Chapter 1

Prologue

1.1 About This Book

This is a seif-contained study of a Riemann sum approach to the theory of
random variation, assuming only some familiarity with probability or statistical
analysis, basic Riemann integration, and mathematical proof. The primary idea
of the book, and the reason why it is different from other treatments of random
variation, is its use of non-absolute convergence. The series 1+ 2 + 1+ 1 ...
diverges to infinity. On the other hand, the oscillating series 1 —2% +:% - % +-e
converges—but only on condition that the terms are added up in the order in
which they are written, without rearranging them. This convergence is called
conditional or non-absolute.

What has this got to do with the theory of random variation? Any con-
ception or understanding of the random variation phenomenon hinges on the
notions of probability and its mathematical representation in the form of prob-
ability distribution functions. The central, recurring theme of this book is that,
provided a non-absolute method of summation is used, every finitely additive
function of disjoint intervals is integrable. In other words, every distribution
function is integrable.

I contrast, more traditional methods in probability theory exclude signifi-
cant classes of such functions whose integrability cannot be established whenever
only absolute convergence is considered. Examples of this include:

» The Feynman “probability measure” {which is not a measure and not a
probability}—the probability emplitudes vsed in the Feynman path inte-
grals of quantum mechanics. This book presents a framework in which
the Feynman path integrals are actual integrals. In effect, the missing
pieces of Feynman’s original paper [64] are provided here; and then used
to express Feynman diagrams as convergent series of integrals—as they
were originally conceived.

* The increments in the sample paths of Brownian motion—these have in-
finite variation in every interval, and their integrals {in the usual ahsolute

A Modern Theory of Random Variation: With Applications in Stochastic Calculus, 1
Financial Mathematics, and Feynman fntegration. First Edition. By Pat Muldowney
Copyright & 2012 John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



2 CHAPTER 1. PROLOGUE

sense) are therefore divergent. But these increments are integrable in the
non-absolute sense, so0 the stochastic calculus of Brownian motion can be
put on a simpler footing.

Incorporating these innovations in the theory of random variation entails a
radical reformulation of the subject. It turns out that the standard theory of
probability or random variation can be simplified and extended provided non-
absclute summation procedures are used.

Reformulation and extension of the theory involves some changes and re-
interpretations in the standard concepts and notations. Unnecessary changes
have been avoided, and as far as possible the text is consistent with more trad-
itional versions. Therefore, with due caution and attention to definitions of
terminology and notation, the text can be read in that spirit. An outline and
overview are presented in Chapters 1 and 2.

Chapter 7 is the main part of this book, with Chapter 6 providing intro-
ductory material, and Chapter 8 some consequences. The book presents a new
gphere of application of probability theory by means of the conception of random
variation which is elaborated in Chapter 5.

Ralph Henstock’s general theory of integration, as extended in [162] {Mul-
downey, 1987), is the basis for this reformulation of the traditional theory of
probability and random variation, and is presented in Chapter 4.

Even though Henstock’s theory is different from standard integration theory,
many of the results are similar. Therefore Chapter 4 can be regarded as a
kind of appendix to subsequent chapters, providing technical background in the
manner of many books on probability theory in which measure and integration
are appended to the main part of the text. Included in this chapter are results
for non-absolutely integrable functions which are not available in traditional
integration theory.

A fundamental modification and extension of the Riemann integral was in-
troduced by R. Henstock and, independently, by J. Kurzweil in the 1950s. In
Henstock [93] this was designated as the Riemann-complete! integral.

The work of Kurzweil has transformed the theory of differential equations—
see, for instance, Schwabik [129, 207]. Henstock went on to develop a gen-
eral theory of integration [85, 93, 94, 103, 105], which includes as special cases
the integrals of Riemann, Stieltjes, Lebesgue, Perron, Denjoy, Ward, Burkill,
Henstock-Kurzweil, and McShane (see [82]). This is the Henstock integral on
which this book is based.

The Henstock integral is not so well known as the Lebesgue integral. Also,
the Riemann sum approach to probability theory is new. Therefore the main
ideas of this book are introduced in a relatively informal way in Chapters 1 and
2, while Chapter 3 brings forward some notation and definitions from Chapter
4, in advance of the fuller exposition of the main theorems and proofs in the
theory of the integral—the Burkill-complete integral—provided in Chapter 4.

1This is the Henstock-Kurzweil or HK-integral, also known as the generalized Riemann
integral, the Kurzweil integral, the Henstock integral, and the gauge integral.
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Chapter 4 can be read as a stand-alone account of the Stieltjes-complete and
Burkill-complete versions of the Henstock integral, with emphasis on those parts
of integration theory which are important in the study of random variation.

It is possible to get the gist of this book by reading Chapters 1, 2, and 3
in conjunction with Chapter %’s numerical exploration of observable processes,
stochastic processes, Brownian motion, and Ité caleulus.

The book contains a new approach to several topics. There have to be good
reasons for going to the trouble of engaging with a new approach to subjects
for some of which there already exdst tried and tested methods. As the occasion
arises such reasons are pointed out in the text.

Much detail is provided in exposition, explanation, commentary, and proof;
with a view to transparency and, not least, facilitation of error detection, error
correction, and the like. A degree of repetition is present, for the same purposes.

The text contains examples which illustrate the material of the text with
solutions to less difficult issues. They can be regarded as exercises or solved
problems and can be used as models for devising further exercises and problems.
The numerical calculations in Chapter 9 are intended to illustrate notation and
to clarify concepts. Also, as a rich source of insight, motivation, and grounding,
there is endless scope for further practical nurnerical exercises of this kind.

The book builds on the work of numerous authors, many of whom are listed
in the text and in the bibliography. The generous help of many colleagues in
bringing the material to publication is gratefully acknowledged.

1.2 About the Concepts

An integrand generally involves a point function f{&) multiplied by an inte-
grator? function F (f). Many treatises on integration focus strongly on the
properties of f(x), such as continuity and differentiability, or their absence. In
mathematical analysis the integrator is often taken to he F(I) = |I|, the length
of the interval I, with less attention given to alternative integrator functions.

But random variation is not so much concerned with the more difficult man-
ifestations of point function integrands f{x). In this book much more emphasis
is placed on properties of probability distribution functions F'(f). This is one of
the reasons why the book gives much attention to the properties of variation®
of interval functions F(I), a concept which it possible to extend distribution
functions F defined on intervals to outer measure defined on arbitrary sets.

In addition, the classical form of an integrand function is a product f(z}F(I)
of a point function multiplied by an interval function. But it turns out that
Henstock integration is most naturally formulated with integrands of the form

2If the integrator F(I} is additive, but is not the length function |{|, then the integral is
Stieltjes-type. If the integrator is a non-additive funetion h(I), then the intepral iz Burkill-
type.

3The word wariation (referring to the ranges of actual values taken by a deterministic
function) also occurs in random variation (referring to uncertainty in potential data values
arising in experiments). To prevent confusion, random variability is substituted for the latter.
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h(z, I'} which are not necessarily the product of a point function times an interval
function.

The wording and symbols used in the theory of random variation, as pre-
sented in this book, are consistent with or similar to those already in general use
and, for the most part, can be understood in the usual way. A note of caution,
however. The symbol X is traditionally used to denote a random variable, in
the sense of a measurable function. But in this book X denotes a mathematical
representation of an “experiment” for which a range of potential data values x
is known in advance. And a random variable is a calculation f{X) based on the
potential data values #. The symbol X will usually denote a process of joint
observation of several unpredictable occurrences. The occurrences or ocutcomes
are actual joint data x, where  is a *tuple of real numbers such as the observed
values of an experiment consisting of repeated throws of a die.

A determination f(X) derived from this experiment or joint observation X
could consist of the value of a payout made on the first occasion when ten succes-
sive sixes are thrown. X can be thought of as an experiment, an “observable”,
or a “random variation”.

Both X and f(X) involve potential data, & and f(x), respectively, gener-
ated by an act of measurement—often joint measurement. Thus X (or f(X))
refers to unpredictable potential data, in advance of actual observation. The
corresponding x (or f{z)) is the actual datum selected by the process of mea-
gurement or observation—in other words, the observed value or occurrence.

It is therefore helpful to think of X as the experiment, observation or mea-
suring process which selects a datum z. Similarly, f(X) represents potential
data, in advance of actual measurement (or observation or determination), and
in advance of calculation of a datum f{x). We can think of f{X) as consisting
of potential data in association with their potentialities of occurrence, the latter
consisting of likelihood that an actual datum « will belong to any set I of poten-
tial values in a sample space {1x. Such likelihood or probaebility will be denoted
by Fx(I); and it can be thought of as the accurecy potential of the observation
F(X).

There is a “before™ and “after” aspect to this. There is unpredictability or
uncertainty before observation, but not after. Therefore part of the meaning of
z, X {or f(z), f{X)} is dependent on the point in time at which they are being
considered.

