
Basic Game Art Concepts

Some people don’t  want to take games seriously. This isn’t a lament
against parents lashing out over gore or people who think that games are a waste of time.
It is instead a statement about a popular assumption that making video games doesn’t
involve a lot of work. This assumption is a problem in many game schools, whether they
focus on the art, programming, or overall design of games.

In many ways, the art produced for a video game is not “art” in the traditional sense of
“fine art”—content created solely for enjoyment by the senses or for aesthetic value. The art
created for video games is, rather, part of the process of design or “applied art.” But there
are two important reasons why video game art is different from either animation or fine
art. First, game art is interactive for a player. Second, game art is rendered in real time.

Many quests begin not with an instant foray into death and danger, but instead with
an initial gathering of knowledge. Indeed, Sun Tzu’s The Art of War does not begin
by discussing battle right away, but with a chapter on planning. This is how we will
approach your own quest to be a game character artist—and perhaps your leap from
game consumer to creator.

This chapter covers the following topics:

■■ Game design workflows

■■ Creating game assets

■■ Understanding and optimizing 3D game art

■■ Working with game engines

■■ Scripting happens

C h a p t e r 1

172728c01.indd 1 5/16/12 7:56 AM

CO
PYRIG

HTED
 M

ATERIA
L

2  ■   Chapter 1 : Basic Game Art Concepts

Game Design Workflows
As a young field, game design has no prescribed “workflow” or “design method.” This
fact means that game studios can establish their own ways of working—within cer-
tain parameters, of course. Unless you are the rare person who can program like John
Carmack and draw like da Vinci, you will most likely be working with a team. In many
ways, this is one of the current strengths of the gaming industry: Game designers come
from all fields and all walks of life. Consequently, team members have a broad range of
influences to pull from that helps them create the best game possible.

Of course, games have to be fun. Game designers test this aspect with playtesting:
inviting people to play early versions of a video game. Typically, games may see outside
playtesters coming in at a stage of near completion known as the “beta” stage. At this
point, many of the mechanics are already set in stone and the game has its artwork added
to the engine. Because of this, some designers urge playtesting earlier in the process.

Other “set in stone” parts of the game design process involve the business end of
things. This aspect is most directly embodied in the relationship between developers and
publishers. The development team, which puts the game together, can consist of program-
mers, artists, writers, testers, producers, and composers—anyone involved in the legwork
of making the game. Publishers oversee financial affairs, legal issues, public relations, and
marketing of the game, turning it into a viable product.

Projects are often structured in milestone-based schedules, where the publisher pays
the developer in phases. These phases generally include:

Concept  ​Concept planning, budget, and contract negotiation

Preproduction  ​Prototypes, design documentation, sketches, and basic design

Production

“Alpha” Development  ​Assets, levels, and early code

Beta/Quality Assurance  ​Playtesting with outside testers, utilizing beta code, and try-
ing to reach launch or “gold” status by eliminating bugs

Gold  ​The point where the game is ready for mass production and retail and review
copies are sent out to press

Beyond these phases, the developer has freedom to follow their own design methods
as long as their obligations to the publishers are met. This has led to several distinctive
design methods employed by studios; we’ll look at some useful ones next. Try them in
your projects and mix and match as you find appropriate.

Phase-Based Design
Phase-based design is a literal interpretation of the milestone-based schedule employed
by many game publishers. It is also one of the most commonly used methodologies in the

172728c01.indd 2 5/16/12 7:56 AM

Game Design Workflows  ■   3

industry. In this process, departments operate separately but on a linear schedule that
works toward final release of a game. The game goes from early concept stages to the pro-
duction, or “alpha,” level. Playtesters are then brought in to play and evaluate the game
in the “beta” stage of development. Finally, the game is polished and sent for release, the
“gold” stage.

Although many great games have been developed using phase-based design, other
games have been deemed failures, often due to the separation of departments trying to
create a cohesive product and the lack of early playtesting. While an industry standard,
designing in this way also runs the risk of the design team suffering from poor communi-
cation and developing a game to near completion before someone realizes that it is no fun
to play! Individual studios have, over time, developed their own methods for resolving
these issues. All of the following methodologies follow the “alpha, beta, gold” standard
but differ from phase-based design by attempting to address its intrinsic weaknesses.

