
Developing for Android
Tablets and Smartphones

WHAT’S IN THIS CHAPTER?

 ➤ Getting your tools set up

 ➤ Testing your tools setup

 ➤ What a modern Android application looks like

 ➤ Introducing a concise application framework that works on all sizes
of Android devices

 ➤ Exploring Android component lifecycles and the Android task model

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples in this chapter are available at https://github.com/
wileyenterpriseandroid/Examples.git and as a part of the book’s code download at
www.wrox.com on the Download Code tab. At various points throughout the book, the
authors refer to the “Examples” directory using a pseudo-variable called, “CODE”. Readers
can either explicity set this value as a shell variable or can just keep in mind that the variable
refers to the book example code directory.

This book is about best practices in handling data for enterprise application across the client
and RESTful backend services, and this chapter gets you through the basics at a brisk pace
while providing a framework, which is the starting point for the example code in this book.
The advice in this chapter, especially the advice to pay attention to Android component
lifecycles, will enable you to complete an Android coding project effi ciently, without having to
know everything about Android, and with a minimum of grief.

Many Android books were written before there were Android tablet devices, and before the
APIs central to creating good UIs for those devices were a mainstream concern for Android
developers. This chapter starts by assuming your apps will run on both tablets and handsets
and provides a framework that embodies the best practices for doing so.

1

c01.indd 1c01.indd 1 26-09-2013 10:57:5626-09-2013 10:57:56

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

This chapter also covers tools — and knowledge resources for the tools — that you need to follow
the code examples in this book.

This isn’t a beginner’s book. If this is your fi rst time programming Android applications, use the
information resources listed here for fi lling in the gaps in your knowledge of and experience with
Java and Android programming.

ANDROID IS A JAVA OPERATING SYSTEM

Almost all applications and all system services in Android are coded in Java (and other JVM
languages). Code is compiled to Java bytecode before being translated into Dalvik bytecode, which,
in turn, runs in the Android managed runtime environment. These characteristics make Android
at once familiar and strange: If you have used Java or a similar managed language before, you will
fi nd Android code fairly easy to read. You will fi nd the tools for Android programming familiar.
Many aspects of Android’s managed language run time are identical to Java. Android relies on Java
base classes, and wouldn’t work if the semantics of the Android runtime environment were not very
similar to those of a standard Java runtime environment.

If you come to this book not having written Android-specifi c code, you have probably never written
code for an operating system like Android. Android uses managed language runtime concepts in
ways you may fi nd unfamiliar, especially in the ways Android implements modularity and memory
management. In many ways, Android is the most sophisticated environment for interactive Java
programs ever created.

WARNING Pay close attention to the basics of Android application program-
ming and follow the key practices described in this chapter. If you try to impose
your coding practices from server Java or MIDlets, or attempt to thwart the way
the Android system works with applications, bugs and frustration will result.

YOUR TOOLS AND YOUR FIRST ANDROID APP

This section covers setting up your programming tools. You will run your fi rst example application,
which is a user interface framework.

Prerequisites and Getting Ready
You can use any of the three major operating systems for PCs to develop Android software: Linux,
Mac OS, or Windows. You will need three independent pieces to assemble your toolchain for
creating Android applications: The Java JDK, Eclipse, and the Android SDK. All three of these
pieces work on all three operating systems.

The place to fi nd reference information on developing Android is http://developer.android
.com and the place to get started with instructions on installing your tool set is http://developer
.android.com/guide/developing/index.html.

c01.indd 2c01.indd 2 26-09-2013 10:58:0026-09-2013 10:58:00

Your Tools and Your First Android App ❘ 3

Follow the instructions at the URL to install the tools you need. If you follow the instructions
correctly, you will install a toolchain consisting of the three pieces listed previously.

Java and Java Knowledge
The fi rst piece of the tool set you need is the Java Development Kit, or JDK. The JDK provides
both a Java runtime environment, which is needed by Eclipse, and some tools for creating Android
applications.

Java is a cross-platform runtime environment and is the key to developing Android software on any
of the top three personal computer operating systems.

You will write your Android programs in Java, even though the runtime environment in the Android
operating system is internally substantially different from Java runtime environments. Although you
don’t need to know the details of the way your programming tools are implemented using Java,
you have to know Java to write Android programs. There are numerous tutorials on the web and
books to help you learn Java. One free resource for learning Java is Oracle’s Java Tutorials site:

http://docs.oracle.com/javase/tutorial/java/index.html

Eclipse and Eclipse Knowledge
Eclipse is the integrated development environment (IDE) you will be using. An IDE is an all-in-one
software development tool that enables you to create source code with correct syntax and style, run
that code, and examine and debug it if you need to fi nd out why it isn’t working correctly. As you
create Android software, you will spend most of your time using the Eclipse IDE.

Eclipse is a Java program and it uses the Java run time in the JDK you installed to run on your
personal computer. Eclipse is widely used for many kinds of programming, including creating Java-
based server software for the kinds of applications described in this book.

The use of Eclipse is one of the reasons Android was born with a mature toolchain. You write
Android programs using the Java language, and most of the toolchain for writing “normal” Java
programs can be applied to Android.

Eclipse enables you to edit your code while providing quick access to documentation. It enhances
productivity through automatic completion of symbols and automatic formatting. It helps you fi nd
syntax errors, and it performs static analysis that fi nds potential runtime errors. It also enables
you to inspect running applications, stop them, single-step across code that corresponds to lines
of source code, inspect variables, examine unhandled exceptions, and perform dozens of other
operations that will improve your productivity in creating Android applications.

Knowing your IDE’s features is key to productivity and to avoiding frustration when programs
don’t work. This is especially true for Eclipse, which is very powerful and has many more useful
tools available for it than listed here, but it isn’t as simple as some other IDEs, such as Apple’s
IDE for iOS development. So it is likely you will need to become more familiar with Eclipse
if you are a fi rst-time user. Tutorials on Eclipse can be found at http://www.eclipse.org/
resources/?category=Tutorial. To run all the examples in this book, you will need to download
and install Eclipse IDE for Java EE Developers.

c01.indd 3c01.indd 3 26-09-2013 10:58:0026-09-2013 10:58:00

4 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

The Android SDK and Resources for Android Tools Knowledge
The third part of your toolchain is the Android Software Development Kit (SDK). The SDK is
documented in Google’s online documentation for Android developers at http://developer
.android.com/index.html.

The SDK turns the Eclipse IDE into an IDE that can create Android programs. The SDK provides
plugins for Eclipse and many external components that are used to create Android applications and
diagnose problems in Android software. Eclipse can be adapted to many purposes with plugins.
In fact, Eclipse is made almost entirely of plugins. The set of plugins you started with when you
installed Eclipse make Eclipse suitable for creating Java programs. For the purposes of this book,
you will mostly work in the Eclipse IDE, and all you need to do at this point is to confi gure Eclipse
to use the Android plugins and to be able to locate other programs installed with the SDK. You will
be prompted to do so when you start Eclipse after the Android SDK is installed.

Now you have all the tools for general Android programming, and for this chapter. Later in this
book, other tools specifi c to topics introduced in those chapters will be added to your toolchain.

