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Probability     

     The study of reliability engineering requires an understanding of the funda-
mentals of probability theory. In this chapter these fundamentals are described 
and illustrated by examples. They are applied in Sections  1.8  to  1.13  to the 
computation of the reliability of variously confi gured systems in terms of the 
reliability of the system ’ s components and the way in which the components 
are arranged. 

 Probability is a numerical measure that expresses, as a number between 0 
and 1, the degree of certainty that a specifi c outcome will occur when some 
random experiment is conducted. The term random experiment refers to any 
act whose outcome cannot be predicted. Coin and die tossing are examples. A 
probability of 0 is taken to mean that the outcome will never occur. A probabil-
ity of 1.0 means that the outcome is certain to occur. The relative frequency 
interpretation is that the probability is the limit as the number of trials  N  grows 
large, of the ratio of the number of times that the outcome of interest occurs 
divided by the number of trials, that is,

    p
n
NN

=
→∞

lim     (1.1)   

 where  n  denotes the number of times that the event in question occurs. As will 
be seen, it is sometimes possible to deduce p by making assumptions about 
the relative likelihood of all of the other events that could occur. Often this is 
not possible, however, and an experimental determination must be made. 
Since it is impossible to conduct an infi nite number of trials, the probability 
determined from a fi nite value of  N , however large, is considered an estimate 
of  p  and is distinguished from the unknown true value by an overstrike, most 
usually a caret, that is,   p̂.  
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2 probability

   1.1    SAMPLE SPACES AND EVENTS 

 The relationship among probabilities is generally discussed in the language of 
set theory. The set of outcomes that can possibly occur when the random 
experiment is conducted is termed the sample space. This set is often referred 
to by the symbol  Ω . As an example, when a single die is tossed with the intent 
of observing the number of spots on the upward face, the sample space consists 
of the set of numbers from 1 to 6. This may be noted symbolically as  Ω     =    {1, 
2,    . . .    6}. When a card is drawn from a bridge deck for the purpose of determin-
ing its suit, the sample space may be written:  Ω     =    {diamond, heart, club, spade}. 
On the other hand, if the purpose of the experiment is to determine the value 
and suit of the card, the sample space will contain the 52 possible combinations 
of value and suit. The detail needed in a sample space description thus depends 
on the purpose of the experiment. When a coin is fl ipped and the upward face 
is identifi ed, the sample space is  Ω     =    {Head, Tail}. At a more practical level, 
when a commercial product is put into service and observed for a fi xed amount 
of time such as a predefi ned mission time or a warranty period, and its func-
tioning state is assessed at the end of that period, the sample space is  Ω     =    {func-
tioning, not functioning} or more succinctly,  Ω     =    {S, F} for success and failure. 
This sample space could also be made more elaborate if it were necessary to 
distinguish among failure modes or to describe levels of partial failure. 

 Various outcomes of interest associated with the experiment are called 
 Events  and are subsets of the sample space. For example, in the die tossing 
experiment, if we agree that an event named A occurs when the number on 
the upward face of a tossed die is a 1 or a 6, then the corresponding subset is 
A    =    {1, 6}. The individual members of the sample space are known as elemen-
tary events. If the event B is defi ned by the phrase  “ an even number is tossed, ”  
then the set B is {2, 4, 6}. In the card example, an event C defi ned by  “ card suit 
is red ”  would defi ne the subset C    =    {diamond, heart}. Notationally, the prob-
ability that some event  “ E ”  occurs is denoted P(E). Since the sample space 
comprises all of the possible elementary outcomes, one must have P( Ω )    =    1.0.  

   1.2    MUTUALLY EXCLUSIVE EVENTS 

 Two events are mutually exclusive if they do not have any elementary events 
in common. For example, in the die tossing case, the events A    =    {1, 2} and 
B    =    {3, 4} are mutually exclusive. If the event A occurred, it implies that the 
event B did not. On the other hand, the same event A and the event C    =    {2, 
3, 4} are not mutually exclusive since, if the upward face turned out to be a 2, 
both A and C will have occurred. The elementary event  “ 2 ”  belongs to the 
intersection of sets A and C. The set formed by the intersection of sets A and 
C is written as  A  ∩  C . The probability that the outcome will be a member of 
sets A and C is written as  P ( A  ∩  C ). 
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 When events are mutually exclusive, the probabilities associated with the 
events are additive. One can then claim that the probability of the mutually 
exclusive sets A and B is the sum of  P ( A ) and  P ( B ). 

