
Chapter 1

Computer Programming Exposed!
In This Chapter
▶ Understanding the basics of computer programming
▶ Getting how computer languages work
▶ Knowing how Objective-C works

Looking at it from the outside, computer programming can appear
complicated and a bit mysterious. But once I let you in on a few of the

secrets, you’ll realize that when you write a computer program, whether it is
a small program that’s just a few lines or one that is tens or even hundreds of
thousands of lines, you are generally doing the same thing:

 1. Getting input — from a keyboard or touch screen, or even something
stored on your computer.

 The input might be instructions to the program itself — for example, to
display the web page https://developer.apple.com, to print a doc-
ument such as Chapter 1, to process data like “Enter your Apple ID and
Password” when you log on to the Mac Dev Center (the browser is just
another program), or even to process a list of credit card transactions
stored on a computer.

 2. Doing something based on, or with, the input.

 Your browser may go on the Internet and access the page corresponding
to https://developer.apple.com, or your word processing program
may display a Print dialog box and print the chapter (at least that is what
mine does). Based on your input, the program may also go out and use
data it has stored or even has access to over the Internet. For example,
when you enter your Apple ID and password, eventually a computer
accesses a database to see whether your Apple ID and password are both
valid and, if so, allows you access to the site and displays the site for you.

 3. Displaying the results of your adroitness on a monitor (or storing it
away for future use).

Computers are no doubt engineering marvels. But what will make you a
good programmer is not your understanding of all that wizardry. No, what
will make you a good programmer is taking the time to really understand

05_9781118213988-ch01.indd 905_9781118213988-ch01.indd 9 9/24/12 9:49 PM9/24/12 9:49 PM

CO
PYRIG

HTED
 M

ATERIA
L

10 Part I: Getting to the Starting Line

the world of the user, and what you can do with a computer to make things
better. For example, when I travel, I often zone out on the fact that even
though it looks like Monopoly money, foreign currency actually does amount
to something in dollars. I could use a computer to keep track of my budget
and convert foreign currency into dollars. Writing a program simply involves
detailing the steps the computer needs to follow (in a language the computer
understands — but I’ll get to that). You know, something like

Subtract the amount he just spent from the amount he started with.

or

Multiply the amount in foreign currency times the exchange rate.

Is it hard? No, not really. It can be pedestrian, but even more often, it is fun.

Why a Computer Program
Is Like a Recipe

At its heart (yes, it does have one), computer programming is actually not
that alien to most people. If you don’t believe me, take the following program-
ming test. Now, don’t peek ahead for the answer. Okay?

The Never-Fail Programming Test:

Write down the recipe for making a peanut butter and jelly sandwich.

Answer:

If what you wrote down looks anything like

Recipe: Peanut Butter and Jelly Sandwich
 Ingredients
 Peanut Butter
 Jelly
 2 slices of bread
 Directions
 Place the two slices of bread close to each other.
 Spread peanut butter on one slice of bread.
 Spread jelly on the other slice of bread.
 Put one slice of bread on top of the other.

you’re ready to go.

05_9781118213988-ch01.indd 1005_9781118213988-ch01.indd 10 9/24/12 9:49 PM9/24/12 9:49 PM

11 Chapter 1: Computer Programming Exposed!

Although this example may seem overly simple, it generally illustrates what
programming is all about. When you write a program in Objective-C, all you
are doing is providing a set of instructions for the computer to follow. The
preceding example is not perfect, but actually it is much closer to illustrating
how Objective-C programming works than you might think. So, consider-
ing the peanut butter and jelly sandwich example, here is how you get your
lunch made (if you are lucky enough to have a chef):

 1. Give your chef the recipe.

 2. He or she gets the ingredients together and then follows the instruc-
tions on what to do with the ingredients.

 Voilà, you have a peanut butter and jelly sandwich.

Figure 1-1 shows how a computer program works, using the peanut butter
and jelly sandwich example.

Figure 1-1:
The pea-

nut butter
and jelly
program
outputs

data.

05_9781118213988-ch01.indd 1105_9781118213988-ch01.indd 11 9/24/12 9:49 PM9/24/12 9:49 PM

12 Part I: Getting to the Starting Line

This is what you do to get that output:

 1. You write instructions for the computer to follow.

 Unfortunately, the computer can’t speak English, or read for that matter,
so you use something called a compiler to take the instructions you
write in the Objective-C language and translate them into something the
computer can understand.

 2. You provide data for the computer to use.

 In this case, you write, “I hate peanut butter and jelly,” and then the
computer follows the instructions you have given it on what to do with
that data.

 Voilà, you see “I hate peanut butter and jelly” displayed on your com-
puter screen.