Toolchain Test Drive
You can test that your toolchain is installed correctly by creating a new Android project, and
selecting an example from the SDK as the basis of your project. You should be able to run your
project in an Android Virtual Device (AVD).

Directions for creating a project are here:

http://developer.android.com/training/basics/firstapp/creating-project.html

Directions for running a project are here:

http://developer.android.com/training/basics/firstapp/running-app.html

By doing this, you have created an Android project in Eclipse, and created and run an Android
application, even though you have not written any code yet. If you are successful in doing this, you
can be confi dent your toolchain and the software it depends on have been correctly installed. The
next section describes how to download and use the example code in this chapter to create another
Android project. But you might want to explore your toolchain at this point.

NOTE One thing you might want to do is create more Android projects based on
the example code using the option in the New Project wizard to select example
applications.

ONE CODE-BASE FOR ALL TYPES OF DEVICES

This section introduces the fi rst code that is specifi c to this book. This framework is used to
illustrate some important points about Android application fundamentals, to get you used to the
tools you just installed, and to provide a quick way to start writing application-specifi c code rather

c01.indd 4c01.indd 4 26-09-2013 10:58:0026-09-2013 10:58:00

One Code-Base for All Types of Devices ❘ 5

than use boilerplate. There are two related approaches we adhere to in the examples in this book
because we assume that enterprise deployments will be for a controlled set of mobile devices:

 ➤ Develop a single code-base for tablets and handsets.

 ➤ Develop for the latest APIs, as of this writing, and encourage the use of the back-
compatibility support classes provided with the Android SDK to enable compatibility for a
range of earlier versions of Android, if needed.

You will use a design pattern in which you allow the Android system to select different layouts
based on screen size and pixel density and write code that is largely independent of the choice the
system made. This technique makes your apps more robust by not duplicating the mechanisms
Android uses to make decisions about display geometry.

Following this pattern simplifi es your tasks in publishing software, makes the example code as
concise as possible, and enables you to publish a single version for many kinds of devices.

Getting Started with the Code Framework Example
Here you will perform a further check that you have installed your toolchain correctly and import
the example code for this chapter. Later, you will examine the code in this example, and run it in
order to see what it does.

You can obtain the example code as an archive at www.wrox.com and https://github.com/
wileyenterpriseandroid/Examples.git. The fi rst thing you do to use example code is to extract the
project folder from the archive into your workspace folder. Then, import the project from the archive
fi le. You will use the File ➪ Import… command to display the Import dialog box as in Figure 1-1.

FIGURE 1-1

c01.indd 5c01.indd 5 26-09-2013 10:58:0026-09-2013 10:58:00

6 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

Select General and Existing Projects into Workspace. Pressing Next will display the Import dialog
box shown in Figure 1-2. Select the folder you extracted, and press Finish. Depending on the
platform you are using, the project name may differ from what you see in the screen shot in Figures
1-2 and 1-3.

FIGURE 1-2

You should now see the example project in your Eclipse Project Explorer window, as shown in
Figure 1-3.

Now right-click on the name of the project and select Run as ➪ Android Application. If you have
not connected your Android device to a USB cable connected to your PC, and you have not created
an emulator confi guration for running examples, you will see a dialog box like the one in the
Figure 1-4. If you do, press Yes.

c01.indd 6c01.indd 6 26-09-2013 10:58:0026-09-2013 10:58:00

One Code-Base for All Types of Devices ❘ 7

FIGURE 1-3

FIGURE 1-4

Pressing Yes displays the Android Virtual Device (AVD) Manager. If you got here from the error
dialog box indicating no AVDs have yet been created, you will see an empty list of AVDs, as in the
Figure 1-5. Press the button labeled New....

Now you see a dialog box for creating a new Android AVD. Pick Nexus 7 from the list of available
AVD confi gurations, and name it something sensible like nexus7. This conveniently selects all the
right parameters for emulating hardware that resembles a Nexus 7 tablet, including the correct API
level for the example, as seen in the Figure 1-6.

c01.indd 7c01.indd 7 26-09-2013 10:58:0126-09-2013 10:58:01

8 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

WARNING If you are using a Windows system for compiling and running the
examples from this book, and depending on the version of the Android SDK you
are using, you may need to pick a different device to emulate due to limitations
on memory size of emulators on Windows.

FIGURE 1-5

FIGURE 1-6

c01.indd 8c01.indd 8 26-09-2013 10:58:0126-09-2013 10:58:01

One Code-Base for All Types of Devices ❘ 9

When you press OK, you will return to the AVD Manager and see that an AVD named nexus7 now
exists in the previously empty list, as shown in the Figure 1-7. Press the button labeled Start....

FIGURE 1-7

Pressing the Start button launches the AVD. First, it may want some more information from you
about how it should be rendered. The Launch Options dialog box shown in Figure 1-8 can be used
to scale the display of an AVD. We won’t do that, so press the Launch button.

And now…still no emulator. If you are using a fresh installation of the SDK, you may encounter the
dialog box in Figure 1-9. This dialog box lets you enable the logcat view, provided by the Android
SDK plugins in the Eclipse IDE. Select the Yes option here. You will need logcat a bit later in this
chapter to see what your application is doing.

FIGURE 1-8 FIGURE 1-9

c01.indd 9c01.indd 9 26-09-2013 10:58:0126-09-2013 10:58:01

10 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

Now you have done it! The emulator will launch. Android will start up on the emulator, and the
example application will start up in Android, as shown in Figure 1-10.

If you encountered a problem at any step here, you may need to reinstall your toolchain. If you
previously validated the installation of your toolchain through to the steps where you launch an
Android application, you will not encounter some of the steps here, which happen only once upon a
fi rst use after a new installation.

You now have running an example application that confi gures itself to different screen sizes.

Automatically Adapting to Screen Size
You can see the results of the design pattern example in this chapter by creating an AVD for a small
Android device and a larger tablet style Android device (see Figure 1-10).

FIGURE 1-10

You can see that the design pattern used in this framework application automatically adapts,
depending on the system displaying it. Users will see a single screen with a list on the left and
fragments selected using tabs on the right if the screen is big enough. Otherwise, users see two
separate screens, one showing the list of choices and the other containing tabs and fragments
corresponding to those tabs. The content depends on the choice users make from the list.

c01.indd 10c01.indd 10 26-09-2013 10:58:0126-09-2013 10:58:01

Components, Views, and Lifecycle ❘ 11

This is a typical UI design pattern. This framework will speed your way past the obligatory parts
of Android application development so you can get to the parts most useful to the enterprise
application developer.

But, before you adapt this framework to the kinds of applications that use local and networked data
resources, you’ll fi rst take a look at this code in greater detail and see how it embodies many of
the Android features that users expect and that conform to Android best-practices for a broad class
of Android applications.

COMPONENTS, VIEWS, AND LIFECYCLE

The example code in this chapter contains all the objects needed for a minimal, but typical,
Android application. Since this book is about enterprise Android applications, this minimal
framework application includes a fi eld for entering search terms, a list for the results of the search/
query, and places where search results and information about those results are displayed.

Most of the classes used in this minimal application framework are components or Android widgets
from the View class hierarchy.

