go through various stages such as Working Draft and Candidate
Recommendation before fi nally becoming a Recommendation. This process can
take many years. The reason that the fi nal agreement is called a recommenda-
tion rather than a standard is that you are still free to ignore what it says and use
your own. All web developers know the problems in developing applications that
work across all browsers, and many of these problems arise because the
browser vendors did not follow a W3C recommendation or they did not imple-
ment features before the recommendation was fi nalized. Most of the XML tech-
nologies discussed in this book have a W3C recommendation associated with
them, although some don’t have a full recommendation because they are still in
draft form. Additionally, some XML-related standards originate from outside the
W3C, such as SAX which is discussed in Chapter 11, “Event Driven Programming.”
and therefore they also don’t have offi cial W3C recommendations.

XML therefore derived as a subset of SGML, whereas HTML is an application of SGML. XML
doesn’t dictate the overall format of a fi le or what metadata can be added, it just specifi es a few
rules. That means it retains a lot of the fl exibility of SGML without most of the complexity. For
example, suppose you have a standard text fi le containing a list of application users:

Joe Fawcett
Danny Ayers
Catherine Middleton

This fi le has no metadata; the only reason you know it’s a list of people is your own knowledge and
experience of how names are typically represented in the western world. Now look at these names
as they might appear in an XML document:

<applicationUsers>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

Immediately it’s more apparent what the individual pieces of data are, although an application still
wouldn’t know just from that fi le how to treat a user or what firstName means. Using the XML
format rather than the plain text version, it’s much easier to map these data items within the appli-
cation itself so they can be handled correctly.

The two common features of virtually all XML fi le are called elements and attributes. In the pre-
ceding example, the elements are applicationUsers and user, and the attributes are firstName
and lastName.

The Birth of XML ❘ 7

c01.indd 7c01.indd 7 05/06/12 2:24 PM05/06/12 2:24 PM

8 ❘ CHAPTER 1 WHAT IS XML?

A big disadvantage of this metadata, however, is the consequent increase in the size of the fi le. The
metadata adds about 130 extra characters to the fi le’s original 43 character size, an increase of more
than 300 percent. The creators of XML decided that the power of metadata warranted this increase
and, indeed, one of their maxims during the design was that terseness is not an aim, a decision that
many would later come to regret.

NOTE Later on in the book you’ll see a number of ways to minimize the size of
an XML fi le if needed. However, all these methods are, to some extent, a trade-
off against readability and ease of use.

Following is a simple exercise to demonstrate the differences in how applications handle simple text
fi les against how XML is treated. Even though the application, in this case a browser, is told noth-
ing in advance of opening the two fi les, you’ll see how much more metadata is available in the XML
version compared to the text one.

TRY IT OUT Opening an XML File in a Browser

This example shows the differences in how XML fi les can be handled compared to plain text fi les.

1. Create a new text fi le in Notepad, or an equivalent simple text editor, and paste in the list of
names fi rst shown earlier.

2. Save this fi le at a convenient location as appUsers.txt.

3. Next, open a browser and paste the path to appUsers.txt into the address bar. You should see
something like Figure 1-1. Notice how it’s just a simple list:

FIGURE 1-1

4. Now create another text fi le based on the XML version and save it as appUsers.xml. If you’re
doing this in Notepad make sure you put quotes around the full name before saving or otherwise
you’ll get an unwanted .txt extension added.

5. Open this fi le and you should see something like Figure 1-2.

c01.indd 8c01.indd 8 05/06/12 2:24 PM05/06/12 2:24 PM

WARNING If you are using Internet Explorer for this or other activities, you’ll
probably have to go to Tools ➪ Internet Options and choose the Advanced tab.
Under the Security section, check the box in front of Allow Active Content to Run
in Files on My Computer. This eff ectively allows script to work on local fi les.

As you can see the XML fi le is treated very differently. The browser has shown the metadata in a dif-
ferent color than the base data, and also allows expansion and contraction of the applicationUsers
section. Even though the browser has no idea that this fi le represents three different users, it knows
that some of the content is to be handled differently from other parts and it is a relatively straightfor-
ward step to take this to the next level and start to process the fi le in a sensible fashion.

How It Works

Browsers use an XML stylesheet or transformation to display XML fi les. An XML stylesheet is a text-
based fi le with an XML format that can transform one format into another. They are most commonly
used to convert from a particular XML format to another or from XML to HTML, but they can also
be used to process plain text. In this case the original XML is transformed into HTML, which permits
the styling of elements to give the different colors as well as the ability to expand and contract sections
using script. Transformations are covered in depth in Chapter 8, “XSLT.”