In advance of determination, by measurement or observation, of a datum =z
{or f(x)), we speak of a random variable or observable X (or f(X)}; by which is
meant the potential data values that may be observed, subject to some measure
Fy of their potentialities or likelihoods or accuracy.

In light of these various considerations, the expression f{X), as used in this
book, is abbreviation for a notation involving several components:

» f(x) represents any deterministic calculation involving a data-value = ob-
served in the experiment;

= () represents the sample space, or domain of potentially observable data-
values r; and
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» F'y represents a distribution of probabilities {accuracy potentialities or
likelthoods) to which potentially observable data-values z are subject.

Thus, an ebservable or random variable f{X} is denoted by a triple

f(@) [2x, Fx};

and f{X} can be thought of as potential data f{z) in association with their pot-
entialities or likelihoods Fx (I), the latter being the likelihood that the datum
{or joint datum) z will, in advance of actual observation, belong to any set I of
potential data-values. The function Fx enables us to quantify the accuracy pot-
ential or degree of unpredictability of prior estimates of datum f(z}, in advance
of actual measurement.

Since X represents joint observations (possibly infinitely many}, stochastic
processes are subsumed within a general theory of joint variation.

An important class of stochastic processes, including Brownian motion, is
defined by the properties of the increments of the process at successive instants
of time. In the case of Brownian motion, almost all infinite series of successive
increments diverge absolutely, but all such series are conditionally (or non-
absolutely) convergent. Since the method of summation (or integration) used
in this book is non-absolute, the stochastic calculus of Brownian motion is sig-
nificantly simplified.

Other features of this study of random variation may also appear strange,
initially. For example, random variables are defined here in such a way that
measurability of the variables is a consequence, and not a pre-condition, of the
definition. Another unfamiliar aspect of this presentation is that the calculus
of probabilities, in the usual sense, is not fundamental to it. Instead the basic
properties of probability are deduced {see Section 5.12) as a consequence of the
meaning ascribed to random variables. And, in place of probability-measure
functions defined on measurable subsets of a sample space, the more fundament-
al role is taken by distribution functions defined, not on measurable sets, but
on intervals.

When these distribution functions are assumed to take only non-negative
values the resulting theory is equivalent to the classical or axiomatic theory of
probability and random variation. But when they are allowed to take complex
values, a significant extension of the classical theory emerges. Of course, the
noticn that “probability” can manifest itself in anything other than non-negative
real values is a conceptual challenge; one that is addressed and rationalized at
various points in the book—in Section 2.16, for instance.

These amendments to the classical formulation of probability theory make it
possible to bring the Feynman theory of the path integrals of quantum mechanics
within the scope of a theory of random variation; and they simplify the theory of
stochastic calculus. Also, proofs in the basic theory of probability are simplified.
This is because, instead of P-measurable sets 4 of a probability space (£2, .4, P),
probabilities are estimated with finitely additive functions Fx{I} of intervals I.

It is not the purpose of the book to give exhaustive or in-depth treatments
of the various themes. Instead, it dwells on the relative simplicity, power, and
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versatility of the Riemann sum approach to these subjects. Once the method is
grasped, it is relatively easy to work out any missing elements.

1.3 About the Notation

Notation for random variables has already been mentioned. Another import-
ant issue is notation for integrals. The integral concept implies the following
elements.

» Domain of integration, for example,
{0,1], [a, 8], [a, b]™, R, RxRx---.

Traditionally, this is variously written

1 4
b o b L o K

and so on.

* Expression to be integrated (or integrand}, usually involving points
x and intervals I in the domain of integration. So an integrand could
have the form f{x)|!] where # € I and the integrator |I| is the length of
the interval T in one dimension. If [ is two-dimensional, then integrator
|#] denotes area of I. Integrals involving |I{ come under the heading of
Riemann integration. The integrand can also have Stieltjes form f(z)F(I)
where the integrator function F is some additive function defined on inter-
vals of the domain. Or the integrand could be a function f(z)h(l) where
the integrator b is not additive. (With f(x) identically 1, the integral of
non-additive h(I) is known as the Burkill integral—see {25, 26, 103, 202].)
Or the integrand could he a joint function h(z,I) of points and inter-
vals, a formulation which includes the Riemann, Stieltjes and Burkill in-
tegrands. This suggests a notation of the form fp, h(z, I). Sometimes an
integrand h{x, I} may, in addition to dependence on x and I, also depend
on other point and/or interval parameters y and J, say; giving a function
h(z,y,I,J). In that case the notation [ A(z,y,7,J) can be an ambigu-
ous notation for the integral. Which of the parameters are “integrated
on”? Which remain fixed? in the integration? If such ambiguity arises it
is removed by notation of the form

zel*
/ hiz,y, 1, J).
Iel(R)

4In [162] (Muldowney, 1987), elements additional to = and I are introduced as Riemann
sum variables. For the purpose of analyzing random variation, an additional variable of this
kind is introduced in Chapter 4,
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The meaning of the various parts of this notation is fairly obvious, and
precise meanings will be given later. But the integral it denotes has a
meaning different from the following integral:

yel*
/ h{z,y, I,J),
JeI{R)

in which y and .J are “integrated on”, while the parameters z and I are held
constant in the integration. If the integrand A(x, I) is a point function f{x)
multiplied by an interval function F(I), then the integral of the product
f(z)YF(I) may be denoted

[r@rw o [ iwar

» Riemann sums }_ f(z)|7| which approximate to the integral [ f(x)|].
Thus, if the domain of integration is the real interval J, the integral

sl
/J f@I, = / o, SN

may be estimated or approximated by Riemann sums

ST @I =) {f @) I ePY,

where P = {I} denotes a partition of the interval J, and, for each I € P,
the evaluation point z is contained in [ or the closure of I.

Riemann sums are the prevailing theme of this book, and a shorter notation on
the lines of the following is used throughout:

('P)Zf(:n)m, representing Z {f)|: T€P}.

Occasionally the expression ntegral of f(x} is used without reference to any
integrator, weighting function, interval function, or measure. In this case the
integral should be understood in the traditional way. In other words, iniegral

of f(z) should be understood as [ f(x)dz, j:’ f(z)dz, or the like, depending on
the context. Formally, the integral of f(z) on [g,b] is

b zel™
f fa)de, = ] F@)l.
a IeIf[a,b])

A glossary of symbols is provided in pages xiii—xvi.

1.4 Riemann, Stieltjes, and Burkill Integrals

This section demonstrates simple Riemann sum calculations of Riemann, Stielt-
Jjes, and Burkill integrals.
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Consider fo z)dz with f(z} = 423, In basic caleulus it is observed that 42
has primitive (or a.ntl-derlvatwe) x%, and the indefinite integral is F{z) = z* +¢
where ¢ is any constant. Thus basw calculus gives definite integral

[ fde = (@l = 1+ 0~ 0+ =1 (L1)

If F(z) is written in its incremental or Stieltjes form F(|u,v|) = F(v) — F(u),
this becomes
1
f flayde = F()0,1)) = F(1) - F(0) = 1. (1.2)
0
This is the calculus integral, also called the Newton integral.

Example 1 To evaluate this integral by Riemann sums, then, with benefit of
the preceding calculation (1.1), take 1 as the candidate value® of the Riemann
integral, and consider expressions

1= @3 e,

™
= (1= 4z,
r=1]

where P = {I.} is a partition of |0, 1] with

I, = [u-r—lsuv'[: Up_] Ty < Uy, |Iri = Up — Up_1,

forr=1,2,...,n, ug =0, 4, = 1. Lef = > 0 be given. By uniform continuity
of the function 4x% in [0,1], there exists § > 0 so that, for any interval I =
Ju, v] C10,1] satisfying |I| = v — v < 8, and for any x,y satisfying v < x < v,
u<y<wv, then

|4a:3 - 4y2| < £.

Choose a partition P = {L P, = {|tr_1,u.|}Po, satisfying
| £ | =ty — tr_1 < &

for L < r < n. Then, by the mean value theorem, for each r there exists y,
sabisfying w1 < yp < w, with

4 4 _ 3 y
wr — o =dyl (e —uy_1).

Taking the Riernann sum over the partition P, we have

n
E u —u
r=1

arnd

5A simple application of the triangle inequality {as in Theorem 8} shows that if a pair of
such “candidates” satisfy the Ricmann sum condition then they must be equal.
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=P aadin| = |30 (e —utey) — 423 —un)

Z ((-u?, - u:}—l) - 4@’3 (1 — ur-l))‘

+

Z (43}: (’U,,- - u’r‘—l) - 41715: (’L{..;- - ur‘-—l))‘

r=1

[~]=

(4y§ (Uy — tp—3) — 43313: (U - ur—l))‘

1
ay3 (uy — Up—y ) — 422 (1, — Ur—1)|

>

=

IA
Gl

3
-

= Z |4y;‘:’ — 47‘,3.’| {(Uy — 1)

r=]

B

< EZ {u, —up_1) = &
r=

1

This holds for every such partition P, so0

1
/4;1:30!;1::1, o».r] 43I =1,
0 10,1]

as required. O

Thus, in this case, the calculus integral and the Riemann integral give the
same result. The function defined by (2.13), page 53 of Chapter 2, shows that
existence of the calculus integral does not guarantee existence of the correspond-
ing Riemann integral.