The Cabal
Valve Corporation employees created this method while working on the original Half
Life. The Cabal is a collaborative design method where several representatives of various
design departments, such as programming, writing, animation, and level design, work
closely on one part of a game. The crux of this method is teamwork among departments
that may otherwise work separately. In this way, game elements fit together in a more
cohesive manner and mechanics work together with art to create a livelier world.

This process is further discussed in the Gamasutra essay, “The Cabal: Valve’s Design
Process for Creating Half Life” (http://www.gamasutra.com/view/feature/3408/the_cabal_
valves_design_process.php).

Playcentric Iterative Design
In her book Game Design Workshop (Morgan Kaufmann, 2008), game designer Tracy
Fullerton describes a design process that initiates playtesting as early as possible.
Fullerton argues that designers, upon conception of a game idea, should decide what the
basic gameplay mechanics will be and create paper prototypes right away. The reason-
ing of this method is that if core gameplay of a game is fun, then it is worth developing.
Further prototypes are developed as features are added to the game. Fullerton argues that
a game should pass through several phases of paper prototyping before a design docu-
ment is even written. In this way, the document can become a more effective guide for the
further developing of the game.

The structure of this method is based on iterative design methods of software devel-
opment, where software is prototyped and then tested. If any bugs or difficulties of use
are found, they are documented and another phase of rebuilding and testing is done.

172728c01.indd 3 5/16/12 7:56 AM

4  ■   Chapter 1 : Basic Game Art Concepts

Naturally, as fewer things are fixed, or as fewer large-scale things are fixed, the game pro-
gresses to its final gold state.

This selection of design methods offers a sample of how studios customize their design
process to create better games. While this book focuses on art asset creation, it is help-
ful to understand how individual assets, or pieces of art that go into the game, fit into the
workflow of a whole game. If you understand how your art will be used, the transition
from Blender to a game engine will be easier.

Now that you have an overview of the game design process, it is time to look at how art
assets are planned and created.

Creating Game Assets
Creating characters is an intricate part of the concept process. Good character art is the
result of not only interesting artwork, but often good writing. In line with Fullerton’s
process for good game design, much of the work for character development is done on
paper, where the character’s personality is developed. When planning characters, try to
come up with ideas for the character’s family, background, tastes, political and religious
beliefs, and possibly even more personal/risqué parts of what makes them who they are.
Although the written part of character creation seems unrelated to the art portion, the
character’s look can depend greatly on personal preferences established in your text. A
character’s animation may eventually be impacted by this information, as the way he or
she moves and reacts will be determined by personality traits.

Creating Concept Art
When a character is well defined in writing, their look is defined with a series of perspec-
tive or action drawings. Main characters obviously require a lot of design, not only to
make them visually engaging but also to make them marketable. Other characters can
require varying degrees of elaboration.

The role of concept art in game asset production cannot be downplayed: Concept art
gives designers an educated idea of what to produce. It also establishes the look of a game
well before asset production has started. Even for basic characters, an understanding of
the game’s look in 2D can be incredibly helpful once 3D work begins. It can be difficult to
work from 3D right away when it comes to character art.

Digital Painting
A key method of concept art creation is digital painting. Digital painting is the act of
using the paint tools of a photo-manipulation program to create conceptual imagery.
Examples of this type of software include Adobe Photoshop, GIMP, Corel Painter, and

172728c01.indd 4 5/16/12 7:56 AM

Creating Game Assets  ■   5

ArtRage Studio Pro. Digital painting utilizes features of art programs such as layers,
filters, and burn and dodge tools to make the process of painting much faster than with
traditional real-world media. These paintings can illustrate a great deal of potential game
elements and provide a clear vision of what the game will eventually look like. Things that
benefit greatly from being designed as digital paintings include

•	 Characters

•	 First-person views of potential
game levels/locations

•	 Weapons

•	 Vehicles

•	 Environmental objects

•	 Storyboards

•	 Model sheets

•	 UV layouts

As you can see, this list describes
nearly everything in a game. Digital
painting is an effective method for creat-
ing concept artwork if you have the time
for a full development cycle. Figures 1.1, 1.2, 1.3, and 1.4 show several examples of digital
paintings used to conceive game elements.