NOTE If you want to view the default style sheet that Firefox uses to display
XML, type chrome://global/content/xml/XMLPrettyPrint.xsl into the
Firefox address bar. IE has a similar built-in style sheet but it’s not so easily view-
able and it’s written in an older, and now no longer used, version of XSLT that
Microsoft brought out before the current version was standardized.

FIGURE 1-2

The Birth of XML ❘ 9

c01.indd 9c01.indd 9 05/06/12 2:24 PM05/06/12 2:24 PM

10 ❘ CHAPTER 1 WHAT IS XML?

NOTE You’ll be using a browser a few times in this chapter to view XML fi les.
This has a number of advantages — they're easy, they give reasonable
messages if the XML fi le has errors, and you’d be unlikely to fi nd a machine
that doesn’t have one. However, for serious development they are not such a
good idea, especially if you are trying to convert XML to HTML as you do in the
next Try It Out. Because most browsers allow for poorly formed HTML you won’t
be able to see if what you’ve produced has errors, and you certainly won’t be
able to easily debug if something is wrong. For this reason we suggest you use
a proper XML editor when developing. Chapter 2, “Well-Formed XML” covers a
number of these.

MORE ADVANTAGES OF XML

One of the aims of XML is to implement a clear separation between data and presentation.
This means that the same underlying data can be used in multiple presentation scenarios. It also
means that when moving data, across a network for example, bandwidth is not wasted by having
to carry redundant information concerned only with the look and feel. This separation is simple
with XML as there are no built-in presentational features such as exist in HTML, and is one of
its main advantages.

XML Rules

In order to maintain this clear separation, the rules of XML have to be quite strict, but this also
works to the user’s advantage. For instance, in the appUsers.xml fi le you saw, values of the users’
fi rst and last names were within quotes; this is a prerequisite for XML fi les; therefore, the following
would not be considered XML:

<applicationUsers>
 <user firstName=Joe lastName=Fawcett />
 <user firstName=Danny lastName=Ayers />
 <user firstName=Catherine lastName=Middleton />
</applicationUsers>

The need for quotes in turn makes it easy to tell when certain data is missing, for example here:

<applicationUsers>
 <user lastName=”Fawcett” />
 <user lastName=”Ayers” />
 <user lastName=”Middleton” />
</applicationUsers>

None of the users has a fi rst name. Now your application may fi nd that acceptable or it may not,
but either way it’s easier to tell whether the fi le is legitimate, or valid as it’s known in XML, when
the data is in quotation marks. This means unsuitable fi les can be rejected at an early stage without

c01.indd 10c01.indd 10 05/06/12 2:24 PM05/06/12 2:24 PM

causing application errors. Additional ways of validating XML fi les are covered in Part 2 of this
book.

Another advantage is the easy extensibility of XML fi les. If you want to add more data, perhaps a
middle name for example, to the application users’ data, you can do that easily by creating a new
attribute, middleName:

<applicationUsers>
 <user firstName=”Joe” middleName=”John” lastName=”Fawcett” />
 <user firstName=”Danny” middleName=”John” lastName=”Ayers” />
 <user firstName=”Catherine” middleName=”Elizabeth” lastName=”Middleton” />
</applicationUsers>

Consider if you had an application that consumed the original version of the data, with just fi rst
name and last name stored in the fi le, and used it to present a list of application users on its main
screen. Originally the software was designed to show just the fi rst name and last name of each user
but a new requirement demands that the middle name is displayed as well. The newer version of the
XML adds the middleName attribute to satisfy this new requirement. Now the older version of the
application can still consume this data and simply ignore the middle name information while the
new versions can take advantage of it. This is more diffi cult to accomplish if the data is in the type
of simple text fi le such as appUsers.txt:

Joe John Fawcett
Danny John Ayers
Catherine Elizabeth Middleton

If the extra data is added to the middle column, the existing application will probably misinterpret
it, and even if the middle name becomes the third column it’s likely to cause problems parsing the
fi le. This occurs because there are no delimiters specifying where the individual data items begin
and end, whereas with the XML version it’s easy to separate the different components of a user’s
name.