Fundamentally, programs manipulate numbers and text, and all things con-
sidered, a computer program has only two parts: variables (and other struc-
tures), which “hold” data, and instructions, which perform operations on that
data.

Examining a simple computer program
Is there really any difference between a chef reading a recipe to create a
peanut butter and jelly sandwich and a computer following some instructions
to display something on a monitor? Quite frankly, no.

Here is the simple Objective-C program that displays I hate peanut
butter and jelly on the computer screen:

int main(int argc, char *argv[]) {

 char* theSandwich = “I hate peanut butter and jelly”;

 printf (theSandwich);
 return 0;
}

This program shows you how to display a line of text on your computer
screen. The best way to understand programming code is to take it apart line
by line:

int main(int argc, char *argv[]) {

05_9781118213988-ch01.indd 1205_9781118213988-ch01.indd 12 9/24/12 9:49 PM9/24/12 9:49 PM

13 Chapter 1: Computer Programming Exposed!

Ignore the first line; it’s not important now. It just provides your program
with some information it can use. I explain exactly what that line means in
the next few chapters.

char* theSandwich = “I hate peanut butter and jelly”;

theSandwich is what is known as a variable. The best way to think of it for now
is as a bucket that holds some kind of data (I get more precise in Chapter 4).
char* tells you what kind of variable it is. In this case, theSandwich is a
bunch of characters (text) known as a string (technically a string is more than
that, but for now, that description is good enough for our purposes). I hate
peanut butter and jelly is the data that the variable contains.

printf (theSandwich);

printf is an instruction (called an operation) that tells the computer to dis-
play whatever data is in the theSandwich bucket.

 return 0;
}

You can also safely ignore the last two lines for the time being.

Figure 1-2 shows the similarities between the program and the recipe for
making a sandwich.

Figure 1-2:
A computer

program
can be com-

pared to a
peanut but-
ter and jelly

sandwich
recipe.

You can think of the following ingredients as variables that represent the
data. For example, peanut butter is the name you give to pureed peanuts
(and whatever else is in peanut butter), jelly is the name you give to some
fruit that’s been processed and put in a jar, and so on.

Peanut butter
Jelly
2 slices of bread

05_9781118213988-ch01.indd 1305_9781118213988-ch01.indd 13 9/24/12 9:49 PM9/24/12 9:49 PM

14 Part I: Getting to the Starting Line

Similarly

Place the two slices of bread close to each other.
Spread peanut butter on one slice of bread.
Spread jelly on the other slice of bread.
Put one slice of bread on top of the other.

are simply instructions on how to take the ingredients and make a sandwich.
Spread peanut butter on one slice of bread is the instruction.
Actually, spreading the peanut butter is the operation you are performing on
the pureed peanuts being referenced by the peanut butter variable.

Understanding How Computer
Languages Work

While conceptually it is pretty easy to understand computer programming —
all you are doing is giving the computer a set of instructions and some data
on which to perform those instructions — one of the challenges, as I mention
previously, is that it’s not that easy to tell a computer what to do.

Computers don’t speak English, although computer scientists have been
working on that for years (think of trying to do that as the Computer Scientist
Full Employment Act). A computer actually has its own language made up
of 1s and 0s. For that matter, Objective-C is not something a computer can
understand either, but it is a language that can be turned into those 1s and
0s by using a compiler. A compiler is nothing more than a program that trans-
lates Objective-C instructions into computer code.

Creating a computer program
To create a computer program by using a computer language, follow these
steps (see Figure 1-3):

 1. Decide what you want the computer to do.

 You can have the computer write a line of text on the monitor or create
an online multiplayer game that will take two years to complete. It really
doesn’t matter.

 2. Break the task you want the computer to complete into a series of
modules that contain the instructions the computer follows to do what
you want, and then provide the data it needs to do that.

 The series of modules is often referred to as your application architec-
ture. The data you provide to the computer can be some text, graphics,
where the hidden treasure is, or the euro-U.S. dollar exchange rate.

05_9781118213988-ch01.indd 1405_9781118213988-ch01.indd 14 9/24/12 9:49 PM9/24/12 9:49 PM

15 Chapter 1: Computer Programming Exposed!

 3. Run the instructions through the compiler.

 A compiler is actually just another program, albeit one that uses your
instructions as data for its instructions on how to turn Objective-C into
computer code.

 4. Link the result to other precompiled modules.

 As you will see, the code you write is a relatively small part of what
makes up your program. The rest is made up of all the plumbing you
need to run the program, open and close windows, and do all that user
interface stuff. Fortunately, that code is provided for you in a form that
is easy to attach (link) to your program. A linker program takes your
code, identifies all the things it needs, collects all pieces (from the disk),
and combines them into the executable program you see in your appli-
cations or utilities folder.

