Chapter 1

First-Order
Differential Equations

1.1 MOTIVATION AND OVERVIEW

1.1.1 Introduction. Typically, phenomena in the natural sciences can be de-
scribed, or “modeled,” by equations involving derivatives of one or more unknown
functions. Such equations are called differential equations.

To illustrate, consider the motion of a body of mass m that rests on an ideal-
ized frictionless table and is subjected to a force F'{t) where ¢ is the time (Fig. 1).
According to Newton's second [aw of motion, we have

A’z
m—o = F(2), (1
in which x(¢) is the mass’s displacement. If we know the displacement history x(t}
and wish to determine the force F'({) required to produce that displacement, the
solutton is simple: According to (1), merely differentiate the given z{#) twice and
multiply the result by m.

However, if we know the applied force F(t) and wish to determine the dis-
placement () that results, then we say that (1) is a “differential equation” govern-
ing the unknown function z(#) because it involves derivatives of x(¢) with respect
to t. Here, ¢ is the independent variable and x is the dependent variable. The ques-
tion is: What function or functions x(t), when differentiated twice with respect to t
and then multiplied by m (which is a constant), give the prescribed function F(t)?

To soive (1) for x(¢) we need to undo the differentiations; that is, we need to
integrate (1) twice. To illustrate, suppose F(t) = Fp is a constant, so

d*x
T Fo. 2

Integrating (2) once with respect to ¢ gives

d fdx
— | — | dt = | F,dt
fmdt (dt) / o

1

Figure 1. The motion of a mass
on a frictionless table subjected to
a force F(1).

From the calculus,

. du
| d—::dt =fdu=u
plus an arbitrary constant.
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It is a good habit to ex-
press the functional de-
pendence explicitly, as
we did in (5) when we
wrote x(t) instead of
just z.

Initial value problem is
often abbreviated as IVP.

ar

m%-i—(ﬁ =Fyt+ Cy 3

in which C'; and C are the arbitrary constants of integration. Equivalently,

dr
— =Fyt+ A, 4
mo of + A, 4)

in which the combined constant A = (3 — (] is arbitrary. Integrating again gives
mx = Fpt?/2 + At + B, so

1Ry,
(t) = E(?t + At + B), (5)

We say that a function is a solution of a given differential equation, on an
interval of the independent variable, if its substitution into the equation reduces
that equation to an identity everywhere on that interval. If so, we say that the
function satisfies the differential equation on that interval. Accordingly, (5) is a
solution of (2) on the interval —o0 < ¢ < o0 becaunse if we substitute it into (2) we
obtain Fy = Fy, which is true for all ¢.

Actually, (5) is a whole “family” of solutions because A and B are arbitrary.
Each choice of A and B in (5) gives one member of that family. That may sound
confusing, for weren’t we expecting to find “the” solution, not a whole collection
of solutions? What's missing is that we haven’t specified “starting conditions,”
for how can we expect to fully determine the ensuing motion x(t) if we don’t
specify how it starts, namely, the displacement and velocity at the starting time
t = 0? If we specify those values, say z{0) = z¢ and x'(0) = =, where z( and x|,
are prescribed numbers, then the problem becomes

d2x
Moy = Fy, (0 < ¢t < o) (6a)
dx
x(0) = xg, E(O) = Th, (6b)

rather than consisting only of the differential equation (2). We seek a function or
functions x(t) that satisfy the differential equation m d’x/dt? = F, on the interval

0 < t < oo as well as the conditions z(0) = zo and d—m(ﬂ) = xy. We call (6b)

initial conditions, and since the problem (6) includes one or more initial conditions
we call it an initial value problem or IVP. Application of the initial conditions to
the solution (5) gives

w0 =1xg = % (0+0+ B) [from (5)], (7a)

. 1
—(0)y=ap= - (0+ 4) [from (4)], (7b)
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sod = *m.;r:B and B = mxq, and we have the solution

x(t) = 2y rpt+ x| (8)

of (6). Thus, from the differential equation (6a), which is a statement of Newton’s
second law, and the initial conditions (6b), we've been able to predict the displace-
ment history x(¢} for all ¢ > 0.

Whereas the differential equation (2), by itself, has the whole family of solu-
tions given by (5), there is only one within that family that also satisfies the initial
conditions (6b}, the solution given by (8).

Unfortunately. most differential equations cannot be solved that readily, merely
by undoing the derivatives by integration. For instance, suppose the mass is re-
strained by an ordinary coil spring that supplies a restoring force (i.e., in the direc-
tion opposite to the displacement) proportional to the displacement :x, with constant
of proportionality k (Fig. 2a). Then the total force on the mass when it is displaced
to the right a distance z is —kx + F(£), where the minus sign is because the kx
force is in the negative x direction (Fig. 2b}. Thus, now the differential equation

governing the motion is

d2:r k
Ny = ket F(t).
Finally, gathering all the unknown # terms on the left, as is customary, gives

d2
Ny + kx = F(t). (9)

Let us try to solve (9) for (¢} in the same way that we solved (2), by integrat-
ing twice with respect to ¢t. One integration gives

fn%—kk[:r:(iﬁ)dtsz(t)dH—A, (10)

in which A is an arbitrary constant of integration. Since the function F'(f) is pre-
scribed, the integral of F'(¢) in (10) can be evaluated. However, since the solution
z(t) is not yet known, the integral | x(t)dt cannot be evaluated, and we cannot
praceed with our solution by repeated integration.

Thus, solving differential equations is, in general, not merely a matter of undo-
ing the derivatives by integration. The theory and technique involved is consider-
able and will occupy us throughout this book. To develop that theory we will need
to establish distinctions — definitions, some of which are given below.

1.1.2 Modeling. Besides sofving the differential equations that arise in applica-
tions, we must derive them in the first place. Their derivation is called the model-
ing part of the analysis because it leads to the mathematical problem that is to be
solved. To model the motion of the mass shown in Fig. 1, for instance, we defined
the displacement variable «, identified the relevant logic as Newton’s second law
of motion, and arrived at the differential equation (1) that models the motion of the

—— v
kx@}

Figure 2. (2) The mass/spring
system. (b) The forces on the mass,

NOTE: The force kx exerted on the
mass by the spring is proportional to

the streich in the spring, ., and the
{empirically determined) constant of
proportionality is &.

Be sure to understand
this point.
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/wnlhs!ft

L

x=0 }'i)!(x}
Figure 3. A beam subjected to a
vniform load w lbs/ft; y = y{x) is
the deflection that results,

We will often use x and y
as generic independent
and dependent variables,
respectively.

mass, subject to the approximations that the friction force exerted on the mass by
the table and the force on it do to air resistance are negligible. The upshot is that
mathematical models are not “off the shelf” items, they require thoughtful devel-
opment.

1.1.3 The order of a differential equation. The order of a differential equa-
tion is the order of the highest derivative (of the unknown function or functions) in
the equation. For instance, (9) is a second-order differential equation.

As additional examples,
dN 1 N?
— =r|1-=N )N -— t
7 =% Traz  O<i<e) ab
for N{t) and

d4

EId— = —w(x) 0<z< L) (12)

for y(x} are of first and fourth order, respectively.

In (11) the independent variable is the time ¢, the dependent variable is the
population N of spruce budworms, and r and K are known constants. The “popu-
lation dynamics” of the spruce budworm has been the subject of research because
budworms eat the foliage on balsam fir trees and a budworm outbreak can result in
the defoliation and destruction of an entire forest.

Equation (12) governs the vertical deflection y(x} of a beam of length L sub-
jected to a prescribed load w(x} 1b/ft, and will be encountered in subsequent chap-
ters. In Fig. 3 we’ve taken w/(z) to be a constant, wy, so the total load is woL.
Equation (12) is derived in a sophomore mechanical or civil engingering course on
solid mechanics. In it, F' and 7 are physical constants regarding the beam materla]
and cross-sectional dimensions, respectively.

Equation (12) is similar to (2) in that it can be solved by repeated integration.
To solve (2) we integrated (with respect to £) twice, and in doing so there arose two
arbitrary “constants of integration.” Similarly, to solve (12) we can integrate (with
respect to x) four times, so there will be four arbitrary constants (Exercise 11),

These few examples hardly indicate the proliferation of differential equations
that arise in applications — not just in engineering and physics, but in such diverse
fields as biology, economics, psychology, chemistry, and agricolture. Since the
applications are diverse, the independent and dependent variables differ from one
application to another; for instance, in (2) the dependent variable is displacement
and in (11) it is population. Often, though not necessarily, the independent variable
will be a space coordinate « [as in (12)] or the time ¢ [as in (1) and (11)]. As generic
variables we will generally use « and y as the independent and dependent variabies,
respectively. With this notation, we can express our general nth-order differential
equation for y{x) as

dy d"‘y) _

F(I:,y,a,.“,w (13)
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or, using the more compact prime notation for derivatives, F{(z,y,v, . .. ,y(”}) =
0, in which 1/(x) means dy/dx, y¥"(x) means d%y/dz?, and so on. In (i2), for
instance, F(x, v,y ,....¢"") is EIy"" + w(x), and in (11), in which the variables
are t and N instead of the generic variables z and v, we can identify F(t, N, N')
as N' —r(1-N/K)N - N?/(1+N?),

1.1.4 Linear and nonlinear equations. In studying curves in the «,y plane,
analytic geometry, one begins with straight lines, defined by equations of the form
axr + by = ¢. And in studying surfaces in z, y, # space one begins with planes,
defined by equations of the form ax + by + ¢z = d. Such equations are linear
because the variables occur as a linear combination.

Likewise, to study differential equations it is best not to begin with the general
case (13), but with linear equations, ones in which the unknown function and its
derivatives [namely, y,y', ..., y"™ | accur as a linear combination,

dr du——l
ao(w) o2 + aa(@) g+ an(@)y(a) = f(2), (4

in which the coefficients ap(x),...,an(x) and the f(x) on the right-hand side
are prescribed functions of the independent variable 2. An nth-order differential
equation is linear if it is expressible in the form (14) and nonlinear if it is not.
That is, (14) is a linear nth-order differential equation for y{x) becanse it is in the
form of a linear combination of y, o/, ... . ™) equaling some prescribed function
of . .

To illustrate (14), (9) is a linear second-order equation [with z(¢) instead of
y(x)] with ap{t) = m,ay(t) = 0,a2(t) = k, and f(t} = F(t), and (12) is a linear
fourth-order equation with ag(z) = EI, a1(z) = az(z) = az(x) = as{z) = 0,
and f{x} = w{x). However, the first-order equation (11) is nonlinear; it cannot be
put in the linear form ag{t)N'+a; (£)N = f(t) because of the N2 and N2/{1+N?)
terms, which we refer to as nonlinear ferms.

Further, the linear differential equation (14) is homogeneous if f(x) is zero
and nonhomogeneous if f(x) is not zero. For instance, (9) is nonhomogeneous
because of the F'(t), and (12) is nonhomogeneous becavse of the —w(z), but the
linear second-order equation ¢ — e®y’ + 4y = 0, for instance, is homogeneous
becanse the right-hand side [after all of the y, 3/, and ¥” terms are put on the left,
as in (14)] is zero.

What physical or mathematical significance can we attach to the f(z) term in
(14)7 In (1), for instance, F (¢} was an applied force that acted on the mass over the
t interval of interest; in (12), —w{x} was an applied force or load distribution that
acted on the beam over the x interval of interest. Thus, it is common to call f{wx)
in (14) a forcing function — even if it is not physically a force. For instance, in
the linear differential equation governing the charge on a capacitor in an electrical
circuit the forcing function will be seen in Section 1.3.5 to be an applied voltage,
not an applied force, yet we will still call it a forcing function.

A linear combination
of quantities z),...,xp
means a constant times
a1, plus a constant times
T9, ..., plus a constant
times 1y,

We call the right-hand side of
(14) the “forcing function.”
Think of it as an “input,”
along with any initial
conditions.
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It is useful to think in terms of “inputs™ and “outputs.” If the linear equation
(14) is augmented by initial conditions, for instance as (6a) was augmented by the
initial conditions (6b), then both the forcing function f{x) and the initial conditions
are called inputs, and the response y{z) to those inputs is the output. For instance,
in the solution x(t) = F0t2/2m + zyt + xg to the IVP (6), the term Fot?/2m s the
response to the forcing function Fy in (6a), and the term x5t + xp is the response
to the initial conditions (6b). The idea is indicated schematically in Fig. 4.

Inputs Output

f(x) ——.] The physical system,

3 asdescribed by the |~ Y(¥)
Initial —=| 1oq_ band side of (14)

conditions

Figure 4. Schematic of the input/output nature of a linear
initial value problem with differential equation (14).

1.1.5 Ouwr plan. We will find that nonlinear differential equations are generally
much more difficult than linear ones, and also that higher-order equations are more
difficult than lower-order ones. Thus, we will begin our study in Section 1.2 by
considering differential equations that are both linear and of the lowest order —
first order.

To motivate our plan (which is typical, not unique to this text), think of one’s
carly studies of algebra. Probably, it began with a single equation in one unknown,
ax = b. From there, we proceeded in each of two different directions: higher-order
algebraic equations in one unknown (quadratic, cubic, and so on), and also systems
of linear equations in more than one unknown, such as the two equations 6x+y = 7
and 2x — 8y = 5 for x and y. The same is a good idea in differential equations.
Following our study of firsi-order linear equations, in Chapter 1, we will proceed
to higher-order linear equations in Chapters 2 and 3, and to systems of differential
equations in Chapters 4 and 7.

We will develop three different approaches to solving and studying differential
equations: analytical, numerical, and qualitative. Our derivation of the solution
(8) of the problem (6} illustrates what we mean by analytical; that is, by carrying
out a sequence of calculus-based steps we were able to end up with an expression
for the unknown fonction. Most of our attention in this text is on analytical solution
methods and the theory on which they are based.

Many differential equations, such as the budworm equation (11), are too dif-
ficult to solve analytically, but we can turn to a numerical method such as Exler’s
method. The idea, in numerical solution, is to give up on finding an expression for
the solution V() and to be content to numerically generate approximate values of
N(t) at a sequence of discrete #'s, the spacing between them being called the step
size of the calculation. To illustrate, let ¥ = K = 1 in (11), let the initial condition
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be N{0) = 3, and let the step size be 0.2. The result of the Euler calculation is
shown by the points in Fig. 5 along with the exact solution. Don’t be concerned
that the Euler-generated points are so inaccurate in this illustration, so far from the
exact solution; one can increase the accuracy by reducing the step size.

Finally, by gualitative methods we mean methods that give information about
solutions, without actually finding them analytically or numerically. One quali-
tative method that we will use is the “direction field,” which we will use in Sec-
tion 1.2

1.1.6 Direction field. Tf we can solve a given first-order equation F'(z,y,v') =
0 for ¢/, by algebra, we can express the equation in the form ¢ = f{z,y), that is,

W _
- = fle.y), (15)

which we take as our starting point.

To discuss the direction field of (15) we must first define the term “solution
curve.” A solution curve or integral curve of (15) is the graph of a solution y(x)
of that equation. Observe from (15) that at each point in the z, y plane at which
flx,y} is defined, f(x,y) gives the slope dy/dx of the solution curve through that
point. For instance, for the differential equation

dy ,

d,':r:_4 3r—y (—x < a <) (16)
the slope of the solution curve through the point (2,1} is given by f(2,1) = 4—
3(2)-1=-3.

In Fig. 6 we’ve plotted the direction field or slope field corresponding to (16),
namely, a field of short line segments through a discrete set of points called a grid.
Each line segment is called a lineal element, and the lineal element through any
given grid point has the same slope as the solution curve through that point and is
therefore a short tangent line to that solution curve. In computer graphics packages
we can specify lines with or without arrowheads; we omitted arrowheads in Fig. 6.

In intuitive language, the direction field shows the overall “flow” of solution
curves. Consider for instance the initial point (0, —5) shown in Fig. 6 by the heavy
dot; that is, consider the initial condition (0} = —5 to be appended to (16). By
following the direction field, we can sketch by hand the solution curve passing
through that point. {Actually, we obtained that solution curve by computer, but we
could just as well have sketched it by hand.) Four other solution curves are included
as well.

You may wonder why we’ve shown the solution curve through (0, —5) both to
the right and to the left; if (0, —5) is an “initital point,” then shouldn’t the solution
through that point extend only to the right, over 0 < = < 00? If the independent
variable is the time ¢, then the f interval of interest is usually to the right of the
initial time. But in the present example the interval of interest of the independent
variable x was stated in (16) to be —o0 < 2 < oc. Hence, we extended the solution
curve in Fig. 6 both to the right and to the left of the initial point.

Euler .

]
|
i
|

04

0

2 t 4
Figure 5. Solution of the bud-
worm equation (11 forr=K =1
and N{0) = 3. The dots are the
approximate numetical sofution

{using Euler's method with a step

size of 0.2) and the solid curve is

the exact solelion,

(16} is a linear first-order
equation. Comparing it
with (14) we see that n
is 1, ap{x)is 1, a1(z) is
1, and f(x)is 4~ 3x.
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Figure 6. Direction field for

¢ = 4--3z--~y. and representa-

tive solution curves.
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Incidentally, (16) is linear {becanse it can be expressed in the form (14) as
dy/dx + y = 4—3z], but (15) admits a direction field whether it is linear or non-
linear. In fact, direction fields are particularly valuable for nonlinear equations be-
cause those are more difficult, in general, and we may need all the help we can get
to obtain information about their solutions.

1.1.7 Computer software. There are powerful computer software systems, such
as Maple, Mathematica, and MATLAR, that can be used to implement much of the
mathematics presented in this text — symbolically, numerically, and graphicatly.
Though the reading is not tied to any particular software, it is anticipated that you
will be using some such system as you go through this text. Thus, included among
the exercises are some that call for the use of computer software, and the Student
Solution Manual includes Maple, MATLAB, and Mathematica tutorials specifi-
cally for this text, chapter by chapter. Even if an exercise does not call for the use
of software, and the answer is not given at the back of the hook, you may be able to
use computer software o solve the problem and check your work, and to plot your
results if you wish.

Closure. We've introduced the idea of a differential equation and enough termi-
nology to get us started. We defined the order of the equation as the order of the
highest-order derivative in the eguation, and we classified the equation as linear if
it is expressible in the form (14), and nonlinear otherwise. We found that some dif-
ferential equations, such as (2), can be solved merely by repeated integration, but in
general that strategy does not work. However, whether or not the solution process
proceeds by direct integrations, we can think of the arbitrary constants that will
arise as “integration constants.” The presence of these arbitrary constants makes it
possible for the solution to satisfy initial conditions, such as the initial displacement
and the initial velocity in (6b). Later, we will see that for differential equations of
second order and higher it may be appropriate to specify conditions at more than
one point, This case is tllustrated in Exercise 11.

We've begun to classify different types of differential equations — for instance
as linear or nonlinear, as homogeneous or nonhomogeneous, by order, and so on.
Why do we do that? Because the most general differential equation is far too dif-
ficult for us to solve. Thus, we break the set of all possible differential equations
into various categories and develop theory and solution strategies that are tailored
to a given category. Historically, however, the early work on differential equa-
tions — by such great mathematicians as Leonhard Euler (1707-1783), James
Bernoulli (1654—1705) and his brother John (1667-1748), Joseph-Louis Lagrange
(1736-1813), Alexis-Claude Clairaut (1713-1765), and Jean le Rond d'Alembert
{1717 -1783) — generally involved attempts at solving specific equations rather
than developing a general theory.

From the point of view of applications, we will find that in many cases diverse
phenomena are modeled by the same differential equation. The remarkable con-
clusion is that if one knows a lot about mechanical systems, for example, then one
thereby knows a lot about electrical, biological, and social systems, for example, to
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whatever extent they are modeled by differential equations of the same form. The
significance of this fact can hardly be overstated as a justification for a careful study

of the mathematical field of differential equations.

EXERCISES 1.1

NOTE: UNDERLINING OF AN EXERCISE NUMBER
OR LETTER INDICATES THAT THAT EXERCISE IS IN-
CLUDED AMONG THE ANSWERS TO THE SELECTED
EXERCISES AT THE END OF THE TEXT.

1. Concepts of Order and Selution. State the order of
each differential equation, and show whether or not the given
functions are solutions of that equation.

@y =3y nulw) = ¢, yalx) = 76>, yy(a) = e
(b) (4)* = dy; 1 (x) = 2%, ya(ar) = 2%, ya(x) =™
{©) 2yy’ = 9sin 2 yy(x) =sinx, y2(z) = 3sinz,
ys(r) = €”

() y" — 9y =10; y1{x) = e3¥ — €%, ya(x) = 3sinh 3,
'.US(Q?} = DIt L oI

© (y)° —doy' +4y = 0; yi{x) = 2% —z, ya(w) = 20 — 1

(N y” + %y = & i {x) = 4sin 3z + Jcos 3,
y2(x) = 63in (3z + 2)

@y -y —2y = 6; y1(x) = 5e¥ =3, ya(x) = —2e7" -3
(hy " —y" = 6—6x; 31 (x) = 36® + 27

M 2%y = 6y%; m(c) = 22, golx) = 2%, ya(z) = 0

Dy +¥ =y — & nx) =2, wl) =1, @) =2
Wy + 22y = 13 (x) = 4677, ya(x) =

e’ ([UT et’ dt + A) for any vatue of A. HINT: For ya(z},
recall the fundamental theorem of the integral calculus, that it
F(xy = [T f(t)dt and f(#) is continuous on a < T < b, then
F'{xz) = f(z) on ¢ < = < b. [The reason we did not evaluate

the integral in 42 (x) is that it is too hard; it cannot be evaluated
as a finite combination of elementary functions.}

i
My -dry = 2% piz) = 2=’ / e~ 22 gt

HINT: See the hint in part (k).

2. Including an Initial Condition; First-Order Equations.
First, verify that the given function y(x} is a solution of the
given differential equation, for any value of A. Then, solve lor
A so that y(x) satisfies the given initial condition.

@y +y=1 yla)=1+A4e"" ¢y(0)=3
Oy ~y=z ylr)=A4e"—z-1, y(2)=5
@y +6y=0; ylr)=Ae% y{4)=-1
Wy =2zy* ylxy=-1/{e*+ A); y(0)=5
@ yy =z ylx)=ver+4 yl)=10

3. Second-Order Equations. First, verify that the given func-
tion is a solution of the given differential equation, for any
constanis 4, B. Then. solve for 4, B so that y(z) satisfies the
given initial conditions.