Figure 1.1
Digital painting for
a level

Figure 1.2
Vehicle design

172728c01.indd 5 5/18/12 8:43 AM

6  ■   Chapter 1 : Basic Game Art Concepts

Model Sheets
Model sheets (Figure 1.5) are an incredibly important aspect of character development
that will save you a lot of work and frustration. Blender and other 3D programs have fea-
tures that allow you to view their model in a wireframe or x-ray mode so that if you are
modeling from model sheets you can essentially trace in 3D.

There are several ways to view the process of creating model sheets. Nearly everyone
agrees on several things: that characters should have their feet shoulder-width apart, that
there should be front and side views, and that arms should not be down against the charac-
ter’s torso. These guidelines help create models for usable characters. In 3D modeling you
have to be able to see the polygons that you are working on; this is why you need to pose
the legs and arms. These two guidelines also help in eventual animation, as a character
with better-defined groin and armpit geometry will animate more naturally. The front and

Figure 1.3
Character design

Figure 1.4
Enemy design

172728c01.indd 6 5/16/12 7:56 AM

Creating Game Assets  ■   7

side views are there to show the character from multiple angles and eliminate guesswork.
In fact, there is nothing that says you cannot create a back, top, or bottom view. Whatever
will make your life easier is what you should have as a model sheet view.

Artists have differing opinions about how to position the character’s arms and whether
or not the model should appear relaxed. Many model sheets show the character in what
is known as a “t-pose,” with the arms positioned straight out from the sides. Others
have arms that bend down slightly in a more relaxed position. This is often paired with
relaxed hands and slightly bent knees. The reason for this is that when the character is
animated, they will appear less stiff and robotic when they move. While this is great, keep
in mind that the major advantage the t-pose gives you is the ability to model geometry
at 90-degree angles. You don’t need to take extra time to do odd rotations when working
this way.

A good method is to work with a mixture of both methods for the arms. Create your
model sheet and initial geometry with a t-pose and later rotate the arm geometry and
hands to be in a slightly more relaxed position in 3D.

Figure 1.6 shows the finished model against the t-pose model sheet.
Another potentially useful precaution is removing the arm from the side view of the

model sheet. Sometimes arms and hands can get in the way of details on the sides of
the torso. When modeling the basic torso model, having a “chopped off” view of where
the arm will be even helps create a nice template for the model’s shoulder geometry
(Figure 1.7).

Figure 1.5
Model sheet

172728c01.indd 7 5/16/12 7:56 AM

8  ■   Chapter 1 : Basic Game Art Concepts

Figure 1.6
Character t-pose

sheet vs. the relaxed
model

Figure 1.7
In this view, the

highlighted portion
shows the shoulder

geometry being
traced around the
shoulder lines on
the model sheet.

172728c01.indd 8 5/16/12 7:56 AM

Understanding and Optimizing 3D Game Art  ■   9

Understanding and Optimizing 3D Game Art
The logical progression from model sheets is to begin work on the 3D character model.
When it comes to 3D art, game artists have it comparatively rough compared to other 3D
artists. The next few sections of this chapter will discuss the differences between the two
fields and what game artists can do to optimize their work.

3D Object Construction
You may be familiar with the xy coor-
dinate plane, a system of two axes, one
going horizontal (x-axis) and one going
vertical (y-axis.) If you imagine that these
axes each have some unit of measurement
along them that can be indicated numeri-
cally, you can describe where certain
points are within the space of the coordi-
nate plane as an expression of where they
are on x and y (Figure 1.8).