Stieltjes integration is “integration of a point function f{z} with respect
to a point function g(x)”. Suppose g(r) is a point function defined for real
numbers z. For intervals I = ju, v] define the interval function F(I} by

Flu,v]) := g(v) — glu).

The function F is additive on disjoint, adjoining intervals Ju, v], Jv, w]:

glw) — g(u)
(g(w) — g(v)) + (9(v) - g(u))
F(ju, o)) + F(Jv,w]).

F(Ju, w))

H
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{Conversely, given an additive interval function F(I), a corresponding point
function g can be defined by g(z) := F(] — o0, «]). Additivity® of F ensures that
g is well defined.) Then the Stieltjes {or Riemann-Stieltjes) integral of f with
respect to ¢ on |0,1] is

[0 sy, = [ s@ra)

Example 2 To dlustrate the calculation of o Stieltjes integral using Riemann
sums, suppose f(z) = 2z% and g(z) = x%. Then, for I =]u,v],

FI) = — a2, / f(a)dg = [ J@F,

Take 1 as the candidate for the value of this infegral. To test this candidate
value, consider Riemann sums

Zf(xr) Q‘(Ur)— Ur—1}) = ZQm 'EL _ur 1 ZszF I )

r=1
with a view to establishing a relation

i

1-— Z 252 (u —ul_,)

r=1

<€ (1.3)

Jor partitions P = {Jus—1,%] ¢ r=1,2,...,n}. Choose ¢ > 0, and note that
up —up_y = (u +ulg) (vl —ul ) = (ul +uly) F(L).
By uniform continuify, § > 0 can be chosen so that, if u, — ur—1 < 8, then
[(w? +ul_)) - 222 <e

for any . satisfying u,—1 < x. < u.. Therefore, for any collection P = {I,.}
partitioning |0, 1] with |I.| < § for 1 <r <n,

= i((u:}-ug_l) 22 (u} —ul_1))

=1

11— () 2P ()

I
-M"’

(a2 +u2,) - 20%) (u2 =2,

=1

L

Z| u? +ul_y) — 22%) (ul —ul_,)|
< &Y (WE-wul.;) = &
=1

SBy Theorem 10, for f{x) constant {with value 1, say)}, every Stieltjes integrator function
F(I) is integrable. This fundamental point is a central theme of this book.

[/

-3
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$0 fol Flz)dg(x), = f]o,_l] 222 F(I),= 1. In this case too the Riemann sum cal-
culation (1.3) required that the candidate value 1 for the Stieltjes integral be
available for testing. The solution to the problem had to be known in advance
of solving the problem, so to speak. Where did the candidate value come from?
In this case the integrand

F@)F(I) = 22% (v° —u?) = 20% (v + w)(v — u) = 22 (v + w)|I|

has a form which is fundomentally similar to the integrand in (1.1). Therefore
the integral value 1 is worth testing. And, s demonstrated, it salisfies the
required Riemann sum inequality. @)

If an interval function F(7) is additive on any finite number of digjoint, adjoining

intervals I we designate it as a Stieltjes cell function or Stieltjes integrator.
The Burkill integral (Burkill [25, 26], Henstock [103]) has integrands of

the form A(J} which are not additive.

Example 3 For I =]u,v] let (I} = 4u?v{v — u). Then, with u < v < w,

J=lu,w], I =], I =Jv,w], we have J =1, U1y,

R(J) = 4ulwlw - u), h{L) = wiviv—u), k() =4 w(w - ),

and h(J) # h(l1) + h{I3}). A Riemann sum calculation gives f]U‘IJ h(Hy=1. To
see this, consider a partition P = {Jue~1,u,] of 10,1] {r = 1,...,n}, so that,

with
n=1-(P)Y hL)

1

we have

((uf —wf_y) = dwpd_y (ur — upos))

[
hE

1

‘
I

[
NE

((ud + wlurog +uru? g+l y) — dupud ) (ur — urey).

~s
il
=

Let ¢ > 0 be given. The expression (ud + wlur_1 + urvZ_; +ud_;) — 4wl
s a difference of the functions

S+t +st?+2 and  Astt

By uniform continuity in both variables of these two functions, a number § > 0
can be found so that

|(ud + wlupy 4wl )+l ) —dupul | <o

whenever |I.| = u, — u,—_1 < 8, giving

n
1 < sZ(u,ﬂ —Up_3) =€
r=1

The result follows from this. O
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Strictly speaking, Burkill integrands A(f) do not contain any element of
dependence on points &, and depend—in a non-additive way—only on intervals
(or cells) I. For the purposes of this book, however, it is convenient to extend
the meaning of Burkill integration to include dependence on points x, so the

Burkill integrand is
Fflayh(Iy  or  A{x,I).

Thus a Burkill integrand can be a product of a point function f multiplied by
an interval function k. Or it can be an integrand h which depends jointly on
points x and cells or intervals I. If, further, it is not stipulated that A(I) is non-
additive, then Burkill integrands f(z)h(I) include, as a special case, additive
interval functions of the Stieltjes kind. Viewed this way, Burkill integration is
a generalization of Stieltjes integration. The latter, in turn, is a generalization
of Riemann integration, with A{I) = F(I) = |I|.

Generally speaking, the convention” in this book is to use a capital letter
such as F' to indicate additive interval functions F'(I}; while lower case letters
such as h are used for potentially non-additive interval functions A(I).

The following is an example of a point-interval Burkill integrand h{z,I)
which is not a product f{z)A{I).

Example 4 For I =|u,v] and v < x < v, write
h{z, 1) = 207 — 2(v — u) — ulu + v).

This function is integrable on |0,1], with integral value 1. To see this, rewrite
the integrand as
Mz, I) = (v = *) + (v — 2)(v — u);

and, with £ > 0 given, take 6 = ¢. Then, for

D=y <y <up < -+ <u, =1, 7=

b

1— zn:h(xr,ff)
re=1

with I = 4y — w1 < &, the Riemann sum satisfies

1 i ((“12" - uf_l) + i(“r - z)(uy — ’Ur—1))l

=1

1A
o
3
=
|
3
§
L
H
o

50 flo bl 1) = 1. O

7 An exception to this convention is to be found in stochastic integration {Chapter 8). In
that case the incremental, or interval function, form of a point function z(t) is denoted by
x()t, s]) = w(s)—x(1), in order to define & Stieltjes integrand with respect to the point function
x {or with respect to the Stieltjes integrator x}.
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Integrable functions do not have to be products of point functions and int-
erval functions. Interval functions A(]u,v]) need not be additive, and need not
depend explicitly on the numbers u, v or v — u. In fact, A{]z,v]) need not even
be monotone: it is not required that J > I should imply that h(J) = h(I), as
the following Burkill integrand shows,

Example 5 For I =|u,v] let

1 ifu=2 or v=1,
R{I) = f 2 2
0  otherwise.

Then
R{]o. 3] +A(]51]) =2 ho.) =0, k(]0,3])=1
Let § be any positive number less than or equal fo % Let

=]

[ =101

b3 oA

2+l B=ly-ds],

and let Py, Py be partitions of |0,1] containing I and I, respectively:

b=

P1={"')Ilu"'}: ”D2={"':1—23"'}-

Then Py contains an interval ]%,U], and

PSS k(D) =0, (Py)Y mI)=2

Therefore h(I) is not Burkill integrable on ]0,1] in the basic sense of Riemann
sums. But in Chapter 2 it is shown that it is possible to constrain the formation
of partitions P of the domain ]0,1) in such o way that every partition has the
Jorm Pa. (See, for instance, Example 15.} In this constrained system of int-
egration, h{I} is said {o be Burkill-complete integrable, with integral 2; that is,

f]ﬂ,l] h(I) =2 O

Since }I| is an additive function of intervals I, Riemann integrands can be
taken to be Stieltjes integrands. Also, Stieltjes integrands can be taken to be
Burkill integrands as presented here. Thus the formulation h(x, I') can represent
not just a Burkill integrand but also Riemann and Stieltjes integrands. If an
integrand is Riemann integrable it is Stieltjes integrable; and, likewise, Stieltjes
integrability implies Burkill integrability.

In the workings of the examples above, indefinite integrals appear. Letting
h(z,I) represent, in turn, Riemann, Stieltjes, and Burkill integrands, an indef-
inite integral of h(z, I) is an additive interval function H(.J) whose value on every
interval J equals the integral of k{x, I} on J. The indefinite integral H (1) is thus
a Stieltjes cell function; and, as a Stieltjes integrand it is itself integrable—in
the Riemann sum sense—on every bounded interval J, with integral H(J).
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In (1.1) the indefinite integral is Fi(z) = x* + ¢; and, for the same Riemann
integrand in Example 1, the same indefinite integral is written as the additive
interval function (or Stieltjes cell function—a cell is an interval)

F(I) = F(Ju,v)) = v* —u?,

this being the Stieltjes increment of the point function F(x) for which F'{z) =
flz) = 4z3.