@y 44y = 822 y(r) = 222 — 14 Asin 20+ B cos 2x;

(byy' -y =2x% ylz)= -2 -2+ Asinhx+ Beosha;
y(0)=-2, y(0)=0

©y" -2y +y=0; yla)=(A+ Br)e™

y(0) =0, y(0y=0

@y -y =0
ey y” + 2y = 4
y(0) =0, ¥{0}=0

ylx) = A+ Be®;, y(W =1, ¥ {0)=0
o) = A+ Be ™ * +a° —x;

4, Linear or Nonlinear? Classify each equatton as linear or
nonlinear:

@y +e'y=4 by =z +y

ey =z - 2y (dyy' — ¥ =sinx

@) + (sinx)y = x* Oy —y=¢"

(g) wy" +4y = 3x (hyy" =y

HLY _y Dy +yP+by=a
.f_l_u J L .

kyy" = =%y
() y" —ay =3y +4

(l) y.fﬂ + yﬂyf — 39,:
(my™ =4y

5. Exponential Solutions. Each of the following is a homo-
geneous linear equation with constant coefficients [i.e., the co-
efficients ag(x), . .., a,(x) in (14) are constants). As we will
see in Chapter 2, such equations necessarily admit solutions of
exponential type, that is, of the form y{z) = €™ in which r is
a constant. For the given equation, determine the value(s) of
r such that y{x) = €™ is a solution. HINT: Put y(x) = &"*
into the equation and determine any values of r such that the
equation is satisfied, that is, reduced to an identity.
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@y +3y=20

Wy -3 +2=0
@y -2 -3y=0
(g) y!H _ y! — 0

(l_) ,yﬂ.r.r _ {iy” ¥+ 5y =1

b2y —y=0

Dy —2¢+y=0

N y" +5¢ +6y=0

(h} yn.r _ 2yﬂ' _ yf + 2y — 0
(l) ylﬂf _ loyﬂ + gy — 0

6. Powers of x as Solutions. Unlike the equations in Ex-
ercise 3, the lollowing equations admit solutions of the form
y(x) = &, in which r is a constant. For the given equation
determine the value(s) of v for which y{z) = x" is a solution.

byzy —y=0
(Dzxy” — 4y’ =0
(f)nyﬂ +$yr —y= 0
2y’ — 2y =0

@ay +y=0

@y’ +y =0

@7y +zy -9y =0
(@ 2%y + 32y -2y =0

7. Figure 6. Five representative solution curves are shown
in Fig. 6. There is also one solution curve, not shown in
the figure, that is a straight line. Find the equation of that
straight-line solution. HINT: Seek a solution of (16} in the
form y(x} = mx + 5. Put that inte (16) and see if you can
find rn and b such that the equation is satisfied. Does your re-
sult fook correct — in terms of the direction field shown in the
figure?

8. Straight-Line Solutions. First, read Exercise 7. For each
given differential equation find any straight-line solutions, that
is, of the form y(x) = mx + b. If there are none, state that.

@y +2y=22-1 (byy' + 4y =20

©y +y? =9 Wy -2 +y=0
(g)y’:y2—4;r2—12;z:—7 (h)yy’—y2:_x2_|_3x_2
Dy = y?—4z?-2 Gy +y +y=3z
®y' +y=2"+7 My —y =24z

(m) A differential equation supplied by your instructor.

9. Grade This. Asked to solve the differential equation j—: +z

= 10¢, a student proposes this sohmion: By integrating with re-
spect to £, obtain

52+ A
o+ xt = 5t + A, t) = .
r+zx + A, so xz(t) Tt

Is this correct? Explain.

10. No Solntions. (a) Show that the differential equation

| dy
- +3=0 10.1
|d~,r| + |y (10.1)
has no solutions on any x interval. NOTE: This example
shows that it is possible for a differential equation to have no

solutions.
(b) Is (10.1) linear? Explain.

11. Deflection of a Loaded Beam; Boundary Conditions.
Consider the beam shown in Fig. 3. Its deflection y(x) is mod-
eled by the fourth-order linear differential equation
4
E Id__y =

dird —Wo.

(1.1}
{a) By repeated integration of (11.1), show that

= (W A Do D). QY.

(b) From Fig. 3 it is obvious that y(0) = 0 and y(L) = 0. Not
so obvious (without some knowledge of Euler beam theory)
is that ¥”(0) = 0 and y"(L) = 0 (because no moments are
applied at the two ends). Use those four conditions to evaluate
A.B,C, Din(11.2), and thus show that

o
24Ef

y(z) = — (z* —2L2% + L%x). (11.3)
NOTE: In this application the conditions are at two points,
x = 0and x = L, rather than one, so they are called boundary
conditions rather than initial conditions, and the problem is a
boundary value problem rather than an initial value problem.
(c) From (11.3), show that the largest deflection is
—BwgLt/384E1.
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1.2 LINEAR FIRST-ORDER EQUATIONS

We begin with the general linear first-order differential equation

a0() % + an(aly = (), m

in which ag(x), ¢, (), and f(x) are prescribed. We assume aq() is nonzero on the
x interval of interest, so we can divide (1) by ap{x} and obtain the simpler-looking
version

dy N
=T p(z)y = q(z), (2)

which is the standard form of the linear first-order equation. 1t is assumed through-
out this section that p(x) and g(x) are continuous on the x interval of interest. As
noted in Section 1.1, we cannot solve (2) merely by integrating it because integra-
tion gives

y(z) + /p(T)y(:r') dr = / g(x)dx + C, (3)

and we don’t yet know the y(x) in the integrand of [ p(x)y(x) dx.

1.2.1 The simplest case. When stuck, it is good to simplify the problem tem-
porarily, to get started. In this case we might do that by letting p(r') or ¢{x) be zero,
If we fet p(x) = 0, so the differential equation is simply

dy _
Ir g(x}, . (4)

then the | p(x)y(x) dz term causing the trouble in (3) drops out and we success-
fully obtain the solution by integrating (4) and obtaining

yl) = f a(e) dz + A, )

in which the integration constant A is arbitrary. The integral in (5) does exist (i.e.,
converge) because we're assuming that p{x) and ¢(zx) are continuous. Reversing
our steps, differentiation of (5) shows that (5) does satisfy the original differential
equation (4), because j% = -&dg(/q(r) dz + A) = g{z).

We call (5) a general solution of (4) because it contains alf solutions of (4),
Put differently, (4) implies (5), and (5) implies (4), as we've seen. In fact, (5) is
a whole “family” of solutions, a one-parameter family in which the parameter is
the arbitrary constant A. Each choice of A gives a member of that family, called a
particular solution of (4). For instance, if g(x} = 6%, then the general solution
is given by (5) as y{x) = 3e2* + A, the graph of which is shown, for several values
of A, in Fig. 1.

That is, a1 (%) /ao(z)
is p(x) and f(z}/ag(x)
is q().

Figure 1. The solutions y{x)
=3e** 4 A %ﬂhe differen-
tial equation _y = 6e°°. for

several vajues of A,

11
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0 C

Figure 2. 0<e” < oo:e” is

not zero Tor any finite value of .

When we evaluate [ p(x) dz
in {(8) we don’t need to in-
clude an additive arbitrary
integration constant; we al-
ready did in (7¢).

By (8) being the general so-
lution of (6), we mean that it
contains all solutions of (6).
Each individual solution cor-
responds to a particular choice
of the arbitrary constant A.

1.2.2 The homogeneous equation, Now consider the special case of (2) for
which ¢(z) = 0 instead,

dy _
T p(z)y = 0. (6)

To solve (6), first divide both terms by y [which is permissible if y(z} # 0 on the
x interval, which we tentatively assume], then integrate with respect to x:

1dy _
fgagdﬁfp(m)dx_o, (Ta)
f é dy + /p(a:) dr =0, (7b)
In |yl + [p(r) dr =0, (7¢)
ly| = e~ fpz)dz+C _ e e—fp(:c)dx7 (7d)

and it follows from (7d) that
y(z) = +eC o= J P(@) dz

The integration constant C is arbitrary so —oo < C < 00, and therefore 0 < e < 0
(Fig. 2). If we abbreviate +eC as A, then A is any number, positive or negative, but
not zero because the exponential e is nonzero (Fig. 2). Thus, we can write y(z)
in the friendlier form

y(z) = Ae™ J p(z)dz (8)

in which A is an arbitrary constant, positive or negative but not zero.

Because we tentatively assumed that ¢y # 0 in (7a), we must check the case
y = 0 separately. In fact, we see that y{x) = 0 satisfies (6) because it reduces (6)
to 0 + 0 = 0. We can bring this additional solution under the umbrella of (8} if we
now allow A to be zero. The upshot is that the general solution of (6) is given by
(8) where A is an arbitrary constant: —oo < A < oo.

The preceding reasoning regarding the inclusion of the solution y(z) = 0 is
similar to the reasoning involved in solving the algebraic equation x? + 2x = 0
for z. If we divide through by x, tentatively assuming that = # 0, then we obtain
x + 2 = (0 and the root z = —2. Unless we then check the disallowed case z = 0,
to see if it satisfies the equation z? + 22 = 0, we will have missed the root x = 0.

The key to our sclution of (6) was dividing the equation by y because that step
enabled us to end up [in (7b)] with one integral on y alone and one on « alone. The
process of separating the x and y variables is called separation of variables and
will be used again in Section 1.4 to solve certain nonlinear equations. Verification
that (8) satisfies (6) is left for the exercises.

EXAMPLE 1. One to Remember Forever. [f p(x) is merely a constant in (6), then
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f p(z)dz = pz, and (8) gives the general solution of

B, w=o 9
dr
O — a0 <0 F <0 00, 4%
y(x) = Ae” P¥, (10)

with A an arbitrary constant. Recall that the graphs of the solutions, y = Ae™P* in this
case, are called the solution curves or integral curves. These are plotted in Fig. 3 for several
representative vatlues of A, along with the direction field. Notice, in the figure, how the

(a) p>0 - (b p<o
PERRRLALRALLRAY I
RERLARULALANALAGY FELLEiiTE iy

y PR RRELLAA LAY LARARAAR ARl
PR
A AALLLLLV LAY LALLAELEL Y
d AR AR RRR RN FEEF7P07 70
ARLR R R RR RN ///////////
ARARER RS IS ERNS
AR AR RS /XKX/X//XX
NOVRURNNUNRN IO PO TIPS
NNV PSS
SOV UV, SIS ALT S
g T e e et T e O i i T e g
o] e
Do A4 €0
0 X 0 X

Figure 3. Repre‘;enlatlve solution curves y(x) = Ade™ 7 for
tie equation ¥’ + py = 0; direction field included.

solution curves follow the “flow™ that is indicated by the direction field. 1

EXAMPLE 2. Solve
¥ +(sinz)y =0 (—oc <z < o0). (rn
By comparing (11) with (6) we see that p(x) = sinx. Then (8) gives
() = Ae” [sinede _ 4 .cosw (2)
in which A is arbitrary.

Besides using the “off-the-shelf” formula (8), it is instructive to solve (1 1) by carrying
out the separation of variables method that we used to derive {8) — as if stranded on a

Roughly put, this example
is as important in the study
and application of differential
equations as is the straight
line in the study of curves.



14 Chapter I. FIRST-ORDER DIFFERENTIAL EQUATIONS

[ =)
21
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e

m
s
i) oy
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L

L —,

=
-t

)

A

Figure 4. Representative solution

curves y(z) = A5 ¥ for the equa-

tion %' 4 (sinx)y = 0: direction
field included.

(Pronounced “oiler,”
not “yuler.”)

desert island, our textbook having gone down with the ship:

d—y—l—sinxdxzo, (13a)
u

/d?y-l-/sinﬂ:d:c:(}, (13h)
Injy| —cosx = C, (13¢)
|y1 _ eCOS:‘.‘T + - 8{:08:1:60, (l3d)
y(z) = :l:eCeCOS‘T — AelOST (13¢)

which is the same result as we obtained in (12) by putting p(z} = sinz into (8). The
solution curves are displayed for several values of A in Fig. 4. 1

1.2.3 Solving the full equation by the integrating factor method. We're now
prepared to solve the full equation

dy _
&+ pla)y = a(a), (a4

including both p{x) and ¢{z). This time our separation of variables technique fails
because when we try to separate variables by re-expressing (14) as

1 dy + p(x)dx = ¢(=) dz
Y y

the term on the right-hand side spoils the separation because ¢(x)/y is a function
not only of x but also of y. Instead of separation of variables, we will use an
“integrating factor” method invented by the great mathematician Leonhard Euler
(1707-1783).] We first motivate Euler’s idea with an example:

EXAMPLE 3. Motivating Euler’s Integrating Factor Method., We wish to solve

the equation

@Jrly:lzm? (0 < & < o) (15)
dr =

for y(). Notice that if we multiply (15) through by  and obtain

ey +y = 1253, (16)

"Euler is among the greatest and most productive mathematicians of all time. He contributed
to virtually every branch of mathematics and to the application of mathematics to the science of
mechanics. During the last 17 years of his fife he was totally blind but produced several books and
some 400 research papers. He knew by heart the entire Aeneid by Virgil, and he knew the first six
powers of the first 100 prime numbers. If the latter does not seemn impressive, note that the 100th
prime number is 541 and its sixth power is 25,071.688,922 457,241,
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then the left-hand side is the derivative of the product xy{x) because |zy{x)]) = y{x) +
a9’ (). Thus, (16) can be expressed as

d 19,3
£(a¢y} =12z (t7)

which can now be solved by integration:

fd(;r:y) :/12:173(1!:1:, ' (18a)

4

2y — 12% 1. (18b)
where C is arbitrary. Thus, we obtain the general solution
3 C
ylx) = 32° + . (a9

of (15). We can readily verify that substitution of (19} into (15) produces an identity
(namely, 12x? = 12x2) on the interval 0 < = < oc specified in (15). N

The integrating factor method is similar to the familiar method of solving a
quadratic equation ax? + bz 4+ ¢ = 0 by completing the square: We add a suit-
able number to both sides so that the left-hand side becomes a “perfect sguare;”
then the equation can be solved by the inverse operation — by taking square roots.
Analogously, in the integrating factor method we multiply both sides of (14) by a
suitable function so that the left-hand side becomes a "perfect derivative;” then the
equation can be solved by the inverse operation — by integration. In Example 3 the
integrating factor was x; when we multiplied (15) by 2 the left-hand side became
the derivative {zy)’. Then (xy) = 122 could be solved [in (18)] by integration.

To apply Euler’s method to the general equation (14), multiply (14) by a (not
yet known) integrating facter o{x):

oy +opy = oq. (20)

Our aim is to determine o (i} so the left-hand side of (20) is the derivative of oy,
namely,
d
d—(oy) or, written out, oy’ + o'y. (21
- gy Ty
To match the underlined terms in (20) and (21), we need merely choose o(z) so

that op = o'
o' = ap. (22)

But the latter, rewritien as
o' —p(x)o =0, (23)

is of the same form as the equation y' + p(x)y = 0 that we solved in Section 1.2.2
[if we change y(x) to o(x) and p(x) to —p(x}], so its solution is given by (8) as

olx) = Ae‘fp(:n)d:r_:‘ (24)

The integrating factor method
is similar to the method of
solving a quadratic equation
by completing the square.

In (15), we “noticed” that
a{x) = x works, but in gen-
eral we cannot expect to
find (x) by inspection.
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This is an integrating
factor for (14).

CAUTION: (27) is not
the same as y(z} =

L /a(m)q(m) dr+C,
o(x)

That is, don’t merely “tack
on” an integration constant
at the end of the analysis;
carry it along from the
point at which it arises.

The abbreviation IVP.

£

Jze*tdr = {ax—1)—.

We don’t need the most general integrating factor, we simply need an integrating
factor, so we can choose A = 1 without loss. Then

o(z) = ef P(@) dz. (25)

With o(z} so chosen, (20) becomes

d

which can be integrated to give
jd(oy) = /J(x)q(m) dzx, (26a)
oy = [J(:U)q(l‘) dx + C, {26b)

so a generat solution of ¥ + p(z)y = g(z) is

y(z) = J—(lm—) ( / o(x)q(z) dz + c) : @7

with the integrating factor o{z) given by (25).

EXAMPLE 4. Solution by Integrating Factor Method. Solve the initial value
problem (IVP for brevity)

d
%Y 3y =0z

Ir (—oo < x < 00), (28a)

¥(2) =1. {28b)

To solve, we could simply use the solution formula (27), or we could carry out the sieps
of the integrating factor method that led to (27). To use (27) “off the shelf,” first compare
(28a) with ¥’ + p(x)y = q(x) w ideotify p{z) and ¢(z}: p(x) = 3 and ¢(x) = Y. Then,
(25) gives

olz) = J Pl@)dE _ f3dz _ 3z (29)
and (27) gives a general solation of (28a) as
y(r) = 6_3”(/e3m9xd:c + C') =3z—1+Ce™32 30

Finally, apply the initial condition (28b) to (30) to determine C":

y2)=1=6—-14Ce5,
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s0 (7 = —4e%. Hence, the solution of the IVP (28) is
y(z) = 3¢ = 1 — 4e 372 3N

which is plotied as the solid curve in Fig. 5.
Alternatively, let us solve (28) using not the solution formula (27), but the integrating
factor method. First, multiply (28a} through by o(x):

oy’ + 3oy = 9o, (32)
We want o choose ¢ 5o the left side of (32) is a "perfect derivative” (gy)’ or, written out,
oy +a'y. (33)

For the vnderlined terms in (32) and (33} to be identical we need merely match the coeffi-

cients 30 and &' of . Thus,
o’ = 30, (34}

which gives o(x) = 3%, Then (32) is in the desired form {(oy)’ = 9. which can be
integrated to give oy = [ 9zadz + C, or,

ylx) = e—sz(fgx€3=r dr + C) =3x—14+Ce™ ¥, 35

which is the same result as that given in (30).

COMMENT 1. Know and be comfortable with both approaches: memorizing and using
(27} or, instead, using the integrating factor method.

COMMENT 2. We can see from (31) that the ¢~3% term lends Lo zero as x increases, 50
every solution curve is asymptotic to the straight line y = 3z —1. In fact, y(x) = 3r—1
is itself a particular solution of (28a), corresponding to the choice ¢ = @ in (30), and is
indicated in Fig. 5 by the dotted line. 11 '

Can the integrating factor method fail? Perhaps for a given equation 3’ +
plx)y = g(x) an integrating factor does not exist? No, & () is given by (25) and
the only way that equation can fail to give o () is if the integral [ p(z) dx does not
exist, However, our assumption that p(x) is continuous on the x interval of interest
guarantees that the integral does exist.

1.2.4 Existence and uniqueness for the linear equation. A fundamental ques-
tion in the theory of differential equations is whether a given differential equation
for y(x) has a solution through a given initial point (e} = b in the x, y plane and,
if so, on what « interval it is valid. That is the question of existence. If a solution
does exist, then the next question is that of unigqueness: Is that solution vnique?
That is, is there only one solution or is there more than one?

For linear initial value problems we have the following result.
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Figure 5. Graph of the solution
{3110 the VP (28), with the direc-
tion field. The heavy dot marks the
initial point y(2) = 1.
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In (37), s 15 just a dum-
my integration variable.
Partial check of (37):
Setting © = a in (37) gives

1
M@—aaw+wwmw,

50 (37) does satisfy the ini-
tial condition y(a) = b.

First, identify p(x) and
q(x) by getting (38a) in-
to the standard form

y' + ple)y = q(z).

THEOREM 1.2.1 Existence and Uniqueness for Linear Initial Value Problems
The linear initial value problem

¥ +plxly =qx); yla)=1b (36)
has a solution

) = o5 ([ ooratsras + bo(@), 37

where o(z) = eJ P() dz g 4 integrating factor of the differential equation in
(36). That solution exists and is unique af Jeast on the broadest open x interval,
containing the initial point x = g, on which p(z) and g(x) are continuous.

Unlike (27), (37) includes a definite integral instead of an indefinite integral,
and C' has been chosen so that the initial condition y(a) = b is satisfied. We leave
the derivation of (37) to the exercises, and turn to applications of the theorem.

EXAMPLE 5. Existence on —o00 < & < oo. Consider the IVP (28) again, in the
light of Theorem 1.2.1: p(x) = 3 and g(x) = 9z are continuous for afl x, so Theorem 1.2.1
guarantees that there exists a unique solution of (28) on —o0o < x < oo. That solution was
given by (31) and was plotted as the solid curve in Fig. 5. 1

EXAMPLE 6. The Possibilities of Existence on a Limited Interval, and of Neo
Solution. Consider the IVP
a3
md'x +y=12%", (38a)
y(1) =5 (38h)

We've left b unspecified so we can consider several different b's. Here, p(x) = 1/z, g(2) =
12z2%, and @ = 1. Although ¢{x) is continuous for all x, p{x) = 1/z is discontinuous at
x = 0, so Theorem 1.2.1 guarantees the existence and uniqueness of a solution to the IVP
(38) at least on 0 < x < oo, because that is the broadest open x interval, containing the
initial point # = 1, on which both p(x} and ¢{z) are continuous.

In fact, the general solution of (38a) was found in Example 3 to be

y(z) = 32° + g (39

and for the representative initial conditions y(1) = 0, y{1) = 3, and y{1) = 5 we obtain
¢ = -3,0, and 2, respectively. These solutions are plotted in Fig. 6, and we see that
we can think of the vertical line z = 0 as a barrier or wall; if the initial point (1,b} is
above the curve ¥ = 322 the solution “climbs the wall” to +00 as z — 0 and if the initial
point is below y = 3% the solution approaches —oc as = — 0, because of the C/x term
in (39).
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There is just one solution, corresponding (o y{1} = 3, that manages to cross the
barrier, for then we obtain C = 0; then y(z)} = 3z* and the C/a term that “blows up”
at ¥ = 0 is not present. Thus, through the initial point (1) = 3 the unique solution
y(x) = 32 exists for all x, on —oo < 1 < 00. The presence of this exceptional sofution
does not violate the theorem because of the words “at least™ in the last sentence of the
theorem.

Thus far we've considered initial conditions at 2 = 1. Since p(z) = 1/x and g{z) =
122% are both continuous at © = I, the existence of unique solutions through those initial
points was guarantced, and the only question concerned their “intervals of existence.” Now
consider iitial points at & = 0, at which p(x) = 1/« is discontinuous. That is, consider
initial points on the ¥ axis. Since p{z) is not continuous in any neighborhood of x = 0,
Theorem 1.2.1 simply gives no information. In fact, through the initial point (0) = 0 (the
origin) there is the unigue solution y(z) = 3x3, which exists on —oc < z < o0, as noted
above. But, through every other point on the g axis there is no solution hecause (39) gives
y{0) = b = 0 4+ C'/0, which cannot be satisfied by any value of C. 1

The broadest interval on which a solution exists is called the interval of exis-
tence of that solution. For instance, in Example 6 consider the solution satisfying
the initial condition y{1) = b, its graph being the uppermost of the three shown in
Fig. 6. Both y(z) = 3z* + 2/z and 3 = 622 — 2/2? are undefined at z = 0, where
they “blow up.” Thus, the interval of existence of that solution is 0 < x < a0,
In contrast, the initial condition (1) = 3 gives C' = 0 in (39), so the singular
C'/z term drops out and the solution y(x) = 32> has, as its interval of existence,
—00 < X < 0.

EXAMPLE 7. Occurrence of Nonuniqueness. The only case not illustrated in
Examples 5 and 6 is that of nonuniqueness, so consider one more example,

dy
n— = 40
T =¥ (40a)
yla) =b, (40b)
so p(x) = —1/x and ¢(x) = 0. Here, p(x) is discontinuous at x = 0. The general solution
of (40a) is found to be
y = Cr, 41)

and the initiat condition (40b} gives y{a) = Cua = b. Now, if @ # 0, the latter gives
C' = b/a and we have the unique solution y(x} = bx/ae with interval of existence —co <
x < o0, [That interval happens to exceed the minimum interval of existence indicated by
Theorem 1.2.1, whichis0 < & < oo ifa > 0and —o0 < ¢ < 0ila < 0]

However, consider the case @ = 0 so the initial point lies on the y axis. If & # 0. then
(C}{0} = b has no solution for €' and the IVP (40} has no solution. But if & = 0 (so the
initial point is the origin), then (C){0) = 0 is satisfied by any tinite value of €', and (40)
has the nonunigue solution y = C'r where €' is an arbitrary finitc value.