 In the notation of set theory, the set that contains the elements of both A 
and B is called the union of A and B and designated  A   ∪   B . Thus, one may 
compute the probability that either of the mutually exclusive events A or B 
occurs as:

    P A B P A P B∪( ) = ( ) + ( )     (1.2)   

 The same result holds for three or more mutually exclusive events; the prob-
ability of the union is the sum of the probabilities of the individual events. 

 The  elementary  events of a sample space are mutually exclusive, so for the 
die example one must have:

    P P P P P P P( ) ( ) ( ) ( ) ( ) ( ) ( ) . .1 2 3 4 5 6 1 0+ + + + + = =Ω     (1.3)   

 Now reasoning from the uniformity of shape of the die and homogeneity of 
the die material, one might make a leap of faith and conclude that the prob-
ability of the elementary events must all be equal and so,

   P P P p( ) ( ) ( ) .1 2 6= = = =…   

 If that is true then the sum in Equation  1.3  will equal 6 p , and, since 6 p     =    1, 
 p     =    1/6. The same kind of reasoning with respect to coin tossing leads to the 
conclusion that the probability of a head is the same as the probability of a 
tail so that P(H)    =    P(T)    =    1/2. Dice and coins whose outcomes are equally 
likely are said to be  “ fair. ”  In the card selection experiment, if we assume that 
the card is randomly selected, by which we mean each of the 52 cards has an 
equal chance of being the one selected, then the probability of selecting a 
specifi c card is 1/52. Since there are 13 cards in each suit, the probability of 
the event  “ card is a diamond ”  is 13/52    =    1/4.  

   1.3    VENN DIAGRAMS 

 Event probabilities and their relationship are most commonly displayed by 
means of a Venn diagram named for the British philosopher and mathemati-
cian John Venn, who introduced the Venn diagram in 1881. In the Venn 
diagram a rectangle symbolically represents the set of outcomes constituting 
the sample space  Ω ; that is, it contains all of the elementary events. Other 
events, comprising subsets of the elementary outcomes, are shown as circles 
within the rectangle. The Venn diagram in Figure  1.1  shows a single event A.   

 The region outside of the circle representing the event contains all of the 
elementary outcomes not encompassed by A. The set outside of A,  Ω  - A, is 
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generally called  “ not - A ”  and is indicated by a bar overstrike   A. Since A and 
  A are mutually exclusive and sum to the whole sample space, we have:

    P A P A P( ) + ( ) = ( ) =Ω 1 0. .     (1.4)   

 Therefore, the probability of the event not - A may be found simply as:

    P A P A( ) = −1 ( ).     (1.5)   

 Thus, if A is the event that a bearing fails within the next 1000 hours, and 
 P ( A )    =    0.2, the probability that it will survive is 1    −    0.2    =    0.8. The  odds  of an 
event occurring is the ratio of the probability that the event occurs to the 
probability that it does not. The odds that the bearing survives are thus 
0.8/0.2    =    4 or 4 to 1. 

 Since mutually exclusive events have no elements in common, they appear 
as nonoverlapping circles on a Venn diagram as shown in Figure  1.2  for the 
two mutually exclusive events A and B:    

   1.4    UNIONS OF EVENTS AND JOINT PROBABILITY 

 The Venn diagram in Figure  1.3  shows two nonmutually exclusive events, A 
and B, depicted by overlapping circles. The region of overlap represents the 
set of elementary events shared by events A and B. The probability associated 
with the region of overlap is sometimes called the joint probability of the two 
events.   

     Figure 1.1     Venn diagram showing a single event A.  
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 In this case, computing the probability of the occurrence of event A or B 
or both as the sum of P(A) and P(B) will add the probability of the shared 
events twice. The correct formula is obtained by subtracting the probability of 
the intersection from the sum of the probabilities to correct for the double 
inclusion:

    P A B P A P B P A B∪ ∩( ) = ( ) + ( ) − ( ).     (1.6)   

 As an example, consider again the toss of a single die with the assumption 
that the elementary events are equally likely and thus each have a probability 

     Figure 1.2     Venn diagram for mutually exclusive events A and B.  

     Figure 1.3     Venn diagram for overlapping events A and B.  
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of occurrence of p    =    1/6. Defi ne the events A    =    {1, 2, 3, 4} and B    =    {3, 4, 5}. 
Then P(A)    =    4/6, P(B)    =    3/6 and since the set ( A   ∩   B )    =    {3, 4}, it follows that 
 P ( A   ∩   B )    =    2/6. The probability that the event A or B occurs may now be 
written:

   P A B P A P B P A B∪ ∩( ) = ( ) + ( ) − ( ) = + − =
4
6

3
6

2
6

5 6/ .   