Components are the large-scale building blocks of Android applications:

 ➤ You create a subclass of Activity for every major grouping of interactive functionality
that is distinctive enough for the user to notice that something different is displayed on the
screen.

 ➤ Fragments are used to organize interactive code within an activity. On big screens, multiple
fragments might be visible at the same time, while on smaller screens, a single fragment is
usually contained in each activity.

 ➤ You will subclass Service for code that performs long-running processing and that has no
interactive elements. Service components are an important part of the code in subsequent
chapters.

Components have lifecycles. You may be familiar with the concepts of components with lifecycles
from the J2ME MIDlet lifecycle, where apps that are paused should release resources. But the
Android component and lifecycle is far richer and more powerful. The Android lifecycle enables
large, complex apps to fi t in small heap sizes.

Destroying and Re-creating Components
Every instance of every component in an Android application can be destroyed, releasing the
memory it used. The lifecycle methods in components enable them to save their state before they are
destroyed, as well as to initialize themselves when fi rst created, and to restore their state when they
are re-created.

For components that have state, lifecycle methods indicate that a component is a candidate for being
destroyed, and you have to provide code that saves the state of your component. This isn’t optional.
Functionally, this is a bit like “swapping.” Instead of swapping all instance data, the lifecycle methods
enable you to save only the data needed to restore state, in the form most convenient for doing so.

c01.indd 11c01.indd 11 26-09-2013 10:58:0126-09-2013 10:58:01

12 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

There are no workarounds. If you attempt to subvert component destruction by keeping a reference
to a component, all you have done is create a memory leak.

The MainActivity Class
The code in this subclass of Activity (Listing 1-1) shows how to implement lifecycle handling for
Android. Each lifecycle method is logged, which means you are aware of what happens when this
Activity instance is no longer on the display, and you know when the Android system decides to
destroy an instance of this Activity.

In your Eclipse IDE, you can use the logcat view to display this logging information. Normally, this
view appears at the bottom of your screen.

Activity: The Basic Unit of User Interaction
Even though there is no code in Listing 1-1 for interacting with the users, you can call an activity the
basic unit of user interaction because it represents a screen-full of user interaction.

In a subsequent section, you will see how user interaction is handled by the Fragment subclasses in
this application.

The Activity class is the basis of the card-stack metaphor of user interaction in Android, and
navigating between activities is an important part of user interaction. This Activity subclass
is the main activity of this application. This is where the application starts when users touch the
application’s icon, and this is the bottom of the application’s back-stack.

LISTING 1-1: MainActivity.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.ActionBar;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;

/**
* @author zigurd
*
*/
public class MainActivity extends TabbedActivity {

// String for logging the class name
private final String CLASSNAME = getClass().getSimpleName();

// Turn logging on or off
private final boolean L = true;

c01.indd 12c01.indd 12 26-09-2013 10:58:0226-09-2013 10:58:02

Components, Views, and Lifecycle ❘ 13

The code shown in this example for the lifecycle methods is here to help you visualize the application
lifecycle. Visualizing the application lifecycle is important because it is easy to ignore. You will want
to see what the Android OS is doing to your application by way of the component lifecycle in order to
plan your application implementation to most readily adapt to the component lifecycle.

The code for the onCreate method that follows shows that the parent class’s method should fi rst be
called, and then code specifi c to the subclass added. In this case, that code logs the method call, and
it logs whether the method was called to create this Activity instance the fi rst time, or whether a
previous instance existed and the state of that instance should be restored. (More about that after
you see some of the other lifecycle methods.) The bulk of the work performed during the onCreate
call is factored out into the doCreate method. It loads the layout, sets up the action bar, and
initializes the tabs in the action bar.

@Override
protected void onCreate(Bundle savedState) {
super.onCreate(savedState);
// To keep this method simple
doCreate(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onCreate" +
(null == savedState ? " Restored state" : ""));
}

@Override
protected void onRestart() {
super.onRestart();
// Notification that the activity will be started
if (L) Log.i(CLASSNAME, "onRestart");
}

@Override
protected void onStart() {
super.onStart();
// Notification that the activity is starting
if (L) Log.i(CLASSNAME, "onStart");
}

@Override
protected void onResume() {
super.onResume();
// Notification that the activity will interact with the user
if (L) Log.i(CLASSNAME, "onResume");
}

protected void onPause() {
super.onPause();
// Notification that the activity will stop interacting with the user
if (L) Log.i(CLASSNAME, "onPause" + (isFinishing() ? " Finishing" : ""));

continues

c01.indd 13c01.indd 13 26-09-2013 10:58:0226-09-2013 10:58:02

14 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

}

@Override
protected void onStop() {
super.onStop();
// Notification that the activity is no longer visible
if (L) Log.i(CLASSNAME, "onStop");
}

The code for the onDestroy method that follows next logs when this method is called. The method
name onDestroy causes some confusion. What is being destroyed? In fact what happens at this point
is that the Android system “destroys,” or sets to null, its reference to this instance of this subclass of
Activity, so it can be garbage-collected. You may think that thwarting this destruction is possible
by simply holding a reference to this Activity instance. That won’t work: The Android system will
create a new instance of this Activity after it has “destroyed” this one, whether a reference to it is
being held or not. You could prevent this now-useless instance from being garbage-collected, but it
is a zombie, wreaking havoc in the heap. Note that the onDestroy method tests and logs whether
the activity is “fi nishing” — meaning that this instance of Activity won’t be re-created because it is
done, not because it was destroyed to recover memory space.

@Override
protected void onDestroy() {
super.onDestroy();
// Notification the activity will be destroyed
if (L) Log.i(CLASSNAME, "onDestroy"
// Are we finishing?
+ (isFinishing() ? " Finishing" : ""));
}

The code for the onSaveInstanceState method that follows next logs when it is called. Note that a
Bundle object is passed to this method. This Bundle object enables you to attach serializable objects
implementing the Parcelable interface. The Bundle object itself implements the Parcelable
interface, so it and all the objects it holds references to can be serialized and stored — or “persisted”
in Java parlance.

This is where the Bundle object that’s passed to the onCreate method comes from. If you added
objects to it, they will be there when the onCreate and onRestoreInstanceState are called.