Hierarchical Data Representation

Another area where XML-formatted data fl ourishes over simple text fi les is when representing a
hierarchy; for instance a fi lesystem. This scenario needs a root with several folders and fi les; each
folder then may have its own subfolders, which can also contain folders and fi les. This can go on
indefi nitely. If all you had was a text fi le, you could try something like this, which has a column rep-
resenting the path and one to describe whether it’s a folder or a fi le:

Path Type
C:\folder
C:\pagefile.sys file
C:\Program Files folder
C:\Program Files\desktop.ini file
C:\Program Files\Microsoft folder
C:\Program Files\Mozilla folder
C:\Windows folder
C:\Windows\System32 folder

More Advantages of XML ❘ 11

c01.indd 11c01.indd 11 05/06/12 2:24 PM05/06/12 2:24 PM

12 ❘ CHAPTER 1 WHAT IS XML?

C:\Temp folder
C:\Temp\~123.tmp file
C:\Temp\~345.tmp file

As you can see, this is not pretty and the information is hard for us humans to read and quickly
assimilate. It would be quite diffi cult to write code that interprets this neatly. Comparatively, now
look at one possible XML version of the same information:

<folder name=”C:\”>
 <folder name=”Program Files”>
 <folder name=”Microsoft”>
 </folder>
 <folder name=”Mozilla”>
 </folder>
 </folder>
 <folder name=”Windows>
 <folder name=”System32”>
 </folder>
 </folder>
 <folder name=”Temp”>
 <files>
 <file name=”~123.tmp”></file>
 <file name=”~345.tmp”></file>
 </files>
 </folder>
 <files>
 <file name=”pagefile.sys”></file>
 </files>
</folder>

This hierarchy is much easier to appreciate. There’s less repetition of data and it would be fairly easy
to parse.

Interoperability

The main advantage of XML is interoperability. It is much quicker to agree on or publish an XML
format and use that to exchange data between different applications (with the associated metadata
included in the fi le) than to have an arbitrary format that requires accompanying information for
processing. Due to the high availability of cheap XML parsers and the pieces of software that read
XML and enable interrogation of its data, anyone can now publish the format that their applica-
tion deals with and others can then either consume it or recreate it. One of the best examples of this
comes back to the binary fi les discussed at the beginning of this chapter. Before Microsoft Word
2003, Word used a binary format for its documents. However, creating an application that could
read and create these fi les was a considerable chore and often led to converters that only partially
worked. Since Word 2003, all versions of Word can save documents in an XML format with a
documented structure. This has meant the ability to read these documents in other applications
(Offi ceLibre, for example), as well as the ability to create Word documents using even the most basic
tools. It also means that corrupted documents, which would previously have been completely lost,
can now often be fi xed by opening them in a simple text editor and repairing them. With this and
the previously discussed advantages, XML is truly the best choice.

c01.indd 12c01.indd 12 05/06/12 2:24 PM05/06/12 2:24 PM

NOTE Offi ceLibre is an open source application that mimics, to a large extent,
other offi ce work applications such as Microsoft Offi ce. It was originally called
OpenOffi ce but split off when OpenOffi ce was taken over by Oracle. You can
obtain it at www.libreoffi ce.org.

XML IN PRACTICE

Since its fi rst appearance in the mid-’90s the actual XML specifi cation has changed little; the main
change being more freedom allowed for content. Some characters that were forbidden from earlier
versions are now allowed. However, there have been many changes in how and where XML is used
and a proliferation of associated technologies, most with their associated standards. There has also
been a massive improvement in the tools available to manage XML in its various guises. This is
especially true of the past several years, Five years ago any sort of manipulation of XML data in a
browser meant reams of custom JavaScript, and even that often couldn’t cope with the limited sup-
port in many browsers. Now many well-written script libraries exist that make sending, receiving,
and processing XML a relatively simple process, as well as taking care of the gradually diminishing
differences between the major makes of browser. Another recent change has been a more overall
consensus of when not to use XML, although plenty of die-hards still offer it as the solution to
every problem. Later chapters cover this scenario, as well as others. This section deals with some of
the current uses of XML and also gives a foretaste of what is coming in the chapters ahead.

NOTE You can fi nd the latest W3C XML Recommendation
at www.w3.org/TR/xml.

NOTE JSON stands for JavaScript Object Notation and is discussed more in
Chapters 14 and 16 which relate to web services and Ajax. If you need more
information in the meantime, head to www.json.org.