Each of Examples 2 and 3 also has indefinite integral v* — «*; while Example
4 has indefinite integral v? — 2. In Example 5, the indefinite integral H(I) of
the Burkill integrand hiz, I) does not actually appear in the workings, but a
few moments’ examination should be sufficient to see that the indefinite integral
in this case is the Stieltjes cell function

(0 for T=]uv], v<i,
1 for I=]ujl,
HI=< 2 for I=]u,v, u<%<v,
1 for I=]3,v],
L0 for I=]uv], u>i.

Riemann, Stieltjes, and Burkill integrals feature in this book, but mainly in the
form of Riemann-complete, Stieltjes-complete, and Burkill-complete integrals.

This section has focussed on determining the definite and indefinite integrals
of given integrands. Though it will not feature in this book, another aspect of
integration is the converse problem of determining an integrand h{z, I) from an
indefinite integral H (I}, or from a differential equation satisfied by an indefinite
integral. To illustrate simply, if a function F{z) is differentiable then it is an
indefinite integral of its derivative f(x),= F'(z).

1.5 The -Complete Integrals

The Riemann, Stieltjes, and Burkill integrals presented in Section 1.4 are “in-

complete” in various ways. For instance, it is not pessible to specify broad
conditions for which the limit of a sequence of integrands is integrable, with
the integral of the limit equal to to the limit of the corresponding sequence of
integrals. This makes it difficult to justify, for instance, differentiation under
the integral sign, and many other similarly useful calculations on integrals.
From the beginning of the twentieth century the Lebesgue integral has part-
ially remedied this, providing strong conditions under which it is possible to
take limits under the integral sign. However it was apparent that the Lebesgue
integral is itself “incomplete” in the sense that, just like the basic Riemann
integral whose deficiencies needed 1o be remedied, not every derivative could be
integrated by the new method. It is possible for a function with an indefinite
integral to not have a definite integral. This is the case for the function defined
by (2.13) on page 53 in Chapter 2, which is calculus integrable but not Riemann
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integrable or Lebesgue integrable. In other words the fundamental theorem of
caleulus is not always valid for Lebesgue integration; even though, by definition,
it is valid for the basic caleulus or Newton integral.

This issue is explored further in Chapters 2 and 4 where it is shown that, in
the -complete system of integration, an integrand has a definite integral if and
only if it has an indefinite integral. In advance of that, note the following.

» Any interval function which is additive on every finite collection of disjoint,
adjoining intervals is integrable in a Stieltjes sense based on Riemann sum
calculation.

» Tautologically, every derivative f(z) = F’(z) has an anti-derivative F(z).

= Provided the partitions used to form Riemann sums >, f(z)|Z| are suitably
constrained (as indicated in Example 5 above), the incremental or Stieltjes
form of the anti-derivative, F(I) = F(]u,v]) = F(v)—F(u), is an indefinite
integral for the integrand f{x)|f|.

= Then the finite additivity (or Stieltjes integrability) of F(I) ensures the
integrability (i.e., existence of the definite integral) of f(x)|f|.

Thus, with “constrained” Riemann sum formation the fundamental theorem of
calculus holds for integrands f(z)|I|. Therefore, for integrands f{z)|1], it is
reasonable to designate this type of integration as Riemenn-complete.

The fundamental theorem of calculus is especially important in areas sich as
differential and integral equations. But it is not so important in investigations
of random variability, a subject which involves a class of Stieltjes cell functions
which is broader than the the class of indefinite integrals formed from anti-
derivatives.

Henstock [93] applied the term Riemann-complete to Stieltjes-complete and
Burkill-complete integrands. The reason this book makes a distinction hetween
these kinds of integrands is, in part, because of the lesser significance of the
fundamental theorem of calculus in this subject area, and greater significance
of other kinds of Stieltjes integrands and Stieltjes integrator functions.

The evaluations in Section 1.4 show that a key step in integrating any func-
tion is identification of its indefinite integral—an additive interval function or
Stielties cell function. So Stieltjes-complete integration is the link between the
various kinds of integrand. Chapter 4 shows that an integrand f(x)|I| {or
h(z,I)}) is integrable if and only if it is “almost” (in some sense) identical to a
Stieltjes cell function H{I).

1.6 Riemann Sums in Statistical Calculation

Elementary statistical calculation is often learned by performing exercises such
as the following. “4 sample of 100 individuals is selected, their individual
weights are measured, and the results are summarized in Table 1.1. Estimate
the mean weight and standard deviation of the weights in the sample.”
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Weights (kg) | Proportion of sample
0- 20 0.2
20 - 40 0.3
40 ~ 60 0.2
60 — 80 0.2
80 - 100 0.1

Table 1.1: Relative frequency table of distribution of weights.

03+

0.2

014

0 20 40 60 80 100

Figure 1.1: Histogram for distribution of weights.

7T [FO) e [ @ [FD [J@OFD
0- 20| 02 10} 100 2 20
20— 40 | 0.3 | 307 900 9 270
40— 60 | 0.2 | 50 2500 10 500
60- 80| 0.2 | 70 | 4900 14 980
80 - 100 | 04 90 | 8100 9 810

Table 1.2: Caleulation of mean and standard deviation.

Figure 1.1 is the histogram for distribution Table 1.1. Sometimes calculation
of the mean and standard deviation is done by setting out the workings as in
Table 1.2. The observed weights of the sarnple members are grouped or classified
in intervals I, and the proportion of weights in each interval I is denoted by F(I).
A representative weight x is chosen from each interval /. The function f(x} is
22 since, in this case, these values are needed in order to estimate the variance.
Completing the calculation, the estimate of the arithmetic mean weight in the
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sample is
S aF(I) =44 kg,

while the variance of the weights is approximately
> #PF(I) — (44)% = 2580 — 1936 = 644,

The latter calculation, involving 3" 22F(7), has the form Y f(«)F(I) with
f(z) = z?. The expressions >z F(I) and Y f(x)F(I) have the form of Rie-
mann sums, in which the interval of real numbers [0,100] is partitioned by the
intervals I, and where each z is a representative data-value in the corresponding
interval 7. Thus the sums

Y aF(I) and ) f(zm)F()

are approximations to the Stieltjes {or Riemann—Stieltjes) integrals

/:r;dF and /f(a:)dF, respectively:
J J

the domain of integration [0,100] being denoted by J.

1.7 Random Variability

If X refers to the potential data-values z arising from an experiment corr-
esponding to a weighing of a single individual member of the population under
investigation, it can reasonably be declared that the calculation > zF(I) above
is an estimate of the expected value of X, denoted E[X]. The actual datum =z
obtained when the single measurement has been completed is the oufcome of
the experiment. The datum z can also be called an observation or occurrence.
In that case, each entry in the column headed “Proportion of sample” in Tab-
le 1.1 represents an estimate of the potentiality or probability that the single
observation x will lie within a particular range of possible values.

In Table 1.2 a calculation f{z) = 22 is performed on the measured value
x. Accordingly, denote by f{X) some function of the random variability in the
experiment X, such as f(X) = X2 where 2®> = f(z) is the outcome of f{X);
and then the calculation 3~ f(x)F'(I) is an estimate of the expected value of
f(X), denoted E[f(X)]. Call f{X) a contingent random variable, dependent on
the elemeniary random variable X,

The expression random variable has been used above without explanation
or definition. In Kolmogorov’s book [123], the expression is used as a synonym
for experiment. Intuitively “experiments”, “trials”, or “random variables” can
be recognized and understood as in the following examples,

Example 6 Measuring the weight of an individual member of o given popul-
ation.
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Example 7 Observing the amount of electric current emitted by a photoelectric
cell when o beam of light of given intensity is directed on the cell.

Example 8 Throwing a die and observing which of the numbers 1 to 6 lands
uppermost.

Example 9 Throwing a die and noting the square of the nuwmber which lands
uppermost.

Example 10 Throwing a peir of dice and, whenever the sum of the numbers
observed exceeds 10, poying out a wager equal to the sum of the two numbers
throum, and otherwise receiving a payment equal to the smaller of the two num-
bers observed.

Example 11 A gembling game in which the gambler pays one cent for each
successive throw of a single die, and receives a thousand euro if 100 successive
sizes are thrown.

In each case there is some experiment or trial involving the observation and
measurement of some unpredictable value. Underlying factors are the source of
the unpredictability of the outcome, and this phenomenon ig designated random
variability.

Example 12 Calculating the mazimum value of the end-of-day prices of a bar-
rel of crude oil observed over thirty consecutive days.