 The formula above applies even to mutually exclusive events when it is recalled 
that for mutually exclusive events,

   P A B∩( ) = 0.   

 Similar reasoning leads to the following expression for the union of three 
events:

    
P A B C P A P B P C P A B P A C

P B C P A B C

∪ ∪ ∩ ∩
∩ ∩ ∩

( ) = ( ) + ( ) + ( ) − ( ) − ( )
− ( ) + ( ).

    (1.7)   

 The expression consists of the sum of all the individual event probabilities 
minus the joint probabilities of all pairings of the events plus the probability 
of the intersection of all three events. The generalization to more events is 
similar. For four events one would sum the individual probabilities, subtract 
all the probabilities of pairs, add the probability of all triples, and fi nally sub-
tract the probability of the four - way intersection. This calculation is sometimes 
referred to as the inclusion – exclusion principle since successive groupings of 
additional element intersections are added or subtracted in sequence until 
terminating with the inclusion of the intersection of every event under 
consideration.  

   1.5    CONDITIONAL PROBABILITY 

 We know that our assessments of probabilities change as new information 
becomes available. Consider the event that a randomly selected automobile 
survives a trip from coast to coast with no major mechanical problems. What-
ever the probability of this event may be, we know it will be different (smaller) 
if we are told that the automobile is 20 years old. This modifi cation of prob-
abilities upon the receipt of additional information can be accommodated 
within the set theory framework discussed here. Suppose that in the situation 
above involving overlapping events A and B, we were given the information 
that event A had indeed occurred. The question is, having learned this, what 
then is our revised assessment of the probability of the event B? The probabil-
ity of B conditional on A having occurred is written P(B|A). It is read as  “ the 
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probability of B given A. ”  Clearly, had the specifi ed events been mutually 
exclusive instead of overlapping, the knowledge that A occurred would elimi-
nate the possibility of B occurring and so P(B|A)    =    0. In general, knowing that 
A occurred changes the set of elementary events at issue from those in the set 
 Ω  to those in the set A. The set A has become the new sample space. Within 
that new sample space, the points corresponding to the occurrence of B 
are those contained within the intersection A  ∩   B . The probability of B given 
A is now the proportion of P(A) occupied by the intersection probability 
P( A   ∩   B ). Thus:

    P B A
P A B

P A
|

( )
.( ) =

( )
∩

    (1.8)   

 Similarly, P(A|B) is given by:

    P A B
P A B

P B
|

( )
.( ) =

( )
∩

    (1.9)   

 The numerator is common to these two expressions and therefore by cross 
multiplication we see that:

    P A B P B P A B P A P B A∩( ) = ( ) ( ) = ( )| ( | ).     (1.10)   

 One application of this formula is in sampling from fi nite lots. If a lot of size 
25 contains fi ve defects, and two items are drawn randomly from the lot, what 
is the probability that both are defective? Let A be the event that the fi rst 
item sampled is defective, and let B be the event that the second item is also 
defective. Then since every one of the 25 items is equally likely to be selected, 
P(A)    =    5/25. Given that A occurred, the lot now contains 24 items of which 
four are defective, so P(B|A)    =    4/24. The probability that both are defective is 
then calculated as:

   Prob both defective( ) .|= ( ) = ( ) ( ) = ⋅ =P A B P A P B A∩
5

25
4
24

1
30

  

 A similar problem occurs in determining the probability of picking two cards 
from a deck and fi nding them both to be diamonds. The result would be (13/52)
(12/51)    =    0.0588. 

 When three events are involved, the probability of their intersection could 
be written as

    P A B C P A P B A P C A B∩ ∩ ∩( ) = ( ) ( ) ( )| | .     (1.11)   

 This applies to any ordering of the events A, B, and C. For four or more events 
the probability of the intersection may be expressed analogously.  
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   1.6    INDEPENDENCE 

 Two events A and B are said to be  independent  if the conditional probability 
P(A|B) is equal to P(A). What this says in essence is that knowing that B 
occurred provides no basis for reassessing the probability that A will occur. 
The events are unconnected in any way. An example might be if someone 
tosses a fair coin and the occurrence of a head is termed event A, and perhaps 
someone else in another country, throws a die and the event B is associated 
with 1, 2, or 3 spots appearing on the upward face. Knowing that the event B 
occurred, P(A|B) remains P(A)    =    1/2. When two events are independent, the 
probability of their intersection becomes the product of their individual 
probabilities:

    P A B P B P A B P B P A∩( ) = ( )⋅ ( ) = ⋅| ( ) ( ).     (1.12)   

 This result holds for any number of independent events. The probability of 
their joint occurrence is the product of the individual event probabilities. 
Reconsider the previous example of drawing a sample of size 2 from a lot of 
25 items containing fi ve defective items but now assume that each item is 
replaced after it is drawn. In this case the proportion defective remains con-
stant at 5/25    =    0.2 from draw to draw and the probability of two defects is 
0.2 2     =    0.04. This result would apply approximately if sampling was done without 
replacement and the lot were very large so that the proportion defective 
remained essentially constant as successive items are drawn. 