Data Versus Document

So far the examples you’ve seen have concentrated on what are known as data-centric uses of XML.
This is where raw data is combined with markup to help give it meaning, make it easier to use, and
enable greater interoperability. There is a second major use of XML and markup in general, which
is known as document-centric. This is where more loosely structured content (for example, a chap-
ter from a book or a legal document) is annotated with metadata. HTML is usually considered to

XML in Practice ❘ 13

c01.indd 13c01.indd 13 05/06/12 2:24 PM05/06/12 2:24 PM

14 ❘ CHAPTER 1 WHAT IS XML?

be a document-centric use of SGML (and XHTML, is similarly a document-oriented application of
XML) because HTML is generally content that is designed to be read by humans rather than data
that will be consumed by a piece of software. XML is designed to be read and understood by both
humans and software but, as you will see later, the ways of processing the different styles of XML
can vary considerably.

Document-centric XML is generally used to facilitate multiple publishing channels and provide ways
of reusing content. This is useful for instances in which regular content changes need to be applied
to multiple forms of media at once. For example, a few years ago I worked on a system that pro-
duced training materials for the fi nancial sector. A database held a large number of articles, quizzes,
and revision aids that could be collated into general training materials. These were all in an XML
format very similar to XHTML, the XML version of HTML. Once an editor fi nalized the content
in this database, it was transformed using XSLT (as described in Chapter 8) into media suitable for
both the Web and a traditional printed output. When using document-centric XML in this sort of
system, whenever content changes, it is only necessary to alter the underlying data for changes to
be propagated to all forms of media in use. Additionally, when a different form of the content is
needed, to support mobile web browsers for example, a new transformation is the only necessary
action.

XML Scenarios

In addition to document-centric situations, XML is also frequently used as a means of representing
and storing data. The main reasons for this use are XML’s fl exible nature and the relative ease with
which these fi les can be read and edited by both humans and machines. This section presents some
common, relevant scenarios in which XML is used in one way or another, along with some brief
reasons why XML is appropriate for that situation.

Confi guration Files

Nearly all modern confi guration fi les use XML. Visual Studio project fi les and the build scripts
used by Ant (a tool used to control the software build process in Java) are both examples of XML
confi guration fi les. The main reasons for using XML are that it’s so much easier to parse than the
traditional name/value pair style and it’s easy to represent hierarchies.

Web Services

Both the more long-winded SOAP style and the usually terser RESTful web services use XML,
although many now have the option to use JSON as well. XML is used both as a convenient way
to serialize objects in a cross-platform manner and as a means of returning results in a universally
accepted fashion. SOAP-style services (covered in depth in Chapters 15 and 16) are also described
using an XML format called WSDL, which stands for Web Services Description Language. WSDL
provides a complete description about a web service and its capabilities, including the format of the
initial request, the ensuing response, and details of exactly how to call the service, its hostname,
what port it runs on, and the format of the rest of the URL.

c01.indd 14c01.indd 14 05/06/12 2:24 PM05/06/12 2:24 PM

Web Content

Although many believe that XHTML (the XML version of HTML) has not really caught on and
will be superseded by HTML 5, it’s still used extensively on the Web. There’s also a lot of content
stored as plain XML, which is transformed either server-side or client-side when needed. The reason
for storing it as XML can be content re-use as mentioned earlier, but also it can be a way to save
on bandwidth and storage. Content that needs to be shown as an HTML table, for example, nearly
always takes up less room as XML combined with code to transform it.

Document Management

In addition to XML being used to store the actual content that will be presented via the Web, XML
is also used heavily in document-management systems to store and keep track of documents and
manage metadata, usually in conjunction with a traditional relational database system. XML is
used to store information such as a document’s author, the date of creation, and any modifi cations.
Keeping all this extra information together with the actual content means that everything about a
document is in one place, making it easier to extract when needed as well as making sure that meta-
data isn’t orphaned, or separated from the data it’s describing.

Database Systems

Most modern high-end database systems, such as Oracle and SQL Server, can store XML docu-
ments. This is good news because many types of data don’t fi t nicely into the relational structure
(tables and joins) that traditional databases implement. For example, a table of products may need
to store some instructions that are in an XML format that will be turned into a web page or a
printed manual when needed. This can’t be reduced to a simpler form and only needs modifying
very rarely, perhaps to insert a new section to support a different language. These modifi cations
are easy and straightforward if the data being manipulated is stored in a database system that has
a column designed specifi cally for XML. This XML should enable updates using the XQuery lan-
guage, which is briefl y covered later in this chapter. Both Oracle and SQL Server, as well as some
open source applications such as MySQL, provide such a column type, designed specifi cally to store
XML. These types have methods associated with them that allow for the extraction of particular
sections of the XML or for its modifi cation.