In Example 12, a value is generated by performing a calculation f (the maximum

value calculation) on 30 observable quantities z1,...,230. So

f(:]:l': R 7$3U) = max{:nl, Tt :'7;30}
is the outcome, depending on the unpredictable basic joint outcome x4, ..., &30,
cach element of the basic joint outcome being itself the elementary outcome of
an experiment or trial X;, for each y = 1,...,30. Thus there are 30 “joint basic
random variations™: X,..., X3 corresponding to observable end-of-day prices
Zi,...,%30, and a “contingent (or dependent) random variation” f{X;,..., X3g)

corresponding to the maximum value calculation, and whose value depends on
the basic joint outcome composed of 30 elementary outcomes.

Example 11 has a basic joint {or joint-basic) random variation composed of
an infinite series of elementary basic random variations {X;} whose observable
values x; are 1,2,...,6; and a contingent (or dependent} random variation
Y = f(X1, Xs, X3,...), whose observable value is

{ 1000 if there exists § such that x; = 241 =+ = 2400 = 6,
y =

0 otherwise.

Example 10 has two “basic random variations” Xy and X, corresponding to
the numbers ; and @ thrown for each of the pair of dice, and the wager (or
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contingent random variation} f(X;, Xz) given by the calculation

T1 + Ty if 142> 10,

flzy,z2) = {

min{a’n,:l?g} if T+ 22 <10

Example 10 has a contingent random variation f{X) where X is a joint-basic
observable or joint measurement {X;, X;). Example 12 has f(X) where X =
(X1,....X30}. If, asin Example 11, X consists of a joint observation of infinitely
many values the observable X is traditionally called a process or stochastic
process. Thus a process can consist of a family (X;), where each ¢ belongs to
some infinite domain such as the unit interval [0, 1].

There is a distinction to be made between joint observation of, on the one
hand, a finite number of values and, on the other hand, an infinite number of
values. But in this book both are encompassed in a single theory.

Thus the intuitive meaning of random variable is, firstly, that it involves the
generation of a value or datum resulting from measurement(s) or observation(s);
secondly, in advance of measurement or observation, this value is not certain or
definite but can be one of a range of possible oceurrences or observations; and,
thirdly, that sometimes it is possible to associate some measure of potentiality
or likelihood with the possible outcomes or data values that may be observed.
In other words, in advance of actual measurement or ohservation, the datum
can be predicted with a degree of accuracy given by some measure of accuracy
potentiality or likelihood.

If the possible outcomes or occurrences are discrete, then the potentialities
or probabilities are associated with each of the possible values. If the poss-
ible outeomes belong to a continuous domain, as in Table 1.2 above, then the
potentialities or probabilities are quantities F(I) associated with intervals T of
possible outcomes of the measurement. Provided the function F iz atomic, then
F(I) can also be used to represent the probabilities of discrete values.

Thus the intuitive conception of random wvariation implies a number of el-
ements:

* the generation of a value or datum resulting from observation of one of
* g set of potential data~values or occurrences combined with
» a get of accuracy potentialities or likelihoods.

The first element will be denoted by a symbol such as z; or by f{z) if some de-
terministic calculation is performed on the measured or observed value . The
second element corresponds 1o the sample space 3x for the random variation.
The third component corresponds to the probability measure (or potentiality dis-
tribution function) Fx(I) for the random variation. The notations for random
variation adopted in this book make reference to these three elements, with the
tabular layout. and histogram of Table 1.2 and Figure 1.1 as their intuitive basis.

The sample space corresponds to the original source of the unpredictability
in the value generated by the experiment. In Example 8 the sample space is the



20 CHAPTER 1. PROLOGUE

set £ = {1,2,...,6}. There is often some flexibility in how the sample space
can be designated. Provided the distribution function value F(I) = § whenever
the real interval I contains one of the values 1 to 6, then we can, for example,
take the sample space for this experiment to be the line interval 1 to 6, or the
whole real line R. Many other choices of sample space are available. Similarly
in Example 10 the sample space can be taken to be any one of various sets such
as

{1,2,...,6} x{1,2,...,6}, RxR, {1,2,3,...,3536}, orR.

Specification of the potentiality distribution function for the experiment will
depend on which set is chosen as sample space.

An experiment, measurement, or “random variation” can be represented
or specified by an expression involving factors [(Ix, Fx|, where Qx and Fy
are suitably chosen mathematical constructions which enable us to represent,
describe, and analyze the random variation in the experiment X. Thus a basic
random observation or measurement can be denoted by a symbol X and can be
expressed, in the chosen representation, by

X ~ z2[Qx, Fx].

The random variation in Example & could be specified in various alternative
{but equivalent) ways, such as

Qx | Fx
E

Sl e [ (Px{iy =31, or [R,Fx];
6|4

where, in the latter specification, intervals I < R have Fx(I) equal to a sixth if [
contains just one of the numbers one to six, with Fx (I} equal to zero otherwise.

In contrast to such a basic random variable X, a random variable f(X)
can be expressed in contingent or dependent form, where some deterministic
calculation f is performed on the basic observed value x from the sample space
1x. A contingent random variable is denoted by f{X}, and written as

F(X) = f(@)[0x, Fx]

to specify contingent random variation with outcome f(z). The underlying or
basic random variation involved in this is the basic X ~ z[Qy, Fx].

An alternative approach here would be to denote the set of possible cutcomes
or occurrences {f(x) : © € $1x} by 2y, and deduce a distribution function Fy-
on the intervals of )y, so0

Y =~ y[Qy, Fy].
Provided €}y is the set of real numbers R we say that ¥ is the elementary form of
the contingent random variable f(X). Accordingly, two possible representations
for the random variation in Example 9 could be

X% = 2? [{i), {Fx() = §}]0, (14
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with underlying X = z [{¢}, {F(¢) = 6}] _,; or, alternatively,

Yy [{1%,25,...,6%), Rr()=Fy{d)=... = F¥(36) = }]. (1.5)

The former representation has a “contingent” form (involving the deterministic
function of squaring an observed basic value ¢), while the latter has “elementary”
form y.

1.8 Contingent and Elementary Forms

Now consider an experiment X involving observation of the pair of numbers
which fall uppermost when a pair of dice is thrown {or when a single die is
thrown twice). The result is a single outcome x composed of a pair of joint
occurrences (x;,x9) where #; is the number falling uppermost for the first die
and xa is the number falling uppermost for the second die. Thus X is (X, X3),
where X, is the observation of die r (r = 1,2); with

Xe=a, [k}, F) =1,
The joint datum is & = (21, x=), and experiment can be represented as
X ~a[{i}oy x )5, Fx(t.j)=%,i=12,...,6, j=1,2,...,6],
the sample space being
{1,2,...,6} x {1,2,...,6}.

With R denoting the set of all real numbers, an alternative way of expressing
the joint observation is

X~z[RxR, Fx(I)=Fx(hxh)=%ifLNR={i} LNR={j}]

where Fy is atomic. Now suppose a single datum is generated from the joint
observation X by calculating the sum of the two numbers observed to fall
uppermost when the pair of dice is thrown. The resulting random variable
F(X) = f(X1, X2) can be represented as follows:

FX)~ fe)[R xR, Fyx(l; x I2)], (1.6)
where f(z; +x2) = o1 + 22 (i.e., f{i,5) =i+ 4}, and
Fx( xL)y=% it [ nR={i}, LR = {j}.
This experiment can also be represented as
~y[{2,3,...,12}, Fr(2) =355 Fr@®) =5 Fr¥) =55

Thus, using an atomic form of distribution function, with Fy(J) = & if JNR =
% for j =2,3,...,12, the experiment f{X) can be expressed as

Y ~y[R, Fy]. with y= flz); (1.7
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and wo can write
Y = f(X).

In representation (1.6}, f{X) has explicitly contingent form and sample space
R x R; while (1.7) has elementary form ¥ with sample space R. In (1.7} the
contingency or dependence of ¥ on the joint-hasic ohservation X = (X, X3} is
not explicit. Each hasic observation X, is itself an elementary observation since
its sample space is R for each of r = 1,2, The key relationship between the two
representations, contingent and elementary, is

y= flx) = a1 + g, Y=fX)=X, + Xz

The example demonstrates how this relationship enables the distribution values
Fy to be deduced from the values of Fx, and vice versa. Also, there is some
loss of information in converting a contingent form to an elementary form, in
that the individual components x; and x2 can no longer he seen.

This example illustrates an important point in the representation of a ran-
dom variable. Knowledge of the likelihood distribution function enables us to
glean information about the potential datum values, such as mean and variance.
In other words, the distribution function carries information about the accuracy
of estimates of the datum.

On the other hand, knowledge of data occurrences, obtained, for instance,
by repeated replication of the experiment or measurement enables us to est-
imate distribution function values, as in Table 1.1 above. And knowledge of the
functional relationship y = f{z)} between different representations of the same
experiment can sometimes enable us to deduce the corresponding likelihood
values Fy and Fy from each other.

The function Fy carries information—in advance of occurrence—about ace-
uracy of estimates of the measurement or datum z. And Fy does the same for
the datum y. The elementary-contingent relationship y = f(z) carries inform-
ation about the relationship between Fy and Fy, so the former is deducible
from the latter.