@Override
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
saveState(outState);

// Called when state should be saved
if (L) Log.i(CLASSNAME, "onSaveInstanceState");

}

@Override

LISTING 1-1 (continued)

c01.indd 14c01.indd 14 26-09-2013 10:58:0226-09-2013 10:58:02

Components, Views, and Lifecycle ❘ 15

protected void onRestoreInstanceState(Bundle savedState) {
super.onRestoreInstanceState(savedState);
if (null != savedState) restoreState(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onRestoreInstanceState" +
(null == savedState ? " Restored state" : ""));
}

///
// The minor lifecycle methods - you probably won't need these
///

@Override
protected void onPostCreate(Bundle savedState) {
super.onPostCreate(savedState);
if (null != savedState) restoreState(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onCreate" +
(null == savedState ? " Restored state" : ""));

}

@Override
protected void onPostResume() {
super.onPostResume();
// Notification that resuming the activity is complete
if (L) Log.i(CLASSNAME, "onPostResume");
}

@Override
protected void onUserLeaveHint() {
super.onUserLeaveHint();
// Notification that user navigated away from this activity
if (L) Log.i(CLASSNAME, "onUserLeaveHint");
}

///
// Overrides of the implementations ComponentCallbacks methods in Activity
///

@Override
public void onConfigurationChanged(Configuration newConfiguration) {
super.onConfigurationChanged(newConfiguration);

// This won't happen unless we declare changes we handle in the manifest
if (L) Log.i(CLASSNAME, "onConfigurationChanged");
}

@Override
public void onLowMemory() {
// No guarantee this is called before or after other callbacks

continues

c01.indd 15c01.indd 15 26-09-2013 10:58:0226-09-2013 10:58:02

16 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

if (L) Log.i(CLASSNAME, "onLowMemory");
}

///
// App-specific code here
///

/**
* This is where we restore state we previously saved.
* @param savedState the Bundle we got from the callback
*/
private void restoreState(Bundle savedState) {
// Add your code to restore state here

}

/**
* Add this activity's state to the bundle and/or commit pending data
*/
private void saveState(Bundle state) {
// Add your code to add state to the bundle here
}

/**
* Perform initializations on creation of this Activity instance
* @param savedState
*/
private void doCreate(Bundle savedState) {
setContentView(R.layout.main);

if (null != savedState) restoreState(savedState);

 ActionBar bar = getActionBar();
 bar.setDisplayShowTitleEnabled(false);
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

// Initialize the tabs (Fails silently if the tab fragments don't exist)
int names[] = {R.string.item, R.string.detail };
int fragments[] = { R.id.content_frag, R.id.detail_frag };
initializeTabs(0, names, fragments);
}

}

The preceding code contains the method implementations for the lifecycle methods onRestart,
onStart, onResume, onPause, and onStop. These callbacks are, like the other important lifecycle
methods in this example, logged to illustrate when they are called. These methods inform you when
this activity is becoming visible or is obscured by other activities on the screen. You may fi nd it
useful to observe these logging messages in the logcat view in the Eclipse IDE, and follow along
with the diagrams in the Android documentation covering the activity lifecycle in order to see when

LISTING 1-1 (continued)

c01.indd 16c01.indd 16 26-09-2013 10:58:0226-09-2013 10:58:02

Components, Views, and Lifecycle ❘ 17

the state transitions in those diagrams occurs. See http://developer.android.com/training/
basics/activity-lifecycle/starting.html.

Note that you are not required to use the Bundle object to save state. There are three fundamental
ways to save state in Android:

 ➤ Recover state — If your state is the result of a database query, you can save the query in the
bundle (or even recover the query if it is, for example, based on the time of day) and re-run it.

 ➤ Save state in a database — If your state is in a database, locally, on the client device on
which your app is running, you can read it from that database if your components are
re-created.

 ➤ Put it in the bundle — You can, as described previously, save your state in the Bundle
object.

In most non-trivial applications, some combination of these methods for saving state is used. The
need to save state in Android applications has an infl uence on how they are designed. A data model
that lives primarily in a SQLite database is a convenient way to minimize the state your application
needs to preserve. Putting that database in a ContentProvider object removes it from the Activity
object. The ContentProvider API enables a simple implementation of the observer pattern, and it
puts your application on track with a design pattern that will be elaborated throughout this book,
where local databases are synched to a network database.

Fragment: A Tool for Organizing Code and UI
In Android versions prior to Honeycomb, the typical Android application implementation placed
the code for interacting with user interface widgets in subclasses of Activity. When Google’s
partners introduced tablet computers using the Android OS, Google responded by redesigning the
user interface — and the APIs developers use to create a user interface — around a new class called
Fragment.

Fragment is not a subclass of Activity, nor is it a subclass of View. Like an activity, a fragment can
contain the code that handles user interaction. A fragment can be laid out like an Android widget,
but it isn’t a widget. A fragment is a container for code that interacts with the users.

The Fragment class includes lifecycle methods, but it isn’t an Android component. The lifecycle
methods in Fragment exist as a way for the Activity containing the fragment to propagate lifecycle
events into the fragments contained in that activity. That is, individual fragment instances are never
destroyed, but the Activity instances that contain them are destroyed.

In the chapter’s example, the three most important things you will fi nd are:

 ➤ Code for handling user interactions with Android widgets.

 ➤ Lifecycle method overrides, as in the Activity example, that enable logging, so you can see
when these methods are called relative to the activity lifecycle.

 ➤ Some lifecycle methods that are unique to Fragment, mostly for implementing how a
fragment object is initialized.

c01.indd 17c01.indd 17 26-09-2013 10:58:0226-09-2013 10:58:02

18 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

In addition to these aspects of this Fragment subclass, you will see some code for putting example
data into a list.

The PickFragment Class
The code in Listing 1-2 looks very much like an Activity subclass would look if you were not
using Fragment. But, unlike an Activity, the fragment’s lifecycle is tied to the lifecycle of the
Activity in which it is contained. In a large-screen layout, that means that all the Fragment
objects in an Activity have their lifecycle methods called when the corresponding lifecycle
methods of the Activity are called.

LISTING 1-2: PickFragment.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.Activity;
import android.app.Fragment;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class PickFragment extends Fragment implements OnItemClickListener {

// String for logging the class name
private final String CLASSNAME = getClass().getSimpleName();

// Turn logging on or off
private static final boolean L = true;

public void onAttach(Activity activity) {
super.onAttach(activity);

// Notification that the fragment is associated with an Activity
if (L)
Log.i(CLASSNAME, "onAttach " + activity.getClass().getSimpleName());
}

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Tell the system we have an options menu
this.setHasOptionsMenu(true);

if (null != savedInstanceState)

c01.indd 18c01.indd 18 26-09-2013 10:58:0226-09-2013 10:58:02

Components, Views, and Lifecycle ❘ 19

restoreState(savedInstanceState);

// Notification that
if (L)
Log.i(CLASSNAME, "onCreate");
}

// Factor this out of methods that get saved state
private void restoreState(Bundle savedInstanceState) {
// TODO Auto-generated method stub

}

The onCreate method calls attachAdapter and setOnItemClickListener, initializing this
fragment.

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {

final ListView list = (ListView) inflater.inflate(
R.layout.list_frag_list, container, false);
if (L)
Log.i(CLASSNAME, "onCreateView");

attachAdapter(list);
list.setOnItemClickListener(this);

return list;
}

public void onStart() {
super.onStart();
if (L)
Log.i(CLASSNAME, "onStart");
}

public void onresume() {
super.onResume();
if (L)
Log.i(CLASSNAME, "onResume");
}

public void onPause() {
super.onPause();
if (L)
Log.i(CLASSNAME, "onPause");
}

public void onStop() {
super.onStop();
if (L)
Log.i(CLASSNAME, "onStop");

continues

c01.indd 19c01.indd 19 26-09-2013 10:58:0226-09-2013 10:58:02

20 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

}

public void onDestroyView() {
super.onDestroyView();
if (L)
Log.i(CLASSNAME, "onDestroyView");
}

public void onDestroy() {
super.onDestroy();
if (L)
Log.i(CLASSNAME, "onDestroy");
}

public void onDetach() {
super.onDetach();
if (L)
Log.i(CLASSNAME, "onDetach");
}