Summary: If the initial point is not on the y axis there is a unique solution, but if it is on the
y axis [where p(x) = -1/x is discontinuous] there are two cases: if it is not at the origin

My e, T T T e e P e e
By T T et e e
5, e o e e

e f e e e e e e
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Figure 6. Representative so-
lution curves y(x) = 3z°+C'/x,
with the direction ficld included.

Interval of existence.

Use (8) and remember
that el"* = g.

19



20 Chapter 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

}?

Figure 7. The solutions of (40).

there is no solution. and if it is at the origin there is a nonunigue solution, namely, every
Iine ¥ = C'z with finite slope C, as summarized in Fig7. I

Closure. To study the general linear first-order equation ¢’ + p(z)y = ¢(x), we
considered first the homogeneous case ' + p(z)y = 0, and used a separation of
variables method to derive the general solution (8). For the nonhomogeneous case,
separation of variables failed, but we were able to find a general solution by using
an integrating factor. The result was the general solution (27), with the integrating
factor o(x) given by (25).

Finally, we gave the fundamental existence and uniqueness theorem, Theorem
1.2.1, which states that a solution of the [VP (36) exists and is unique at least on
the broadest open x interval, containing the initial point » = a, on which p(z} and
g{z) are continuous; that solution is given by (37).

EXERCISES 1.2

CAUTION: The right-hand sides of equations (8) and (25)
are similar, but have different signs in the exponents.

1. Verify, by direct substitution and with the help of chain dif-
ferentiation, that

(a) (8) satisfies (i.e., is a solution of) y* + p(x)y = 0, for any
value of A.

(b) (27) satisfies &' + p(a)y = ¢{x), for any value of C'.

2. Homogeneous Equations. Find the particular solution sat-
isfying the initial condition (3) = 1, and give its interval of
existence.

(a) y' = 6x?y

©y — (cosz)y =0
xy +3y=0

(g) (sinx)y’ = (cosx}y
Wy —y=0

(k) x(5 — )y’ = 5y

(byy +2(sinz)y =0

dDxy —y=0

(f) (cos )y’ = (sinx)y
mzy + (1+x)y=0

() (2+2)(6 — )y’ =8y
W{1-2) —y=0

m 2+z% +5y=0 mI+x)y —2y=0

© (1+2)y +4y =0 P (4-2")y -2y =0

3. Nonhomogeneous Equations. Find the particular solution
satisfying the initial condition y(2) = 0 and give its interval of
existence.

@)y —y =3¢

(© =%y’ + dzy = 4

© zy + 2y = 1023

@y -2r=-y—=z

(\)xy +y =sinz + 2cosx
K)zy =sinz —y

(byy' +dy =8

d) 2y’ = 2y + 42°

Ny —y:=8sinx

(h) 2ze®y’ = 4~ 2%y

G0 9~y — 22y = 10
() ey’ + e¥y = 50

4. The foltowing equations are not linear, so the methods of
this section seem not to apply. However, in these examples
you will find that if you interchange the independent and de-
pendent variables and consider z(y) instead of y(x), then the
result will be a linear equation for x{y). To do that, merely
replace the dy/dx by 1/(dx/dy) and put the equation into the
standard linear form. Solve it for x(y), subject to the given ini-
tial condition. If you can, then solve for y(x} from that result,
and give its interval of existence.

@y =y/(dy—x); y(2) =1

(byy' = y?/(4y° — 2xy); y(1) = -1
© 2y -y =y y0} =1
Mz+2e )y =1; y(l)=0

5. Computer; Example 4. Obtain a computer plot of the
direction field of (28a) and the solutions satistying the initial
conditions y{1} = —10, y(3) = --10, y(1) = 20, y(3) = 20,
and y{(0) = —1, within the rectangle -2 < r < 6 and
—10 <y < 20.

6. Direction Fields. The following are direction fields of
first-order linear differential equations. In each case sketch by
hand, on a photocopy of the figure, the solution curve through
each of the four initial points (that are denoted by heavy dots).
To illustrate, we have shown the solution curve through the
initial point (0) = 2 in (a}, and through ¥(1)} = 2 in (b}.
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7. Matching. The differential equations whose direction fields
are given in Exercise 6(a)—6(d) are these:

'y" +y= 3sin2:r:, (?I)

¥ +y=2 (7.2)
v +y=0, (7.3)
y = xy. (7.4)

Match these four differential equations with the correspending
direction fields shown in 6(a)-6(d), and state your reasoning.
HINT: Write the equation in the form ' = f(z, ¥} and com-
pare f(x,y) wilh the directions shown in the figure. For ex-
ample, (7.1) is ' = 3sin2x — y, so along the line y = 0, for
instance, the slope 3 sin 2x should be oscillatory. Of the direc-
tion fields in 6(a)~(d), above, the only one with that property
is (b}, so we can match 6(b) with equation (7.1).

8. First, read Exercise 7. The differential equations whose
direction fields are given in Exercise 6(e)—6(g) are these:

i +y=—6cos2x 8.1
(3.2)

(8.3)

¥ =€y,
¥ + (cosx)y = 0.

Match these differential equations with the corresponding di-
rection fields shown in 6(e)~6(g), and state your reasoning.
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9. First, read Exercise 7. The differential equations whose
direction fields are given in Exercise 6(h)—6(j} are these:

v+ (y—-1) =0, ©.1)
y' + (1—22)(sin 2z)y = 0, 9.2)
¥ = 4{x —cos2x). 9.3)

Match these differential equations with the corresponding di-
rection fields shown in 6(h)-6(j}, and state your reasoning.

10. Straight-Line Solutions. Straight-line solutions of ' +
plxyy = g(x) are striking because of their simple form; for
instance, in Example 4 there was one, and in Example 6 there
were none. For the given differential equation, find all straight-
line solutions, if any. HINT: You can find the general solution
and then look within that family of solutions for any that are
of the form 4y = max + b, but it is more direct to seek solutions
specifically in that form. This idea, of seeking solutions of
a certain form, is prominent in the study of differential equa-
tons.

@y + 3xy =622 + 155 4 2
By + 3zy = 123° + 152 + 2
@y +e"y={1-3z)*—3
(zy +2y=152—4

(@ ay =z"+y

N-1)y -y=-3
@E+3)y =y+1

ey +y=x+e* -2

11. Form of General Solution. Observe that the form of the
general solution (27) is y(z) = F(x) + CG(x), in which the
constant ' is arbitrary. Show that F'(x) is a particular solution
{i.e., of the full equation ' + p(x)y = g(x)] and that G{x)
is a homogeneous solution [i.e., of the “homogenized” version
¥ + p(x)y = 0]. HINT: Substitute y(z) = F(z) + CG{r)
into ¢’ + p{a)y = ¢(x)} and use the fact that C is arbitrary.

12. Working Backwards. If possible, find an equation {(or
equations) ' + p(z)y = g(x) that has the following functions
among its solutions.

@wn{x)=1, pir) ==

(b) y1(x) = €*, ya{x) =5e®

©ylr)=e", yplr)=e"

D yi(x) =0, yo(zx) = €%, ya(z) = 6e”

© y1(2) =1, 12(x) =2, ya(z) =2?

Dylx) =1, yalz) =z, ya(z) =22-1

13. Interval of Existence, (a) Make up any differential equa-
tion ¥’ + p(x)y = ¢{x) and initial condition that give a unique
solution on —1 < x < 1 but not on any larger interval; give



that solution. Show your steps and reasoning.
(b) Make up another one.

14. Suppose an equation ¥y’ 4+ p{x)y = ¢(x) has solutions
() and yo(x), the graphs of which cross at x = a. What
can we infer, from that crossing, about the hehavior of p(ir)
and g{x)?

15. Change of Variables and the Bernoulli Equation.
Sometimes it is possible to convert a nonlinear equation (o
a linear one (which is desirable because we know how to solve
lincar first-order equations). This idea will be developed in
Section 1.8; but since you may not cover that section, we in-
traduce the topic here as an exercise. The equation

¥+ plz)y = g(z)y”, (15.1)

in which n is a constant (not necessarily an integer), is called
Bernoulli’s equation, after the Swiss mathematician James
Bernoulli. James (1654—-1705), his brother John (1667-1748),
and Johna'’s son Daniet (1700—1782) are the best known of the
eight members of the Bernoulli family who were prominent
mathematicians and scientists.

(a) Give the general solution of (15.1) for the special cases
n ={and n = 1, in which case (15.1) is linear.

(b) If n is neither 0 nor 1, then (15.1) is nonlinear becaunse
of the ¥ term. Nevertheless, show that by transforming the
dependent variable from y{z) to v(x) according to

p=yl"" (15.2)
(for n 3£ 0, 1), (15.1) can be converted o the eguation
v’ 4 (1 —n)plx)v = (1 —n)glx), (15.3)

which is linear and which can be solved by the methods devel-
oped in this section. This method of solution was discovered
by Gotifried Withelm Leibniz (1646—-1716} in 1696,

16. Use the method suggested in Exercise 15(b} to solve each
of the following. Give the interval of existence. HINT: To
solve, identify n, p(z}, and g{x), then use (15.3).

@y +y=-3y" y(0)=1
by +2y = =123 (y > O);
©(I+z)y +2y=2y (y>0}
(yay — 2y =52%% y(1) =4
()3 +y=c//F (y>0); u3)=1 _
17. (a)-(p) For the corresponding part of Exercise 2, what

minimum interval of existence and unigueness is predicted by
Theorem 1.2.1 [or the inttial condition y{0.7) = 27

y(0) =1
¥(3) =14
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18. (a)— (1) For the corresponding part of Exercise 3, what
minimust inicrval of existence and uniqueness is predicted by
Theorem 1.2.1 for the inilial condition y(—2} = 57

19. Proof of Existence Part of Theorem 1.2.1. To prove exis-
tence it suffices to put forward a solution, and (37) is indeed a
solution. Thus, to prove the existence part of the theorem you
need merely verify that (37) satisfies the differential equation
and the boundary condition:

(a) Verify that (37) satisfies the differential equation in (36).
HINT: Since p(x)} is continuous, (25} shows that o(x) is
Hd

also continuous and nonzero.  Also, % / a(s)g(s)ds =
a(x)p{z) because o{x) and g{x) are continuous.

(b) Verify that (37) also satisfies the initial condition y(a) = b.
(c) We wrote (37) without derivation. Derive it. HINT: Instead
of using indefinite integrals when you integrate (o)’ = oq,
use definite integrals, from « to .

20. Proof of Uniqueness Part of Theorem 1.2.1. To prove
that a problem has a unique sofution, the standard approach is
to consider any two solutions and to show that their difference
must be identically zero, so the two solutions must be identi-
cal and hence the solution must be unique. Accordingly, sup-
pose y1(x) and y2(x) satisty (36), in which p(z) and ¢(z} sat-
isfy the continuity condition stated in the theorem. Then

yi{a) =b,
ya + p(x)ym = g(@);  yala) = b
Denote the difference y1{x) — y2(x} as u{x).

(a) By subtracting (20.2) from (20.1), show that u(x) satisfies
the “homogenized” problem

yy +p(a)n = gz (20.1)

(20.2)

w +plau =00 ula) =0 (20.3)

[We say {20.3) is homogeneous because both the forcing func-
tien on the right-hand side of the differential cquation is zero
and the initial condition is zero as well; there are no “inputs.”)
(h) Solve (20.3) and show that its only solution is u{x) = 0.
It follows that 31 (&) - yo(x} = O so 1y{z) = ya2{x). Hence,
the solution of (36) is unique. HINT: Use an integrating factor
i
alx) = f.’fa pls)ds

21. Alternative Solution Method: Variation of Parameters.
We dertved a general solution of the linear first-order equation
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¥ +p{z)y = qlx) (21.1)

by the integrating factor method. An alternative method of
solution is as follows. First, recall that the homogeneous equa-
tion ¢ + p{x}y = 0 has the general solution
y(z) = Ae— J P@) dz 21.2)

where A is an arbitrary constant. To solve the nonkomoge-
neous equation (21.1), seek y(x) in the form
y(x) = A(z)e™ / P2)dz, (21.3)

that is, let the constant A in the homogeneous solution (21.2)

vary. (The motivation behind this step is not obvious, but we
will see that it works.) Sobstitute (21.3) into (21.1) and show,

after canceling two lerms, that you obtain

A(x) = e @) d7g(z)

(21.4)
50
Az) = / JPD I g o @15)
and
y(x) = e~ S PAT (fe.fpquderc), (21.6)

which agrees with the solution (27) obtained earlier by using
an integrating factor. This method is called variation of pa-
rameters because the key is in letting the parameter A vary.

That is, the birth and death
rates 3 and & are per capita.

Equations (1) and (2) hold
for any time interval At, so it
is permissible to let At — 0
in (2), which step gives the
differential equation (3).

1.3 APPLICATIONS OF LINEAR
FIRST-ORDER EQUATIONS

Having solved the first-order linear differential equation, we now give represen-
tative physical applications — to population dynamics, radioactive decay, mixing
problems, and electrical circuits, with additional applications in the exercises.

1.3.1 Population dynamics; exponential model. We want to model the popu-
lation dynamics of a certain species, such as bass in a lake or the malaria parasite
introduced into the host’s bloodstream. That is, we want to develop a mathematical

. problem that governs the variation of the population N(#) of that species with the

time £,

Let 3 be the birth rate (births per individual per unit time) and ¢ the death rate,
with 3 and & assumed to be known constants over the time of interest. Then, for
any time interval Ad,

N(t + At) = N(t) + BN(t)At — SN(t)At, )

or,
N(t+ AL — N@)
T = (8- N (). @

Equation (1) is simply bookkeeping: The number of individuals at time ¢ + At
equals the number that we start with at time ¢ plus the nomber that are born minus
the number that die over the Af time interval. If we let At — 0 in (2), and de-
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note the net birth/death rate 53— 4, called the growth rate, as «, we obtain’

N' = kN, (3)

which is a linear first-order homogeneous differential equation for N(f), homoge-
neous because itis N' —«xN = 0.

The latter is of the same form as 3+ py = 0, studied in Section 1.2, with N in
place of y, ¢ in place of z, and p = —«, so its general solufion is

N(t) = A"l (4)

with A an arbitrary constant. Alternative to obtaining (4) by using the memorized
solution formula, let us solve (3) by separation of variables, as review:

/ dN
j\l'r

as in (4). If we have an initial condition

=/ndt, InN=xt+C, N(t)=c"TC=clert=Aett (5)

N(0) = Ny, (6}

then N(0) = Ny = A0 = A 50 A = Ny, and (4) becomes

N(t) = Noe®?, (D

which we’ve plotted in Fig. 1 for several values of .

COMMENT 1. Equation (3) is often called the Malthus model afier the British
economist Thomas Malthus (1766-1834), who observed that many biological pop-
ulations change at a rate that is proportional to their population. It is also known as
the exponential model because of the exponential form of its solution.

COMMENT 2. If the growth rate & is negative, then (7) predicts an exponential
decrease to zero as £ — oo, which seems reasonable (although when /V becomes
small enough our approximation of V as a continuous and differentiable function
of ¢ comes into question). But if & is positive, then (7} predicts exponential growth,
with N (¢} tending to infinity as £ — oo. Such sustained growth is not reason-
able because if N becomes sufficiently large then other factors will no doubt come
into play, such as insufficient food, factors that have not been accounted for in our

'Strictly speaking, N(t) is integer-valued since one cannot have a population of 28.37. say. ls
graph devclops in a stepwise manner so N (¢} is a discontinuous fumction of ¢. Hence, it is not
differentiable and the N'(t} in (3} does not exist. However, if N is sufficiently barge so that the steps
are sufficiently small rompared to N, then we can regard N (t) as a continuous function of ¢,

In N rather than In |N| in (5)
because the population V()
cannot be negative, so there is
no need for absolute values.
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Recall that £ < 0 if the
death rate exceeds the birth
rate, and « > 0 if the birth
rate exceeds the death rate.

The logistic equation (8)

is also called the Verhulst
equation after the Belgian
mathematician P, F, Verhulst
(1804-1849),

Figure 1. Exponential growth and decay given by (7); N{£} = Npe™.

simple model. Specifically, we expect « not really to be a constant but to be a func-
tion of N, decreasing as /N increases. As a first approximation of such behavior,
suppose « varies linearly with N: x = a—b/N, where a and b are positive constants,
Then (3) is replaced by

dN

5 = (@a—bN)N, 8)
which is well known as the logistic equation. However, the logistic equation is
nonlinear because of the N2 term, and will be studied later, in Section 1.6.!

1.3.2 Radioactive decay; carbon dating. Another classical application of lin-
ear first-order equations involves radioactive decay and carbon dating,

Radioactive materials, such as carbon-14, plutonium-241, radium-226, and
thorium-234, are observed to decay at a rate that is proportional to the amount
of radioactive material present. Thus, the number of nuclei disintegrating per unit
time will be proportional to the number of nuclei present, so

diN
prl ~kN, 9

in which N(t) is the number of atoms of the radioactive element at time ¢, and
the positive constant k is the decay rate, which we assume is known. However, it
is inconvenient to work with N since one cannot count the number of atoms in a
given batch of material. Thus, multiply both sides of (9) by the atomic mass (mass
per atom). Since the atomic mass times N (¢) is the mass m(t) of the radioactive
material, (9) gives

dm
g = hkm (10)

"erhulst studied human population but did not have sufficient census data to test the accuracy
of his model. Later rescarchers turned to species with much shorter life spans, such as Drosophila
melanogaster (fruit fly), which could be accurately monitored in the laboratory over many genera-
tions, and they did obtain good agreement using Verhulst's logistic model.
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for m({t), which is more readily measured than N (). Solving (10) gives
m(t) = moe ¢, (11

where m{() = my, is the initial amount of the radioactive mass (Fig. 2). This result
agrees well with experiment,

The decay rate k determines the half-life T' of the material, the time required
for any initial amount of mass my to be reduced by half, to my/2. It is more
commeon and more convenient to work with T than k, so we will eliminate & from
(11), in favor of T', as follows: When ¢ is 7', in (11), m(#) is mg/2, so my/2 =
moe~*T, which gives k = (In 2)/T. I we put the latter into (11), m(¢) can be
re-expressed in terms of the half-life T as

m(t) = mp2 T, (12)
For instance, at ¢ = 0,7,27,37,4T, ..., (12) gives m(t) =
mp/8, and so on,

Radioactivity has had an important archaeological application in connection
with dating. The idea behind any dating technique is to identify a physical process
that proceeds at a known rate. If we measure the state of the system now, and we
know its state at the initial time, then from these two quantities together with the
known rate of the process we can infer how much time has elapsed; the mathematics
enables us to “travel back in time as easily as a wanderer walks up a frozen river.”!

For instance, consider carbon dating, developed by the American chemist
Willard Libby in the 1950’s. Cosmic rays consisting of high-velocity nuclei pen-
etrate the earth’s lower atmosphere. Collisions of these nuclei with aimospheric
gases produce free neutrons. These collide with nitrogen, changing it to carbon-
14, which is radioactive and which decays to nitrogen-14 with a half-life of around
5,570 years. Thus, some of the carbon dioxide (CO») in the atmosphere contains
this radioactive C-14. Plants take in both radioactive and nonradioactive CQO», and
humans and animals inhale both and eat the plants. Consequently, the plants and
animals living today contain both the nonradioactive C-12 and, to a much lesser
extent, its radioactive isotope C-14, in a ratio that is the same from one plant or
animal to another. When a plant or animal dies its C-12 remains fixed but its C-14
decreases with time by radioactive decay. The resulting “shortage™ of C-14 at any
given time is a measure of how long ago the plant or animal died.

For instance, suppose we wish to carbon date a given sample of wood, that
is, to determine how long ago it died. To do so we make two assumptions: First,
asswme that the ratio of radioactive to nonradioactive carbon (C-14 to C-12) in
living material at the time the tree died was the same as it is in living material
today. Second, assume that the rate of radioactive decay of C-14 has been constant
over that period of time. Subject to these assumptions (which cannot be verified
because they are historical in nature), here is how the method works. Measure the
mass of C-14 present in the sample now, which is the .(¢) on the left-hand side of
(12}, and assume that the initial mass of C-14 (when the tree died), my, is the same

o, Mo/ 2, me /4,

'tvar Ekeland. Mathematics and the Unexpected (Chicago: University of Chicago Press, 1988).

m
fﬂn‘
My
2
—_—
T t

Figure 2. The exponential

kit

decay m(t) = moe™** and

the half-life 1.

The steps leading from (11)
to (12) involve the properties
of the exponential and loga-
rithmic functions, which are
among the review formulas
on the inside cover of this
book. We leave those steps
for the exercises.

Radioactive carbon, C-14, is
called radiocarbon because it
decays radioactively.

The first assumption estab-
lishes the initial condition, the
second establishes the differ-
ential equation.
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as the mass of C-14 in a sample of the same weight that is alive today. Knowing
m(t), mg, and the half-life T, solve (12) for ¢, which is the time that has elapsed
since the tree died.

EXAMPLE 1. Carbon Dating a Sample of Petrified Wood.

Consider a petrified wood sample that we wish to date. Since C-14 emits approximately
I5 beta particles (i.e., high-speed electrons} per minute per gram, we can determine how
many grams of C-14 are contained in the sample by measuring the rate of beta particle
emission. Suppese we find that the sample contains 0.002 grams of C-14, whereas if it
were alive today it would, based upon its weight, contain around 0.0045 grams. Assuming
it contained .0045 grams of C-14 when it died, then that mass of C-14 will have decayed,
over the subsequent time £, to 0.002 grams. Then (12) gives

0.002 = (0.0045) 27/%570,

and, solving for ¢, we determine the sample to be around ¢ = 6, 520 years old. 1l

1.3.3 Mixing problems; a one-compartment model. Consider a mixing tank,
as in a chemical plant, with a constant inflow of (2 gallons per minute and an equal
outflow (Fig. 3). The inflow is at a constant concentration ¢; (pounds per gallon) of
a particular solute such as salt, and the tank is stirred so the concentration c(t) is
uniform throughout the tank; £ is the time. Hence, the outflow is at concentration
c(t). Let v be the liquid volume within the tank, in gallons; v is constant because the
inflow and cutflow rates are equal. We want to determine the solute concentration
c(t).

To derive a differential equation for ¢(t), carry out a mass balance for the
“control volume” V (dashed lines in the figure):

Rate of increase

of mass of solute = Ratein — Rate out, (13)
within V
Figure 3. Mixing tank.
d
Z1c(0v] = Qei = Qelty (14
The units of each term in or, since v is constant,
(14) are Ib/min. For instance, @ " QC . ﬂ (15)
the first term on the right is d v v’

galy by oo b
(@ (e g_fﬂ)’ or Ucinig- which is a first-order linear differential equation for c(t).

The tank in Fig. 3 could, literally, be a mixing tank in a chemical plant, but in
some applications the figure may be only schematic. For instance, in biological ap-
plications it is common to represent the interacting parts of the biological system as

one or more interconnected compartments, with inflows, outflows, and exchanges
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between compartments.! One compartment could be an organ such as the liver;

another could be all the blood in the circulatory system. The system represented in
Fig. 3 is an example of a one-compartment system; the compartment is the tank.

EXAMPLE 2. Mixing Tank; Approach to Steady-State Operation.