 When events A and B are independent the probability of either A or B 
occurring reduces to:

    P A B P A P B P A P B∪( ) = ( ) + ( ) − ( ) ( ).     (1.13)   

 Example 
 A system comprises two components and can function as long as at least one 
of the components functions. Such a system is referred to as a parallel system 
and will be discussed further in a later section. Let A be the event that com-
ponent 1 survives a specifi ed life and let B be the event that component 2 
survives that life. If P(A)    =    0.8 and P(B)    =    0.9, then assuming the events are 
independent:

   P at least one survives[ ] = + − ⋅ =0 8 0 9 0 8 0 9 0 98. . . . . .   

 Another useful approach is to compute the probability that both fail. The 
complement of this event is that at least one survives. The failure probabilities 
are 0.2 and 0.1 so the system survival probability is:

   P at least one survives[ ] = − ( )( ) = − =1 0 2 0 1 1 02 0 98. . . .   
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 The terms independence and mutual exclusivity are sometimes confused. Both 
carry a connotation of  “ having nothing to do with each other. ”  However, mutu-
ally exclusive events are not independent. In fact they are strongly dependent 
since  P ( A     ∩     B )    =    0 and not P(A)P(B) as required for independence.     

   1.7    PARTITIONS AND THE LAW OF TOTAL PROBABILITY 

 When a number of events are mutually exclusive and collectively contain all 
the elementary events, they are said to form a partition of the sample space. 
An example would be the three events A    =    {1, 2}, B    =    {3, 4, 5}, and C    =    {6}. The 
probability of their union is thus P( Ω )    =    1.0. The Venn diagram fails us in 
representing a partition since circles cannot exhaust the area of a rectangle. 
Partitions are therefore ordinarily visualized as an irregular division of a rect-
angle without regard to shape or size as shown in Figure  1.4 .   

 Alternate language to describe a partition is to say that the events are dis-
joint (no overlap) and exhaustive (they embody all the elementary events). 
When an event, say D, intersects with a set of events that form a partition, the 
probability of that event may be expressed as the sum of the intersections of 
D with the events forming the partition. The Venn diagram in Figure  1.5  shows 
three events, A, B, C, that form a partition. Superimposed is an event D that 
intersects each of the partitioning events.   

 When the system has more than two components in parallel this latter approach 
has the advantage of simplicity over the method of inclusion and exclusion 
shown earlier. 

     Figure 1.4     Mutually exclusive events A, B, and C forming a partition of the sample space.  
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     Figure 1.5     An event D superimposed on a partition.  
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 The probability of the event D can be expressed as the sum of the probabili-
ties of the intersections of D with A, B, and C:

    P D P A D P B D P C D( ) = ( ) + ( ) +∩ ∩ ∩( ).     (1.14)   

 Using the expression for the joint probability in terms of the probability of D 
conditioned on each of the other three events, this becomes:

    P D P A P D A P B P D B P C P D C( ) = ( ) ( ) + ( ) ( ) + ( )| | ( | ).     (1.15)   

 This formula is commonly called the Law of Total Probability. It is frequently 
the only practical way of computing the probability of certain events of inter-
est. One example of its usefulness is in computing overall product quality in 
terms of the relative amount of product contributed by different suppliers and 
the associated quality performance of those suppliers. 