// //
// Minor lifecycle methods
// //

public void onActivityCreated() {
// Notification that the containing activiy and its View hierarchy exist
if (L)
Log.i(CLASSNAME, "onActivityCreated");
}

// ///
// Overrides of the implementations ComponentCallbacks methods in Fragment
// ///

@Override
public void onConfigurationChanged(Configuration newConfiguration) {
super.onConfigurationChanged(newConfiguration);

// This won't happen unless we declare changes we handle in the manifest
if (L)
Log.i(CLASSNAME, "onConfigurationChanged");
}

@Override
public void onLowMemory() {
// No guarantee this is called before or after other callbacks
if (L)
Log.i(CLASSNAME, "onLowMemory");
}

LISTING 1-2 (continued)

c01.indd 20c01.indd 20 26-09-2013 10:58:0226-09-2013 10:58:02

Components, Views, and Lifecycle ❘ 21

// ///
// Menu handling code
// ///

public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
inflater.inflate(R.menu.search_menu, menu);
}

// //
// App-specific code
// //

The attachAdapter method is used to attach an ArrayAdapter to the ListView object in this
fragment. The ArrayAdapater contains test values for this application.

/**
* Attach an adapter that loads the data to the specified list
*
* @param list
*/
private void attachAdapter(final ListView list) {

// Make a trivial adapter that loads an array of strings
ArrayAdapter<String> numbers = new ArrayAdapter<String>(list
.getContext().getApplicationContext(),
android.R.layout.simple_list_item_1, new String[] { "one",
"two", "three", "four", "five", "six" });

// tell the list to use it
list.setAdapter(numbers);
// l.setOnItemClickListener(this);
}

// //
// Implementation of the OnItemClickListener interface
// ///

The onItemClick method implements the onItemClickListener interface. This means that the
onItemClick method is called whenever an Android item has been clicked. In this case, the whole
fragment is full of one ListView, and clicking on an item in the list causes some data to be loaded into
the fragments on the right side of the screen, or, in the case of small screens, in a separate Activity.

@Override
public void onItemClick(AdapterView<?> arg0, View view, int position,
long id) {
// As an example of sending data to our fragments, we will create a
// bundle
// with an int and a string, based on which view was clicked
Bundle data = new Bundle();
int ordinal = position + 1;
data.putInt("place", ordinal);
data.putString("placeName", Integer.toString(ordinal));
((TabbedActivity) getActivity()).loadTabFragments(data);

}

}

c01.indd 21c01.indd 21 26-09-2013 10:58:0226-09-2013 10:58:02

22 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

The ItemFragment Class
When you run this application on a large-screen device, the ItemFragment object appears next or
below the PickFragment object and displays the data corresponding to what the user selected in the
PickFragment object, in Listing 1-3.

Like all the other classes that might need to respond to lifecycle methods, the methods are
implemented and logged here, so you can readily see when they are called.

LISTING 1-3: ItemFragment.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;
import android.app.Activity;
import android.app.Fragment;
import android.app.FragmentTransaction;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;
import android.widget.FrameLayout;

public class ItemFragment extends Fragment implements TabListener,
 TabbedActivity.SetData {

// String for logging the class name
private final String CLASSNAME = getClass().getSimpleName();

//Turn logging on or off
private final boolean L = true;

public void onAttach(Activity activity) {
super.onAttach(activity);

// Notification that the fragment is associated with an Activity
if (L) Log.i(CLASSNAME, "onAttach " + activity.getClass().getSimpleName());
}

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Notification that
Log.i(CLASSNAME, "onCreate");
}

public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
FrameLayout content = (FrameLayout) inflater.inflate(R.layout.content, container,
 false);
if (L) Log.i(CLASSNAME, "onCreateView");

c01.indd 22c01.indd 22 26-09-2013 10:58:0226-09-2013 10:58:02

Components, Views, and Lifecycle ❘ 23

return content;

}

public void onStart() {
super.onStart();
Log.i(CLASSNAME, "onStart");
}

public void onresume() {
super.onResume();
Log.i(CLASSNAME, "onResume");
}

public void onPause() {
super.onPause();
Log.i(CLASSNAME, "onPause");
}

public void onStop() {
super.onStop();
Log.i(CLASSNAME, "onStop");
}

public void onDestroyView() {
super.onDestroyView();
Log.i(CLASSNAME, "onDestroyView");
}

public void onDestroy() {
super.onDestroy();
Log.i(CLASSNAME, "onDestroy");
}

public void onDetach() {
super.onDetach();
Log.i(CLASSNAME, "onDetach");
}

//
// Minor lifecycle methods
//

public void onActivityCreated() {
// Notification that the containing activiy and its View hierarchy exist
Log.i(CLASSNAME, "onActivityCreated");
}

///
// Overrides of the implementations ComponentCallbacks methods in Fragment
///

@Override

continues

c01.indd 23c01.indd 23 26-09-2013 10:58:0226-09-2013 10:58:02

24 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

public void onConfigurationChanged(Configuration newConfiguration) {
super.onConfigurationChanged(newConfiguration);

// This won't happen unless we declare changes we handle in the manifest
if (L) Log.i(CLASSNAME, "onConfigurationChanged");
}

@Override
public void onLowMemory() {
// No guarantee this is called before or after other callbacks
if (L) Log.i(CLASSNAME, "onLowMemory");
}

///
// Implementation of TabListener
///

The following three methods implement the TabListener interface. They are passed a
FragmentTransaction object, which aggregates all the actions taken when navigating between
fragments. Here, you simply show or hide the fragment.

@Override
public void onTabReselected(Tab tab, FragmentTransaction ft) {
// TODO Auto-generated method stub

}

@Override
public void onTabSelected(Tab tab, FragmentTransaction ft) {
ft.show(this);

}

@Override
public void onTabUnselected(Tab tab, FragmentTransaction ft) {
ft.hide(this);

}

///
// Implementation of SetData
///

The following is the setData method, which implements the SetData interface. This interface tells
this fragment what data it should display.

@Override
public void setData(Bundle data) {
// Display the number
EditText t = (EditText) getActivity().findViewById(R.id.editText1);

LISTING 1-3 (continued)

c01.indd 24c01.indd 24 26-09-2013 10:58:0226-09-2013 10:58:02

Tying Together Activities, Fragments, and the Action Bar ❘ 25

int i = data.getInt("place");
t.setText(Integer.toString(i));
}

}

The ItemDetailFragment Class
The ItemDetail fragment class is similar enough to the ItemFragment class that it does not
merit displaying the listing in this chapter. You can fi nd it in the fi le ItemDetailFragment
.java in this chapter’s downloadable fi les available at www.wrox.com and https://github.com/
wileyenterpriseandroid/Examples.git.

TYING TOGETHER ACTIVITIES, FRAGMENTS,
AND THE ACTION BAR

The Android APIs provide you with infi nite ways to design your user experiences. Your challenge
is to fi nd a consistent path through those infi nite choices that can be considered “typical.” One
typical approach is to combine the Activity, Fragment, and ActionBar classes, along with the
View class hierarchy and tabs to provide a user experience that resembles other well-designed
Android applications. The TabbedActivity class in Listing 1-4 glues together the use of Activity,
Fragment, and ActionBar.