Let the initial concentration in the tank be c(0) = 0, s0

de @ ;6
— 4+ Ze= =2 H{0) = (.
dt + v v o(0) (16)

The integrating factor is o (t) = e-fp(t)dt = ef(Q/U) At~ 0@t/ and the general solution
of the differential equation in (16} is

oft) = e~ ( / /v "—12 dt + C-‘)

= ¢ + Ce™ @Y, (17)
Finally, c(() =0 =¢; + C gives C = —¢;, 50

ct) =c (] - e“Q’/”) . (18)

Since e~ 9/* 5 Dast — oo, it follows from (I8) that c(f) -+ ¢; as £ = oo, as we
might have expected since the inflow is maintained at that concentration. This asymptotic
bchavior is secn in Fig. 4.

The time 7 that it takes for () to reach 0.9¢;, say, can be found from (18):

ATy=09¢; = ¢ (1 e QT/!.-) ‘

which gives
"
T={n10)}—. (19
'Q
Thus far we’ve taken ¢(0) = 0, but now suppose it is not necessarily zero. Let o{(}) =

co, wWith ¢g > 0 because a negative concentration ¢g < 0 is impossible. Then (17) gives
cl0) = ¢y = ¢; + C 50 C = gy — ¢, and in place of (18) we have

e{t) = (eg — ci)rz"Qt/” + . zZM
N— S
transient steady state

As t — oo, the exponential term in (20) tends to zero and o{f) — c;. Thus we call
the (co — c)e "9 term the transient part of the solution, and we call the ¢; term the
steady-state solution. Graphs of ¢(t} in Fig. 5 show the approach to steady state for several
different initial conditions. The bottom curve corresponds to the one in Fig. 4. 1

'For a discussion of compartmiental analysis in biology see L. Edelstein-Keshet, Mathematical
Maodels in Biology (New York: Random House, 1988) or John A. Jacquez, Compartmental Analysis
in Biology and Medicine, 3rd ed {Ann Arbor, MI: BioMedware. 1996).

Cle=0 ;
0 T f

Figure 4. Exponential approach
of ct) 1o its steady-state valve c;.

steady-state
selution ¢;:

€q=1.5¢; C(1) -»C; a8 f oo
Co=Ci |
C{J:O.SQ
=0

LR ;

Figure 5. Varying the initial con-
dition cq, with Q) fixed.
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The = in (21) means equal
to by definition. That is, let
(Q/v){c; —c) be called
“fle)”

| ﬂc>=%c.——c)
)

c'=flo)

C;

(b

0 C; C
Figure 6. The “flow” along the
phase line, implied by (21). The
phase line is shown in (b).

i
Gt C >
i
S _
0 t

Figure 7. Connection between the
phase line flow and the solution
curves in the £, ¢ plane.

NETE

L
by

B Ceq| ¢
(o)
Figure 8. Stability of an equilib-

rium point ceq ¢m the phase line.

134 The phase line, equilibrium points, and stability. Another graphical
idea is useful. If we write the differential equation in (16} as

dc

Q0= 10,

dt D

we see that the equation is autonomous, which means that the right-hand side
contains no explicit ¢ dependence, for it is of the form f(c) rather than f{c,t).! Tt
is informative to plot f(c) versus ¢, as we’ve done in Fig. 6a. Since c is a fonction
of ¢ we can imagine each point on the c axis as moving, with time, along that axis,
with its velocity equal to the value of f(c) at that point {because ¢’ = f(c}], to the
right if f{c) > 0 and to the left if f(c) < 0. The point ¢; is not moving because
fe;} = 0, points to the left of ¢; are moving rightward, and points to the left of ¢;
are moving leftward, as indicated by the two arrows in Fig. 6a.

Thus, we can think of the movement of points along the ¢ axis as a one-
dimensiconal “flow,” and we call the line along which that flow takes place the phase
line. From that point of view the steady-state solution ¢ = ¢; in Fig. 5 corresponds
to an equilibrium point of the flow along the phase line (Fig. 6b) because the flow
velocity dc/dt is zero there.

We could show many arrows on the phase line, rather than just the two in
Fig. 6b, and could even scale them according to their magnitude, but we will keep
phase line displays simple and just show any equilibrium points (with heavy dots})
and single arrows to indicate flow directions.

To see the connection between Fig. 5 and Fig.6b, we’ve shown them together in
Fig. 7, with the phase line arranged vertically at the left, and we’ve included arrows
on the solution curves in the ¢, { plot — in the direction of increasing time. To see
how the flow on the phase line is related to the flow in the c, ¢ plane, imagine the
¢, t plot as resulting if (on our imaginary computer screen) we click on the phase
line and drag it to the right, in time, as suggested by the two large arrows at the
right. Conversely, if we drag that dotted line back to the Jeft, then the ¢, ¢ graphs
get “‘squashed.” and all we’re left with is the flow along the phase line, shown ai the
left of the figure.

Along with the concept of equilibrium comes the concept of stability.

For instance, the equilibrium of a marble on a hilltop is “vnstable” and the
equilibrium of a marble in a valley is “stable.” To define the stability of an equi-
lébrium point on the phase line, let coq be an equilibriom point on the phase line of

C
dt
close to it remain close to it, and unstable if it is not stable.”

f(c); that is, f(ceq) = 0. We say that ceq is stable if points that start out

de _ Q@

'If any of Q. . v were fonctions of time, then — =
. dt w(t)
autonomous, it would be nonautenomous.
2L et us make that intuitively stated definition precise: an equilibrium point e, is stable if, for any
€ > 0 (i.e., no matter how small), there corresponds a & > 0 such that e(t) remains closer to ceq than
¢ for all £ > 0if {0) is closer {0 ¢eq than & (Fig. 8). That is, if {c{0) ~ ceq| < & then je{t} — ceq| < €
for all t > (). If caq is not stable, it is unstable.

fei{ty—c] = fie, t) would not be
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We can see that the equilibrium point ¢; in Fig. 6b is stable because the flow
approaches ¢; from both sides, so if we start close to ¢; then we remain close to it
for all £ > 0. Actually, the stability of an equilibrium point cq does not require
(t) to approach ceq as t — oo, but only to remain close to it. If it does approach
Ceqs that is, if o{t) — ceq as ¢ — oo, then the equilibrium point is not only stable,
it is asymptotically stable. In Fig. 7, ¢; is a steady-state solution because that point
is an asymptotically stable eqguilibrium point of the phase line.

Realize that we obtained the graph in Fig. 6a, and hence the phase line in
Fig. 6b, merely by plotting the right-hand side of the differential equation ¢’ =
(Q/1)(c; — ¢) versus c; we did not need to solve the differential equation.

There is good news and bad news regarding the phase line: The bad news is
that it contains less information than the traditional plots of ¢ versus £. Of course:
To get the phase line we merely plotted the right-hand side of the differential equa-
tion versus ¢, we did not solve it, so it makes sense that the detailed time history,
contained in the ¢, t plot, is not available from the phase line. But the good news
is that the phase line is readily obtained and contains key information. The key
imformation in this example is the equilibriom point ¢; and its stability. After all,
from the ¢, t plot we see that after some time goes by, the line c{t) = ¢; is where
all the solution curves “end up,” for it is approached as ¢+ — oo, Furthermore, from
the phase line, at the left in Fig. 7, we could even skeich the solution curves in the
c, t plane, if only qualitatively, without actually solving the differential equation.

Thus, the phase line concept is more qualitative than quantitative. It is not so
impressive for linear equations because linear equations can be solved analytically
anyhow, but nonlinear equations are much more difficult in general, and in that case
we will need to rely more heavily on other approaches — qualitative ones such as
direction fields and the phase line, and quantitative ones involving numerical solu-
tion by computer. In any case, remember that the phase line method applies only if
the differential equation is autonomous.

1.3.5 Electrical circuits, Consider electrical circuits consisting of closed wire
loops and a number of circuit elements such as resistors, inductors, capacitors, and
voltage sources such as batteries.

An electric current is a flow of charges: The current through a given control
surface, such as the cross section of a wire, is the charge per unit time crossing
that surface. Each electron carries a negative charge of 1.6 x 10~ coulomb, and
each proton carries an equal positive charge. Current is measured in amperes, one
ampere being a flow of one coulomb per second. A current is counted as positive
in a given direction if it is the flow of positive charge in that direction. While,
in general, currents can involve the flow of positive or negative charges, the flow,
typically, is of negative charges, free electrons. Thus, when one speaks of a current
of one ampere in a given direction in an electrical circuit, one really means the flow
of one coulomb per second of negative charges (electrons) in the opposite direction.

Just as heat flows due to a temperature difference, from one point to another, an
electric current flows due to a difference in electric potential, or voltage, measured

31
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Resistor.
e, WV,

e-e,=¢e=Rj

Inductor:
e
@« ', &
P ]
Capacitor:

4
eIh.

Figure 9. Circuit elements.

(a)

{=iy+i

/'(g:?:
i

!

(b)

Figure 10. Kirchheff's
current law.

in volts. Thus, we will need to know the relationship between the voltage difference
across a given circuit element and the corresponding cuorrent flow through it. The
circuit elements considered here are resistors, inductors, and capacitors.

For a resistor, the voltage drop e(t}, where ¢ is the time, is proportional to the
current () through it:

e(t) = Ri(t), (22)

where the constant of proportionality R is called the resistance and is measured in
ohms; (22) is called Ohm’s law. By a resistor we mean an electrical device, often
made of carbon, that offers a specified resistance — such as 100 ohms, 500 ohms,
and so on. The standard symbolic representation of a resistor is shown in Fig, 9.

For an inductor, the voltage drop is proportional to the time rate of change of
current through it:

di(t)
dt ’

e(t)=L (23)

in which the constant of proportionality L is called the inductance and is mea-
sured in henrys. Physically, most inductors are coils of wire, hence the symbolic
representation in Fig. 9.

For a capacitor, the voltage drop is proportional to the charge () on the
capacitor:

e(t) = 5QU), @4

where C is called the capacitance and is measured in farads. Physically, a capac-
itor consists of two plates separated by a gap across which no current flows, and
{t) is the charge on one plate relative to the other. Though no current flows across
the gap, there will be a current #(¢) that flows through the (closed) circuit that links
the two plates and is equal to the time rate of change of charge on the capacitor:

Q)

Equations (22)-(24) give the behavior of the respective circuit elements, but
we also need to know the physics of the circuit itself, which consists of two laws
named after the German physicist Gustav Robert Kirchhoff (1824—1887):

Kirchhoff’s current law states that the sum of the currents approaching any point
P of a circuit equals the sum of the currents leaving that point. The latter is a con-
servation law, namely, that electric charge is conserved; it is neither created nor
destroyed at P. To illustrate, consider the portion of a circuit shown in Fig. 10a.
Application of Kirchhoff’s current law to point P, say, gives

i = 9 + 3.
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Kirchhoff’s voltage law states that the algebraic sum of the voltage drops around
any loop of a circuit is zero. Since voltage is an electric potential (i.e., electric po-
tential energy), the statement that the potential drops around any loop of a circoit is
zero 1s also a conservation law, this time the conservation of energy.

To apply these ideas, consider the circuit shown in Fig. 11, consisting of a
single loop containing a resistor, an inductor, a capacitor, a voltage source (such as
a battery or generator), and the necessary wiring. Take the current i{¥) to be positive
clockwise; if it flows counterclockwise, its numerical value will be negative. In this
case, Kirchhoff’s current law simply says that the current ¢ is a constant from point
to point within the circuit and therefore varies only with time. That is, the current
law states that at every point P in the circuit the currents ¢; and i, (Fig. 10b) are
the same, namely, i(¢). Next, Kirchhoff’s voltage law gives

(eq —eq) +(ep —eg) + (ec — &) + (&g — ) =0, (26)

which, canceling terms, is simply an algebraic identity. If we use (22)~-(24),
(26) gives
W -Ri-L% Low=0 @7
elt) - R —L— — =Q(i) =1L
dt C

If we differentiate (27) with respect to ¢ and use (25) to eliminate Q({f) in favor of
i(t), we obtain

d%i di 1 de(t)
=° L3 = 28
Ldt2+Rdt+C;- pra (28)

which is a linear second-order differential equation for (%), in which e(¢) is known
— prescribed. Alternatively, we could use Q(¢) instead of () as our dependent
variable. In that case we again use (25) in (27), but this time to eliminate the #(#)’s
in favor of (¢}, and we obtain the differential equation

2Q  dQ 1,
L-a—z- SIS Ra =F FQ = eft) (29)

for Q(t). Either way, we have a linear second-order differential equation.
In this chapter our interest is in first-order equations, but we do obtain first-
order equations in the following two special cases.

EXAMPLE 3. RC Circuit.
If L = {} (i.e., if we remove the inductor from the circuit in Fig. 11, as shown in Fig. 12a,
then (28) reduces to the linear first-order equation

di 1. _ de(t)

rE 4
a8 T T

{30

R

if
1

L

d

C

l_

C
Figure 11. ELC circuit.

If the voltage source is a
battery, then e(t) is a con-
stant. More generally, a
generator can be a time-
varying voltage source.
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elr) E{D

L—H~—

(b)

e(:) ”D § L

Figure 12, Two special cases
of the RLC circuit shown in
Fig. 11; RC and RL circuits.

for i{t). B

EXAMPLE 4. RL Circuit,

If, instead of removing the inductor from the circuit shown in Fig. 11, we remove the
capacitor (Fig. 12b), then (27) gives the first-order equation’

Lj* + Ri = et) 31)

fori(t). 1

Although the RC' and RL circuits are different, their goveming equations are
of the same form -—— first-order linear equations with constant coefficients on the
left-hand side. Thus, it will suffice to consider just one of the two circuits in Fig, 12,
for instance the RL circuit in Fig. 12a, modeled by (31). Hence, we’ve highlighted
(31). Dividing by L to put the equation into the standard form i’ + p(#)i = ¢{1),
and appending an initial condition, consider the IVP

, R 1 L
i+ Ti= Ee(t}; i{0) = . (32)

Identifying p(t) as R/ L and q(t) as e(t)/ L, the results in Section 1.2 give a general
solution of the differential equation as

i(t) = e—R*»’L(/eR‘f’L @dﬁ+ A), (33)

in which A can be found by applying the initial condition #{0) = 45. In Examples
57 we will specify several typical e(¢)’s and complete the solution.

EXAMPLE 5. RL Circuit with Constant Applied Voltage.
Suppose the applied voltage is a constant, €(¢) = constant = Ey. Then (33), together with
the initial condition, gives

if) = (io - %)e—*"““ + % , (34)

-

W

transient steady state

and representative solution curves are plotted in Fig. 13.

"It would be naturat to expect that removing the capacitor is equivalent to setting €' = 0, yet in
that case the capacitor term in (27) becomes infinite rather than zero. Rather, 10 remove the capacitor,
move its plates together until they touch. The capacitance C is fnversely proportional to the gap
dimension, so as the gap diminishes to zero € — oo and the capacitor term in (27) does indeed drop
out hecause in chat limit the 1/C factor becomes zero.
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Does Fig. [3 look familiar? It should, for the IVP (32) [with e(t) == constant = Ey)
and its solution (34} are identical to the IVP (16) and its solution (20), respectively, with
the correspondences
' Q R
. =, — e —, 35
@ e R W L (33)
As t — oo, the exponential term in (34) tends to zero and 4(f) tends to the steady-state
value Fy/B. Qutside of name changes, the only difference between Figs. 5 and 13 is that
in Fig. 13 we’ve added the case ig = —0.5F /R because whereas the concentration ¢y
canm be negative, the current iy can be negative. 8

C(f,) ¥ i(t), Cp io,

The correspondence just noted between the mixing tank and the RL circuit
is important, for if two different systems are modeled by the same IVP, to within
name changes, then their solutions are identical to within those name changes. Such
systems are called analogs of each other.

EXAMPLE 6. RL Circuit with Sinusoidal Applied Voltage.

Now let the applied voltage be oscillatory instead. for instance e(t) = Egsinwt, with
amplitude Eq and frequency w. With this expression for e(t) we can evalvate the integral
in (33) and then apply the initial condition to evatuate A. Doing so, we obtain

. . EUWL —Rt/L E()R . wl

) = e 12 ——— | : F— — ¢ A 36

i(t) (zn + B (wl)? )e + BT (i) (sm Wi 7 €os c.qf) (36)
lran;ient stead; state

Once again we have a transient response, transient in that it tends to zerc as t — o0
because of the negative exponential function, plus a steady-state response, namely, that
which is left after the transients have died out. Note that steady state does not necessarily
mean constant. In Example 5 the applied voltage was constant and the steady state was,
likewisc, a constant or “steady” current, but in this example the applied voltage is oscilla-
tory and the stcady state is oscillatory as well. The response is plotted, for representative
values of various parameters. in Fig. 14; the transient and steady-state parts are shown

i1 (a) 1 (b)

- transicat part their sum. i (1)

, steady—state part

Figure 14. The response (36), using the representative
vatues Fo =1, R=1, L =4,w = 2,and &), = 0.3.

35
A
I
I‘||= 2£“'
R .
] ith—F,/R
as t— oo
I.= EI’I
[\ R
=0
/i ot ‘
T ﬁn=_ 0.5 _R!'l

Figure 13. Response i{t) for
the case e(t) = constant = Eg,
for six different ¢’s. Tt is con-
venient to express the éo’s as
multiples of the steady-state
value Eq/ R, which is a nat-
ural reference value.

By “steady state” we don’t
necessarily mean that the
dependent variable is con-
stant; in this example it

is a “steady oscillation.”
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in (a) and the total response #(¢}, their sum, is shown in (b). For the choice of parameters
used to generate Fig. 14, we see that the transient part of é(t) has practically died out after
five or six cycles. 1

Closure. We studied representative applications of linear first-order equations, re-
lying on solution techniques and formulas that were derived in Section 1.2, but two
new ideas did arise.

First, in some problems the solution z(t), say, approaches a steady state that is
a constant or a steady oscillation as t — oo. In that case it is convenient to express

z(t) = xee(t) + 2as(t) 37

where the transient part x,.(2) tends to zero as ¢ — oo and the steady-state part -
T5s(t) is a constant or a steady oscillation. The steady-state part is of particular
interest because that is, after all, what we end up with after the transient part has
died out.

Second, we introduced the idea of a one-dimensional phase line for autonomous
systems, namely, systems of the form

dx

= f(=).

dt (38)

The idea is to plot the derivative 2 versus x; that is, f(z) versus z. Where f(z) > 0
the flow on the x axis phase line is rightward, where f(z) < 0 it is leftward, and
where f(x) = 0 there is an equilibrium point. This qualitative flow diagram helps

us to sketch the solution curves, without solving the differential equation.

EXERCISES 1.3

1. If a population governed by the exponential model has 4,500
members after five years and 6,230 after 10 years, what is its
growth rate? Its initial population?

2. If a population governed by the exponential model has 500
members after two years and 460 after five years, what is its
growth rate? Its initial population?

3. The world population is increasing at approximately 1.3%
per year. If its growth rate remains constant, how many years
will it take for its population to double? To triple?

4. If a population governed by the exponential model doubles
after m days, after how many days will it have tripled?

5. A certain population is initially 1,000, grows to 1,200 after

10 years, and 1o 1,400 afier another five years, Do you think
it might be well described by the exponential model (3)? Ex-
plain,

6. E. Coli Cultures. The bacterium Escherichia coli, which
inhabits the human intestine, multiplies by cell division. Since
it is capable of rapid growth and can be grown in the labora-
tory it is a useful subject for experiments on population dy-
namics. It can be grown in culture and the population can be
estimated indirectly, by measuring the turbidity of the culture
through its scattering of incident light. The population N {t)
of a colony of E. coli cells can be modeled by the Maithus
equation N' = kN. Suppose a colony of £. coli is grown
in a culture having a growth rate & = 0.2 per hour. (From
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N’ = kN we can see that the units of £ are 1/time.) Al the
end of 5 hours the culture conditions are modified (e.g. by in-
creasing the nutrient concentration in the medium) so that the
new growth rate is &£ = 0.5 per hour. If the inttial population
is N{(0) = 500, evaluate N at ¢t = 20.

7. Allowing for Migration. Thus far we’ve used N/ = kN to
model the population dynamics of a single species. Implicit in
that cquation is that the system is closed; that is, its borders are
closed to influx or efflux of that species due, for instance, to
migration. How would you modify that equation to account for
a known migration rate r{t} (individuals per unit time, counted
as positive if it is immigration and negative if it is emigration)?

8. Radioactive Decay. We claimed that if we put & =
{(In2}/T into (11) we obtain (12). Fill in the missing stops.

9, (a) A seashell contains 90% as much C-14 as a living shell
of the same size. How old is it? NOTE: The hali-life of C-14
is T = 5,570 years.

{b) How many years did it take for its C- 14 content to diminish
from its initial value to 99% of that vatue?

10. Suppose 10 grams of some radioactive substance reduces
to 8 grams in 60 years.

(a) How many more years until 2 grams are left?

(b) What is its half-life?

11. If 20% of a radioactive substance disappears in 70 days,
what is its half-life?

12, Suppose an clement X decays radioactively to an element
Y with a half-life 7%y, that Y in turn decays to an element Z
with a half-life T},., and that Z is not radioactive.

(a) Let x{t), y{£), 2(t) denote the masses of X, Y, Z, respee-
tively, in a given sample. Write down a set of three differen-
tial equations for x{t), y{t}, 2(t). NOTE: Recall that the rate
constant & in (1() is expressible in terms of the half-life T as
k= (In2)/T.

(b) By adding the three differential equations, show that x{¢)+
y(t) + z(t) 15 a constant, and explain why that result makes
sense.

{c) Let the initial conditions be x{0) = 100 g, y(0) = 50 g,
z(0) = 20 g, and let T, = 50 yr, and T}, = 200 yr. Solve
the three 1VPs for &(t), y(), z(t).

13. A radioactive substance having a mass m at time t; de-

cays to a mass mgz at time 5. Use that information to solve for
its half-life T in terins of mq, mao, #1, ta.

14. Mixing Tank. In Example 2, let v = 500 gal. For o{t) to
dimimish (o 98% of ¢; in one hour, what flow rate ¢ (gal/min)
is required?

15, For the mixing tank in Fig. 3, let the initial concentration

37

in the tank be ¢(0) = 0. Beginning at time T the inflow con-
centration is changed from ¢; to zero.

(a) Solve for e(t), both for t < T and for ¢ > T'. HINT: Break
the problem into two parts: for t < T solve ¢/ + (Q/v)c =
iQ /vy e{0) = 0, and for t > T solve ¢ 4+ {Q/v)e = 0 sub-
ject to an initial condition that (T} that is the final value (i.e.,
att = T) from the first solution {i.e., ont < T\

(b) Give a laheled hand sketch of the graph of {t},

16. For the mixing tank shown in Fig. 3, let ¢(0) = 0. Be-
ginning at time T the flow rate ¢ is increased to 100). Solve
for oft), both for ¢ < T and for t > T. Is () continuous
att = T'?7 How about ¢/{t)? Explain. HINT: See the hint in
Exercise 15. The idea in this problem is the same.

17. Runoff Into Your Pond. Your garden pend is 300 ft?,
with an average depth of 3 ft. It rains hard for one hour, during
which time the pond receives runoff from your neighbor at a
rate (¢ = 20 f13/hr, with a concentration of a weed killer, Di-
Bolic, equal 1o 0.01 Ib/ft?. The pond volume remains constant
because there is an overflow pipe. Considering the concentra-
tion of Di-Bolic in the pond to be spatially uniform (hence, a
functton only of the time &), calculate its value ¢(£) at the end
of the hour if ¢{(0) = 0.