   

 Example 
 A company has three suppliers, designated A, B, and C. The relative amounts 
of a certain product purchased from each of the suppliers are 50%, 35%, and 
15%, respectively. The proportion defective produced by each supplier are 1%, 
2% and 3%, respectively. If the company selects a product at random from its 
inventory the probability that it will have been supplied by supplier A is 0.5 
and the probability that it is defective given that it was produced by supplier 
A is 0.01. Let A, B, and C denote the event that a randomly selected part drawn 
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 One creative use of the Law of Total Probability is in the analysis of the ran-
domized response questionnaire (cf. Warner  1965 ). This questionnaire is aimed 
at determining the proportion of people who have participated in an activity, 
such as tax evasion, that they might be loathe to admit if directly asked. Instead 
two questions are posed, Q1 and Q2. The participant randomly chooses to 
answer Q1 or Q2 based on a random mechanism such as fl ipping a coin. Let 
us say that if the coin is a head, they answer Q1 and otherwise Q2. If the coin 
is fair, P(Q1)    =    1/2 and P(Q2)    =    1/2. Now Question Q1 is chosen so that the 
fraction of affi rmative responses is known. For example: 

 Q1: Is the last digit of your social security number even? Yes/No. The prob-
ability of a Yes answer given that Q1 is answered is therefore P(Y|Q1)    =    0.5. 

 Question Q2 is the focus of actual interest and could be something like: 
 Q2: Have you ever cheated on your taxes? Yes/No. 
 From the respondent ’ s viewpoint, a Yes answer is not incriminating since it 

would not be apparent whether that answer was given in response to Q1 or 
to Q2. 

 The overall probability of a Yes response may be written as:

   P Yes P Y Q P Q P Y Q P Q / / / Y Q( ) ( | ) ( ) ( | ) ( ) ( )( ) ( | ).= + = +1 1 2 2 1 2 1 2 1 2 2   

 When the survey results are received the proportion of Yes answers are deter-
mined and used as an estimate of P(Yes) in the equation above. For example, 
suppose that out of 1000 people surveyed, 300 answered Yes. P(Yes) may 
therefore be estimated as 300/1000    =    0.30. 

Substituting this estimate gives:
   
0 30 0 25 0 5 2. . . [ | ]= + P Y Q

  

 So that P[Y| Q2] may be estimated as: (0.30−0.25)/0.5   =   0.10.  

randomly from the company ’ s inventory was provided by suppliers A, B, and 
C, we have:

   P A P B and P C( ) . , ( ) . ( ) . .= = =0 5 0 35 0 15   

 The event that an item randomly drawn from inventory is defective is denoted 
as event D. The following conditional probabilities apply:

   P D A P D B and P D C( | ) . , ( | ) . ( | ) . .= = =0 01 0 02 0 03   

 P(D) then represents the overall proportion defective and may be computed 
from the Law of Total Probability.

   P D( ) . . . . . . . .= × + × + × =0 5 0 01 0 35 0 02 0 15 0 03 0 0165   

 The company ’ s inventory is thus 1.65% defective. 
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   1.8    RELIABILITY 

 One source of probability problems that arise in reliability theory is the com-
putation of the reliability of systems in terms of the reliability of the compo-
nents comprising the system. These problems use the very same principles as 
discussed above and are only a context change from the familiar dice, cards, 
and coins problems typically used to illustrate the laws of probability. We use 
the term reliability in the narrow sense defi ned as  “ the probability that an item 
will perform a required function under stated conditions for a stated period 
of time. ”  This defi nition coincides with what Rausand and H ø yland  (2004)  call 
survival probability. They use a much more encompassing defi nition of reli-
ability in compliance with ISO 840 and of which survival probability is only 
one measure. 

 Reliability relationships between systems and their components are readily 
communicated by means of a reliability block diagram. Reliability block dia-
grams are analogous to circuit diagrams used by electrical engineers. The 
reliability block diagram in Figure  1.6  identifi es a type of system known as a 
series system. It has the appearance of a series circuit.    

   1.9    SERIES SYSTEMS 

 In Figure  1.6 ,  R i   represents the probability that the  i  - th component ( i     =    1.   .   .4) 
functions for whatever time and conditions are at issue. A series circuit func-
tions if there is an unbroken path through the components that form the 
system. In the same sense, a series system functions if every one of the com-
ponents displayed also functions. The reliability of the system is the probability 
of the intersection of the events that correspond to the functioning of each 
component:

   R Prob functions functions functions functionssystem = [ ].1 2 3 4∩ ∩ ∩     (1.16)   

 If the components are assumed to be independent in their functioning, then,

    R R R R R Rsystem i

i

= =⋅ ⋅ ⋅
=

∏1 2 3 4

1

4

.     (1.17)   

 It is readily seen that the reliability of a series system is always lower than the 
reliability of the least reliable component. Suppose that R 3  were lower than 

     Figure 1.6     A reliability block diagram.  
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the others, that is, suppose component 3 is the least reliable of the four com-
ponents in the system. Since R 3  is being multiplied by the product R 1 R 2 R 4 , 
which is necessarily less than or equal to 1.0, the system reliability cannot 
exceed R 3 . 