The TabbedActivity Class
The TabbedActivity class is an abstract subclass of Activity. The other Activity subclasses in
this application framework extend TabbedActivity, and if you go on to use this framework, the
Activity subclasses you add to this framework will also likely extend this class.

As an abstract parent class of the concrete classes in this framework, TabbedActivity provides
some capabilities inherited by those subclasses, specifi cally:

 ➤ Enabling tabs in the action bar to select among fragments

 ➤ Enabling the app to load data into fragments

 ➤ Abstracting whether the user interface is on one large screen, or divided across two smaller
screens

LISTING 1-4: TabbedActivity.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.ActionBar;
import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;

continues

c01.indd 25c01.indd 25 26-09-2013 10:58:0226-09-2013 10:58:02

26 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

public abstract class TabbedActivity extends Activity {

This abstract class is where most of the work, and most of the cleverness, resides. The
initializeTabs method initializes the names of the tabs and connects the tabs to the fragments
they control. This is called from the onCreate method of the Activity.

/**
* Initialize tabs in an activity that uses tabs to switch among fragments
*
* @param defaultIndex
* The index of the Fragment shown first
* @param nameIDs
* an array of ID for tab names
* @param fragmentIDs
* an array of IDs of Fragment resources
*/
public void initializeTabs(int defaultIndex, int[] nameIDs, int[] fragmentIDs) {

// How many do we have?
int n = nameIDs.length;
int i = 0;

// Find at least one fragment that should implement TabListener
TabListener tlFrag = (TabListener) getFragmentManager()
 .findFragmentById(fragmentIDs[i]);

// Null check - harmless to call if there are no such fragments
if (null != tlFrag) {

// Get the action bar and remove existing tabs
ActionBar bar = getActionBar();
bar.removeAllTabs();

// Make new tabs and assign tags and listeners
for (; i < n; i++) {
tlFrag = (TabListener) getFragmentManager().findFragmentById(fragmentIDs[i]);
Tab t = bar.newTab().setText(nameIDs[i]).setTag(tlFrag).setTabListener(tlFrag);
bar.addTab(t);
}
bar.getTabAt(defaultIndex).select();
}
}

The loadTabFragments method is called whenever the user picks an item from the list on the left
side of the screen. It loads the selected data into the views in the fragments on the right side of the

LISTING 1-4 (continued)

c01.indd 26c01.indd 26 26-09-2013 10:58:0226-09-2013 10:58:02

Tying Together Activities, Fragments, and the Action Bar ❘ 27

screen. This method contains the only logic in the app that can be said to be somewhat aware of the
layout of the screen. If there are tabs in this activity, the doLoad method is called. If not, something
interesting happens — a new activity is started and the Bundle object containing the data is
attached to the intent.

Despite the fact that there is an if statement here that, effectively, distinguishes between the one-
activity case on larger screens and the two-activity case on smaller screens, none of the code has
any logic that makes decisions based on screen size or pixel density. That is as it should be. Your
program will always encounter new screen geometries. Code that makes decisions based on the
parameters of the screen is always susceptible to being surprised by new devices. Instead, you should
let the system make decisions about which layout to use, and ensure that your code accommodates
all the possible choices.

/**
* If we have tabs and fragments in this activity, pass the bundle data to
* the fragments. Otherwise start an activity that should contain the
* fragments.
*
* @param data
*/
public void loadTabFragments(Bundle data) {
int n = getActionBar().getTabCount();
if (0 != n) {
doLoad(n, data);
} else {
startActivity(new Intent(this, TabActivity.class).putExtras(data));
}
}

/**
* An interface to pass data to a Fragment
*/
public interface SetData {
public void setData(Bundle data);
}

/**
* Iterate over the tabs, get their tags, and use these as Fragment
* references to pass the bundle data to the fragments
*
* @param n
* @param data
*/
private void doLoad(int n, Bundle data) {

// Null check - harmless if no data
if (null == data) return;

int i;
ActionBar actionBar = getActionBar();

for (i = 0; i < n; i++) {

continues

c01.indd 27c01.indd 27 26-09-2013 10:58:0226-09-2013 10:58:02

28 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

SetData f = (SetData) actionBar.getTabAt(i).getTag();
f.setData(data);
}
actionBar.selectTab(actionBar.getTabAt(0));
}

}

A Main.xml File for Large Tablets
If the code isn’t making decisions about screen size, what is? In this framework, you harness the
decisions the Android system makes about layouts to also determine the number of fragments
displayed on different screen sizes.

This fi le (Listing 1-5) contains a layout that includes both the list fragment on the left and the
information fragments on the right. It is in the directory called layout-large. So, whenever the
system decides to fi nd layouts in the layout-large folder, it will pick this fi le and all the fragments
will be displayed.

LISTING 1-5: Main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/content_layout"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal" >

 <fragment
 android:id="@+id/list_frag"
 android:name="com.enterpriseandroidbook.fragmentframework.PickFragment"
 android:layout_width="250dp"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.fragmentframework.PickFragment" />

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <fragment
 android:id="@+id/content_frag"
 android:name="com.enterpriseandroidbook.fragmentframework.ItemFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.fragmentframework.ItemFragment" />

 <fragment

LISTING 1-4 (continued)

c01.indd 28c01.indd 28 26-09-2013 10:58:0226-09-2013 10:58:02

Tying Together Activities, Fragments, and the Action Bar ❘ 29

 android:id="@+id/detail_frag"
 android:name="com.enterpriseandroidbook.fragmentframework
 .ItemDetailFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.fragmentframework.ItemDetailFragment"
 />
 </LinearLayout>

</LinearLayout>

The code in the fragment doesn’t ask which layout was chosen. It doesn’t make decisions based
on screen size or pixel density either. All it does is accommodate having, or not having, all the
fragments on the screen. That accommodation is made in the loadTabFragments method of
the TabbedActivity class.

A Main.xml and a Subsidiary Activity for Smaller Screens
This version of the main.xml fi le (Listing 1-6) is found in the layout folder, as opposed to the
layout-large folder, where the other main.xml fi le is placed. This version is used for every screen size
other than ones the Android system deems to be “large.”

LISTING 1-6: Main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal" >

 <fragment
 android:id="@+id/list_frag"
 android:name="com.enterpriseandroidbook.fragmentframework.PickFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.enterpriseandroidbook.fragmentframework.PickFragment" />

</LinearLayout>

Note that only the fragment that on a large screen displays the list on the left side of the screen
appears in this layout. That means that an instance of that Fragment subclass is created when this
layout is used. The Fragment subclasses that would on a large screen correspond to the fragments
on the right side of the screen are never instantiated.

This isn’t a problem because all the code that interacts with the user is in those Fragment subclasses.
As long as the other code makes no assumptions about those classes, their presence (or absence)
makes no difference.

c01.indd 29c01.indd 29 26-09-2013 10:58:0226-09-2013 10:58:02

30 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

The TabActivity Class
This activity, in Listing 1-7, starts when the loadTabFragments method fi nds no tabs. It is notable,
as with the other Activity class in this example, for what it doesn’t do. It exists to load the layout
containing the fragments that would on a larger screen appear to the right of the list, but it makes
no decisions or assumptions about screen sizes or layouts, or which Fragment subclasses are used in
the layout.