Image Representation

Vector images can be represented with XML, the SVG format being the most popular. The advan-
tage of using an XML format over a traditional bitmap when portraying images is that the images
can be manipulated far more easily. Scaling and other changes become transformations of the XML
rather than complex intensive calculations.

Business Interoperability

Hundreds of industries now have standard XML formats to describe the different entities that are
used in day-to-day transactions, which is one of the biggest uses of XML. A brief list includes:

 ➤ Medical data

 ➤ Financial transactions such as purchasing stocks and shares and exchanging currency

XML in Practice ❘ 15

c01.indd 15c01.indd 15 05/06/12 2:24 PM05/06/12 2:24 PM

16 ❘ CHAPTER 1 WHAT IS XML?

 ➤ Commercial and residential properties

 ➤ Legal and court records

 ➤ Mathematical and scientifi c formulas

XML Technologies

To enable the preceding scenarios you can use a number of associated technologies, standards, and
patterns. The main ones, which are all covered throughout the book, are introduced here to give a
broad overview of the world of XML.

XML Parsers

Before any work can be done with an XML document it needs to be parsed; that is, broken down
into its constituent parts with some sort of internal model built up. Although XML fi les are simply
text, it is not usually a good idea to extract information using traditional methods of string manipu-
lation such as Substring, Length, and various uses of regular expressions. Because XML is so rich
and fl exible, for all but the most trivial processing, code using basic string manipulation will be
unreliable.

Instead a number of XML parsers are available — some free, some as commercial products— that
facilitate the breakdown and yield more reliable results. You will be using a variety of these parsers
throughout this book. One of the reasons to justify using a handmade parser in the early days of
XML was that pre-built ones were overkill for the job and had too large a footprint, both in actual
size and in the amount of memory they used. Nowadays some very effi cient and lightweight parsers
are available; these mean developing your own is a waste of resources and not a task to be under-
taken lightly.

Some of the more common parsers used today include the following:

 ➤ MSXML (Microsoft Core XML Services): This is Microsoft’s standard set of XML tools
including a parser. It is exposed as a number of COM objects so it can be accessed using
older forms of Visual Basic (6 and below) as well as from C++ and script. The latest version
is 6.0 and, as of this writing it is not being developed further, although service packs are
still being released that address bugs and any other security issues. Although you probably
wouldn’t use this parser when writing your own application from scratch, this is the only
option when you need to parse XML from within older versions of Internet Explorer (6 and
below). In these browsers the MSXML parser is invoked using ActiveX technology, which
can present problems in some secure environments. Fortunately versions 7 and later have a
built-in parser and cross-browser libraries. Choose this one in preference if it’s available.

 ➤ System.Xml.XmlDocument: This class is part of Microsoft’s .NET library, which contains a
number of different classes related to working with XML. It has all the standard Document
Object Model (DOM, covered in the next section) features plus a few extra ones that, in
theory, make life easier when reading, writing, and processing XML. However, since the
world is trending away from using the DOM, Microsoft also has a number of other ways of
tackling XML, which are discussed in later chapters.

c01.indd 16c01.indd 16 05/06/12 2:24 PM05/06/12 2:24 PM

 ➤ Saxon: Ask any group of XML cognoscenti what the leading XML product is and Saxon
will likely be the majority verdict. Saxon’s offerings contain tools for parsing, transforming,
and querying XML, and it comes from the software house of Dr. Michael Kay, who has
written a number of Wrox books on XML and related technologies. Although Saxon offers
ways to interact using the document object model, it also has a number of more modern and
user-friendly interfaces available. Saxon offers a version for Java and .NET; the basic edition
is free to download and use.

 ➤ Java built-in parser: The Java library has its own parser. It has a reputation for being a bit
basic but is suitable for many XML tasks such as parsing and validation of a document. The
library is designed such that you can replace the built-in parser with an external implemen-
tation such as Xerces from Apache or Saxon.

 ➤ Xerces: Xerces is implemented in Java and is developed by the famous and open source
Apache Software Foundation. It is used as the basis for many Java-based XML applications
and is a more popular choice than the parser that comes with Java.

The Document Object Model

Once an XML parser has done its work, it produces an in-memory representation of the XML.
This model exposes properties and methods that let you extract information from and also modify
the XML. For example, you’ll fi nd methods such as createElement to manufacture new elements
in the document and properties such as documentElement that bring back the root element in the
document (applicationUsers in the example fi le).