 As an example of a series system calculation, if R 1     =    R 2     =    0.9, R 3     =    0.8, and 
R 4     =    0.95, the system reliability is (0.9) 2 (0.8)(0.95)    =    0.6156. 

 It is clear that a series system comprising a large number of relatively reli-
able components may nevertheless be quite unreliable. For example, a series 
system with 10 components each having  R     =    0.95 has a system reliability of 
only (0.95) 10     =    0.599. One way of improving the system reliability is to provide 
duplicates of some of the components such that the system will function if any 
one of these duplicates functions. The practice of designing with duplicates is 
called redundancy and gives rise to design problems involving optimum trad-
eoffs of complexity, weight, cost, and reliability.  

   1.10    PARALLEL SYSTEMS 

 The reliability of a system that functions as long as at least one of its two 
components functions may be computed using the rule for the union of two 
events where the two events are (i) component 1 functions and (ii) component 
2 functions. Assuming independence the probability that both function is the 
product of the probabilities that each do. Thus, the probability that component 
1 or component 2 or both function is:

    R R R R Rsystem = + − ⋅1 2 1 2.     (1.18)   

 Systems of this type are known as parallel systems since there are as many 
parallel paths through the reliability block diagram as there are components. 

 The reliability block diagram in Figure  1.7  shows a parallel system having 
four components. The direct approach shown above for computing system 
reliability gets more complicated in this case requiring the use of the inclusion –
 exclusion principle. A simpler but less direct approach is based on the recogni-
tion that a parallel system fails only when all of the  n  components fail.   

 Assuming independence, the probability that the system functions is most 
readily computed as 1 - Prob[system fails to function]:

    R Rsystem i

i

n

= − −
=

∏1 1
1

( ).     (1.19)   

 For  n     =    2, this results in:

    R R R R R R Rsystem = − −( ) −( ) = + − ⋅1 1 11 2 1 2 1 2  .  (1.20)   

 In agreement with the direct method given in Equation  1.18 . 
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 For the component reliabilities considered in the series system depicted in 
Figure  1.1 , letting  R  1     =     R  2     =    0.90,  R  3     =    0.8, and  R  4     =    0.95, the reliability of the 
corresponding parallel system is:

   Rsystem = − × × ×( ) =1 0 10 0 10 0 20 0 05 0 9999. . . . . .   

 Note that in the parallel case the system reliability is greater than the reli-
ability of the best component. This is generally true. Without loss of generality 
let R 1  denote the component having the greatest reliability. Subtract R 1  from 
both sides of Equation  1.19 ,

    R R R R Rsystem i

i

n

− = − − − ⋅ −
=

∏1 1 1

2

1 1 1( ) ( )  .  (1.21)   

 Factoring out (1    −     R  1 ), this becomes,

    R R R Rsystem i

i

n

− = − ⋅ − −
⎧
⎨
⎩

⎫
⎬
⎭=

∏1 1

2

1 1 1( ) ( ) .     (1.22)   

 Since the values of  R  i  are all less than or equal to 1.0, the two bracketed terms 
on the right - hand side are positive and hence  R system      ≥     R  1 . 

 We may conclude that the reliability of any system composed of a given set 
of components is always greater than or equal to the reliability of the series 
combination and less than or equal to the reliability of the parallel combina-
tion of those components.  

     Figure 1.7     A parallel system reliability diagram.  
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   1.11    COMPLEX SYSTEMS 

 Systems consisting of combinations of parallel and series arrangements of 
components can be resolved into a purely parallel or a purely series system. 
The system depicted in Figure  1.8  is an example:   

 Replace the series elements on each path by a module whose reliability is 
equal to that of the series combinations. Multiplying the reliabilities of the 
three series branches results in the equivalent system of three modules in 
parallel shown in Figure  1.9 .   

     Figure 1.8     Combined series and parallel system reliability block diagram.  

     Figure 1.9     System resolved into an equivalent parallel system.  
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 The system reliability may now be computed from the rule for parallel 
systems:

   Rsystem = − −( ) −( ) −( ) =1 1 76 1 0 729 1 7275 0 984. . . . .    

   1.12    CROSSLINKED SYSTEMS 

 The system reliability for more complex systems involving crosslinking can 
sometimes be found by exploiting the Law of Total Probability. Before examin-
ing an example let us consider a simple parallel structure with two components 
having reliabilities  R  1  and  R  2 . Let us consider two mutually exclusive situa-
tions: component 2 functions and component 2 does not function. Figure  1.10  
shows the original parallel system and what it becomes in the two mutually 
exclusive circumstances that (i) component 2 functions and (ii) component 2 
fails.   