The notation is intended to highlight the various perspectives from which
particular instances of random variability can be viewed. This can be seen
in (1.6) and (1.7) above. The representation in (1.6) shows the underlying
random variation as {(, j)}?}izl, with each instance or occurrence having a
likelihood of 1/36; and the potential data values being then obtained by the
further deterministic caleulation 7 + 7 which is shown to the left of the square
brackets. This is the contingent form.

The same experiment is represented differently in the elementary-form vers-
ion (1.7). In this representation the manifestations of underlying random vari-
ation {shown inside the square brackets) are the possible totals generated by a
single throw of a pair of dice. The potential data-values, shown to the left of
the square brackets, are the same numbers without any further deterministic
calculation.

This book makes use of these alternative perspectives in the various arcas of
probability theory. In (1.6} and (1.7} it is easy to deduce the likelihood values
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Fy from those of Fx. But, for more complicated forms of contingency f, this
step can be difficult; and it is sometimes necessary to resort te sophisticated
theory in order to make such deduction. It is helpful to view some of the big
themes of probability—such as central limit theorems and It6’s formula—from
this point of view, and this is demonstrated in the text.

Expressions (1.6) and (1.7} also illustrate those situations where we seek to
examine features of several (perhaps infinitely many) basic random occurrences
considered jointly, the occurrences or observations being linked together in some
way, as when a pair or more of dice are thrown at the same time; or a single
die is thrown repeatedly, at successive instants of time. Both the elementary
and explicitly contingent forms of representation are widely used in the study
of joint random variation, and justification for this is provided in Theorem &2
of Chapter 5.

Generally, in this book the contingent representation of joint variation is
preferred. Ome reason for this is that, in the contingent representation, it is
easier to analyze aspects and consequences of the joint variation, such as the
independence or otherwise of the basic random variables X,.. Conversion of joint-
basic random variability to elementary form involves some degree of concealment
or masking of information about the joint variability involved.

Amnalysis of random variability is concerned with establishing or predicting
both the datum and its “degree of accuracy”; and relating each one to the other.
“Degree of accuracy™ is given by the distribution function. Broadly speak-
ing, establishing the correct distribution function is the key point in specifying
an observable, and that is why much of this book is concerned with deducing
the elementary-form distribution functions of observables from their contingent
form.

1.9 Comparison With Axiomatic Theory

The analysis of random variation in this book is built up from these intuitive
conceptions. In contrast, the traditional definition of random variable X (or
F(X)) given in many textbooks is that it is a measurable function defined® on
an abstract sample space Q.

To illustrate the traditional approach, consider Example 4 above—a single
throw of a single die, the random variable being, intuitively, the observation of
which of the six sides falls uppermost. Since the outcome is random—that is,
uncertain or unpredictable—it is possible to envisage or postulate some abstract
domain €} which, somehow, generates the various possible outcomes of throwing
the die.

Suppose the abstract, mathematical sample space §2 corresponds to a “great
roulette wheel in the sky”, which, for illustrative purposes, has six colors—red,
green, black, white, pink, and vellow, which determine the real-world outeomes

BIn practice, however, the actual sample space is chosen as in the preceding examples. And
Theorem 76 of Chapter 5 reverses the traditional or axiomatic definition of a random variable,
by deducing the measurability of a random variable.



24 CHAPTER 1. PROLOGUE

of 1 to 6, respectively, whenever the die is thrown. In terms of the axiomatic
theory of probability, the random variable is the mapping X which makes dice-
throw 1 correspond to red, 2 to green, and so on. Consider the probahility
function P on €. First, suppose P is uniform, with P(red) = %, and so on.
This corresponds to a fair or balanced die. Now suppose that € has a different
set. of probabilities P’ defired on it, with

P'(red)y =3, and P'{green) =--- = P'(yeliow) = 5.

This counterposes two different experiments, measurements, or random vari-
ables in the intuitive sense; the first involving a balanced die and the second
an unbalanced one; corresponding to P and P’. But formally speaking, and in
traditional axiomatic terms, we have the same sample space {1 in both cases,
the same range of values or outcomes n = 1,...,6 generated by the random
variation, and hence the same random variable {in the sense of mapping from
into R). Two intuitively different random variables are, in the axiomatic sense,
the same.

Now suppose £ and P are as described. But suppose we define a different
mapping X’ which sends yellow to 1, pink to 2, and so on. Technically, this is
a different mapping from X, but it describes exactly the same experiment—a
single throw of a fair or balanced die. So the formally different (in the axiomatic
sense) X and X’ are intuitively the same random variable.

But, setting these reservations aside, as long as the probability measure
P of a probability space (£2,.4,P) is linked to the sample space £ in the
“measurable function f(X}” conception of random variable, there is no essen-
tial difference between this conception and the intuitive “set-of-potential-data-
values-linked-with-accuracy-potentiality-distribution” representation f{X)} with
X ~ 2[Qx, Fx]. As the preceding sections show, the latter approach also allows
us to easily choose alternative specification of both the sample space Qx and
the potentiality function Fyx.

The relationship between the two conceptions of random variation can be
demonstrated as follows. If the distribution function Fx (I) is deduced from the
probability measure P by

Fx{I) =P (X~}I)),

then
BUX)) = [ /(X@hap = | fiz)aFx,
where X {w) = x and the latter integral is the Lebesgue—Stieltjes integral. And,

as will be demonstrated in Section 2.8, the Lebesgne—Stieltjes integral is equal
to the Stieltjes-complete integral

/ (@) Fx (D),
R

which is the basis of the analysis of random variation presented in this book.
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1.10 What Is Probability?

Probability values are sometimes established by reasoning from the specific de-
tails of actual measurements. For instance, in tossing coins, throwing dice, or
assessing the motion of a pollen particle released into a gas-filled glass vessel,
potentialities or likelihoods of particular eventualities may be deduced from
observation of the behavior and characteristics of the actual phenomena them-
gelves.

This involves an assumption that probability/likelihood is, in some sense, a
“real” phenomenon; and that it is actually present in the events or measurements
under consideration—in other words, that it exists, and is *knowable”.

In the traditional axiomatic theory of probability, there is an a priori function
P defined on an abstract probability space (02, A, P) from which we purport to
deduce the probahilities of actual phenomena by means of mathematical theory.

Similarly, the Riemann sum approach posits the “reality” or ohjectivity, in
some sense, of a notion of “accuracy potentiality”? or likelihood £, from which
is deduced a mathematical device - the distribution function Fx.

This approach may be close to the way in which supposedly objective po-
tentislities or probabilities/likelihoods L are linked to their mathematical man-
ifestation in the form of potentiality distribution functions Fx for actual exper-
iments or observations X. Essentially,

L] = Fx(I),

where Fy 1s somehow estimated or deduced from “real-world” data or real
physical events in which likelihood £ is assumed to exist. This equation is the
bridge between a supposedly natural manifestation of likelihood or potentiality,
and its mathematical representation in a context of esiimating, measuring, or
observing a potential datum z.

In contrast the axiomatic approach has

Fx(I) = / dP
(xel

with probability P postulated mathematically.

Suppose several experiments X; are considered jointly. Then there are the
individual and separate experiments X;, throws of dice, say; and the joint ex-
periment X = (X,} with joint outcome & = (&} such as throwing 10 sixes in
10 throws of the dice. Assuming each separate throw has a likelihood £, and
that the joint measurement or joint observation has its own likelihood, then
the assumed objectivity or “reality” of £ means that the separate and joint
manifestations of £ cannot contradict each other—they are consistent.

Therefore, in constructing the corresponding mathematical entities Fx, and
Fx, care must be taken that these too do not contradict each other. In the
axiomatic theory a similar point applies regarding the postulated probability

2 As far as possible this book avoids the term “probability”, along with its associated symibol
P, because the burden of meaning they carry in traditional usage may cause confusion here.
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space (1, A, P) whenever several random variables X; have to be considered
jointly.

Another complication—one that is not present in the standard, axiomatic
theory of probability—is that potentiality £ is permitted to have negative and
imaginary values. This is related to those random variation scenarios in nature
which inveolve non-absolute convergence, and is discussed further in Section 2.16
and elsewhere.

What is probability? No answer to this question is offered in this book.
But a somewhat broader mathematical conception of accuracy potentiality or
likelthood is presented here in its place.

1.11 Joint Variability

Understanding of joint variability is one of the primary purposes of the study of
random variation. Suppose the individuals in the sample of Table 1.1 above had
their heights measured, in addition to their weights, so there are two random
variables instead of one. This is described in Table 1.3.

For ¢ = 1,2, denote the two basic random variations (weight and height)
by X;, and their intervals and potentiality distributions by I; and Fx, (I3},
respectively. Note that the measurements or random occurrences are jointly
observed. In this case, an observed value in one of the random variations is linked
to an observed value of the other random variation, since both observations
pertain to a single individual. Call the pair (X3, X3) a joint-basic experiment.