18. Inflow and Outflow Rates Unequal. If, for the mixing
tank shown in Fig. 3, the inflow is (; = 5 gal/min and the
outftow is ¢}, = 12 gal/min, then the liguid volume v in the
tank is not constant, so (15) does not apply. But in place of
(15) you can use (14}, which becomes

[p(t)e(D)]' = Qiei — Qoclt),

because it holds even if « is a function of £.

(a) Let the liquid volume (1) be 1,000 gal at ¢ = 0, so
v(t) = 1,000 + (512} = 1,000 —-7¢, let ¢; = 2 Ib/gal,
and let ¢(0) = 0. Write down the IVP for c(t) and solve for
elt).

(b))What is ¢(t) at the instant when the last bit of liquid is
draining from the lank?

{c) You should have found, in (b}, that e(t} tends to the incom-
ing concentration ¢; = 2 as the last bit of liquid is draining
from the tank. Is that result is a coincidence? Explain.

€18.1)

19. A tank initially contains 100 gal of fresh water. Brine con-
taining 0.5 ib/gal of salt flows in at the rate of 8 gal/min and
brine at conceniration c{t) flows out at the rate of 5 gal/min.

(a) Solve for the concentration ¢{t) in the tank. HINT: The
volume v is not a constant, so equation {15) does not apply;
use (18.1) instead, in Exercise |8,

(b) How long will it take for therc to be 40 Ib of salt in the tank?
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If a difficule algebraic equation arises, use computer software
to solve it.

20. For the mixing tank shown in Fig. 3, let the initial concen-
tration in the tank be ¢{0) = ¢y. Beginning at time T' the inflow
is shut off, while the outAow rate ¢ is maintained. Solve for
c{t) for t < T and for ¢ > T. HINT: See the hint for Exer-
cise 15, The idea here is the same. Also, for £ > T the liquid
volume v is not a constant, so use {14) instead of (15).

21. Mixing Tanks in Series. Consider two tanks in series,
as shown below, with an inflow of ¢} gal/min of solution con-
taining c; lb/gal of solute and an equal outflow rate Q). Let the
liquid volume in each be v gal, and let ¢1{0} = ¢»(0) = 0.
e
| I

Q!

- (,'Z(t)

(a) Use a mass balance for each tank to derive the IVPs
A8+ Q 4 {t) = gci;

{0y =0, (21.1a)

—
U

P;(f) + %CQ(t) - %)-(:1 () =0; o0y =0 (21.1b)
(b} Solve (21. la,b) and show that

ety = ¢ [1 -1+ %t)e—‘?‘/"}‘ (21.2)
NOTE: Actually, (21.1) 15 a system of coupled differential
equations for ¢; and ¢, and systems are not studied until
Chapter 4. However, although both ¢; and ca are present
in (21.1b), only ¢y is present in (21.la), so you can solve
(21.1a) for ¢;. Then, put that result into (21.1b) and solve
the latter for co. _

(c) From (21.2), show that c2(t) — ¢; as £ — oo; that is,
show that the steady-state outflow concentration equals the
inflow concentration ¢;. Further, show that ¢s{#) — ¢; and
ca1{t) — ¢; ast — oo, directly from (21.1). HINT: By the
definition of steady state, set ¢ (£) and <4(2) to zero in the dif-
ferential equations, and solve the resulting algebraic equations
for the steady-state concentrations.
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22. Computer. This exercise is to provide experience with
some of the differential equation software.

(a) Use computer software to obtain an analytic solution of the
VP

1005 + 5008 = 25(1+¢)/(2+1%); (D) = 0. (22.1)
{You will find that the solution is messy, and involves a nonele-
mentary lunction denoted as Ei and called the exponential in-
tegral function.) Also, use computer software to generate the
graph of i(t) on 0 < ¢ < 25, Finally, obtain a computer tabu-
lation of the solution values at ¢ = 0,5, 10.
(b) Same as (a), for the IVP

(24+1)i' + 1= —5B0sint/{4+1t); (D) =2. (22.2)
(For the analytical solution you will again run into nonelemen-
tary functions, this time the cosine infegral and the sine inte-
gral functions C't and 51, respectively.)

23. Phase Line. Develop the phase line, as we did in Fig. 6,
identify any equilibrium points, and state whether each is sia-
ble or unstable. Then, use that phase line to develop a hand
sketch of the solutions corresponding to a handful of represen-
Lative initial conditions, as we did in Fig. 7 (without the shaded
area and large dragging arrows, of course).

@ =x—=x b) ' =x+ 22
Dz =(@-1)? .z =sinz
(f) an equation supplied by your instructor

24. Light Extinction; Lambert’s Law. Consider window
glass subjected to light rays normal 1o its surface, and let z be
a coordinate normal to that surface with x = 0 at the incident
face. It is found that the light intensity [ in the glass is not con-
stant, but decreases with the penetration distance x, as light is
“absorbed” by the glass. According to Lambert’s law, the frac-
tional loss in intensity between = and z +dx, —dI /I (with the
minus sign included because d is negative), is proportional to
dx: —dI /I = kdz, where k is a positive constant. Thus, I(z)
satisfies the differential equation

3

cyx' =x*—=x

a_

e {24.1)

(2) If 80% of the tight penetrates a 1-inch thick slab of this
glass, how thin must the glass be to let 95% penetrate?

(b) If 50% of the light penetrates five inches, how far does 25%
penetrate? How far does only 1% penetrate?

25. Modeling Mothballs and “Mothceylinders.’” (a) A spher-
ical mothball evaporates with time. (For a mothball that is not
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a defecy; it is supposed te evaporate.) Does it completely dis-
appear in finite time or only as ¢ — o0? NOTE: You will need
to model the evaporation process in some simple and reason-
able way so as to derive a differential equation tor the radius
r{t). Solve it for r(¢), assuming an initial radius #{(} = ry.

(b) Suppose that instead of being spherical the mothball is a
circular cylinder of radius r(t), with an initial radius r{(0) = rg
and an initial length L that is much larger than rp. Again,
modet this problem so as to obtain a differential equation for
r(t}. Selve for r(t) in terms of r;. Docs this type mothball
(really, “mothcylinder”) evaporate in finite time? HINT: Use
the fact that the initial length is much targer than the imtial ra-
dius to help you to obtain an approximate differential equation
for r(¢). Indicate the approximations that you adopt in obtain-
ing your differential equation. For instance, do you need to
take into account evaporation at the two ends, or only along
the lateral surface?

26. Compound Interest. If a sum of money .S earns interest at

a rate k per unit time, compounded continuously, then in time
dt we have dS/S = kdt, so S(#) satisfies

% =kS. 26.1)
Thus, 1If 5(0) = Sy, then
S(t) = Spekt, (26.2)
If, instead, interest is compounded yearly, then after £ years
5(t) = So(1 + k). (26.3)
Finally, if it is compounded n times per year, then
s(t) = sof1+ £)” (26.4)

(a) Show that if we let n — oo in (26.4), then we do obtain the

continuous compounding result (26.2). HINT: Recall, from
e

the calculus, that linm,, o (1 + }1; =e,

(b) Let & = 0.05 (i.e., 3% interest) and compare S(1)/Sg af-
ter 1 year [i.e., at £ = 1] if interest is compounded yearly,
monthly, weekly, daily, and continuously.

27. Mass Sliding Down a Lubricated Plane. A block of
mass m slides down a plane that is at an angle & with respect
to the horizontal, under the action of gravity and friction, air
resistance being negligible. Applying Newton's second law to
the motion in the tangential and normal directions gives

mr” = —~f + mgsin o, (27.1a)

0=N —mgcosa, (27.1b)
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x

¥ o oil film

o N
) mg

respectively, The left-hand side of (27.1b} is zero because the
acceleration normal to the plane is zero. If the plane and block
are lubricated then the friction force is, to a good approxima-
tion, proportional to the block’s velocity #/(¢), so f = o1’
where ¢ is a constant, and (27.1a) gives the second-order dif-
ferential equation

mz” +ecx’ = mygsina (27.2)

for the motion x(t). Assume that z{0} = (+and z’(0) = 0.

(a) IC's true that (27.2) is a second-order equation whereas this
chapter is about first-order equations. but you can integrate it
once with respect to ¢t to obtain a first-order equation. Do that,
then solve that equation for z(#) and show that

x(t) =

2y sin o (C__f (273

—et/
= +eF ’“—1).

e

(k) The constant of proportionality cin f = cz’is .4 /h where
A is the area of the bottom of the block,  is the normal dis-
tance between the bottomn of the block and the plane (i.e., the
oil film thickness), and g is the viscosity of the oil. Suppose,
in an experiment, m = 0.5 slugs, 4 = 0.6 ft, a = 30°,
h = 0,003 ft. and that when ¢ = 5 sec we measure x to be 114
ft. Also, g = 32.2 ftfsec®. Use that data in (27.3) to solve for
the viscosity of the oil, u. by computer if necessary. NOTE:
That is, think of this as an experiment aimed at the determina-
tion of the viscosity of a given lubricating oil.

28. Sliding With Dry Friction. In the preceding exercise the
block/plane interface was lubricated and the friction force f in
(27.1a) was of the form f = cx', proportional to the velocity
7’. Suppose instead that the interface is dry (not lubricated).
Then (27.1a,b) still hold, but in that case (if « is large enough
for slipping to be initiated in the first place) the friction force
f is proportional to the normal force N: f = puN where the
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constant of proportionality g is the coefficient of sliding fric-
tion. With f = uN in (27.1a), and N given by (27.1b), solve
for z(t) subject to the conditions z(0) = 0 and z'{0) = 0, and
show that

x(f) = %(sina — peosalt?. (28.1)
29. The R, L Circuitin Fig.12b. The R, L circuit in Fig. 12b
was madeled by (32) and its solution was given by (33), Let
R = 2 ohms. L = 10 henrys, and ¢, = 0 amperes.
{(a) Let e(f) = 5sint volts for 0 < ¢ < 67 and O for ¢ > 6n
seconds. Solve for i{t), both for 0 < ¢ < 6x and for ¢t > 6,
either by hand or by computer. HINT: First, for 0 < ¢ < 6@
solve i’ + 0.2¢ = (D.1){5)sin¢ with i{(}) = 0, and call the
solution 1 (¢). Then, for 61 <t < oo solve s’ 4 0.2¢ = § with
initial condition ¢(67) = 4, {6}
(b} Obtain a computer plot of the solution obtained in part (a).
HINT: How can we plot the two parts of the solution together?
Denote the solutions on 0 < ¢ < 67 and 67 < ¢ < oo as
iy (t) and i3(t), respectively. Then a single expression valid on
<t <ocis

i(f) = i1(t) + H(t —6m)[ia(t) —ir{t)]

in which H(t} is the Heaviside function which is defined as
Ofort < Oand 1 fort > 0. Thus, H(t —6n}isOfort < 6x
and 1 fort > 6m, so the right-hand side of (29.1) is ¢, (¢) for
t < 6m and i3(t) for t > 6. In Maple, for instance, H({t) is
entered as Heaviside(t).

{c) Now let e{t) = 5t volts for 0 < ¢ < 10 and 10 fort > 10,
Solve for i{t), both for 0 < t < 10 and for £ > 10, by hand or
by computer.

(d) Obtain a computer plot of the solution obtained in part (c).

(29.1)

30, Newton’s Law of Coeling. Newton’s law of cooling states
that a body that ts hotter than its environment will cool at a rate
proportional to the temperature difference between the body
and its environment, so that the temperature u(t) of the body
is modeled by the differential equation

du

dt (U_— U).,

(30.)

in which U/ is the temperature of the environment (assumed
here to be a constant), ¢ is the time, and & is a positive con-
stant of proportionality. NOTE: Parts (b}, (c}. (d). below, are
independent problems that apply the results of part (a) to dif-
ferent situations. [Note also that if « > U then (30.1) does
indeed model the cooling of the body by Newton’s law of cool-
ing. But, (30.1) holds for “Newton heating” as well, that is, if
{7 > wu. In that case the right-hand stde of (30.1) is positive. so

u{t) is an increasing function of £, as the body is being heated
by the environment.]

(a) Derive the general solution of (30.1),

u(t) = U + Ae™™. (30.2)
(b} A cup of coffee in a room that is at 70° F is initially at
200°F. After 10 minutes it has cooled to 180° F. How long
will it take to cool to 100° F? What will its temperature be
three hours after it was poured?

(¢) Yoshiko takes a cup of tea, initially at 200°F, outdoors at
noon. By 12:06 pm it has cooled to 188° and by 12:12 pm it
has cooled to 177°. By what time will it have cooled to 130°,
assuming that the ambient temperature remains constant over
that time period?

(d) An interesting application of (30.1) and its solution (30.2)
is in connection with estimating the time of death in a homi-
cide. For instance, suppose a body is discovered at a time T
alter death and its temperature is measured to be 90°F. ‘We
wish to determine T'. Suppose the ambient temperature is
U = 70°F and assume that the temperature of the body at
the time of death was ug = 98.6°F. If we put this information
into (30.2) we can solve for T, provided that we know k, but
we don't. Proceeding indirectly, we can infer the value of & by
taking one more temperature reading. Thus, suppose we wail
an hour and again measure the temperature of the body, and
find that (T +1) = 87°F. [«(T+1) is « at time T+1, not »
times T'+1.] Use this information to solve for T (in hours).

ADDITIONAL EXERCISES

31. Newton Heating and Cooling of a House. First, read the
introduction to Exercise 30. Let w(} in {30.1) be the temper-
ature inside a house that is subjected to a time-varying outside
temperature U(¢t) = 70 — 15 cos {7t /12) degrees Fahrenheit,
where £ is in houts and ¢ = 0 corresponds to midnight. [If un-
clear about our choice of U (¢), sketch its graph and see that it
is a reasonable choice of a daily temperature fluctuation, from
alow of 55° at midnight to a high of 85° at noon.] Suppose that
neither heating nor cooling are being used inside the house.
Then (30.1) applies, with I7{t) as given above. Let the initial
condition be %(0) = 50° although, looking ahead, this value
will not affect the steady-state temperature fuctuation, which
is our chief interest. Then we have the I[VP
du

i kU() — u(t)]

7t
- k{?O—lkﬁcosE—u(t)]; u(0) = 50. G1.D
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To understand the physical significance of k, consider the ex-
treme cases in which & —> coand bk — 0. As k — oo it
tollows from (31.1) that U{t) — u({t) — 0. Since in that case
u(t) = [J{#) we see that & = oo corresponds to there being
no insulation at all in the walls of the house. At the other ex-
treme, in which k& -+ 0, it follows [rom (31.1) that du./dt = 0
o u(t) = constant = «(0), which indicates that the house is
“infinitely” insulated so there is no heat exchange at all with
the outside. Here, let & = 0.05.

{a) Solve (31.1) by computer (with & = 0.05). You should find
that

u(t) = —19.45¢"%0%* 4 70

—0.5275c0os0.2618¢ — 2.764 sin 0.26184,
31.2)
As t — oc the exponential term tends to zero and leaves a
steady oscillation which we call the steady-state solution,

ug{t) = 70 — (0.5275 cos0.2618¢ + 2.764 5in 0.2618¢).
(313
(b) Obtain computer plots of the outside temperatare I/ {t} and
the inside temperature u(t), over a long enough time for the
transient part of the response to die out.

(c) Time Lag. Verify that (31.3) can be re-expressed in the
form

ue(t) = 70 — 2.814 cos [0.2618(¢ ~ 5.280)]. (31.4)
Our purpose in converting (31.3) to the form (31.4) is that in
the latter form we can more readily compare it with the out-
side temperature U(t) = 70 — 15¢050.2618¢. Doing so, we
can see two effects. First, the presence of insulation causes a
reduction in the amplitude of the temperature variation, from
15° outside to the more comfortable value of around 2.8° in-
side. Second, we sce that there is a time lag of 5.28 hours in
the response (sece the figure, below), so although the outside

8 CosW(f-a5)

AV

temperature peuks at noon, the temperature inside does not
peak uvntil after 5pm. Do these two results agree with
your computer plots obtained in part (a)? HINT: To ver-
ify (31.4) use the trigonometric identity cos{d — B) =
cos Acos B + siu Asin B.

(d) Now consider the more general case in which U{t) =
Uy +acos (7t /12), for any values of the average outdoor tem-
perature Ly, the amplitude a, the constant k. and the initial
temperature 1{0). Solve the differential equation

] t

%ﬂ% = k[Us +acofsﬂllr—2 — u(t)]
and discuss the effect on the amplitude and time lag of the
steady-state response in the limits as £ — oo (no insulation)
and as k — O (perfect insulation}.

(31.5)

32. Drug Delivery in Pharmacology. Suppose we take a
dose of a certain drug, either orally or intravenously. As the
blood circulates, the drug will disperse and its concentration
will tend to become uniform throughout the circulatory sys-
tem. That will probably happen so quickly (particilarly if the
dose is administered intravenously), compared to the time T
between doscs (such as 24 hours), that we can idealize the sit-
uation and regard the concentration C(f) (the mass of the drug
per unit blood volume) as rising instantaneously to Cy (which
is the dosage divided by the total blood volume), and then di-
minishing relatively slowly as the drug passes through the the
walls of the circulatory system into the muscles and organs of
the body. Clinical studies show that C{t) will diminish with
time, approximately, according to the differential equation

iCc

& e ko 32.
- kC, (32.1)

in which k is a positive experimentally known constant. The
solution to (32.1), subject to the initial condition C{0} = ()
i5

C(t) = Cre™, (32.2)

Attime T the concentration has fallen to Cye*7T, so when we
admintster another dose the concentration jumps up “instanta-
neously” from that value by an additional ('}, to a new peak
given by Co = C1e~*"' 1 C1, as shown in the figure (in which
all the vertical rises are of the same magnitude, Cp). The phar-

T
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macology problem that we want to solve is to determine the
correct dosage (which is the concentration C; times the pa-
tient’s total-bMlood volume #) and the time interval T between
doses. The constraints are that the drug is helpful if its con-
centration is above some known value C,;n and harmful if it
exceeds some known value Chyax.

(a) Show that the successive peaks are

C‘Z = C] + C]Eva‘
Cy=0C1 + C'ge_kT =C (1 +e kT 4 e—QkT) X

and 50 on, 50

Co=Cr(L+e M T 4. pe ™) (323)

(b) We can see that Cy, Cs, ... is an increasing sequence be-
cavse Cy is Cyp plus the positive quantity Cre 57, Cy is Cy
plus the positive quantity Coe=*7, and so on. If that increas-
ing sequence diverges to infinity then Ciax will be exceeded,
s0 we are concerned with whether or not it converges and, if it
does, to what value. To see if it does, recall that the geometric
series 1+ + 2% + .- - convergesto 1/(1 — z) if |2f < 1, and
hence show that

lim C, =Ci/ {1 —e*) = O (32.4)
That is, as £ — oo the sequence of peaks C,, converges, and
C{(1) tends to a steady-state oscillation, with peak values C,
given by (32.4).

(c) Following such a peak, the concentratton diminishes to a
mintmum value that occurs immediately before the next dose.
Show that that minimum value is Cooe™*T

(d) Now that we understand the time history of C(£), we can
design the drug protocol: Set Coe = Crnax and Cae™ 1 =
Chuin. Thus, solve for the time T between doses and the dosage
D, say, in terms of the known valves Cyax, Chin, the blood
volume v, and the empirical constant k.

(e) If we forget to take a pill, we're tempted to take two the
next time, but the instructions tell us not to do that, but to re-
turn to taking one pill every T hours. Explain the reasoning
behind those instructions.

NOTE: Observe how important the figure was in facilitating
this analysis. It is difficult 10 imagine successfully analyzing
this problem without it. More generally, be aware of the im-
portance of supporting your work with suitable sketches.

33. Belt Friction. We know from experience that if a belt
(or rope) is wrapped around a cylinder such as a tree trunk,
then a large force on one end of the belt can be supported,

without the belt slipping, by a relatively small force on the
other end of the belt, thanks to the friction between the cylin-
der and the belt. For instance, consider a flexible belt hanging
over a fixed horizontal circular cylinder, as shown in the figure.

o)
J

Ty

v

A weight force W is applied at one end and the problem is
to find the tension Ty at the other end, as a function of the
wrap angle «, that will keep the belt from slipping. Consider
a typical infinitesimal element of the belt and the forces that
act upon it, as shown below. The force exerted on the ele-
ment by the cylinder can be broken into a radial component

. AB2
T(0+A0) ‘\,i
AN -
.. AB/2
AN ) . 1.(
AD )\
T(®

or normat force AN, say, and a tangential component due to
the friction between the cylinder and the belt. It is known from
physics that the friction force that can be sustained, without the
belt slipping, is proportional te the normal force. The constant
of proportionality is the coefficient of static friction g, which is
an experimentally known constant that depends upon the two
materials (the belt and the cylinder). Thus, the tangential fric-
tion force is pAN, as shown in the figure. Assume that the
belt is sufficiently light (compared to W) for us to neglect its
weight. Thus, we have not included a weight force on the belt
element in the figure. For static equilibrium the net force on
the element must be zero, so the net tangential force and the
net radial force must each be zero:

EFang = T(84+AB) cos %i) — T{#) cos %ﬁ + AN =0,
(33.1a)

L Fradial = AN — T{6+A0) sin —%q — T(8)sin % =10.
(33.1b)
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(a} We're not interested in the normal force distribution, so
eliminate AN between (33.12a) and (33.1b) by algebra. In the
resulting equation let A — 0 and thus show that

—a _';'LT'J

g7 (33.2)

which is a differential equation for the tension T in the beit as
a {function of angular position 8.

{b} From (33.2) show that the tension Ty in the first figure,
needed to support the weight without slipping, is
Ty = We™#®, (33.3)
which is our final result.
COMMENTS: (i) Thus, the force Ty that is needed decreases
exponentiatly with the wrapping angle &x. For instance, sup-
pose that u = .4, corresponding to leather on metal. Iif o =
then Ty = We=(®497 = 0.285W, and if @ = 57 (so the belt
is wrapped around the cylinder two and one half tmes), then
Ty = We (0457 — g0019W. For instance, if W = 1000
Ibs, then the force Ty needed to support it is only around 2 1b.
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(1) Our derivation of (33.2} is typical of the method used in en-
gineering courses and textbooks on mechanics: Isolate a typi-
cal infinitesimal element of the system, show the forces acting
on it, write down the governing physics (Newton’s second law
of motion in this case), and then let the infinitesimal increment
{ A8 in this case) tend to zero.

(i) Instead of setting the radial and angential force compo-
nenis equal to zero, as we did in (33.1), we could have set the
horizontal and vertical force components equal to Zero, but the
former was more convenient.

(iv) The foregoing derivation of (33.2) is typical of the deriva-
tion of the differential equations governing the variety of phe-
nomena encountered in undergraduate engineering curricula:
Isolate a typical arbitrarily small element; indicate the forces,
fluxes, etc.; write down the governing physical principle(s);
and take the limit as the spatial or temporal increment tends o
zero. In this case the physical law was Newton’s second law
of motion which, for static equilibrivm, amounts to the sum of
the forces being zero,

34. Differential equations of the form ¢' + py = 0, in which
pis a constant, have arisen, in this section, in modeling a wide
range of applications. List as many as you can find, in both the
text and the exercises, For instance, one would be (33.2) in Ex-
ercise 33, for the (ension in a belt. Refer o texts on application
areas, such as bioengineering, if you wish.

1.4 NONLINEAR FIRST-ORDER EQUATIONS

THAT ARE SEPARABLE

Having thus far studied only the linear equation

dy o
Yt ple)y = qa),
we now consider the general equation
Flz,y, y’) =0,

(1)

and assume that we can solve it by algebra for 3 and thus express it in the standard

form

%% = f(z,y).