If you were to draw another point on
the plane and connect them, you would
create a line (Figure 1.9). When multiple
lines are created on the plane and arranged into closed shapes, the resulting two-dimen-
sional shapes are called “polygons.” The simplest of these is a triangle, consisting of three
lines (Figure 1.10).

(3,4)

y-axis

x-axis

(8,7)

Figure 1.8
This point can be
said to be at point
(3,4) on the coordi-
nate plane because
it is at 3 units on the
x-axis and 4 on the
y-axis.

(3,4)

y-axis

x-axis

Figure 1.9
Line on the coordinate plane

Figure 1.10
Triangle on the coordinate plane

(6,–2)

(3,4)

y-axis

x-axis

(8,7)

172728c01.indd 9 5/16/12 7:56 AM

10  ■   Chapter 1 : Basic Game Art Concepts

Now let’s add a third axis, the z-axis. If shapes on the xy coordinate plane can be said
to be two-dimensional, objects on the xyz plane are three-dimensional. Points and lines
have three-part coordinates consisting of their location in relation to the x-, y-, and z-axes
(Figure 1.11). Also, like their 2D counterparts, polygons exist in 3D along these axes and
can be combined to create 3D forms such as cones, cubes, spheres, and many others, as
shown in Figure 1.12.

z-axis

x-axis

(3,4,4)

(–4,–3,9)

y-axis

These types of objects and measurement systems are the basis of what we know as 3D
computer graphics, also known as computer-generated imagery (CGI). When you work
with objects in 3D modeling programs like Blender, you manipulate the points, lines, and
polygons of an object to create complex forms.

In the computer graphics industry, the points of a model are called vertices (vertex in
the singular). The lines between vertices are called edges. The three-dimensional forms
that are created when at least three vertices are connected by edges are called polygons. If
a polygon has a surface on it, this is called a face. Figure 1.13 illustrates these concepts.

When polygons or faces are arranged in such a way that they create a three-dimensional
form, this is called a mesh. Some meshes of basic 3D forms are so widely used that

they come premade in 3D programs. These are called
primitives. The objects in Figure 1.14 are some of the basic
mesh forms available in Blender. Many are primitive
objects, though there are some more complex ones like
Suzanne the Monkey.

Figure 1.11
The xyz coordinate plane with a line

Figure 1.12
The xyz coordinate plane with a polygon

z-axis

x-axis

(3,4,4)

(–4,–3,9)

y-axis

(3,2,3)

Figure 1.13
Illustration of ver-

tex, edge, polygon,
and face edge

vertex

polygon
with face

172728c01.indd 10 5/20/12 9:40 AM

Understanding and Optimizing 3D Game Art  ■   11

Setting the Scene
One of the ways meshes are made to look like realistic objects is through the use of
materials. Materials are sets of directions in 3D programs that tell an object how to
simulate the look of real-world substances. Materials can make an object look shiny,
matte, opaque, transparent, smooth, rough, and many other types of things. 3D materials
consist of a shader, a program that describes how a material reacts to light, and textures,
which will be described in greater detail later in this chapter.

The final elements of a 3D scene are the things that allow users to see their meshes.
These are the lights and cameras. Lights in 3D applications are just like lights in the
real world, providing illumination and shadowing to otherwise dull scenes. In many
programs, renderings done before lights are added look very flat, whereas in Blender
the scene can appear pitch-black. The other element, the camera, simulates the eyes of
a viewer looking at the mesh. In Blender, final renders are always done from a camera’s
point of view. Likewise in games, the camera is the eye of the player in the game world,
and its relation to the player character determines whether the game is a first-person,
third-person, top-down, side-scrolling, or some other style of game.

Interacting with 3D Models
To manipulate meshes and their vertices, edges and faces, lights, and cameras, use their
3D programs’ transformation tools. These tools usually take three forms: translate (move),
rotate, and scale. These tools change an object’s position on the xyz coordinate plane. All
this is done with simple keyboard and mouse commands that offer a great deal of free-
dom when creating your 3D forms.

Figure 1.14
Primitives in
Blender include
cubes, cones, cylin-
ders, and spheres as
well as more com-
plex mesh forms.