Then X = {X,, X;) represents the joint variability or joint estimation of the
weight and height of a single individual. It is reasonable to ask, for each pair Iy,
Iy, what proportion of the sample members jointly have weight in the interval
I and height in the interval 7. In other words, what is the likelihood that,
after actual measurement of an individual’s weight 7 and height x3, the joint
datum x = (21, #2) will be contained in the set I = I} x 137

Thus the set I denotes a possible joint outcome of the joint observation X.
Let the joint potentialities

F(I) = F(Il o IQ) :Fx(fl x _{2) :Fx(f),

correspond to these sample proportions, with twenty possible values correspond-
ing to the twenty possible joint intervals I; x f>. Table 1.4 displays the joint-basic

Weights (kg) Proportion of sample | Heights (cm)  Proportion
0- 20 0.2 0- 50 0.3
20 - 40 0.3 50 — 100 0.2
40 - 60 0.2 100 - 150 04
60 - 80 0.2 150 — 200 0.1
80 - 100 0.1

Table 1.3: Joint observables.
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h
0-20§20-40 | 40 -60 60 — &0 | 80 — 100
0- 50 0.3
50 - 100 0.2
Ig 100 — 150 Fx(fl X Ig) 0.4
150 — 200 --ff 01
U] | 0.2] 0.3 0.2 0.2 0.1 |

Table 1.4: A joint-basic observable.

observable X = (X, X}, showing the sample space of potential joint data val-
ues ¢ = (x1,x2); some of the possible joint events I = ([, I3) in the form of
joint intervals; and indicating the display, or format, of the observable’s joint
likelihood values (or accuracy potentialities) Fx(]). The entries for the twenty
values of Fiy {I; X I3) have been left blank; but the nine marginel distribution val-
ues Py, (I} and Fx,(I2) have been included, along the bottom and right-hand
margins of the table.

If the height of an individual has no bearing on that individual’s weight, we
would expect that

Fx(ly x I2), = Fix, x,){1 x I2), = Fx, (1) Fx,(I2).

If two joint random variations are independent, this property holds for all pos-
gible choices of I; and fs.

Two potential events are labeled in Table 1.4, where I, is the possibility that
an individual selected weighs between 60 and 80 kg, while 5 is the possibility
that an individual measures between 100 and 150 em tall. The joint event fy x Iy
is the possibility that an individual selected is between 60 and 80 kg in weight
and between 100 and 150 cm in height. If

Fx(fl X Iz) =0.2 x 0.25

then these two particular outcomes are independent possibilities or independent
events,

The marginal potentialities in Table 1.4 are the numbers appearing on the
right-hand edge (or margin) and along the bottom line (or margin) of the table.
They satisfy

FXl(II) :Fx(fl XK R), FXZ(IQ) :Fx(R . 12)

for each Ip, Iy. If the joint potentialities were given (i.e., if we filled in the blank
boxes in the table), then those figures, when added horizontally, should give the
totals in the right-hand margin; and it added vertically, they should give the
totals along the bottom margin, This property of joint potentialities is called
consistency.
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200

100

2

Figure 1.2: Cartesian representation of joint-basic observable.

Independence is a mathematical device or abstraction, rarely or never oc-
curring in practice. In this case, a taller individual is also likely to be heavier,
s0 we would expect, for instance, that more than 0.2 % 0.25 of the sample in the
height range 100 to 150 centimeters will have weight in the range 80 to 100 kg.

It may happen that these two particular joint events are independent of each
other; with likelihood of the joint event equal to the product of the two corre-
sponding marginal likelihoods. But independence of the pair of joint ohservables
X and X, requires that this relationship should hold for every possible pair of
joint events I7 and I, not just for the twenty possibilities displayed in Table
1.4. While independence of joint observables is entertained for mathematical
reasons, it seems to be a practical impossibility.

A geometric sense of the relationships between joint potentialities is conveyed
by diagrams in which joint observations @ = (1, z2) and joint events (intervals)
I = I, % I; are represented in & system of orthogonal axes. The orientation
of the vertical axis in Figure 1.2, measuring height, is in the opposite direction
to the weight column in Table 1.5 which, instead of running upward in the
geometric manner, runs downward to facilitate numerical calculation. Figure
1.2 has the usual Cartesian geometric orientation for the y-axis. P21 corresponds
to F'x (Il(z) x Iél)), and P33 corresponds to Fix (I{g) X 1’;3)).

This diagram shows how the domain of the joint random variables is par-
titicned for Riemann sum calculation of expected value, for instance. Unlike
the histogram of Figure 1.1, it does not display the distribution function val-
ues, and an act of imagination is required to substitute some visual iinage of
Fx (I{m) X Ié"')) for Pmn.

But Figure 1.3 gives a partial histogram for a pair of joint random variables.
Even this becomes impractical when there are three or more joint random vari-
ables; and then the helpful histogram description of random variation has to be
abandoned in favor of purely analytical expressions of the form X ~ x[Qx, Fix].

For an elementary basic random variation such as the one in Table 1.1, the
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0-20 | 20-40 | 40 - 60 | 60 - 80 | 80 - 100
0- 50| 0.06 0.09 0.06 0.06 .03 0.3
50 - 100 | 0.04 0.06 0.04 0.04 0.02 0.2
100 - 150 | 0.08 0.12 0.08 0.08 0.04 0.4
150 — 204 | 0.02 0.03 0.02 0.02 0.01 (.1

| [ 02 | 03 | 02 [ 02 01 ] |

Table 1.5: Independent joint-basic observable.

table and histogram (Figure 1.1} convey a sense of the random variability: the
potential datum x, the sample space Qx, and the values of the potentiality
distribution function Fx. In other words, all the elements of X ~ x[Qx, Fi]
are displayed, or at least indicated, in the table and histogram.

It is difficult 1o provide a similarly intuitive display for joint random vari-
ability. Suppose there is independence in the joint height—weight data of Table
1.4. In that case the twenty joint likelihoods would be as in Table 1.5. The
sample space, sample joint data values, and potentiality distribution function
values on joint interval events can be partially illustrated in a two-dimensional
histogram, as indicated in Figure 1.3.

Given joint random variation X = (X, X3}, a random variable contingent
on (X1, Xo} is

f(X) = (X1 - E[Xi]) (X2 — E[X2]). flz)=(x:1 — E[X1]) (z2 — E[X2]),
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Figure 1.3: Part of histogram for two independent joint random variables.
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from which is obtained the covariance of X = (X, X3); the covariance being
Cov[X] = Cov{(X1, X2})] = E[f(X)] = E[fi(X1) fa(X2)],

where

LX) =X -E{X;], s=1,2
For the joint random variable of Table 1.3, the covariance can be estimated by
choosing a sample value (@, 22) in Iy x I for each of the joint intervals I, I,
and then calculating the sum of twenty terms:
> flrna2)Fx (I x ) Y (x1 — E[X)]) (22 — B[X2)) Fix, x,) (11 x I2),
2 (@ — E[X4]) (30 (2 ~ E[X2]) Fx (L1 x I2));

H

where
BX| =) «;Fx,(I}), i=12

Again, this estimate of the covariance has the form of a Riemann sum approx-
imation to a Riemann-Stieltjes double integral

E[f(X)] = /R f@)dFx

that is,
E[f(X1, X2)] / ([ flao, xo)dF x,, Xg)) (1.8)

If the two joint random variables are independent as indicated in Table 1.5, then

Bl Xl = [ ([ sy, ) ar,
and the Riemann sum estimate of the covariance can be calculated as
> (@1 —BX) (3 (@2 — BXG]) Fx (B)) Fx, (1)
which is
(3 @1 - BlXa) Px, (1) (3 (@2 ~ BIXa)) Fx, (1))

By definition of the expectation E, each of the factors is zero, so independence
implies covariance zero.

Example 13 Tb illustrate numerically, suppose the following sample values are
used to caleulate Riemann sum estimates for the covariance of the joint random
varighles in Table 1.5:

Ty: 100 30 50 70 90,
zg: 23 75 125 175
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Then the corresponding sample joint data consist of tweniy pairs:

(10,25)  (30,25) --- (90,25)
(10,75)  (30,75) .- (90,75)
(10,175) (30,175) .- (90,175)

The expected values of X1 and Xo are obtained from the marginal distributions
in Table 1.5:

Bl = £ o Fx (17)

BIX;] = Sioal P (B9) = 25203+ - 4+ 175x01

10x02 + -+ + 90x01 = 42

90.

The sample estimate of covariance is then given by the Riemann sum calculation
Z?:l ZLl (x(lj) — 42) (:}:g‘) — 90) Fix, . x2) (I{J) % Iékj), s0 independence im-
plies that Cov[( Xy, X2)] ¢s

3 (o - 42) F, (1) (Z (487 - 90) F, (;gf))) |

i=1 k=1
Numerical calculation of the Riemann sum in the format of (1.8) gives
(10— 42) % (25— 90) x 0.06 + - -+ + (90 — 42) x (175 — 90) x 0.01 = &

so Cov[{X1, X3)] =0, confirming that independence implies covariance zera. ()

1.12 Independence

The notion of joint varlability extends to arbitrary collections ( X; )ier of random
variables, and the notion of independence is extended accordingly. In Table 1.11
& third measurement—the age of the individual—could be included along with
joint measurement of an individual’s weight and height; giving T' = {1, 2,3}, and
random variables X; with intervals f; and potentiality distributions Fx,(;),
7 =1,2,3. The joint observation X = (X, X2, X3} could perhaps be illustrated
by means of a table like Table 1.4 above, but it is difficult to display three
variables in tabular format, and when there are more than three variables, tables
become unmanageable.