Standard form.

(2)

Of course, (2) includes the linear equation (1) as a special case, but we've
already studied that case, so here we focus on the case where (2) is nonlinear.
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Or X{z)=p{z) and
Y (y) = —y, of course.

Thanks to the separable form
of (3), there are no z’s in the
y integral and no y's in the =
integral.

For the linear equation (1), we were successful in deriving an explicit formula
for its general solution, in terms of p(x) and g(x). If an initial condition was pre-
scribed, then the solution thus obtained was unique, and a minimum interval of
existence could be determined for it in advance, by examining p(x} and ¢(x). For
the nonlinear equation (2) we are not so fortunate. It is not possible to obtain an ex-
plicit solution formula in terms of f{, y), and the issues of existence, uniqueness,
and interval of existence are more subile.

Therefore, we consider only some spectal cases of (2), for which solution
methods are available. The most prominent is the case where (2) is separable,
which means that f{x, y) can be factored as a function of x times a function of y:

Y~ X@Y ). ®

For instance, 4’ = xe®T2¥ is separable because it can be writtenas ' = (xe®)(e2V),
but ¥ = 3z + y is not, because 3z + ¥ cannot be written as a function of z times a
function of y.

Actually, the linear homogeneous equation ¥’ + p{z)y = 0 that we studied in
Section 1.2.2 was separable because it can be expressed as y' = X (z)Y (y) with
X(z) = —p(x) and Y{y) = y. In that case we solved by separation of variables:
We divided both sides by y, multiplied both sides by dx, and integrated:

dy _
Y- [seran @

We can use that same separation of variables method to solve (3), whether it
is linear or not: Divide both sides by Y () [tentatively assuming that Y (y) # 0 be-
cause division by zero is not permissible], multiply both sides by dx, and integrate:

/% =/X(:z:)d:c. 5)

Then evaluate the integrals in (5), if we can, including the usual additive arbitrary
constant of integration.

EXAMPLE 1. Solution by Separation of Variables. Solve

dy _ o v
E—Q(JJ 1je™ ¥, ®)

First, identify (6) as separable, with X{z}) = 2(x—1) and Y{y) = e ¥. In this case
Y () # 0 for all y so we can divide both sides of (6) by e~¥ (or, equivalently, multiply by
e¥), multiply by dx, and integrate. Thus,

feydy=2[($—1)d:r, N
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bl
e =222 4+ C, (%)

in which ' is an arbitrary constant. Solving (8) for y gives
y(x) = In(x? — 22 + C). )

The latter is plotied in Fig. 1 for the representative values ¢ = 1, 3,5, 7, together with the
direction field. -
Now consider applying initial conditions, say y(4) = 5 and y(0) = 0. in turn.

y(4) = 5: Applying this condition to (9) gives 5 = In(16 -8 + C) so C = ¢ — 8§,
Hence, :

y{z)=In(x? - 22+ ° - 8)
=1 [(z—1)> + > —9]. (10}

the graph of which is plotted in Fig. 2.

What is its interval of existence? It’s true that the logarithm function tends to —oo as
its argument tends to zero (Fig. 3), but the argument {2z —1}* + ¢ — 9 is positive for all
x, its smallest value being e — 9. Thus, the right-hand side of (10} is defined for all . and
the interval of existence of (10} is —n0 < 2 < 0o,

y{0) = O: In this case, D gives y{) = 0=, s0 C = 1 and
y(z) =In(z® - 254+ 1} = In{z — 1)* = 2Injr - 1], an

the graph of which is given in Fig. 1, for C' = 1, and is displayed by itself in Fig. 4. This
time the logarithm does “blow up.” namely, at 2 = 1. Thatis, 2In|r—1} =+ —ocasx — 1,
so we can think of the graph as consisting of two branches, one to the left of x =1 (labeled
L in Fig. 4} and one to the right of & =1 (labeled R). The solution through (0, 0) can be
extended arbitrarily far to the left, along L. but it cannot be extended to the right up to or
beyond a = 1 because the sofution ({ P} tends to —oc as @ — 1 from the left, and becomes
undefined at x = 1. Thus, the solution through the initial point {0, 0) consists only of the
left-hand branch L, and its domain of existence is —oo < & < 1. The right-hand branch F
is to be discarded, as we've suggested in Fig. 4 by using a dotied line for its graph.

COMMENT 1. To solve for C we applied the initial condition y{4) =5 to the solution (9),
but it would have been slightly simpler to apply the initial condition to (8).

COMMENT 2. A potential error is to omit the constant ¢ int {8) and then include it in
(9), writing y(z) = In (2% —22)+C instead of (9). That is incorrect, and the two are not
equivalent; C is an integration constant s0 it must be inserted immediately upon doing the
integrations, in (8). 11

EXAMPLE 2. Solve d

oy _ 2

o =Y (12)
It might appear that the right-hand side of (12) is not of the form X (i)Y (y} because we
see no a’s, but it is; we can take X {z) = —1 and Y {y) = y°. Now proceed. If y £ 0, we

R B IR S ]

y R }
R

—4 0 4 X

Figure 1. Representative mem-
bers of the family of solutions (9),
and the direction field.

}}

YA=5

20 0 20 x
Figure 2. Particular solution (10),

satisfying y{4) = 5§, with domain of

existence —oo < T < o0,

Inx
1

0} ,/x
;/

Figure 3. Recall: lnx tends
o —ooas ® — Gand to +oc

as & — 2.



46  Chapter i. FIRST-ORDER DIFFERENTIAL EQUATIONS

P
Y disca{d
e TR
I
4 4 X
»M=0

Figure 4. Particular solution {(t1}
corresponding to the initial condi-
tion 4{0) = 0. These curves are also

in Fig. t, for & = 1.

C =\ -2

Figure 5. The graph of {13) for
representative values of ' note the

infinite jump discontinuities.

can divide (12} by 32, separate the variables, and obtain

dy
f?*‘/d“"

Evaluating the integrals and solving for y gives

1 .
y(z) = el (13)

with C arbitrary (—o0 < €' < o). The solution (13) has an infinite jump discontinuity at
x = —C and is plotted in Fig. 5 for representative values of C.

Having tentatively assumed that y # 0 when we divided (12) by 3%, we must consider
that case separately. In fact, we see that

y(z) =0 (14)

satisfies (12) because it reduces (12) to the identity 0 = 0. The solution (14) is not con-
tained in (13) by any finite choice of C, so it is an additional solution, in addition to (13).
In summary, the solutions of (12) consist of the set of functions (13), for all values of C in
—o0 < C < oo, together with the additional solution y(x) = 0.

Now consider appending representative initial conditions to (12): y{0) = 1, y(2) =
—3,and (1) = 0, in turn,

1#(0) = 1: Applying this condition to (13) gives C' = 1, so y(x) = 1/(x + 1), which
is displayed in Fig. 6a. We can see thal the solution “blows up” at x = —1; y = +00
as z — —1 from the right. Surely {12) is not satisfied by y{z) = 1/{(z + 1} atx = —1
because neither the 3 on the left nor the y on the right of (12) is defined at & = —1. Thus,
keep the right-hand branch in Fig. 6a, discard the left-hand branch, and conclude that the
interval of existence of the solution y(x} = 1/(x + 1) through the initial point y(0) = 1
is -1l <z < oo

¥(2) = —3: Applying this condition to {13} gives C = —7/3, 50 y(z) = 1/(z-7/3),
which is plotted in Fig. 6b. This time keep the left-hand branch, discard the right-hand
branch, and conclude that the interval of existence of the solution y{z) = 1/(z—7/3) is
- < <7/l

¥(1) = 0: Applying this condition to (13) gives y(1) = 0 = 1/{1 + ), but the latter
cannot be solved for C. However, the additional solution y(z) = 0, given by (14), satisfies
this initial condition and the graph of that solutton is shown in Fig. 6¢. This solution exists
on —o0 < & < 00,

COMMENT. The factorization X (z) = —1 and Y (y) = y° is unique only to within an
inconsequential scale factor. For instance, we could have taken X(x) = 1 and ¥ (y} =
—y%, or X(x) =378 and Y(y) = ~¢?/378,andso on. B

In summary, the separation of variables process is this: Identify the factors
X(x) and Y (y) (if the equation is separable), divide both sides by Y (y) under the
tentative assumption that Y (y) # 0, multiply both sides by dx, and integrate,
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The case where Y {y} = 0 has one or more roots for y must be treated sep-
arately. Tf yo is any root of Y(y) = 0, then y(x)} = o is a solution of ' =
X(x}Y (y) because setting y(x) = 1o reduces the differential equation to the iden-
tity d(yo)/dx = X(x)Y (yo), namely, 0 = X(x){(0). Thus, first assume that
Y (y) # 0 and obtain the solution family obtained from (5). Then solve Y (y) = 0.
If there are any (real) roots ¥4, ..., yk. then besides the solution family (5) there
are the additional constant solutions y(x) = yy,...,y(x) = ¥ In Example 1
there were no such additional solutions, and in Example 2 there was one, namely,
ylz) = 0.

There is no analog of these “additional solutions™ for the linear differential
equation y' + p{x)y = q(z}. In that case we were able to obtain the general
solution with confidence that it contained all solutions. For nonlinear equations,
however, being certain that we have the set of all solutions is a more subtle mat-
ter. To avoid calling a selution a “general solution” without proving that it does
contain all solutions, we will not use the term general solution for nonlinear differ-
ential equations. Thus, in Example 2, for instance, we did not call (13) a general
solution; we said that we found the “family of solutions™ (13) plus the “additional
solution” (14).

EXAMPLE 3. Implicit Solution. Solve the IVP

dy _(inz-3h-3) g (15)

dr y—2
Separating variables and integrating gives
y= 2 . 2
—dy = | {sinx — 3z°)dxr, (16)
y—3
y—34+hjy-3| = ~-coszr — x>+ C. (17)

Unfortunately, we cannot solve (17) for y. Nevertheless, we can apply the initial condition
to (£7) to evaluate € 2 +In2 = ~1 + C gives € = 3 + In 2, so the solution of (15) s
given by

y~3+Inly—3| = —cosz —2* + 3+ In2. (18)

Since we are not able to solve the latter for , we accept it as it is, a relation on r and ¢
that defines y(x) only implicitly rather than explicitly. Thus, we say that the solution (18)
is in implicit form rather than explicit form.

In spite of s implicit form, (18) can be used to obtain a computer plot of y versus x.
The result is shown in Fig. 7.

COMMENT. In this example, ¥ {¢) = {y—3}/{y—2) = 0 has the root ¥y = 3 so, in addi-
tion to the family of solutions given implicitly by (18), (x) = 3 is a solution as well. That
additional solution turns out not to be relevant in that it does not satss{y the initial condition
y(0) = 5, but if the initial condition were {0} = 3 instead, then the solution would be that
additional solution y(x) = 3. By the way, the solutton shown in Fig. 7 is not identically 3

(@ \ y
A\ yor=1
discard &
Myl .
discard -

™ 2073 X
\y(z)ba
(©) y /y(l)zo

X

Figure 6. Particular solutions
of (12) for y(0) = 1. y(2) = -3,
and ¥(1)= 0.

To integrate, let y—3 = 2
1
and get {1+ =)dz.
" z
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beyond x == 2: it is simply extremely close to 3. For instance, y(2.5) = 3.0000147. §

i
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Figure 7. The solution (18) of
the IVP (15}, The dot shows the
initial condition (0} = 5.

“additional solutions.”

Closure. We began our study of nonlinear equations in this section by considering
the important special case in which the equation is separable, namely, of the form
Y (y}. Assuming first that Y (¥} # 0, separation of variables gives

(19)

/Wﬂ [ xX@as,

but the latier may give y(z) only in implicit rather than explicit form, as occurred in
Example 3. In contrast, the general linear equation y' + p(z)y = ¢(x) can always
be solved in explicit form, and its explicit solution was given in Section 1.2.

If Y(y) = 0 has (real) roots y1, ...
obtained from (19) there are additional constant solutions y(x) = v, ..
yr. When we are done we must go back and recover them, and include them as

, Yk, then besides the family of solutions
Hylx) =

If that point is unclear, it may help to consider a simple algebraic analogy, such
as the equation x> —5x = 2z or, 2(x—5) = 2x. If we cancel z’s we obtain z—5 =

2 and hence x = 7. However, canceling the two z’s (i.e., dividing both sides of
the equation by x) is permissible only if o # 0, so after obtaining x = 7 we must
return to the original equation to check the case z = 0. Indeed, x = 0 is a solution,
so we must augment the solution settox = 7,0.

In this section we've emphasized the separation of variables solution method
for equations ¥’ = f(x,y) that are separable. In the next section we continue to
consider the general case ' = f(ix, y), and give a fundamental existence/uniqueness

theorem.

EXERCISES 14

1. Solution by Separation of Variables. Solve the given VP
by separation of variables. Sketch the graph of the solution(s)
or, if you prefer, use computer software to obtain both the
graph of the solution{s) and also the direction field; indicate
initial conditions by heavy dots. Determine the interval(s) of
existence of the solution(s). If more than one initial condition
is given, consider each, in turn.

@y —3r’e V=0, y0)=

byayy =2, y(i) =2

@y +43=0; y(-1)=-1

(y -4 =0, y{1)=1

@y =v+1 y(0)=1

Hy ={sinz)y; »(1)=019(1)=1

@y =@w+1% (0)=-3,y0)=-1,y0)=3
My =4 yp{l)=-Ly(1)=0,y9(1} =1

By +er " =0; y0)=0

Py =e¥"% y0)=0

&) 22y =9 y(3) = -

My =¥ y(-1)=0

(W) ftan®(y —4) + 1]y’ = 1; y(3) =4
m20+yy' =1; y(3)=-2

y(—2} =

2. Implicit Solutions. The problems in Exercise 1 led to ex-
plicit solutions. The following lead to solutions in implicit
form — although you may be able to solve for i and thus con-
vert your solution to explicit form. Solve the IVP and deter-
mine its interval of existence, for each initial condition that is
given. NOTE: Implicit solutions are more challenging regard-
ing determination of the interval of existence, and plotting and
examining their graphs may be particularly helpful.

(0)y =y’
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(@) (cosy)y’ + e = 0; y(0) =0 and y(0) = 27.

(b) {1 + ¥}y = 1; y(0) = 0. Give asymptotic expressions
for y{x) as x — Foo.

©x(l+y)y = -y y(1)=2

(D (1+e¥)y =1+sinx y(0)=0

@) {1+ e¥)y = e*t¥; y(2) = (. Show that y(x) ~ 1.874 as
x — —ocand that y(r) ~ e asz — o0,

(D{2—cosyyy’ =2—cosx; y(0) =0.

(g) (By'— 1)y’ = 0.2; »(0) =0

(h) (30y* — 1)y’ = z; y(0) =0

() (24 + 0.06y%)y + 8z = 0; y(0) = —1

N x(l-gly = (x-1)y; y(1} =01

3. By separation of variables, solve the IVP

3.0

subject to the initial condittons y((H = —1,0,1, 2, 24, in
turn. Sketch the graphs of the solutions, or use computer sofl-
ware (0 obtain both the graphs of the solutions and also the
direction field; indicate initial conditions by heavy dots. De-
termine the interval of existence of each solution. HINT: To
integrate [ dy/[y(y — 2)], subject to the condition that y # 0
and y # 2 [which cases correspond to additional solutions],
use partial fractions and obtain

y = yly—2)

y(z) = 2/(1 — Ae®™). (3.2)
4. Consider the equation
oy =yluy (y >0 4.1)

(a) Derive the solution family y(x) = e of (4.1), in which
the constant C is arbitrary,

(b) Sketch (or plot) the solutions on —oo < & < oo lor repre-
sentative values of C.

(c} Show that one and only one of those solutions satisfies
y(a) = b for any a # 0 and for any b > 0, that none of those
solutions satisfies 4(0) = b if b # 1, and that infinitely many
solutions in the family y(x) = €~ satisly the initial condition
y) =1,

5. Find the solutions, if any, of 2(1 + )y + y = 0 subject
to the initial conditions y(5) = 0.4, and »(5} = - (.2, in turn.
What are their intervals of existence?

6. Relative Rates of Growth. It is important to understand
relative orders of magnitude. For instance, if two popula-
tions Ny(t) and Nay(t) are given by Ny(t) = 100¢* and
Na(t) = 100" it is evident that both tend to infinity
as ¥ —+ oo, but which one grows more quickly? [Of course,
whether the independent variable is temporal (£), spatial (),

or whatever, doesn’t matter in this discussion,] Let us com-
pare three common types of growth (as ¢ — oo):

logarithmic growth, In¢;
algebraic growth, t* (a>0)
exponential growth, % (8> 0)

(a) Show that algebraic growth dominates logarithmic growth,
as £ — oo, Namely, show that t%/Int = oo ast — oo, for
any « > 0 no matter how small. Since % dominates In¢ for
any a, even o = 10712, say. logarithmic growth is extremely
weak in comparison with algebraic growth.

(b) Show that exponential growth dominates algebraic growth,
as -+ 00, no matter howsmall 3 is and no matter how large o
is. Thus, algebraic growth is extremely weak in comparison
with exponential growth. For instance Nj(f), given above,
dominates Ni(f) as ¢ — o0; ie, No(t)/Ni(t) — oo as
L= o, -

7. Relative Rates of Decay. Analogous to Exercise 6, com-
pare these types of decay (as £ — ook

algebraic decay,
exponential decay,

7 (o> 0)
e=Pt (3> 0).

Show that exponential decay dominates algebraic decay, as
t — oo, namely, that ¢"%t/t~® — 0 as ¢ — oo, no matter
how small 8 is and no matter how large o is.

8. Algebraic, Exponential, and Explosive Growth. We saw
in Section 1.3 that the population model

% =&N (x>0 8.1

gives the exponential growth N{t) = Ae™, so N — oo as
t — oo (if A > 0). More generally, consider the model

aN N,

0
dt (5> 0)

(8.2)

in which p is a positive constant. Our purpose in this exercise
is to examine how the rate of growth of N(f) varies with the
exponent p in (8.2).

{a) Solve (8.2) and show that if 0 < p < 1, then the solution
exhibits algebraic growth [i.e., N(t} ~ at” as t — oo, where
a and b are positive constants that depend upon p].

(b) Show that as p — 0 the exponent b tends to unity, and as
p — 1 the exponent b tends to infinity. (Of course, whenp =1
we have exponential growth, as mentioned above, so we can
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think, crudely, of exponential growth as a limiting case of al-
gebraic growth, in the limit as the exponent & becomes infinite.
Thus, exponential growth is powerful indeed.)

() If p is increased beyond | then we expect the growth to be
even more spectacular. Show that if p > 1 then the solution
exhibits explosive growth, explosive in the sense that not only
does N — oo, but it does so in finite time, namely as ¢t — T
where 1

T s(p-1)NET!

and Ny denotes the inttial value N (0). Observe that not only
does the growth become explosive when p is increased beyond
1, but that the time T until “blowup” decreases as p increases

(8.3)

and tends to 0 as p — .

9. Exponential Decay Versus Explosive Growth. We know
that N' + N = 0 gives exponential decay and [Exercise $(c)]
that N' = N? gives explosive growth, as ¢t — co. If we com-
bine both forms and write

N'+ N = N?% N(0) = N, (9.1)
which one wins? That is, does N (f) exhibit exponential decay
or explosive growth as t — o0, or perhaps a different behavior
altogether? [Think of N as population, so Ny and N{t) are
nonnegative.]

1.5 EXISTENCE AND UNIQUENESS

1.5.1 An existence and uniqueness theorem. Recall from Theorem 1.2.1 that
if p(x) and g(x) are continuous at a, then the linear equation 3 + p{x)y = g(x)
admits a solution through an initial point y(a) = b that exists at least on the broadest
open x interval containing & = a, on which p and ¢ are continuous, and is unique.
What can be said about existence and uniqueness for the initial value problem

Theorem 1.5.1 applies whe-
ther (1) is nonlinear or lin-
ear, but we already have the
stronger Theorem 1.2.1 for

¥ = flz,y); yla)=b

if the latter is nonlinear, that is, if f{x,y) is not a function of x times y plus a
function of 22? We have the following theorem.'

the linear case. Thus, our
interest in Theorem 1.5.1 is
for the nonlinear case.

[

y

A— - i

i >
X a x, X

THEOREM 1.5.1 Existence and Uniqueness for Initial Value Problems
If f and 9f /3y are continuous functions of 2 and ¥ in an open disk D about the
initial point (a, b} (Fig. 1), then the initial value problem

dy

e = f(z,y); yla)=0b (1)

has a unique solution at least on the open x interval z; < & < o, where 1 and
a9 denote the x locations of the points at which the solution curve intersects the

'For further discussion of this fundamental theorem and its proof, at about the same level as this

Figure 1. The disk D
in Theorem 1.5.1.

text, see Section 2.11 of W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and
Boundary Value Problems, 6th ed. (NY: John Wiley, 1997). We also recommend J. Polking, A.

Boggess, and D). Arnold, "Differential Equations with Boundary Value Problems,” 2nd ed. [Upper
Saddle River, NJ: Pearson, 2005). See Theorems 7.6 and 7.16 and the related discussion.
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circular boundary of D.

Whereas Theorem 1.2.1 gave a minimum interval of existence and uniqueness
for the linear equation [namely, the largest open x interval containing x = a on
which both p{x) and ¢g(z) are continuous], Theorem 1.5.1 ensures existence and
uniqueness for the general eguation ¢ = f(z,y) on an interval 21 < = < a9,
but it does not teli us what x; and z, are. In fact, the interval 7 < * < xy can
be arbitrarily small if the solution curve through («, b) happens to be steep. Thus,
Theorem 1.5.1 is a local result in the sense that it tells us that under the stipulated
conditions there does exist a unique solotion in some neighborhood of the initial
point & = a, but it does not tell us the size of that neighborhood.

Of course, Theorem 1.5.1 applies also if the differential equation in (1) hap-
pens to be linear, but there is little point in using it for linear equations because, as
we’ve mentioned, Theorem 1.2.1 for linear equations is much more informative.

1.5.2 IMustrating the theorem. We will illustrate Theorem 1,5.1 with two ex-
amples before discussing the significance of existence and uniqueness in a physical
application in the next subsection.

EXAMPLE 1. Consider the 1VP

4y% =-x; y(3)=1L (2)
To apply Theorem 1.5.1 to (2), observe that both f(r,y) = —x/(4y) and 3f /oy =

x/{4y?) are continuous everywhere in the plane except on the line y = 0 (the x axis).
Since the initial point 1(3) = 1 is not on that line, it follows from the theorem that the [VP
(2) does have a solution, a unique selution, passing through the largest disk I? centered at
(3,1), throughout which both f and 21 /3y are continuous, namely the shaded disk of vnit
radius shown in Fig. 2. The size of that disk is limited by the presence of the line y = 0
atong which the thecrem’s continuity conditions are not met.

In fact, the differential equation in (2) is separable and gives the solution in implicit
form as the ellipse x° + 4y = C. The initial condition y(3) = 1 then gives C = 13, so

o) = i% 13—u2. 3

Choose the plus sign in {3) because it gives the upper half of the ellipse, which passes
through the initial point (3,1), whereas the minus sign gives the lower half of the ellipse,
which does not pass through the initial point. The graph of the solution is the solid curve
in Fig. 2.