172728c01.indd 11 5/16/12 7:56 AM

12  ■   Chapter 1 : Basic Game Art Concepts

Rendering and Polygon Counts
For film and animation, 3D artists strive for images to appear as close to reality as pos-
sible. Even when creating cartoony characters, artists create a realistic look for things like
a character’s skin, eyes, hair, clothing, and the materials in the character’s surroundings.
Games are becoming increasingly realistic, but they do not yet have the ability to simulate
reality like 3D movies and animations do. This is because the impressive visuals in films
are not actually 3D, but instead are 2D rendered images.

When 3D film animators get to work, they model a character in a 3D program like
Blender but do so with a focus on visual quality. Often, this requires an artist to apply a
smoothing modifier to the character, such as Blender’s Subdivision Surface modifier, also
known as SubSurf for short (Figure 1.15).

The Subdivision Surface modifier takes the artist’s 3D model and smoothes it, creat-
ing a polygon surface under the actual surface of the model that has more polygons on
it. With more faces come more edges and vertices, which amounts to more data that the
computer has to think about.

Figure 1.15
The Subdivision

Surface modifier
smoothes a cube

into a sphere.

172728c01.indd 12 5/16/12 7:56 AM

Understanding and Optimizing 3D Game Art  ■   13

When everything is said and done, the 3D animator will render the image. Rendering
is when the computer gathers all of the geometric data of the model as well as material
information applied to it and then computes how these things would react in the real
world. The output of this process is a final image called a rendering. Renderings are 2D
images and contain no 3D data. When 3D models are animated, the renders of each
frame of animation are stitched together into a movie.

Both rendered images and movies can take hours, days, or even weeks to produce.
Some frames of animation in modern movies can take 38 hours to render individually.
Studios use render farms, banks of linked computers rendering at one time, to compen-
sate for the long hours. Once they are produced, these animations can be stored and
viewed easily.

Game artists have the challenge of producing their work for real-time rendered 3D
imagery. For every frame of animation, a game’s program must compute the 3D models,
lights, textures, and interactions between game objects so they can be displayed on the
player’s screen. To put this in plain English: A video game has to do the rendering tasks
of computer animations and then some as the game is being played! This means that game
artists have to take extra steps to ensure that the game will run smoothly. The first, and
perhaps biggest, way that the game artist can accomplish this is by controlling polygon
count. The polygon count is displayed at the top of the Blender window in an area called
the Info Header. The polygon count is indicated in the Info Header with the title “Fa” for
faces (Figure 1.16).

Figure 1.16
The polygon count
is typically dis-
played at the top of
the Blender window
and shown with the
title “Fa” for faces.

172728c01.indd 13 5/16/12 7:56 AM

14  ■   Chapter 1 : Basic Game Art Concepts

Modifiers like Subdivision Surface can increase the number of polygons in a model, so many

game designers do not use them.

Video game consoles and engines have what are known as polygon budgets, a “highest
number” of polygons that can be shown on the screen at one time. These limitations do
not mean that your 3D models will look less interesting than those of your 3D animator
friends. Quite the contrary—your models will be more efficient.

It is sometimes difficult to gauge how many polygons should go into a model. Often, it
depends on three important factors:

•	 Importance—how important the model is

•	 Distance—how far the player is from it

•	 Interactivity—how much the player will interact with it

Consider the player character from Epic Games’ Gears of War, Marcus Fenix, who
clocks in at about 15,000 polygons. He is an important model because he is the player’s
character in a third-person video game and will need to act in cutscenes. Indeed, a face
capable of acting will require a lot of polygons on its own—it could be where over half the
polys in even a simple character model are placed. As Marcus is the player’s character,
he is the most interactive model in the game; he is the player’s avatar in the game world.
Indeed, he will be viewable very close to the screen and seen closely in cutscenes, so he’d
better be his best dressed: 15,000 it is.