One of the earliest models used was the Document Object Model (DOM). This model has an asso-
ciated standard but it doesn’t just apply to XML; it also works with HTML documents. At its heart,
the DOM is a tree-like representation of an XML document. You can start at the tree’s root and
move to its different branches, extracting or inserting data as you go. Although the DOM was used
for many years, it has a reputation for being a bit unwieldy and diffi cult to use. It also tends to take
up a lot of memory. For example, opening an XML document that is 1MB on a disk can use about
5MB of RAM. This can obviously be a problem if you want to open very large documents. As a
result of these problems, a number of other models have sprung up, especially because the DOM is
typically only an intermediate step in processing XML; it’s not a goal in itself. However, if you need
to extract just a few pieces of information from XML or HTML the DOM is widely supported,
especially across browsers, and is used a lot by many of the script libraries that are popular nowa-
days such as jQuery.

DTDs and XML Schemas

Both document type defi nitions (DTDs) and XML Schemas serve to describe the defi nition of
an XML document, its structure, and what data is allowed where. They can then be used to test
whether a document that has been received is consistent with the prescribed format, a process
known as validation. DTDs are the older standard and have been around since SGML. They are
gradually succumbing to XML Schemas but are still in widespread use particularly with (X)HTML.
They also have a few features that XML lacks, such as the ability to create entity declarations (cov-
ered in Chapter 4, “Document Type Defi nitions”) and the ability to add default attribute content.

XML in Practice ❘ 17

c01.indd 17c01.indd 17 05/06/12 2:24 PM05/06/12 2:24 PM

18 ❘ CHAPTER 1 WHAT IS XML?

In general, XML Schemas offer more functionality; they also have the advantage of being written in
XML so the same tools can be used with both the data and its schema. DTDs on the other hand use
a completely different format that is much harder to work with. In addition to assisting with valida-
tion, DTDs and XML Schema are also used to help authorship of XML documents. Most modern
XML editors allow you to create an XML document based on a specifi ed schema. They prompt you
with valid choices from the schema as you’re editing and also warn you if you’ve used an element
or attribute in the wrong location. Although many have misgivings about how XML Schemas have
developed it’s probably true to say that most recently developed XML formats are described using
schemas rather than DTDs.

There are also other ways of ensuring the documents you receive are in the correct format, ones that
can cope with some scenarios that neither DTDs nor XML Schemas can handle. A selection of these
alternatives are covered in Chapter 6, “RELAX NG and Schematron.” DTDs and XML Schemas
are covered in depth in Chapters 4 and 5, respectively.

NOTE If you take a look at the source for an XHTML document you’ll see the
reference to the DTD at the top of the page. It will look something like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

XML Namespaces

XML Namespaces were added to the XML specifi cation sometime after the initial recommenda-
tion. They have a reputation for being diffi cult to understand and also for being poorly imple-
mented. Basically, namespaces serve as a way of grouping XML. For instance, if one or two
different formats need to be used together, he element names can be grouped under a namespace;
this ensures that there is no confusion about what the elements represent, especially if the authors
of the different formats have chosen the same names for some of the elements. The same idea is
used in software all the time; in both .NET and Java, for example, you may design a class that
represents a type of XML document that you call XmlDocument. To prevent that class from con-
fl icting with other classes that might exist with the same name, the class is placed in a namespace.
(NET terminology) or a package (Java terminology). So your class may have a full name of Wrox.
Entities.XmlDocument, which will differentiate it from Microsoft’s System.Xml.XmlDocument.
See Chapter 3 for the full story on namespaces.

XPath

XPath is used in many XML technologies. It enables you to target specifi c elements or attributes (or
the other building blocks you’ll meet in the next chapter). It works similar to how paths in a fi lesys-
tem work, starting at the root and progressing through the various layers until the target is found.
For example, with the appUsers.xml fi le, you may want to select all the users. The XPath for this
would be:

/applicationUsers/user

c01.indd 18c01.indd 18 05/06/12 2:24 PM05/06/12 2:24 PM

The path starts at the root, represented by a forward slash (/), then selects the applicationUsers
element, and then any user elements beneath there. XPaths can be very sophisticated and allow you
to traverse the document in a number of different directions as well as target specifi c parts using
predicates, which enable fi ltering of the results. In addition to being used in XSLT, XPath is also
used in XQuery, XML Schemas, and many other XML-related technologies. XPath is dealt with in
more detail in Chapter 7, “Extracting Data From XML.”