Theorem 1.5.1 assures us of the existence of a unique solution in some interval about
& = 3, but it does not give a minimum size of that interval. However, in this example we
did not need a prediction of the interval of existence because we were able to solve (2);
we can now simply examine its sotution, the graph of which is the upper half of the ellipse
in Fig. 2, We can see from the figure that the solution exists on V13 <z < /13 the

To identify f(z,y)}, first put
the differential equation into
standard form by dividing
both sides by 44.

h
y /Jlrs'/z

I
SUERN ;7

_f""\(.?.—ll

Figure 2. The solution curves
through (3, 1) and {3, — 1), shown
as solid and dotted, respectively.
The largest possible disk D at (3,1}
is shown as shaded. 1ts radius is 1.
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Figure 3. Interval of existence

and uniqueness in Example 2.

endpoints T = £+/13 are not included because the slope ¥’ is undefined (infinite) at those
points.

COMMENT 1. Similarly, through (3, —1) there is the wnigue solution

Y= —1\/13-.172

2

on —v13 < z < /13, corresponding to the lower branch of the ellipse (the dotted curve
in Fig. 2).

COMMENT 2. If the initial point is on the x axis then the theorem does not guarantee
the existence or uniqueness of a solution. It simply gives no information because then the
continuity conditions on f and 8f /3y are not satisfied in any open disk D centered at the
initial point. In fact, if the initial point is on the x axis then there is ro solution through that
point because the stope of the ellipse passing through that point is infinite there; that is, ¢
is undefined, so the differential equation in (2) cannot be satisfied there or in any x interval
containing that point.'

In Example 1, Theorem 1.5.1 assured us that there exists a unique solution
through the given initial point, although it did not guarantee that that solution would
exist at least on “such and such” an x interval. However, we were able to solve (2),
and hence to determine the interval of existence simply by examining the solution.
In other cases the IVP may be too difficult for us to solve, and our interest is in
determining some guaranteed interval of existence, even in the absence of having
the solution in hand. In the next example, we will use Theorem 1.5.1 to see what
we can do about determining an interval of existence.

EXAMPLE 2. Consider the IVP

¥ =v p0)=1 4)

Here, f(z,y) = y? and 8f /By = 2y are continnous everywhere in the &, y plane, so
Theorem 1.5.1 assures us that there is a unique solution of the IVP (4) — in seme inlerval
about the initial point.

What we can learn (without peeking at the solution, as we did in Example 1) about the
interval of existence and unigueness of that solution? [Actually, (4) can be solved readily
by separation of variables, but let us see what we can determine even in the absence of
having the solution in hand to examine.]

Since the continvity conditions are satisfied throughout the plane, we can make the
disk D any size we like. Begin by drawing the disk D, of radius R, about the initial point
(0,13, as in Fig. 3. Everywhere in D, |¢| = |y?| < (R + 1)? because the maximum y
is at the top of the disk, where ¥ = R + 1. Thus, the absolute magnitude of the slope of

'In Section 1.1.6 we stated that an integral curve is simply the graph of a solution. Actually, it
can he the union of such graphs. For instance, the entire ellipse in Fig. 2 is called an integral curve
of 4yy’ = —z, even though it is not the graph of a single solution curve but, rather, the unjon of the
upper and lower solution curves.
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the solution curve through (0,1) is less than (R + 1)2, which we will denote as A, so the
solution curve must fall within the shaded “bow tie™ region. Afier all, for the solution curve
to break out of the bow tie its slope would have to exceed M at the point of break out, and
that cannot happen because |3/| < M everywhere in D.

Hence, the interval of existence and uniqueness is at least — 3 < x < 3. To determine
3, write the Pythagorean theorem for the right triangle ABC: AB?* + BC? = R? or,
B2 + (M 3)? = R?, which can be solved for 3 as

R R
VI+M? A+ (1 +RP

For instance, B = 1 gives 3 = 0.2425. Since we can choose R as large or small as we
like, we might as well choose R so as to maximize the right hand side of (3). To do that,
set d3/dR = 0 and obtain R* + 2R3 2R —2 = 0 which (using computer software) gives
R = 1.1069; putting that into (5) then gives # = 0.2031. Thus, we have shown that the
interval of existence and unigqueness is at feast —0.2031 < x < 0.2031.

In fact, (4) is readily solved, its solution being

1
y(r) = — (6)

T 1-g'

B (5)

the graph of which is given in Fig. 4. Thus, the actual interval of existence and uniqueness
is —0o < x < 1, 50 the interval ~0.2031 < x < 0.2031 is correct, but falls well short of
capturing the full interval of existence. 1

1.53 Application to free fall; physical significance of nonuniqueness. Tt is
important to give a physical application as well, so the impression is not left that
the questions of existence and uniqueness are only of theoretical interest. Such an
application can be found even in the simple problem of a body of mass m that is
dropped from rest at time ¢ = 0. Let the mass’s downward displacement from the
point of release be z(#) (Fig. 5). Neglecting air resistance, Newton’s second law
gives e’ = mg, so we have the IVP

" =g, 0 <t <o, (7a)
z{0}) =0, 2'(0) =0. (7b)

We can integrate (7a) twice with respect to £ and use the initial conditions in (7b)
to evaluate the two constants of integration. Doing so gives the solution

1
(t) = 5ot* (®)

that is probably familiar from a first course in physics. The graph of (8) is the
parabola shown in Fig. 6.

However, it will be instructive to work not with Newton’s second law but with
an “energy equation.” To derive an energy equation, multiply Newton’s law ma” =
mg not by df but by da:?

*Multiplying the terms in Newton’s taw by dx will lead to an energy equation because dr is
distance, force times distance is work {mg in Newton's Faw is the force), and work is manifested as
energy.

A

-1 I X

Figure 4. The exact solution
{6) of the VP (4).

@8
@

Figure 5. Free fall under the
influence of gravity, neglecting
air sesistance.

53
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A t
Figure 6. The solution
(1) = gt /2 of (6).

We say that (9¢) is a “first
integral” of (7a). In place of
the second-order equation
(7a) we now have the first-
order equation (10a). Our
starting point is now the
IVP (10}, not (7).

mz” dr = mgdax, (9a)
!
mdi dr = mgdzx, (9b)
dt
mdx’ d—m = mgdz, (9¢)
/m:r dx’ = /'mg dz, (9d)
Em::: =mgr+ A (9e)

or %m:c' 24+ (—mgx) = A. The latter is a statement of conservation of energy:

The kinetic energy ma'?/2 plus the (gravitational) potential energy —mgx is a
constant. Putting ¢ = 0 in (%e) gives 0 = 0 + A so A = 0, and it foliows from
(9e) that =’ = /2gx. The latter is a first-order differential equation, so append the
single initial condition (0} = 0. Then we have the IVP

%“;3 = +/2g3'/> 0<t< oo, (10a)
x(0) = 0. (10b)

QOur interest here is in considering the IVP (10) in the light of Theorem 1.5.1.
Solve (10a) by separation of variables. If z # 0 we can divide both sides by 2V 2
multiply by dt, integrate, and obtain

x(t) = % (\/2_gt+ 0)2‘ 1

Then the initial condition z(0} = 0 gives C' = 0 so

z(t) = %gtz, (12)

which is the same as (8). However, recall from Section 1.4 that a separable equation
¥ = X(2)Y{y) can have solutions y(x) = constant coming from any roots of
Y (y} = 0, in addition to the family of solutions obtained by separation of variables.
In the present case (where the vanables are £, = instead of z, y) the root z = 0 of
x!1/2 = 0 gives the solution x = 0 [i.e., z(t) = 0] of (10a), and that solution is
additional since it is not contained in (11) by any choice of the constant C'. That
solution also satisfies the initial condition (10b), so besides the solution (12) of (10)
(which corresponds to AD in Fig. 7) we also have the solution z{t) = 0 (which
corresponds to the positive  axis in Fig. 7). Thus, the solution of (10) is nonunigue.

With that result in mind, turn to Theorem 1.5.1 to see what it can tell us about
the existence and uniqueness of solutions of the IVP (10). Realizing that » and
y in the theorem correspond here to ¢ and x, respectively, observe that 3f/0x =
A(/2gx'/?)/Bx = /2g/(2/x ) is not continuous in any neighborhood of the
initial point (0,0) in the ¢, x plane because it “blows up” to infinity at 2 = 0, that
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Figure 7. Solutions of (10),

is, all along the ¢ axis. Thus, the conditions of the theorem are not met, so the the-
orem simply gives no information for the TVP (10).!

COMMENT 1. The additional solution z(f) = 0 of (10) amounts to the mass
levitating: it does not fall! While the latter is a legitimate solution of (10} and does
not violate the conservation of energy expressed by (10a), it does violate Newton’s
second law (7a) because if we put z(¢) = 0 into (7a) we obtain the contradiction
) = g. Thus, the levitation solution can be discarded, finally, as nonphysical.

This is a general situation: energy formulations may lead 1o solutions that are
unacceptable. Still, there is a nagging question: 1f we derived (10a) from Newton’s
law, in equations (9a) through (9e), then how did this nonphysical solution get its
foot in the door? It entered in (9a), for if z(t) = constant then dz is zero, so when we
multiplied both sides of mx” = mg by dx, the resulting equation ma”de = mgdx
does not imply that mz" = g, because the dxz’s are zero.

COMMENT 2. Actually, (10) admits not only the two solutions z(t) = gt*/2
(the curve AD in Fig. 7) and z(f) = 0, but an infinite number of other solutions
as well. For instance, the segment AB of the ¢ axis (in Fig. 7) followed by the
half-parabola BE is also a solution curve, as is AC followed by C'F’, and so on.
That is, the energy equation (10a) and initial condition (10b) are both satisfied if
the mass levitates for a while, and ther falls.

Closure. Theorem 1.5.1 gives sufficient conditions for the existence of a unique
solution to the IVP (1). It is less informative than the corresponding Theorem 1.2.1
for the linear case: Theorem 1.2.1 gave a formula for the solution and a minimium
x interval on which that solution exists and is unique. Theorem 1.5.1 assures exis-
tence but does not give the solution, and whereas it assures existence and unique-
ness on “‘some” x interval, it does not indicate how broad that interval will be.

'"The lack of satisfaction of the conditions of the theorem does nor imply that (10) does not have
a unique solution, hecause the theorem says “if.” not “if and only if”" That is, its conditions are
sufficient, not necessary and sufficient.
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EXERCISES 1.5

1. Application of the Theorems. First, solve the given IVP.
If there is no solution state that. Is the solution unique? If
possible, give the interval of existence of each solution. Then,
show that your findings are consistent with the existence and
uniqueness theorem; if the equation is nonlinear use Theorem
1.5.1, and if it is linear use the more informative Theorem
1.2.1. HINT: In difficult cases a computer plot of the direc-
tion field may help.

@y =2zy; y(0)=2 by =z+y; y0)=3
©yy =z y0)=2 Dyy =z; y(0)=0
yyy' =z; y(0)=-2 (Day' +y=0; yl)=1
@y +y=0, y0)=5 (May'+y=0 y(2)=0
May +2y =0, y(-1)=-4

(yoy' —2y=10; y{0)=0

2y =1 y3)= -1

My +97=0 y(-2)=-1

m)y' =tany; y(0)=-3

(myy =633 (0} =0({z>0)

(0)y' =613 »(0)=1

2. Estimating a Minimum Interval of Existence and
Uniqueness. For the nonlinear IVP (4) we used the “bow tie”
idea to estimate the interval of existence and uniqueness; we
showed that it is ar least —0.2031 < z < ©.2031. For the
problems in this exercise, follow that same idea to obtain a
formulda for §{ 2} analogous to that in (5).

(a) For the IVP ¢’ = 1 + y* with y(0) = 0, obtain j
= R/VE*+2R?+2 and show that the maximum § is
0.45509, so that existence and uniqueness is assured ar least
on —-0.45509 < x < 0.45509. Further, solve the IVP for y(x)
and show that the actual interval of existence and uniqueness
is —w/2 <z < w2

(b) For the IVP yy' = x with (0) = —2, obtain g =
R{2-R)/v2R?—2R + 4. You need not maximize the latter,
but show that it is at least 0.3, so that existence and unique-
ness is assured af least on —0.5 < x < 0.5. Further, solve the
IVP for 4(x) and show that the actual interval of existence and
uniqueness is — 00 < ¥ < 04,

(¢) For the IVP yyf = « with (2} = 3, obtain § =
R(3—-RB)/v2R*—2R +13. You need not maximize the lat-
ter, but show that it is at least 0.5, so that existence and unique-
ness is assured af least on 1.5 < x < 2.5. Further, solve the
TVP for y(x) and show that the actual interval of existence and
uniqueness is —0o < % < 00,

(d) Given the IVP v’ = y?/2? with (1) = 0.5, we simply
want to be assured that a unique solution exists on |z —1] <
0.1. Show that that is the case. Further, solve the IVP for y(x)
and determine its actuat interval of existence and uniqueness.

3. Envelopes. In this exercise we introduce the geometric con-
cept of the “envelope” of a one-parameter family of courves in
a plane, and in subsequent exercises we will show what en-
velopes have to do with first-order nonlinear differential equa-
tions. Consider a one-parameter family of curves

9(3?,3)‘: C) =0, an

in which ¢ is the parameter. For instance, 2% + ¢ — ¢ = 0 is
the family of concentric circles centered at the origin, each one
corresponding to a different value of the parameter ¢. Such a
family of curves may, but need not, have an envelope, such as
the curve I in the left-hand figure. (A corve T is an envelope

T
T

T

P CHAC
C

1 x

of a family of curves if every member of the family is tan-

gent to I' and if T" is tangent, at each of its points, to some

member of the family.) If we are given g{x,y, ¢}, how can

we find any such envelopes? The coordinates x, y of point P

(in the right-hand figure) must satisty both g(x.y,c) = 0 and

glr, y, ¢+ Ac) = 0 or, equivalently,
gz, y,e) =0 (3.2)

and

g(ﬂ;r ¥, €+ AC) — g(:r:, Y, C) _

Ac -

Equation 3.3) is valid for A arbitrarily small, so it must hold

in the timit as Ac — 0, in which limit P approaches I'. Thus
(3.2)and (3.3} become

0. (3.3)

g(;t?, Y. C) = 0: g_g(xs Y, C) =0. (343,'))

Eliminating ¢ between (3.4a) and (3.4b) gives the desired
equation of T, if the family does indeed have an envelope. To



illustrate, consider the family of circles (z — ¢} + % = 9.
Equations (3.4a) and (3.4b) giveg = (x —c)* + 4> -9 =0
and élg/dc = —2(x — ¢) = 0, and eliminating ¢ between these
gives the two straight line envelopes y = +3 and y = —3
which, from a sketch of the family of circles, is seen to be cor-
rect. On the other hand, consider the family of parallel lines
¥ = x + ¢, which has no envelope. (To see that, sketch the
lines for several different ¢'s.) In this case (3.4a) and (3.4b)
give f = y — & — ¢ = 0 and 8g/8c = —1 = 0. These cannot
be satisfied (because —1 = 0 cannot be satisifed), so the fam-
ily ¥ == = + ¢ has no envelopes.

The problem: In each case use {3.4a) and (3.4b) to determine
all envelopes, if any, of the given family of curves, and illus-
trate with a labeled sketch (or computer plot).

(@y=cr+1/c () (x—e)* +y? =c2/2
©y=(xz—2) (dy={x—c)?+zx

4. Envelope Solutions of Differential Equations. Let the
differential equation

¥ = fla,y) (4.
have a one-parameter family of solutions
a(x,y,¢) =0, 4.2)

where ¢ is a constant of integration, and suppose that the fam-
ily of solution curves (4.2) has an envelope I” (as in the figure
in Exercise 3}. At each point on I’ the values of x, y and the
slope ¢’ are such that (4.1) is satisfied, so I itself is a solution
curve. That solution is not contained in (4.2) because T is not
itself a member of the family (4.2).

The problem: Show that the levitation solution x:(£) = ¢ in
Section 1.5.3 is such an envelope solution.

NOTE: The concept of the envelope of a family of curves is
of interest not only in connection with solutions of differcatial
equations but also in optics and acoustics. The next exercise
illustrates its relevance in optics.

ADDITIONAL EXERCISES

5. Application of Envelopes to Caustics in a Coffee Cup. In
this exercise we apply the geometric idea of envelopes (Exer-
cise 3) — not o differential equations but, for {un, to the re-
flected light pattern in a coffee cup. In the morning, when the
sun is low, the sunlight striking the inside lip of a coffee cup is
reflected by the inside of the lip. Continuing its slightly down-
ward trajectory it strikes the coffee surface and is reflected to
our eye, revealing a bright geometric pattern called a caustic.
The latter is the envelope of the light rays reflected off the lip.
such as those labeled 1. 2, and 3 in the following figure:
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Cup

(a) Let the inner radius of the cup be 1 inch and assume that
the angle of reflection off the lip equals the angle of incidence.
Show that the equation of the typical reflected ray is

y = (tan2¢)z + (sin¢ — tan2¢ cos @}. (5.D
(b} Using computer graphics, plot enough of the lines de-
fined by (5.1) to reveal the shape of the caustic, as we have
in the second figure. It suffices to plot themon 00 < ¢ < 1

cusp at x=05

rather than on —1 < y << 1 because surely the caustic will be
symmetric about the x axis,

{c) Show that the caustic has a cusp at z = (1.5, that is, that the
slope of the caustic tends to zero as y -+ 0.

NOTE: The envelope of light rays amounts to their mutual re-
inforcement to the extent that the cavstic becomes visible.

6. Iterative Solution; Picard’s Method. Suppose we try to
solve the IVP

yla) =b {6.1)

by integrating the differential equation from the initial point a
to an arbitrary point ., obtaining

¥ = flz,yh

y() — y(a) = / " f(s,y(s)) ds
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in which s is a dummy integration variable, or, imposing the
initial condition y{a} = b,

X
ylx) = b+f fls,u(s)) ds. (6.2)
[/3

Unfortunately, the latter is not the solution of (6.1) because the
unknown y appears inside the integral. Rather, it is an integral
equation for y because the unknown y appears under the in-
tegral sign. Thus, all we’ve accomplished is the conversion of
the differential equation IVP (6.1) to an integral equation. {(In-
tegral equations will not be studied in this text except insofar
as they occur here and in the chapter on the Laplace trans-
form.) Consider the solution of (6.2) by “iteration.” That is,
since the complication in (6.2) is the presence of y inside the
integral, let us approximate that y (inside the integral) and in-
tegrate. Let yo{z) = b be a first approximation of the desired
solution g{zx}; the latter probably doesn’t satisfy the differen-
tial equation in {6.1) but at least it satisfies the initial condition
y(a) = b. Because of this approximation on the right, the y(x)
on the left will likewise not (in general} satisfy (6.1) exactly,
but only approximately. Hopefully, it will be an improvement
over the inidal approximation yo(xz) = b. If we denote that
new approximation as yy(x) then

n@ =+ [ " Fs, vo(s)) ds. ©3)

We can repeat the process and use the function vy (x) com-

puted from ¢6.3) as, hopefully, a better approximation of the y
inside the integrand, obtaining

ya(r) = b+ ] " (s n(s)) ds,

and so on. That is, beginning with yo(x) = b we can use the
iterative formula

ne) =+ | *1(5,unls)) ds 64)

with n = 0,1,2,...in turn, to generate a sequence of iterates
yo(z), y1(2), y2(x), and so on. Hopefully, if (6.1) has a unique
solution then the y,(x) sequence thus generated will converge
to that solution. This iterative method is due to the French
mathematician Emile Picard (1856-1941) and is known as Pi-
card’s method. If we assume that f(x, y)} satisfies the condi-
tions of Theorern 1.5.1 then it can be shown that that sequence
does converge to the exact solution y (),

nlLrlgoyn(x) = y(x), (6.5)

on some open interval containing the initial point a; in fact,
Picard iteration is a traditional method of proof of the exis-
tence part of Theorem 1.5.1. See, for instance, Section 2.11
of W. Boyce and R. DiPrima, Elementary Differential Equa-
tions and Boundary Value Problems, 6th ed. (NY: John Wiley,
1997}, Our purpose here is not to attempt that proof but only to
explore the idea of iterative solution and to provide guidance
through some exploratory examples.
The problem: For the example

¥y =-y y0)=1, (6.6) .
beginning with yo(x) =
first several iterates:

y(3) = 1, use (6.4) to generate the

nEy=1-x, (6.7a)
() =1 -2+ La?, {6.7b)
ys(z) = 1 —x + J2? — 323, (6.7¢)
yale) =1— o+ 12? — 123 + L2t (6.7d)

NOTE: Since the Taylor expansion of the exact solution is

1 1, 1
yr)=e T=l-at+—zi- —ad+ =2t~

H7 gttt o (o)

(6.8)
it appears that the Picard sequence is indeed converging to the
exact solution.

7. Another Example of Picard’s Method. Consider the IVP

y(0) = L. (7.1}

(a) Derive, by separation of variables, the solution y(z) =
1/(1—?), whichexistson —1 < z < 1.

(b) Now use the Picard method given above, beginning with
yo{x) = 1, 1o generate y,(x)} for n = 1,2, and 3. You can do
this by hand, or using computer software.

() Plot those iterates, together with the exact solution, on the
interval of existence ~1 <z < 1,

¥ = 2zy%;

8. One More. Consider the IVP

y(0) = 1.

(a) Derive the solution y(x) = exp (e* — 1), which exists on
—0 < X < 00

¥ =e"y; (8.1)
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{b) Use the Picard method given above, beginning with (c) Plot those iterates, together with the exact solution, on
yolx) = 1, to generate y,,(x) forn = 1,2, and 3. —3 < < 3, for instance.

1.6 APPLICATIONS OF NONLINEAR
FIRST-ORDER EQUATIONS

In this section we consider the logistic model of population dynamics as a represen-
tative application of nonlinear first-order differential equations, and we give a va-
riety of other applications in the exercises. Use of the phase line, from Section
1.3, will continue to be prominent, and we will introduce one new idea: linearized
stability analysis.

1.6.1 The logistic model of population dynamics. In Section 1.3.1 we studied
the simple exponential population model

if—fzﬁN; N(0} = Ny, e

with solution
N(t) = Nget. (2)

We noted that the exponential model is not necessarily realistic for long time in-
tervals if the net birth/death rate x is positive, because in that case {2) indicates
unbounded growth. As a more realistic model we suggested the logistic equation

d_N — (a=bN)N 3 The well-known
- ' 3 logistic equation,

dt

which we wrote down in Section 1.3.1 but did not solve. In (3), ¢ and b are known
positive constants and N (¢} is the population, such as the number of bass in a lake.
[Alternatively, we could take N (¢) to be the total mass, the biomass, of bass in the
lake, or some other measure of the population.]

We can solve (3) by separation of variables:

dN
fm:/dt (if N £ 0and N #£ a/b),

/(_ lm1__+l_1_)dN=t+C (—00 < €' < 00), We’ve expanded the
a N~a/b o N | 1/{(a—bN)N] in partial
fractions.

—In|N—a/bl + In|N| = of + «C,
[ N
N—afb

| — ea.t+ﬂ.6 — ea(: Etﬂ”f',
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To solve for A it is simpler to
apply N(0) = Ny to (4) than
to (5); try it both ways and

S€e.

Autonomous differential
equations and the phase line
were discussed in Section
1.3.4.

Figare 1. N' = (a—bN)N and
the resulting /N -axis phase line.
The two heavy dots denote equi-

librium points.