 Applying the Law of Total Probability, we have in words:
Prob{system functions}    =    Prob{system functions|Component 2 functions}    ×    
Prob{component 2 functions}    +    Prob{system functions |component 2 does not 
function}    ×    Prob( component 2 does not function). 

 Now, given that component 2 functions, the reliability of component 1 is 
irrelevant and the system reliability is 1.0. Given that component 2 does not 
function, the system reliability is simply  R  1 . Thus:

   R R R R R R R Rsystem = ⋅ + −( ) = + −⋅1 12 1 2 1 2 1 2.   

     Figure 1.10     Decomposition of a parallel system based on the status of component 2.  

R1

R2

R1 R1

Component 2 Functions Component 2 Falls
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 We see that the resultant expression is in agreement with the expression previ-
ously found for a two - component parallel system. This method of analysis, 
often called the decomposition method, is always valid, but generally not used 
for systems that consist of simple combinations of series and parallel subsys-
tems. The power of the decomposition method arises in the analysis of so -
 called crosslinked systems which cannot be handled by the direct approach 
used to analyze the system shown in Figure  1.10 . Figure  1.11 A is the reliability 
block diagram for such a crosslinked system.   

 The component labeled 3 causes this block diagram to differ from a pure 
series/parallel combination. Therefore, component 3 will be chosen as the pivot 
element in using the decomposition method. Let  R   +   denote the system reli-
ability when component 3 functions. The reduced system in this case becomes 
a series combination of two parallel components as shown in Figure  1.11 B. 

     Figure 1.11     Decomposition of a complex system based on status of component 3.  
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 The reliability  R   +   is then the product of the reliabilities of the two parallel 
modules:

    R R R R R+ = − − −( ) ⋅ − − −[ ( ) ] [ ( )( )].1 1 1 1 1 11 2 4 5     (1.23)   

 When component 3 is in the failed state the reduced system is the parallel 
combination of two series modules as shown in Figure  1.11 C. 

 The system reliability with component 3 failed is denoted  R   −   and may be 
expressed as:

    R R R R R− = − − −1 1 11 4 2 5( )( ).     (1.24)   

 Using the Law of Total Probability, the system reliability is then expressible 
as:

    R R R R Rsystem = + −+ −
3 31( ) .     (1.25)   

 For example, suppose every component had a reliability of 0.9. In that case:

   
R

R

+

−

= − − =
= − − −

[ ( . ) ][ ( . ) ] .

[ ( . ) ][ ( . )

1 0 01 1 0 01 0 9998

1 1 0 9 1 0 9

2 2

2

and
22 0 9639] . .=

  

 The system reliability is then:

   Rsystem = ∗ + ∗ =0 9 0 9998 0 1 0 9639 0 9962. . . . . .   

 Another type of system which is somewhere between a series and a parallel 
system is known as a  k / n  system. The  k / n  system functions if  k  ( ≤  n ) or more 
of its components function. An example might be a system containing eight 
pumps of which at least fi ve must function for the system to perform satisfac-
torily. A series system could be regarded as the special case of an  n / n  system. 
A parallel system on the other hand is a 1/ n  system. The  k / n  is system is some-
times represented by a reliability block diagram with  n  parallel paths each 
showing k of the elements. For example with a 2/3 system there are 3 parallel 
paths. One shows the elements 1 and 2, another, the elements 1 and 3 and the 
third shows the elements 2 and 3. This might be a useful way to convey the 
situation but it can ’ t be analyzed in the same manner as an ordinary parallel 
system since each element appears on 2 paths and thus the paths are not 
independent. 

 Let us assume that component  i  has reliability  R i   for  i     =    1, 2, and 3. Defi ne 
the following events:

   A: (components 1 and 2 function),  
  B: (components 1 and 3 function), and  
  C: ( components 2 and 3 function).    
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 Using the inclusion – exclusion principle, the system reliability is:

    
R P A B C P A P B P C P A B

P A C P B C P A B
system = ( ) = ( ) + ( ) + ( ) − ( )

− ( ) − +
∪ ∪ ∩

∩ ∩ ∩( ) ( ∩∩C).
    (1.26)   

 Now,

   P A R R( ) = 1 2.   

 Likewise,

   P B R R P C R R( ) = ( ) =1 3 2 3and .   