 5. Store that output somewhere.

 You usually store the output on a hard drive, but it can be anything the
computer can access, like punch cards.

 6. Run the program.

 When you want to run the program (say, the user double-clicks the
program icon), the operating system (Mac OS X, for example, which
is also just another program) gets the program from where it’s stored
and loads it into memory, and then the CPU (central processing unit)
executes the instructions.

Running a computer program
Just as you don’t need to be a weatherman to know which way the wind
blows, you don’t need to be an engineer who understands the intimate
details of a computer to write a world-class application.

Most people don’t find it that difficult to learn to drive a car. Although you
don’t have to know everything about internal combustion engines, fuel injec-
tion, drivetrains and transmissions, you do need to know a little bit about
how a car works. That means you need to know how to start it, make it go
forward, make it go backward, make it stop (generally a very valuable piece
of information), make it turn left or right, and so on.

In the same way, you do need to know a little bit about how computers work
to have what you do to write a computer program make sense.

05_9781118213988-ch01.indd 1505_9781118213988-ch01.indd 15 9/24/12 9:49 PM9/24/12 9:49 PM

16 Part I: Getting to the Starting Line

Figure 1-3:
How pro-

gramming
works.

When you run a computer program, the computer does its primary work
in a part of the machine you cannot see, the central processing unit (CPU),
which executes the program instructions that are loaded into the computer’s
memory. (This is a fast, temporary form of storage that is in one of those
chips you see when you look inside a computer, as opposed to persistent
storage such as a disk drive, which is slower and offers permanent storage.)
It requests the data it needs from memory, processes it, and writes new data
back to memory millions of times every second.

05_9781118213988-ch01.indd 1605_9781118213988-ch01.indd 16 9/24/12 9:49 PM9/24/12 9:49 PM

17 Chapter 1: Computer Programming Exposed!

But if the data is all in memory, the CPU needs to be able to find a particular
instruction or piece of data. How does it do that?

The location in memory for each instruction and each piece of data is iden-
tified by an address, like the mailboxes in the post office or an apartment
house you see in Figure 1-4 (and notice that the first address for a mailbox in
your computer is always 0). But these are very small mailboxes that can hold
only one piece of information at a time, referred to as a byte. So for all practi-
cal purposes, you can think of the smallest division of memory as a byte, with
each byte being able to be addressed on its own. The good news is that if you
need more mailboxes, they are yours for the taking. So if you get more than
one letter a day, the number of mailboxes assigned to you will increase to
hold all the letters you need them to.

 A byte represents 8 binary digits, also known as bits. Most of the time, you’ll
use all 8 bits as a group, which could be the number 119 or the letter Z. You
can also write code to access the individual bits independently, so those 8 bits
could represent 8 flags that are either true (equal to 1) or false (equal to 0).
I cover bytes in detail in Chapter 4.

Figure 1-4:
Finding

things in
memory.

What Is Objective-C, Anyway?
Objective-C is an object-oriented programming language, which means that
it was created to support a certain style of programming. Yes, I know it is
hard to believe, but even things like programming have different styles, in
fact a lot of them, although the two heavyweights are object-oriented and
procedural. Unless you’re a dyed-in-the-wool member of a particular camp, it
is really unnecessary to get into that discussion here (or probably ever). But
you will, I promise, intimately understand what object-oriented programming
is by the time you’re done with this book, and you’ll probably wonder why
anyone would ever want to program in any other way.

05_9781118213988-ch01.indd 1705_9781118213988-ch01.indd 17 9/24/12 9:49 PM9/24/12 9:49 PM

18 Part I: Getting to the Starting Line

But it takes more than a language to write a program; it takes a village. So
who lives in the Objective-C village? Most object-oriented development envi-
ronments consist of several parts:

 ✓ An object-oriented programming language

 ✓ A runtime environment

 ✓ A framework or library of objects and functions

 ✓ A suite of development tools

This is where, for many people, things start to cloud up. You may be saying,
“You mean I have to master more than the language, and what is all this stuff
about runtime environment and frameworks and libraries?” The answer is
yes; but not to worry. I take you slowly through each part. The following sec-
tions cover each part of the Objective-C development environment.

Understanding programming languages
When you write a program, you write it as series of statements. Some of these
statements are about data. You may allocate areas of memory to use for data
in your program, as well as describe how data is structured. Other state-
ments are really instructions for the computer to do something.