XSLT

One of the main places you fi nd XPath is XSLT. Extensible Stylesheet Language Transformations
(XSLT) is powerful way to transform fi les from one format to another. Originally it could only
operate on XML fi les, although the output could be any form of text fi le. Since version 2.0 however,
it also has the capability to use any text fi le as an input. XSLT is a declarative language and uses
templates to defi ne the output that should result from processing different parts of the source fi les.

XSLT is often used to transform XML to (X)HTML, either server-side or in the browser. The
advantages of doing a client-side transformation are that it offl oads the presentational side of the
process to the application layer that deals with the display. Additionally it frees resources on the
server making it more responsive, and it tends to reduce the amount of data transmitted between
the server and the browser. This is especially the case when the data consists of many rows of simi-
lar data that are to be shown in tabular form. HTML tables are very verbose and can easily double
or triple the amount of bandwidth between client and server.

The following Try It Out shows how browsers have been specially designed to be able to accept
an XML as an input and transform the data using a specifi ed transformation. You won’t be delv-
ing too deeply into the XSLT at this stage, (that’s left for Chapter 8) but you’ll get a good idea
of how XML enables you to separate the intrinsic data being shown from the visual side of the
presentation.

TRY IT OUT XSLT in the Browser

Use the appUsers.xml fi le created earlier to produce a demonstration of how a basic transformation
can be achieved within a browser:

1. To start, create the following fi le using any text editor and save it as appUsers.xslt in the same
folder as appUsers.xml:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <xsl:template match=”/”>
 <html>
 <head>
 <title>Application Users</title>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>First Name</th>

Available for
download on
Wrox.com

XML in Practice ❘ 19

c01.indd 19c01.indd 19 05/06/12 2:24 PM05/06/12 2:24 PM

20 ❘ CHAPTER 1 WHAT IS XML?

 <th>Last Name</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”applicationUsers/user” />
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match=”user”>
 <tr>
 <td>
 <xsl:value-of select=”@firstName”/>
 </td>
 <td>
 <xsl:value-of select=”@lastName”/>
 </td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

code snippet appUsers.xslt

2. Next make a small change to appUsers.xml so that, if it is opened in a browser, the browser will
know to use the specifi ed XSLT to transform the XML, rather than the built-in default transfor-
mation that was used in earlier examples. Save the modifi ed fi le as appUsersWithXslt.xml.

<?xml-stylesheet type=”text/xsl” href=”appUsers.xslt” ?>
<applicationUsers>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

code snippet appUsersWithXslt.xml

3. Finally, open appUsersWithXslt.xml in a browser. The results will be similar to Figure 1-3.

Available for
download on
Wrox.com

FIGURE 1-3

c01.indd 20c01.indd 20 05/06/12 2:24 PM05/06/12 2:24 PM

How It Works

When the browser sees the following line at the top of the XML:

<?xml-stylesheet type=”text/xsl” href=”appUsers.xslt” ?>

It knows that, instead of the default style sheet that produced the result shown in Figure 1-2, it should
use appUsers.xslt.

appUsers.xslt has two xsl:templates. The fi rst causes the basic structure of an HTML fi le to
appear along with the outline of an HTML table. The second template acts on any user element
that appears in the fi le and produces one row of data for each that is found. Once the transformation is
complete the resultant code is treated as if it were a traditional HTML page. The actual code produced
by the transformation is shown here:

<html>
 <head>
 <title>Application Users</title>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Joe</td>
 <td>Fawcett</td>
 </tr>
 <tr>
 <td>Danny</td>
 <td>Ayers</td>
 </tr>
 <tr>
 <td>Catherine</td>
 <td>Middleton</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

XQuery

XQuery shares many features with XSLT and because of this, a common question on the XML
development forums is, “Is this a job for XSLT or XQuery?” The answer is, “It depends.” Like
XSLT, XQuery can operate against single documents, but it is also often used on large collections,
especially those that are stored in a relational database. Say you want to use XQuery to process the

XML in Practice ❘ 21

c01.indd 21c01.indd 21 05/06/12 2:24 PM05/06/12 2:24 PM

22 ❘ CHAPTER 1 WHAT IS XML?

appUsers.xml fi le from the previous examples and again produce an HTML page showing the users
in a tabular form. The XQuery needed would look like this:

<html>
 <head>
 <title>Application Users</title>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 </tr>
 </thead>
 <tbody>
 {for $user in doc(“appUsers.xml”)/applicationUsers/user
 return <tr><td>{data($user/@firstName)}</td>
 <td>{data($user/@lastName)}</td></tr>}
 </tbody>
 </table>
 </body>
</html>

As you can see, a lot of the query mimics the XSLT used earlier. One major difference is that
XQuery isn’t itself an XML format. This means that it’s less verbose to write, making it somewhat
simpler to author than XSLT. On the other hand, being as it’s not XML, it cannot be authored in
standard XML editors nor processed by an XML parser, meaning it needs a specialized editor to
write and custom built software to process.