A crate or far-away building, on the other hand, can be made for a lot fewer polygons.
Even round objects, like an aluminum can or the scope on a rifle, are often made of cylin-
drical objects with only eight sides. The aforementioned crate can be a simple box solid
with six sides; alternatively, it could have some embellishment to give it character. Again,
this depends on how far the player is from this object and how much interaction he or she
will have with it. The distant building, on the other hand, may be only that six-sided rect-
angular solid with a texture applied to create the illusion of architectural features. There
is no reason to waste polygons on something players will barely see.

The poly counts of monsters and enemies can differ greatly depending on what they
are and the three aforementioned factors (importance, distance, and interactivity.) An
important boss may have a poly count equal to or greater than that of the player, but the
lowest minion may be down in the hundreds or low thousands. If the character appears
only at a distance, the poly count may be even lower. All in all, you must weigh many fac-
tors when deciding how many polygons to construct enemies with. Simple enemies can be
much lower than the player character whereas humanoid ones may be half to two-thirds
of their poly count. Remember that when considering how low to make the polygon count
on enemies, it is hard to tell the difference in quality when they are running full speed or
ducking behind cover.

172728c01.indd 14 5/16/12 7:56 AM

Understanding and Optimizing 3D Game Art  ■   15

A fourth factor in how many polygons something can have—a factor so important that
it deserves its own paragraph—is the power of the engine and console. Gears of War was
built on the Unreal engine, which in its various forms has pushed the envelope on visual
quality in video games. Additionally, the game is on the Xbox 360, a modern home con-
sole. Not every engine or console is as powerful as those for commercial games, however.
It is important to know that models like the one for Marcus may be difficult to work with
if you are not launching onto similar hardware.

Since Unity is capable of delivering content both to powerful modern consoles and to
less powerful mobile devices, it is important to practice using lower poly counts. In ear-
lier model iPhones, for example, a budget of 7,000 visible polygons on the screen was the
maximum for optimum performance. This is an incredibly light number compared to the
hundreds of thousands possible on consoles. This might require even main characters to
be around 1,000 to 2,000 polygons. Link from The Legend of Zelda: Twilight Princess on
the Wii, on the other hand, is about 6,900 polys and is shown among some very detailed
environments. Therefore, the polygon budget for Wii games is much higher than on some
mobile platforms, though not as high as high-definition consoles.

Model Topology
In addition to polygon count, it is incredibly important to note that the polygons should
be arranged properly on a model so they can animate smoothly. The arrangement of poly-
gons on a 3D model is commonly called topology, and is something that many new 3D
artists struggle with.

Novices whose background is in other forms of art where the final product is key—
especially those who have worked in animation with smoothing modifiers—often model
wildly, trying to get the best outcome possible on their characters without giving con-
sideration to topology. When they switch out of smooth mode, they are often shocked to
find that their polygons are overlapping one another and entire body parts are awkwardly
sticking up through each other. In order for your model to properly function, you must
lay out the topology properly. Here are the three most important rules to follow:

•	 Make sure that all polygons are quads (polygons with four sides).

•	 Joints on extremities should have at least three edge loops.

•	 Lay out facial geometry with loops around openings (Figure 1.17).

You’ll practice this later in the book, but for now, keep in mind that quads are what
3D animation programs know how to properly distort for animation. Triangles (polygons
with three vertices) are possible in Blender but will not deform properly when moving.
Any polygon with more than four vertices is known as an ngon, with “n” represent-
ing a variable number. You should avoid these altogether when modeling if you want to

172728c01.indd 15 5/16/12 7:56 AM

16  ■   Chapter 1 : Basic Game Art Concepts

animate your mesh. This is simple to avoid in Blender because as of this writing, Blender
is incapable of utilizing ngons in the way that other programs can.

Additionally, know that the number of edge loops in joints and facial features further
aids in the animation of a computer model. Having three edge loops at joints allows body
parts such as knees and elbows to bend naturally. Likewise, the loops in facial features
allow mouth and eye movements to look more natural.

Understanding Normals
Imagine you have created a great 3D model and are ready to bring it into your Unity proj-
ect, only to find that half of your character’s polygons do not show up.