Here is an example of an Objective-C statement that adds together b and c
and assigns the result to a (and you thought you’d never use all that algebra
you picked up in school):

a = b + c;

Statements like these use operators (like + or –) or tell modules (functions
or objects) to do something to, or with, the data. For now, think of functions
or objects as simply a packaged series of statements that perform a task. It
might help to think of operators and modules as words you use to create sen-
tences (the statements) that tell the computer what to do. Chapters 4, 5, 6,
and 7 cover operators, functions, objects, and modules in detail.

When most people want to learn how to program, they usually focus on the
language. I want to program in C++, for example. Or C++ is a real dog; give
me Java any day. People really do become passionate about languages, and
believe me, it is best to keep out of the way when an unstoppable force meets
an immovable object.

What you really should keep in mind, unless computer science is your life, is
that what you want to master is how to create applications. What makes that

05_9781118213988-ch01.indd 1805_9781118213988-ch01.indd 18 9/24/12 9:49 PM9/24/12 9:49 PM

19 Chapter 1: Computer Programming Exposed!

easy or difficult is not just the language, but the application development
tools available to you as well.

If you want to develop iOS and Mac OS X applications, Objective-C is the lan-
guage you need to take full advantage of everything both platforms have to
offer. Objective-C is the dominant programming language used by developers
on both platforms, and Apple stands behind it.

Running your program in
a runtime environment
One of the features of Objective-C is its runtime system. This is one of those
things that gets linked into your program in Step 4 in the section “Creating
a computer program,” earlier in this chapter. It acts as a kind of operating
system (like the Mac OS or iOS) for an individual Objective-C program. It is
this runtime system that is responsible for making some of the very powerful
features of Objective-C work.

Objective-C’s runtime environment also makes it possible to use tools like
Interface Builder (I explain Interface Builder in Chapters 17 and 18) to create
user interfaces with a minimum of work (I’m all for that, and after you find
out about Interface Builder, you will be, too).

Using frameworks and libraries
The framework you will use is called Cocoa. It came along with Objective-C
when Apple acquired NeXT in 1996 (when it was called NeXTSTEP). I have
worked in many development environments in my life, and Objective-C and
Cocoa are hands down my favorites.

Cocoa enables you to write applications for Mac OS X, and a version of it
enables you to write applications for iOS devices, such as the iPhone, iPad,
and iPod. If the operating system does the heavy lifting vis-à-vis the hard-
ware, the framework provides all the stuff you need to make your application
an application. It provides support for windows and other user-interface
items as well as many of the other things that are needed in most applica-
tions. When you use Cocoa to develop your application, all you need to do is
add the application’s specific functionality — the content as well as the con-
trols and views that enable the user to access and use that content — to the
Cocoa framework.

05_9781118213988-ch01.indd 1905_9781118213988-ch01.indd 19 9/24/12 9:49 PM9/24/12 9:49 PM

20 Part I: Getting to the Starting Line

Now, two excellent books explain the use of frameworks on the Mac and
iPhone. One is Mac Application Development For Dummies, by Karl Kowalski.
The other is iPhone Application Development For Dummies, 4th Edition, by
Neal Goldstein (both published by John Wiley & Sons, Inc.).

Your suite of development tools
The main development tool you will use is Xcode. I explain Xcode in Chapter 2,
and you use it throughout this book. In addition, when it’s time to add a user-
interface front end to your application, you’ll make use of a tool within Xcode
called Interface Builder. I talk a little about Interface Builder in Chapters
17 and 18, but again, pick up copies of iPhone Application Development For
Dummies and Mac Application Development For Dummies to really understand
the frameworks.

Using Xcode 4.4
You will use the Xcode 4.4 developer tools package that is available at the
Mac App Store. This version of Xcode requires Mac OS X 10.7.3 (Lion) or
later, and it is a major improvement over previous versions of Xcode.

Using Objective-C Version 2.0
You will find out about Version 2.0 of the Objective-C language, which was
released with Mac OS X 10.5, and yes, you should care. I provide you examples
of some of the very useful features of Objective-C 2.0, such as declared proper-
ties, fast enumeration, and Automatic Reference Counting, which greatly sim-
plify memory management. All these features are available in the latest versions
of Mac OS X and iOS. If possible, I’ll also indicate some work-arounds if you need
to write applications that run under earlier versions of the OS, but in general,
writing applications that run under earlier versions of the OS will be up to you.

Framework or library?
What is the difference between a library and
a framework? A library is a set of reusable
functions or data structures that are yours
to use. A framework, on the other hand, has
an architecture or programming model that

requires an application to be designed (divided
into modules) in a certain way (applica-
tion architecture) to use it. I like to think that
whereas you use a library, a framework uses
you.

05_9781118213988-ch01.indd 2005_9781118213988-ch01.indd 20 9/24/12 9:49 PM9/24/12 9:49 PM