The result is that on small screens this activity is launched, and it displays the tabs that would
otherwise be on the right side of a larger screen.

LISTING 1-7: TabActivity.java

package com.enterpriseandroidbook.fragmentframework;

import android.app.ActionBar;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;

public class TabActivity extends TabbedActivity {

// String for logging the class name
private final String CLASSNAME = getClass().getSimpleName();

// Turn logging on or off
private static final boolean L = true;

@Override
protected void onCreate(Bundle savedState) {
super.onCreate(savedState);

// To keep this method simple
doCreate(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onCreate" +
(null == savedState ? " Restored state" : ""));
}

@Override
protected void onRestart() {
super.onRestart();
// Notification that the activity will be started
if (L) Log.i(CLASSNAME, "onRestart");
}

@Override
protected void onStart() {
super.onStart();
// Notification that the activity is starting
if (L) Log.i(CLASSNAME, "onStart");

c01.indd 30c01.indd 30 26-09-2013 10:58:0226-09-2013 10:58:02

Tying Together Activities, Fragments, and the Action Bar ❘ 31

}

@Override
protected void onResume() {
super.onResume();
// Notification that the activity will interact with the user
if (L) Log.i(CLASSNAME, "onResume");
}

protected void onPause() {
super.onPause();
// Notification that the activity will stop interacting with the user
if (L) Log.i(CLASSNAME, "onPause" + (isFinishing() ? " Finishing" : ""));
}

@Override
protected void onStop() {
super.onStop();
// Notification that the activity is no longer visible
if (L) Log.i(CLASSNAME, "onStop");
}

@Override
protected void onDestroy() {
super.onDestroy();
// Notification the activity will be destroyed
if (L) Log.i(CLASSNAME, "onDestroy"
// Are we finishing?
+ (isFinishing() ? " Finishing" : ""));
}

@Override
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
saveState(outState);

// Called when state should be saved
if (L) Log.i(CLASSNAME, "onSaveInstanceState");

}

@Override
protected void onRestoreInstanceState(Bundle savedState) {
super.onRestoreInstanceState(savedState);
if (null != savedState) restoreState(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onRestoreInstanceState" +
(null == savedState ? " Restored state" : ""));
}

continues

c01.indd 31c01.indd 31 26-09-2013 10:58:0226-09-2013 10:58:02

32 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

///
// The minor lifecycle methods - you probably won't need these
///

@Override
protected void onPostCreate(Bundle savedState) {
super.onPostCreate(savedState);
if (null != savedState) restoreState(savedState);

// If we had state to restore, we note that in the log message
if (L) Log.i(CLASSNAME, "onCreate" + (null == savedState ?
 " Restored state" : ""));

}

@Override
protected void onPostResume() {
super.onPostResume();
// Notification that resuming the activity is complete
if (L) Log.i(CLASSNAME, "onPostResume");
}

@Override
protected void onUserLeaveHint() {
super.onUserLeaveHint();
// Notification that user navigated away from this activity
if (L) Log.i(CLASSNAME, "onUserLeaveHint");
}

///
// Overrides of the implementations ComponentCallbacks methods in Activity
///

@Override
public void onConfigurationChanged(Configuration newConfiguration) {
super.onConfigurationChanged(newConfiguration);

// This won't happen unless we declare changes we handle in the manifest
if (L) Log.i(CLASSNAME, "onConfigurationChanged");
}

@Override
public void onLowMemory() {
// No guarantee this is called before or after other callbacks
if (L) Log.i(CLASSNAME, "onLowMemory");
}

///
// App-specific code here
///

/**
* This is where we restore state we previously saved.

LISTING 1-7 (continued)

c01.indd 32c01.indd 32 26-09-2013 10:58:0226-09-2013 10:58:02

The Android Task and Process Model ❘ 33

* @param savedState the Bundle we got from the callback
*/
private void restoreState(Bundle savedState) {
// Add your code to restore state here

}

/**
* Add this activity's state to the bundle and/or commit pending data
*/
private void saveState(Bundle state) {
// Add your code to add state to the bundle here
}

/**
* Perform initializations on creation of this Activity instance
* @param savedState
*/
private void doCreate(Bundle savedState) {
setContentView(R.layout.content_control_activity);

if (null != savedState) restoreState(savedState);

 ActionBar bar = getActionBar();
 bar.setDisplayShowTitleEnabled(false);
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

// Initialize the tabs
int names[] = {R.string.item, R.string.detail };
int fragments[] = { R.id.content_frag, R.id.detail_frag };
initializeTabs(0, names, fragments);

// Load data if there is some
loadTabFragments(getIntent().getExtras());
}

}

NOTE Note that we sometimes use the words activity, fragment, service, view,
and so on to refer to places in programs where the corresponding classes, which
are named with their precise names, are used. That is, we use these nouns in
place of the object names when that makes the text in this book easier to read.
You will see this pattern of usage throughout this book.

THE ANDROID TASK AND PROCESS MODEL

In the previous sections you learned how an Android process is assembled out of components, and
how components work together with garbage collection in the Android managed run time to keep
per-process heap size small. One reason per-process heap size needs to be small is that Android runs

c01.indd 33c01.indd 33 26-09-2013 10:58:0226-09-2013 10:58:02

34 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

many instances of the run time at once, one for each process where a Java program is running in
the Android environment. A “small” heap size means specifi cally that the total amount of memory
available to all the applications in an Android device ranges between a few tens of megabytes to
a few hundred megabytes. Each process is limited to between 24MB and 48MB, although some
devices may have lower or higher limits. This means you cannot count on a fi xed amount of
memory, or on being able to use more than a small share of the total memory in the device.

Android’s approach differs from most systems where per-process heap size can take up a large
amount of available memory, and it is not uncommon for Java VM instances to have heap sizes in
the hundreds of megabytes.

Starting Dalvik Instances
Although you don’t need to know the details to write Android applications, it’s still a good idea
to know why you can start dozens of instances of the Dalvik virtual machine (VM), which is the
basis of Android’s managed language runtime environment, when trying to do the same with a
conventional Java VM would bog down your computer, never mind a mobile device.

One problem with managed language runtime
environments is that bytecodes, such as those used
in Java VMs and Dalvik, are loaded like data,
not like the machine instructions that computer
processors run. Dalvik optimizes the creation
and initialization of new instances of Dalvik by
using a template process, or an instance. This
template process starts, loads, and initializes many
base classes, and it then waits until it needs to be
“cloned,” using the fork system call. See
Figure 1-11 for an example.

When the Dalvik template instance, called the
Zygote, is forked, it both speeds up the loading
and initialization of new processes and reduces the
memory footprint of every Dalvik instance. It does
this by treating the pre-loaded base classes as if they
were pure code and sharing this code across all the
Dalvik instances forked from the Zygote.

For you, the developer, this means that you don’t
have to avoid starting Dalvik instances. If it makes
sense to start an Activity from another app to, for
example, pick an image fi le to load, do it, and don’t
worry about the overhead.