Tables can display a single variable in a vertical direction, as in Table 1.1,
and two variables can be displayed in vertical and horizontal directions, as in
Table 1.4. But that is practically the full extent of the tabular format. For three
or more variables, it is possible instead to use analytic Cartesian formulation,
and, to a limited extent, the corresponding geometric Cartesian representation.
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Observations (occurrences or joint data) @ = (1, @2, x3) and joint events (in-
tervals) I = I} x I; x I3 can be represented by means of orthogonal axes in
three dimensions, as in Figure 1.4. Like Figure 1.2, this diagram shows how
the domain of the joint randem variation is partitioned by sets I for Riemann
sum caleulation; and it does not attempt histogram-type display of distribution
function values Fx(I).

The joint potentialities are

Fx(I) = Fix, x,x5) (1 < I3 < 1),

and the friple-joint random variations X = (X3, X2, X3) are said to be indep-
endent if
Fix,, xa.x5) (00 X I2 X Iy) = Fx, () Fx, (I2)Fx, (I3)

for all possible choices of the intervals I3, I», I3 in the domains Q2x; of the joint
random variations.
In this case there are more marginals:

FXl(Il) = FX(II xR x R). F(XL,X2)(12 P IQ) = Fx(fl P 12 P R),

and so on, in various combinations of marginals. As before, consistency condit-
ions apply to these joint potentialities.

Given a family of joint random variations, sub-families can be independent
while the family members as a whole are not independent. Here is an illustration.
Suppose two independent random variables each has potential data values —1,
1, with potentialities 0.5, 0.5. The random variation formed by multiplying
the two potential data values is independent of each of the first two, but the

200 +
Height
150
I
100 + !:Il_r!2x13
m 4
!y
X 20 P 60 50 1o
Age 5 /1, Weight
75

Figure 1.4: Framework for joint random variables.
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three random variations, considered jointly, are not independent. Expressing
this more formally, for j = 1,2 we have X; ~ x;{Qx,, Fx,| with Qx, = {1, ~1}
and Fx, (1) = Fx,(~1) = 0.5.

The random variable f{ X} = f{X;,X5) := X, X, can be constructed, firstly
as an observable contingent on the joint observable X = (X, X3), and sec-
ondly as an elementary chservable ¥'. Accordingly, X1 X5 can be regarded as a
contingent observable with the following sample space:

Q = QX1 >(Q}(2
= {1,-1} x {1,—1}
= {(131)! (L_l)! (_1!1)3 (_13_1)}‘

The potentiality of each of these four joint observations is, by the independence
of X; and X,
Fx, () Fx,(j) =05 x 0.5 =0.25

for 7,7 = +1. The potential outcomes of the contingent observable X; X, cor-
responding to each of these four joint observations are, respectively,

with potentialities, respectively,
0.25, 0.25, 0.25, 0.25,
and expected value:
EXiX] = (1x1)x0.254+ (1 x -1} x0.254(—1x1) x0.25+(—1x~1)x0.25 = 0.
The distinct cutcomes of f(X) = X1 X> are
1, -1
with potentialities

Z{FX'L (B} Fx, () 1 5j =1} = 0.5, Z{FXH (i)sz (§) 1ij = —1} =05,

2 .4

respectively; thus establishing that the contingent random variable f(X;, X3) =
X1X3 can be expressed!® as an elementary random variable Y whose sample
space is

Ry =02 ={1, -1}

with potentialities

Fy(1)=05 and Fy(—1)=05

10T heorem 82 of Chapter 5 deals with pointwise equivalence of different representations of
random variables. A weaker, non-pointwise form of equivalence is introduced in Theorems 44
and 236,
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and expected value
ElY]=1x05+4+ (-1} x0.5=0,
giving
E [X]Xz] = E[Y],

where each of the expecied values is calculated using a different sample space
and different set of potentialities,
The joint outcomes of X; and Y are

(1,1}, (1,-1), (~-1.1), {-1,1)

with potentialities 0.25 in each case, so X; and Y are independent. Likewise
X9 and Y. The joint cutcomes, with potentialities, of X1, X5, Y are:

Joint outcome | Potentiality
(1,1,1) .25

(1,1,-1) 10
(1,-1,1) |0
(1,-1,-1) |025 (1.9)
(-1,1,1) |0

(-1,1,-1) |0.25
(~1,-1,1) |0.25
(-1,-1,-1) |0

Independence of X;, X3 and ¥ would reguire that the potentiality of each of
the joint “possibilities” listed in this table should equal

Fx,(1)Fx, (G)Fy (k) = 0.5 x 0.5 x 0.5 = 0.125,

for ¢,7,k = £1. This is not the case. In fact, four of the eight “possibilities”
or joint “cutcomes” listed are not actually possible. Thus Xy, X5,V are not
independent.

Note that if V' is denoted by X3, then we obtain a joint observable X =
(X1, X2, X3) with representation

X ~z[Qx, Fx|,

where © = (21, %2, 23) € {x. The sample space fx can consist of the ontcomes
in (1.9). Or we can regard the sample space as R x R x R with the outcomes
of (1.9) embedded in it. The potentiality distribution function Fx consists of
the potentialities of {1.9) or some equivalent in R, x R x R. Then each basic
X; can be represented in contingent form by

X; = fi{X), z;=fi{z), j=12,3,

where each © = (1,22, 23} is a joint outcome in (1.9}, and the potentiality of
z; = a occurring is

Z{FX(:E) s i) = fi(z, 30,73} = x5 = af.
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Thus the contingent variables f;{X) have representations
fJ(X) o= fj(T)IQX:FX] .? = 132:3:
which are equivalent to the representations

XJ; o~ .']2j[QXJ.,FXj], _,i = 1,2}3.

1.13 Stochastic Processes

For larger {and infinite) collections of joint observables, the Cartesian represen-
tation is more difficult to illustrate in a diagram, but the concepts follow the
pattern already evident. Suppose we have a joint-basic variation

X = (Xi)ter

of basic obscrvables X; where each ¢ belongs to a (finite or infinite) set 7. Then
the classes of joint events that should be considered are the possibilities that,
for any finite n and any selection of

f1veee b,
the observed values (or joint data-values) &y,,..., 2, of X¢,,..., X, satisfy
2, €4y, 1<7 <,
which is an instance of a class I of events I that can be denoted by
I=1I - x I, x RTVE i} (1.10)
with potentialities {Fx(I)}. The observables X;, ¢ € T are independent if, for
cach choice of n, #1,...,#,, and, correspondingly, all choices of I;;, we have

Fx(I)= H Fix, (Iy;).
i=1

This definition s consistent with the previous definition of independence of joint
observables when T consists of just two elements or three elements.

In a sense, when T is an infinite set, all potentialities are marginal, since an
infinite product

[T Fx,(&,)
i=1

will usually be zero, so it is more useful to consider potentialities in the joint
cylindrical intervals T of (1.10) above. Since the potentiality of any cylindrical
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interval is marginal, consistency conditions apply to all of these joint potentiality
values.

A random variable in this context is a real- or complex-valued function f(X)
of the joint random variation X = (X )7,

FX) =~ fz)[Qx, Fx(I)],

where I € I, and, with & = (z;)ser = 27 € RT = Qy, the set of possible values
of f{X)is
{f{(x)eer) - 2e € Qx,, tET}. (1.11)

Table 1.2 describes a procedure for calculating the expected value of a random
variable involving a finite number of joint observations {T finite). It might be
anticipated that, with T infinite, the expected value E[f{X}] could be estimated
by a similar Riemann sum calculation:

> F(#)er) Fx(D), or Y fle)Fx(D),

where the joint intervals I {cylindrical intervals (1.10)) partition the domain
{1.11) of the random variable.

In the following chapters the ideas outlined above are developed in more
detail. Omne objective, as indicated earlier, is to present the main results of
probability theory in a Riemann sum format. In other words, the aim is to use
Riemann sumns (corresponding to the intuitive approach of Tables 1.2 and 1.4
above) and Riernann sum-based integration, instead of the traditional measure
theory and Lebesgue initegration.

Another objective of this book is to formulate the Feynman path integral
theory of guantum mechanics as a branch of probability theory. The formal
similarities between the Feynman theory and the theory of Brownian motion are
well known. It was demonstrated by Muldowney [162] that these two theories
could be expressed in a common framework of Stieltjes-type integrals using
Riemann sum constructions. In this book these subjects are formulated in
a probability framework based on the Stieltjes-complete and Burkill-complete
versions of the Henstock integral [94].