There are two likely reasons that this can happen when you bring a 3D model from
Blender into Unity, one of which will be mentioned in Chapter 7, “Rigging for Realistic
Movement.” The other is that your character’s normals may not be facing the right way.

Normals, as applied to 3D modeling, describe the way that a polygon’s visible surface is
facing. Within Blender’s default settings, polygons are not two-sided objects and, in fact,
are only visible from one side. If you were to look at a polygonal surface with normals fac-
ing inward, for example, you would not be able to see it until you went inside the surface
of the model. In Figure 1.18, an image of basic game-level geometry, the exterior portions
have normals facing outward, whereas the hallway’s normals face inward so players can
see the inside of the dungeon.

Figure 1.17
Character model
face highlighting

topology

172728c01.indd 16 5/16/12 7:56 AM

Understanding and Optimizing 3D Game Art  ■   17

Remember to watch which way your model’s normals are facing as you model—incor-
rect normals can cause a lot of extra work later on. Blender has a fairly accessible set
of functions for both viewing and flipping normals that will be covered in Chapter 3,
“Modeling the Character.” Likewise, Unity has settings for optimizing normals upon
model import; those will be covered in Chapter 10, “Implementing Your Zombie in a
Unity Game.”

Using Textures Wisely
With all of these concerns over polygon counts and other modeling traps, it is a wonder
that video game models look as good as they do. The greater-than-low-poly level of detail
you find when playing most games, however, exists because of textures.

What are textures? They are image files applied to the surface of a 3D model that
change its outward appearance. Textures are one of your most powerful weapons in the
struggle against bad game art and graphics. Even the most basic type of texture, the color
map, can greatly improve the look of a 3D model. Here are some types of texture maps
you will encounter:

Color Maps   ​Also called “diffuse maps,” these textures give the 3D model color and defi-
nition to features such as body parts and clothing.

Figure 1.18
In this image of
basic game-level
geometry, normals
are shown with light
blue lines.

172728c01.indd 17 5/16/12 7:56 AM

18  ■   Chapter 1 : Basic Game Art Concepts

Bump Maps  ​As shown in Figure 1.19, these textures are used to make a flat surface
appear bumpy. They are typically black and white, with black representing low points in
the surface texture and white representing the high points.

Normal Maps  ​A more powerful version of the bump map, a normal map (Figure 1.20)
appears as various RGB values. These textures can make even the lowest-poly model
appear high-poly. These textures are created by analyzing the surface of a high-polygon
model, such as those created in ZBrush or Blender’s sculpting mode, and “baking” them
into an image that can be applied as a texture. This type of texture is discussed in-depth
in Chapter 5, “Sculpting for Normal Maps.”

Figure 1.19
Bump map

Figure 1.20
Normal map

172728c01.indd 18 5/16/12 7:56 AM

Understanding and Optimizing 3D Game Art  ■   19

Alpha Maps  ​Alpha maps (Figure 1.21) are incredibly useful textures that allow 3D artists
to create organic shapes from simple planes by affecting the planes’ transparency. In this
way, artists can create things like leaves, foliage, chain link fences, dirty windows, and
many others with simple geometry. They are also useful for creating particle effects—
fountains of plane objects that can imitate smoke, fire, magic, and other special effects.
These are often displayed in grayscale, with white areas remaining visible, black areas
becoming clear, and everything in between becoming translucent.

Specularity Maps   ​These textures control the specularity, or shininess, of a model’s sur-
face. These appear as images having color values ranging from white to black, with white
being the shiniest parts and clear being matte-finished areas (Figure 1.22). These are use-
ful in creating the look of worn metal or other materials with varied levels of shininess on
their surfaces.

Figure 1.21
Alpha map

Figure 1.22
The same image
used as an alpha
map is applied here
as a specularity
map. Note how the
shinier areas are
those mapped as
white in the texture.

172728c01.indd 19 5/16/12 7:56 AM

20  ■   Chapter 1 : Basic Game Art Concepts

Reflection Maps  ​Also called environment maps, these maps create the illusion that a
surface has a mirror-like shininess. The object appears to reflect scenery around it, but
in reality it is displaying an image moving across its surface. This image is often a pan-
oramic view of the environment surrounding the object. You often see these used in rac-
ing games that depict realistic car models.