NOTE There is an XML-based version of XQuery called XQueryX. It has never
gained much acceptance and nearly all examples of XQuery online use the sim-
pler non-XML format.

With regards to authoring XQuery, the main difference in syntax between it and XSLT is that
XQuery uses braces ({}) to mark parts of the document that need processing by the engine; the rest
of the document is simply output verbatim.

Therefore, in the example the actual code part is this section:

{for $user in doc(“appUsers.xml”)/applicationUsers/user
 return <tr><td>{data($user/@firstName)}</td>
 <td>{data($user/@lastName)}</td></tr>}

this uses the doc() function to read an external fi le, in this case the appUsers.xml fi le, and then cre-
ates one <tr> element for each user element found there. XQuery is covered in depth in Chapter 9.

There are many instances where the choice of XSLT or XQuery is simply a matter of which technol-
ogy you’re happier with. If you want a terser, more readable syntax or you need to process large

c01.indd 22c01.indd 22 05/06/12 2:24 PM05/06/12 2:24 PM

numbers of documents, particularly those found in databases, then XQuery, with its plain text syn-
tax and functions aimed at document collections, is probably a better choice. If you prefer an XML
style syntax that can be easily read by standard XML software, or your goal is to rearrange existing
XML into a different format rather than create a whole new structure, then XSLT will most likely
be the better option.

XML Pipelines

XML pipelines are used when single atomic steps are insuffi cient to achieve the output you desire.
For example, it may not be possible to design an XML transformation that copes with all the differ-
ent types of documents your application accepts. You may need to perform a preliminary transform
fi rst, depending on the input, and follow with a generalized transformation. Another example might
be that the initial input needs validating before being transformed. In the past, these pipelines or
workfl ows have been created in a rather ad hoc manner. More recently, there have been calls for
a recognized standard to defi ne how pipelines are described. The W3C recommendation for these
standards is called XProc and you can fi nd the relevant documentation at www.w3.org/TR/xproc.
Only a handful of implementations exist at the moment, but if you have the need for this type of
workfl ow it’s certainly worth taking a look at XProc rather than re-inventing the wheel.

SUMMARY

 ➤ The situation before XML and the problems with binary and plain text fi les

 ➤ How XML developed from SGML

 ➤ The basic building blocks of XML: elements and attributes

 ➤ Some of the advantages and disadvantages of XML

 ➤ The difference between data-centric and document-centric XML

 ➤ Some real-world uses of XML

 ➤ The associated technologies such as parsers, schemas, XPath, transformations with XSLT,
and XQuery

The next chapter discusses the rules for constructing XML and what different constituent parts can
make up a document.

EXERCISES

Answers to the exercises can be found in Appendix A.

 1. Change the format of the appUsers.xml document to remove the attributes and use elements to

store the data.

 2. State the main disadvantage to having the fi le in the format you’ve just created. Bear in mind that

data is often transmitted across networks rather than just being consumed where it is stored.

Summary ❘ 23

c01.indd 23c01.indd 23 05/06/12 2:24 PM05/06/12 2:24 PM

24 ❘ CHAPTER 1 WHAT IS XML?

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

Before XML Most data formats were proprietary, capable of being read by a very

small number of applications and not suitable for today’s distributed

systems.

XML’s Goals To make data more interchangeable, to use formats readable by both

humans and machines, and to relieve developers from having to write

low-level code every time they needed to read or write data.

Who’s In Charge of

Standardization?

No one, but many XML specifi cations are curated by the World Wide

Web Consortium, the W3C. These documents are created after a

lengthy process of design by committee followed by requests for

comments from stakeholders.

Data-centric versus

Document-centric

There are two main types of XML formats: those used to store pure

data, such as confi guration settings, and those used to add metadata

to documents, for example XHTML.

What Technologies Rely

On XML?

There are hundreds, but the main ones are XML Schemas, to validate

that documents are in the correct format; XSLT which is mainly used

to convert from one XML format to another; XQuery, which is used to

query large document collections such as those held in databases;

and SOAP which uses XML to represent the data that is passed to,

and returned from, a web service.

c01.indd 24c01.indd 24 05/06/12 2:24 PM05/06/12 2:24 PM