Death, but No Transfi guration
In the section on the Activity class and its component lifecycle, you saw how an activity can be
destroyed and re-created. Every component in an Android process can be destroyed and, if the

FIGURE 1-11

Zygote

App1

Process-specific
code and heap

Dalvik pure code
shared

Process-specific
code and heap

Dalvik pure code
shared

App1

Process-specific
code and heap

Base classes byte-
code shared with

copy-on-write

Base classes byte-
code shared with

copy-on-write

Base classes byte-
code shared with

copy-on-write

Dalvik pure code
shared

c01.indd 34c01.indd 34 26-09-2013 10:58:0226-09-2013 10:58:02

Multiprocessing, Security, and Lifecycle ❘ 35

developer correctly handles lifecycle method calls, re-created. Every object in an Android process is
contained in components. That is, there is nothing in an Android process that can hold a reference
to an instance of any class that is not itself referred to only by a component. That means that whole
processes could be destroyed and re-created. And they routinely are.

You can demonstrate this by running the example in this chapter and watching the logcat view in
Eclipse. Note that each line in the log lists a process ID or PID. After starting the example app and
observing the lifecycle method calls in the logcat view, start a large number of other applications.
Eventually you will see that, when you go back to this example app, not only are the instances of
every component destroyed and re-created, but the process ID (PID) has changed too! This is a bit
remarkable: The user sees no difference in the operation and state of the app he is interacting with,
but every object in that app has been destroyed and re-created, and it is in an entirely new process.
This also illustrates that “process” and “task” are only loosely coupled in the Android task model.

This is how Android recovers memory at the granularity of a process. It also “resets” the heap size
for a running app, in case the app had used a large block of memory for some purpose and then
freed it. This should also convince you, if you have not already been convinced, that any attempts
to thwart the Android lifecycle are futile. Occasionally, your whole process is going to get reaped by
Android’s memory management. There is no place to hide from the component lifecycle.

Tasks Span Applications and Processes
Android also differs from most OSs in that a task in Android isn’t synonymous with a process.
Android applications can, using the startActivity method, cause another application to be
started. But that application is often part of the same task. Its capabilities are being borrowed. For
example, the Gallery app is frequently used to select an image fi le. When this happens, another
app creates an Intent object with the PICK action and asks for an image. The Gallery app has a
matching intent fi lter, and it starts an activity enabling the user to pick an image from the gallery.
While this is happening, the app that was launched and the Gallery app are part of the same task,
even though they are in two separate processes.

This kind of late-binding, loosely-coupled modularity is characteristic of Android applications,
and the component-based implementation of Android apps, where an Activity component is used
to group Fragment objects and the View objects they contain into screens of UI work. Note in the
TabbedActivity.java listing (Listing 1-4 earlier in the chapter) that an Intent object is used in the
startActivity method call that results in a new activity being started. In this case, a class name is
specifi ed. But an Intent can contain a looser specifi cation than actions and data types, instead of
class names. That enables you to consume pieces of other application’s UI and provide pieces of a UI
to other applications.

Later in this chapter you will see how Intent objects are used to start applications.

MULTIPROCESSING, SECURITY, AND LIFECYCLE

Android’s designers faced a diffi cult problem. Unlike a web server, in which all the software is
controlled by one developer/administrator, a mobile device runs applications developed by multiple
developers. The user has limited trust for these developers, and the developers have limited trust of

c01.indd 35c01.indd 35 26-09-2013 10:58:0326-09-2013 10:58:03

36 ❘ CHAPTER 1 DEVELOPING FOR ANDROID TABLETS AND SMARTPHONES

one another. They all need to share memory resources, and you can’t predict how many applications
the user will want to run.

The Process and User ID as Security Boundary
A single runtime environment with multiple threads just isn’t going to cut it for enabling a secure
multiprocessing environment. Every Android application runs in its own process, which is an
instance of the Dalvik managed runtime environment.

Each Android developer gets a signature (the examples you are running now are signed with a
temporary signature), and every signature creates a separate user ID (UID) and group ID (GID)
in the Android system. Access to each developer’s application’s fi les is limited to the UID and
GID of that developer’s applications.

Android processes cannot access memory in other processes, and they cannot access fi les with other
UIDs/GIDs.

NOTE While managed language run times do enhance the robustness of systems
because they run code inside a virtual machine, the Dalvik VM is not a security
boundary in Android. Android applications can and do run native code.

DECLARING APPLICATION PROPERTIES

Previously in this chapter you saw how Android components, especially the Activity component,
are used to group elements of a user interface onto a device screen, and how the Fragment subclasses
defi ned here are used to group View objects and the code that handles user interaction with those
objects, and how declarative UI can drive the confi guration of activities and fragments to adapt to a
wide range of device sizes. But how did your application get started?

Components are central to starting applications. So are Intent objects. Manifest fi les are used to
bring together information about all the components in your application, plus some data about
names and system compatibility. Intent fi lter specifi cations are key to the loosely coupled, high-level
modularity of Android applications.

You see all this information come together in the manifest fi le (Listing 1-8) for the framework
application:

LISTING 1-8: manifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.enterpriseandroidbook.fragmentframework"
 android:versionCode="1"
 android:versionName="1.0">

c01.indd 36c01.indd 36 26-09-2013 10:58:0326-09-2013 10:58:03

Summary ❘ 37

 <uses-sdk android:minSdkVersion="15" />

 <application android:icon="@drawable/icon" android:label="@string/app_name"
 android:uiOptions="splitActionBarWhenNarrow"
 android:theme="@android:style/Theme.Holo">
 <activity android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="com.enterpriseandroidbook.fragmentframework
 .TabActivity" android:label="@string/data"></activity>

 </application>
</manifest>

A fi le called a “manifest” lists the contents of something; in this case, it lists the contents of an
Android application. Android application manifests list all the components in an application. If,
in addition to the name of an activity, an intent fi lter is defi ned for an activity, that activity can be
“matched” instead of being specifi ed by name.

In this manifest, the intent fi lter for MainActivity matches the action android.intent
.action.MAIN. It specifi es that it also matches the category android.intent.category
.LAUNCHER. These are the constants that Android launchers use to launch applications.

SUMMARY

This chapter guided you through setting up your tools and verifying that they were set up correctly.

You saw how a modern Android framework suitable for database applications is put together:

 ➤ It adapts to all sizes of Android devices. It’s time to stop whining about “fragmentation”
and write apps that adapt.

 ➤ It harnesses declarative UI in Android to avoid making decisions about screen confi guration
in code.

 ➤ It organizes code that interacts with the user into Fragment subclasses that can be combined
into activities.

 ➤ It looks, acts, and interacts with the user like the latest generation of Android applications.
It’s up to date inside and out.

Although the example framework code in this chapter embodies how to write code for the most
recent versions of Android, it can be back-ported to earlier versions of Android using the Support
Package (discussed more in Chapter 11). By following the design patterns in this framework you can
have code that is up to date, forward-compatible, and back-compatible as well.

c01.indd 37c01.indd 37 26-09-2013 10:58:0326-09-2013 10:58:03

c01.indd 38c01.indd 38 26-09-2013 10:58:0326-09-2013 10:58:03

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2013-09-28T06:05:25-0400
	Certified PDF 2 Signature