Illumination Maps   ​Like specularity maps, these images have a color palette that ranges
from white to transparent, with white showing what areas of a model should appear to
glow on their own. The most familiar use of these textures is in lit windows for night-
time cityscapes. They can also be useful for creating glowing eyes in powerful characters
or enhancing special effects. You will use a map like this on your zombie in Chapter 6,
“Digital Painting Color Maps.”

Working with Game Engines
Game artists go through all of the steps of preparing 3D models so that the models will
eventually work in a game engine—a program that simulates the real world and makes
video games function. In this book, you will be utilizing the Unity game engine to make
your zombie interactive. However, there is a wide range of game engines available to the
do-it-yourself (DIY) game designer.

Game engines are unique among types of software in the gaming industry in that
there is no single industry standard that everyone uses. While we will be using Unity
in this book, it is useful to understand the scope of engine choices available. The “big
name” choices include the Unreal Engine, CryENGINE, and Source Engine, though
many studios elect to create their own tool sets. The important thing to remember when
choosing and working with a game engine is that it should fit the skills you have and the
scale of your project. It does not make sense to give yourself a headache with a 3D engine
when your project will look just fine in a 2D engine like Game Editor or FlatRedBall.
Game engines vary greatly. Some are more focused on scripting and others are largely
WYSIWYG (what you see is what you get) art-based interfaces that show you what your
game will look like as you design.

 Unity offers the best aspects of many other game engines to the art-focused game
designer. It has a WYSIWYG-style interface that lets you drag and drop your art assets
into a level. It also has an intuitive importing system that relieves you from many of the
headaches that other engines put you through to bring in models. If you are learning
about 3D game creation for the first time, Unity is a great choice for learning some of
what the game art field involves because it lets you spend more time learning how to work
with engines and less time slamming your head into your desk.

 When learning about game engines, you must understand the general workflow
of bringing artwork into a game and getting it to work, as this is the basis of the game

172728c01.indd 20 5/16/12 7:56 AM

Scripting Happens  ■   21

artist’s work with engines. Working with game engines seems overwhelming at first, but
if you take to heart the advice in this chapter about polygon count, topology, normals,
and the use of textures, you will find that providing art for a game can be relatively
painless.

Scripting Happens
Scripting is a topic that many aspiring game artists avoid like a plague but one that is nec-
essary to make great games. Scripting is the act of assigning behaviors to game art assets
through a scripting language. An engine’s scripting language is a type of basic coding that
tells the engine how to make an object act while the game program is running.

Scripting is the other half of game art: Once you have an art asset, you need to give
the game engine directions so it knows what to do with the asset. A piece of game art, no
matter how amazing, is largely useless in a game without a script telling it what to do. It is
“all dressed up with nowhere to go.”

Many game engines have proprietary scripting languages. By contrast, Unity uti-
lizes three different, widely available languages for scripting: JavaScript, C#, and Boo.
JavaScript is a powerful language primarily used for adding functionality to websites. It
is also “object oriented,” which means that elements of code are organized according to
the object utilizing them. This makes object-oriented languages simple to understand for
newcomers. C#, another object-oriented language, is designed to operate on Microsoft’s
.NET Framework, a framework for developing software in Windows. Boo is a derivative
of the open-source language Python, which itself emphasizes code readability. Python is
also the scripting language of Blender, which makes knowing Python and the languages
it has inspired a versatile skill.

If this sounds a bit over your head, fear not! When you encounter scripting in Chapter
10, you will not be alone. This book will walk you through several useful scripts and how
to implement them in the Unity engine, which will put the interactive icing on the cake
for your game character project.

So, with all of your newfound game art knowledge, O intrepid DIY game designer, let
us venture onward into the frontier of 3D modeling and learn the basics of Blender, the
open-source 3D art environment!

172728c01.indd 21 5/16/12 7:56 AM

172728c01.indd 22 5/16/12 7:56 AM