 The paired terms and the triple term are all equal to the product  R  1  R  2  R  3 . The 
fi nal result is therefore:

    R R R R R R R R R Rsystem = + + −1 2 1 3 2 3 1 2 32 .     (1.27)   

 This calculation grows quite tedious for larger values of  k  and  n . 
 For the case where all components have the same reliability the system 

reliability may easily be computed using the binomial distribution as shown 
in Section  2.5  of Chapter  2 .  

   1.13    RELIABILITY IMPORTANCE 

 It is of interest to assess the relative impact that each component has on the 
reliability of the system in which it is employed, as a basis for allocating effort 
and resources aimed at improving system reliability. A measure of a compo-
nent ’ s reliability importance due to Birnbaum  (1969)  is the partial derivative 
of the system reliability with respect to the reliability of the component under 
consideration. For example, the system reliability for the series system shown 
in Figure  1.6  is:

    R R R R Rs = 1 2 3 4.     (1.28)   

 The importance of component 1 is,

    I
R
R

R R Rs=
∂
∂

=
1

2 3 4     (1.29)  

  and similarly for the other components. Suppose the component reliabilities 
were 0.95, 0.98, 0.9, and 0.85, respectively, for  R  1  to  R  4 . The computed impor-
tance for each component is shown in the table below:
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 We see that the most important component, the one most deserving of 
attention in an attempt to improve system reliability is component 4, the least 
reliable component. 

 An alternate way of computing the importance of a component comes from 
the decomposition method. Suppose we seek the importance of component  i  
in some system. We know that the system reliability can be expressed as:

   R R R R Rs i i= + −+ − ( ).1   

 Differentiating with respect to  R i   shows that the importance of component  I  
may be computed as:

    I R R= −+ −.     (1.30)   

 Thus, the importance is the difference in the system reliabilities computed 
when component  i  functions and when it does not. Referring to the crosslinked 
Figure  1.11  and the associated computations, the importance of component 3 
is the difference:

   I = − =0 9998 0 9639 0 0359. . . .   

 There is an extensive literature on system reliability, and many other methods, 
approximations, and software are available for systems with large numbers of 
components. The book by Rausand and H ø yland  (2004)  contains a good expo-
sition of other computational methods and is a good guide to the published 
literature on systems reliability calculations. Another good source is the recent 
text by Modarres et al.  (2010) .   
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   Component     Reliability     Importance  

  1    0.95     R  2  R  3  R  4     =    0.7056  
  2    0.98     R  1  R  3  R  4     =    0.6840  
  3    0.90     R  1  R  2  R  4     =    0.7448  
  4    0.80     R  1  R  2  R  3     =    0.8379  
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        Political Affi liation  

   Gender     Democrat     Republican     Independent  
  Male    40    50    5  
  Female    18    8    4  

 EXERCISES 

      1.   Employees at a particular plant were classifi ed according to gender and 
political party affi liation. The results follow:

    

    Warner ,  S.    1965 .  Randomized response: a survey technique for eliminating evasive 
answer bias .  Journal of the American Statistical Association   60 ( 309 ):  63  –  69 .   

  
           

   

 If an employee is chosen at random, fi nd the probability that the 
employee is:

   a.     Male  
  b.     Republican  
  c.     A female Democrat  
  d.     Republican given that she is a female  
  e.     Male given that he is a Republican      

   2.   Three components, a, b, and c, have reliabilities 0.9, 0.95, and 0.99, respec-
tively. One of these components is required for a certain system to function. 
Which of the following two options results in a higher system reliability? 

  a.     Create two modules with a, b, and c in series. The system then consists 
of a parallel arrangement of two of these modules. This is called high -
 level redundancy.  

  b.     The system consists of a parallel combination of two components of type 
a in series with similar parallel combinations of b and c. This is called 
low - level redundancy.  

  c.     If in the low - level redundancy arrangement it were possible to add a 
third component of either type a or b or c, which would you choose? 
Why? Show work.      

   3.   In the reliability diagram below, the reliability of each component is 
constant and independent. Assuming that each has the same reliability  R , 
compute the system reliability as a function of  R  using the following 
methods:

   a.     Decomposition using B as the keystone element.  
  b.     The reduction method.  
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  c.     Compute the importance of each component if  R A      =    0.8,  R B      =    0.9, 
 R C      =    0.95, and  R D      =    0.98.    

        

   4.   A message center has three incoming lines designated A, B, and C which 
handle 40%, 35%, and 25% of the traffi c, respectively. The probability of a 
message over 100 characters in length is 5% on line A, 15% on line B, and 
20% on line C. Compute the probability that a message, randomly selected 
at the message center, exceeds 100 characters in length.    
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