Following the second
equality, replace each
N'by (e — BN)N and
simplify.

N — al’ at of
N—a/baﬂ:e e = Ae 4)
or, solving (4) for N,
a.Aett
N@) = 14 bAect’ )

Since —o0 < ' < oo, the constant A can be any value other than zero (because
A = e and €*“ is not zero for any finite value of C').

Besides the solution family (5), (e — bN )N = 0 gives the additional solutions
N(t) = 0 and N(t) = a/b. The former can be included in (5) if we allow the
arbitrary-but-nonzero constant A to be zero, because setting A = 0 in (5) gives
N(t) = 0. But N(¢) = a/b cannot be obtained from (5) by any finite choice of A
30 it is an additional solution of (3), in addition to (5).

If we apply an initial condition N(0) = Ny to (5), we can solve for A and
obtain A = Ny/(a—bNp). Then, after some algebra, (5) becomes

a N(]

N(t)= - )
bNO + (%—Ng)e_m

(6)

At this point we could use (6) to plot N versus £, for representative values of a,
b, and V. Instead, put the solution (6) aside and return to the differential equation
(3), to see what we can learn using a more qualitative approach. We see that (3) is
autonomous, of the form

= (@—bN)N = (), )
s0 consider the phase line. Accordingly, we've plotted N’ = f(N) = (a—bN)N
versus &V in Fig. 1, from which we find equilibrium points at ¥ — Jand at N =
a/b. (Of course N = () is an equilibrium point, because if we begin with no fish,
we will never have any fish.)

If we take the phase line in Fig. | and place it vertically at the left of the N
axis in a Cartesian £, N plane, as in Fig. 2, we can infer the qualititative shape
of the solution curves in the £, V plane directly from the phase line flow. For in-
stance, the dot at N = a/b on the phase line indicates an equilibrium point there,
so the solution curve springing from N (0) = a/b in the #, NV plane is simply a hor-
izontal line. The downward flow on the phase line above a/b and the upward flow
below o /b imply that the solution curves in the £, N plane approach the equilibrivm
solution N(¢) = a/b from above and below, respectively. And the dotat N =0
gives the constant equilibrium solution N{(¢) =0.

To sketch the solution curves in Fig.2 it would help to find the inflection points,
if any. Like the phase line, that information can be obtained directly from the
differential equation (3). Inflection points are points at which N” vanishes and
changes sign, so differentiate (3) and set N7 = 0

w_ d
N"= = [(a=bN)N]

=1 —-bN’N + (a___bN)N"
= (a-~2bN)(a—bN)N = 0, (8)
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el b1

Ble

Figure 2. Using the phase line at the left to sketch solution curves for (3).

Solution curves below the t axis are omitted because N > 0.

which gives the three roots N = a/2h, a/b, and 0. Of these, we can discard the last
two, which are simply the horizontal-tine equilibrium solutions N(¢) = /b and
N(t) = 0. Consider the first root, ¢ /2b. The o —2bN factor in (8) changes sign at
a/2b but the (a—bN)N part does not (since it is positive for 0 < N < a/). Thus,
N both vanishes and changes sign at a/2b, so N = a/2b is an inflection point.
That is, all along the horizontal line N = a/2b (dotted in Fig. 2) the solution curves
have inflection points. That information enables us to complete our sketch of the
solution curves in Fig. 2.!

Merely from the phase line, at the left in Fig. 2, we can see that the equilibrium
points N = Q0 and N = /b are unstable and stable, respectively, as can also be
seen from the solution curves in the £, N plane. N = a/b is an important quantity,
the environmental carrying capacity, the population that can be supported by the
environment.

1.6.2 Stability of equilibrium points and linearized stability analysis. Let
us review and extend the definitions of equilibrium points and stability given in
Section 1.3.4. Recall that N, is an equilibrium point of N'(t) = f(N) if
f{Ney) = 0. The equilibrium point is stable if N(¢) can be kept arbitrarily close
t0 Neq for all £ > 0 by taking it to be sufficiently close initially (at t = O}, ;2 oth-
erwise it is unstable. For the logistic model (3), we can see from Fig. 2 that the
equilibrium points Neq = 0 and Neq = /b are unstable and stable, respectively.”

"We didn'( really sketch Fig. 2 by hand; we plotted computer generated solutions, but we could
have sketched it from Lhe information that we've discussed.

*That is, corresponding to each number ¢ > 0 (i.e., no matter how small) there exists a number
§ > O such that |[N{t) — Nug| < eforall ¢ > 0if |[N(0) — Nogl < 9.

*The former is unstable because we cannot keep |N{t) — Neg| = |N(&} — 0| = N{#) < e for
all ¢ > 0, where ¢ is arbitrarily small. no matter how close N{0) is to Noq = 0, for no mattcr
how close the initial point is to the ¢ axis, in Fig. 2, the solution curve moves upward, tending o the
asymptote /b as £ — oo. And the equilibrivm point Ne, = a/b is stable because we can keep
[N{#) — Nog| = |N(£) — a/b] < ¢ forall £ > 0. where ¢ is arbitrarily small, simply by starting out
closer 10 a/b than e.

The logistic equation (3) is
often written, instead, as
N'=7(1—£)N, in which r
is called the intrinsic growth
rate and K is the environ-
mental carrying capacity.
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f FUN(N-N)

AN

'/weq N

Figure 3. Local approximation of
F{N) in neighborhood of the equi-

librium paint Ne,.

8(t) = N(t)— Neq.

Further, we classify a stable equilibrium point as asympfotically stable if
N(t) not only remains arbitrarily close to N for all £ > 0 but if it actually fends
10 Noq as t — o0, that is, if N(t) = Ny as t — oco. From Fig. 2 it seems evident
that not only is Noq = a/b stable, but that it is asymptotically stable.

Proceeding one step further, we introduce the idea of “linearized stability anal-
ysis.” The idea is simple. Suppose Neq is an equilibrium point of an autonomous
equation

dN
ar = f(N), (%)

and that we wish to examine its stability. Since the stability concept used bere is a
“local™ one, why not simplify the function f{N) in {(9) by approximating it in the
neighborhood of the point Vo, ? Specifically, expand f(N) in a Taylor series about
Neq and cut off after the linear (i.e., the first-degree) term:

JN) = F(Ne) + I/ (Neq) (N = Neg) + 5 " (Neq) (N~ Neg)? -+

2 f(Neq) (N = Neg), (10)

in which we've also dropped the leading term f(No,) becanse f{Nyq) = 0 by the
definition of equilibrium point; see Fig. 3.!
The approximation (10) reduces (9) to the simple linear equation

o = F(Ne)(V N, an

which is called the linearized version of (9). If we define the deviation from the
equilibrium point as §(t) = N(t) — Ny, then &' () = N'(t) and (11) becomes

dé ,

— = (N9, 12

with solution ,
() = Gped (Nea)t, a3

Everything hinges on the sign of the number f'(N.q) in the exponent: If

f'(Neq) <0, (14a)

then (13) shows that §(¢) — 0 as ¢ — oo so the equilibrium point Ny is evidently
asymptotically stable, and if

J'(Neq) > 0, (14b)

"'We've assumed that f'{ N.,) # 0 so that the approximation (10} does capture the first nonvan-
ishing term of the series.
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then &%) grows, instead, so the equilibrium point N is evidently wnstable. If
J'(Neg) = 0, the criterion gives no information. In that case we must go back to
(10) and proceed farther into the Taylor series, to keep the first nosrvanishing term.
This point is pursued in the exercises.

We said “evidently,” above, because although it is reasonable to expect the
original differential equation dN/dt = f{N) to have the same behavior, near N,
as its linearized version, we have not proved that it does. However, the expected
result is true, and we state it as a theorem:

THEOREM 1.6.1 Stability Criterion for AN/dt = f{N)

Let Noq be an equilibrium point of dN/dt = f(N), where f(N) is differentiable
(@) If f/(Nuq) < 0, then Ny is asymptotically stable.

(b) If f'(Neg) > 0, then Ny is unstable.

The criterion simply echos what we have already seen from our phase line
pictures such as Fig. 1, namely, that if the slope f’ at N, is negative then the flow
is toward N.q and the latter is stable, and if the slope there is positive then the
flow is away from N, and the Jatter is unstable.

Realize that we can find the equilibrium points [by solving f(N) = O for
N] and can then determine their stability [by determining the sign of f' at each
equilibrium point] without ever solving the differential equation (8) — even without
plotting f'(N) versus N and obtaining the phase line! Indeed, (9) might be too
difficult to solve, or its solution might be obtainable but intractably messy, or we
might not be interested in the solution, but only in the equilibrium points and their
stability.

EXAMPLE 1. Application of the Stability Criterion (14). To illustrate, we will

apply the linearization procedure to the differential equation

de  1-—2*

dt 1422 (13

Tfwe set f{z) = (1 -2%)/(1+2?) = 0o find the equilibrium points we obtain xeq = £1.
To determine the stability of weq = +1, expand f in a Taylor series about that point and
linearize,

de _ 1-47
dt 1422
m—(x—1) (16)

)+ g1 - G

50. with 8 = T —~ Toq = @ — 1, (10) gives

8 = -4, (17

This example is just a
made-up differential equation,
not a population problem, so
in place of N(t) we revert to

our generic x(¢) notation.
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Recall that the Taylor series

of fabout x = 11is f(x) =

o+ Iy
0
+—é!—-(m»1)2+---.
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—(x-D

o/

tangent line at x =1

Figure 4. The linearization (16) is

a tangent-line approximation of the
function f(z) = (1—22)/(14+x?)

al Teq = L.

ﬁ(t) = Joﬁ_t

and because of the negative exponentiat in (18), xoq = +1 is stable. Actually, we didn’t
need to carry out the solution of (17), or even the Taylor expansion in (16); we could
simply have evaluated f'(1) and examined its sign. Since f'(1) = —1 < 0, we could have
concluded from Theorem 1.6.1 that 7.4 = +1 is asymptotically stable.

For eq = —1 we will take the shortcut: We find that f'(—1) = +1 > 0,50 Leq = —1
is unstable. 1

{18}

To understand the linearization idea, think geometrically. Specifically, observe
that the linearization of f{x) about z., amounts to replacing the nonlinear function
f(zyinz' = f{z) by its tangent ]ine approximation at that point. For instance, the
approximation of (1 —z2)/{(1+z?) by —(z—1) in (16) amounts to the tangent-line
approximation shown in Fig. 4. Just as the tangent line faithfully approximates
f(z) in the neighborhood of z.q, so does the flow corresponding to the linearized
differential equation faithfully approximate the flow corresponding to the original
nonlinear differential equation in the neighborhood of zq.

Closure. In this section we used already-developed solution technigques and qual-
itative phase line methods to study representative problems involving separable
first-order differential equations. The only new mathematical idea was that of lin-
earization about an equilibrium point, which we used in Section. 1.6.2 to determine
the stability of equilibrium solutions of nonlinear autonomous differential equa-

tions,

EXERCISES 1.6

1. Incorporating Harvesting, Let N(¢) denote the fish popu-
lation in a commercial fish pond. If we harvest fish at a rate
fish per unit time, we must modify the logistic equation (3) as

= (a—bN)N — h. (1.1)

To maximize profits, we want to make h as large as possi-
ble, but if we make it too large then we will drive the fish
population to zero and be out of business. Thus, our inter-
est is not so much in solving (1.1) and obtaining traditional
plots of N{t) versus ¢, for instance, but in determining the
maximum sustainable harvesting rate h. The problem: Deter-
mine that rate. NOTE: The phase line contains all the infor-
mation that is needed. Sketch the phase line [ie., the graph
of N = (@ — bN)N — h versus N] for h = 0, and again
for b > 0, and see the effect of & on the flow along the phase
line. This exercise illustrates the simplicity and value of the
phase line — not to replace standard solution methods, but to

complement them.

2. Incorporating a Threshold Population. Ficld studies indi-
cate that if the population of a certain fish in a lake falls below
a critical level, say P, then it will decline to zero (i.e., to ex-
tinction). Thus, to successfully stock the lake with that species
one must supply enough fish so that the initial population is
more than P fish. Te incorporate this behavior, it is proposed
that we modify the logistic equation (3) to the form

N' = —x(P-N)(Q-N)N (2.1)

in which &, P, and § are positive constants and ¢ > P. Does
the form of (2.1) seem reasonable? HINT: Consider the phase
line.

3. Gompertz Growth Model. Let W{t} be the weight of an
organism as a function of the time . One model of the growth
of the organism is given by the Gompertz equation

K
W =rWiln—

W (3.1
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or, equivalently, W' = r(In K — In W)W, in which r and K
are positive constants.

(a) Solve (3.1) by separation of variables and show that

W) = Kede ", (3.2)

in which 4 is an arbitrary constant. HINT: To evaluate the in-
tegral that arises, the substitution = = In W will help.

(b) Verify, by substitution, that (3.2) satisfies (3.1).

(c) Show that if the initial condition is W (0} = W, > 0, then
(3.2) gives

(e7™)
e

that is, Wy /K to the e~ power, times K.

(d) Proceeding qualitatively instead, we can use the phase line
because (3.1) is antonomous. Give labeled sketches analogous
to Figs. 1 and 2 [which were for the logistic equalion (3)]; con-
sider only W > 0. lnclude any equilibrium points, sketch
representative solution curves {as in Fig. 2), and show that the
solution curves have inflection points at W = 0.3679K (anal-
ogous to the line N = «/2b in Fig. 2). Finally. classify each
equilibrium point as stable or unstable.

wit) = K ( (3.3)

4, Qualitative Analysis. Consider the autonomous equation
= flx)on 0 < ¥ < ovand for —oc < x < oo, where
F(x) is given below. Determine the equilibrium points, if any,
sketch the graph of 2" versus x and the phasc line, and classify
each equilibrium point as stable or unstable.

(a) f(x) =" - 10 (b) flz) = (x—2)3
(© fle) = 2* —5a*+4 @) flo) =23 +8
(@ flz)y=2*-1 (f) f(z) = 3z —sinx
(g) f(x} supplied by your instructor

5. (a)—(g) Applying Theorem 1.6.1. For the f(x} given in
the corresponding part of Exercise 4, use Theorem 1.6.1 to de-
termine the stability or instability of each equilibrium point. If
the theorem gives no information, state that,

6. Speed of Approach to Equilibrium. For both equations

=—2 ad '’ =-3° (6.la,b)

x = {1 1s a stable equilibrium point. How does the speed of
approach to the equilibriom point =z = 0 compare, for (6.1a)
and (6. 1b)? Explain.

7. One-Compartment Biological Systems. Consider a-one-
compartment biological system, such as a single cell, or an or-
gan such as a kidney, and consider a particular chemical with
concentration o{t} within it. If the difference between the con-
centration c(t) inside the compartment and (he concentration
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cp outside of it is sufftciently small, the transport of the chem-
ical across the boundary of the compartment can be modeled
as being proportional to the difference c(f) — ¢o:

c(t) = —k{e—co), an
in which % is an empirically determined positive constant of
proportionality. For targer concentration differences, a better
madel is probably the Michaelis—Menten equation

Ci‘(t) _ ba'(c - C‘O) (7.2)

+(c—ep)’

which contains two empirically determined positive parame-
ters @ and &. The right-hand side of (7.2) is designed so that
for small concentration differences b + {¢ — ¢3) ~ b and
(7.2} reduces to

a
(t) ~ —E(C—C‘o]‘ (7.3)
which is of the form of (7.1}, but for targe concentration dif-
ferences b -+ {¢- ) ~ (¢ —cp) and (7.1) reduces Lo
d{t) ~ —a. (7.4)
That is, the membrane cannot accomodate an arbitrarily large
flow rate (any more than one can consume pizza at an arbi-
trarily large rate); the flow rate levels off as the concentration
difference approaches infinity. NOTE: The right-hand side of
the Michaelis-Menten equation is not derived, it is designed to
be simple and to exhibit the two limiting behaviors indicated
in(7.3yand (7.4).

(a) Determine any equilibrivm points of (7.2} and their stabil-
ity.

(b) If the initial concentration is a prescribed value ¢{(}), solve
(7.2) and obtain the following selution, in implicit form,

o) —co |+ elt) = at + c(0).

Bln H0)—co

(7.5)

(¢) Witha = b = 10and ¢y = 2, say, obtain a computer plot of
c(t) versus £ for each of the three initial conditions ¢{0)) = 1,
c(0) = 2, and e{0) = 3.

8. Orthogonal Families of Plane Curves. In a variety of ap-
plications, one is interested in two coplanar families of curves
that intersect each other at right angles. Such families of
curves are said 10 be orthogenal. For instance, the families of
all concentric circles centered at the origin of an x, y plane and
of all straight lines through the origin are orthogonal. (These
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are the constant-r and constant-@ curves of a polar coordi-
nate system.) Consider two representative curves, one from
each of the two families, defined by ¥, (2) and yo{x), and sup-
pose they cross at P, as in the figure. With the help of a labeled

y=y(x)

y=2x)

X

sketch, show that their slopes at P are negative inverses of
each ather:

vy (x) = (8.1

b
ya(z)’

9. Exercise 8, Continued. Suppose one family is comprised
of the solutions of a given differential equation

y = flz.y), .1

and that we want to find the corresponding family of orthog-
onal curves. According to (8.1), to do so we must solve the
differential equation

.1
TERYY

To illustrate, suppose we are given the differential equation

¥.2)

¥V =y (9.3)

The family of solutions of (9.3) is the set of exponentials
y = (C'e®, where C is an arbitrary constant. Then, to find
the corresponding orthogonal curves form the negative inverse
of the slope " = y given in (9.3) and solve

y =-1/y. (9.4)
That step gives the family of curves y = v2+/D =z, in which

D is an arbitrary constant. Representative members of the two
orthogonal families are shown in the figure. Do the same for
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each given differential equation: find the two families of
curves and give a hand sketch or computer plot of represen-
tative members of each family.

@y = -4y by =2y/z

©v =—y/x Wy =—=/y

10, Exercises 8 and 9, Continued. Instead of being given the
differential equation of one of the families, as we were in Ex-
ercise 9, in this exercise we give the family itself and ask you
to find a second family, that is orthogonal to the one that is
given. HINT: Work backwards and find a differential equation
(9.1) for which the given family ts the sclution. Then proceed
as in Exercise 9.

(@) y = Ce® (b)y=1/{z+C) ()y=Cz

11. The Draining of a Tank; Torricelli’s Law. A tank, of
uniform cross sectional area A, has a leak at the bottom due
t0 a hole of cross-sectional area @, so the Tiquid depth x will
diminish with time. We wish to predict the time 7T it will take
the tank to empty if the initial liquid depth is xo. According to

area A

r

X

|

velocity [2gx 1 area

Torricelli’s law, the cffiux velocity from the hole is /2gz,
which is the same as the velocity that would result from free
falt, from rest, through the vertical distance z. (Actually, it will
be 5+/2gx for some positive constant 5 < 1, due to frictional
losses, but we will negtect such effects and take 7 = 1.)
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(a) Derive the TVP obtained by dividing (13.tb) by (13.1a).
o _% Sgm: (0) = 7o, (11 {a) Derive the implicit solution
aye T = ¢ (13.3)

(b} Selve (11.1) and show that the tank empties notas & — oo,
but in the finite time

é —2359 (11.2)
a g

12. A Conical Tank. First, read the introduction to Exercise
11, through Equation (11.1). Suppose the tank is not of uni-
form cross section but is conical, as shown below and, as in
Exercise 11, suppose it has a hole of area ¢ at the bottom.

area d

+
velocity[2gx

(a) Recalling that the volume of a cone of base radius r and
altitude A is 7r2h /3, show that the TVP for the depth »(#} is

V2 .
:n’:—(-iTg)x*&/?; 2(0) = 0. (2.1
T tan” o
(b) Solve (12.1) and show that the draining time is
Irtan® o g2
= — . 12.2
Sa+/2q o ( )
13. Streamline Pattern. Let
dzx
— = {1 —y}x, 13.1a
i {(1-y)w, (13.1a)
W _ o (13.1b)

be the « and y velocity components of a certain fluid flow in
the first quadrant of the =, y plane. We wish to find the stream-
lines, that is, the paths of the fluid particles, and these arc given
by the integral curves of

dy (z—1)y

= /2 1,
dr  (1-z’ (13:2)

of (13.2), and verify by differentiating (13.3), that it does sat-
isfy (13.2).

(b) To see the streamline pattern, obtain computer-generated
streamlines through the points (1,0), (1,0.1), (1,0.3}, (1,0.5),
{1.0.5), (1,0.9), and (0,1}, and add Aow direction arrows. Plot
onthesquare 0 < ¢ < 3.0 <y < 3.

ADDITIONAL EXERCISES

14. Liquid Level Feedback Control. Liquid flows into a tank
of horizontal cross sectional area A ft* at a constant rate Q
ft? /sec and leaves at the rate ¢ = o/ f® /sec, where z(f) is
the liquid depth, ¢ is the time, and & is an empirically known
constant.  Torricelli’s law gives the exit velocity as /2gr,

0 +:M(x.;—x)‘f_ Ignore

until

part {c)

_T_
X
l

g

and when we multiply that by the exit area we get a flow rate
of the form x+/, in which & is a known posilive constant.
Equating the rate of increase of liquid volume in the tank to
the rate in minus the rate out gives the differential equation

Ar' = Q—kvx

for x{t), with an equilibrium or steady-state x, found from
0 =0 — k2, as

(14.1)

xs = (Q/r)2. (14.2)

The goal, in the operation of this “chemical plant,” is to main-
tain x(t) at its equilibrium value x5, and to return it quickly
to that value following any “disturbance” of x from its desired
value x,.

(a) From the phase line, show that =, is a stable equilibrium
point of (14.1).

(b} Linearization. If x is close to x4, then it secems jus-
tified to lincarize the nonlincar equation (14.1) about x,.
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Thus, expand the nonlinear / term in (14.1) in a Taylor
series, about x,, and cut it off after the first-order term, which
amounts to using the tangent-line approximation illustrated
in the next figure, Show that (14.1) is thus simplified to the

linearized equation

v K
Az’ = 2—\/3:_5], (14.3)

and, taking =(0} = o # it;, derive the solution of (14.3) as

Bz -z} (5 =

2(t) = s + (xg —x,)e P/A (14.4)

(c) Feedback Control. Although (14.4) shows that x{t} — x,
as t — oo, that approach may be too slow for successful plant
operation if 3/4 is small. To speed up the return to x, sup-
pose, using suitable equipment, that we continuously monitor
x, compare its measured value with x, to determine the instan-
taneous crror

e(t) = x, —x{t), (14.5)

and augment the inflow ¢} by an amount proportional to that

error, M (x; — x), as indicated in the first figure. Accordingly,
re-write (14.3) as

Az’ 4+ Bz —z;) = M(z, —2), (14.6)

show that e(t) satisfies a linear differential equation with ini-

tial condition e{0) = x; — . with solution

e(t) = e(0) e (FHADEA (14.7)

COMMENT 1. The upshot is that 3/4 is enhanced 10 (8 +

M}/ A, so disturbances from equilibrium die out exponentially
faster with the “feedback’ than without it.

COMMENT 2. This is an example of a feedback control sys-
tem, because the error is fed back to the input as is indicated
schematically in the next figure. Since the feedback Me(t) is
proportional to e(#) it is an example of proportional control,
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M) rank

X

the amplification A being the gain. Also used are derivative
control [proportional to ¢'(£)], integral contrel [proportional
to fot e(t) dt], and combinations of the three. The human body
is a whole hierarchy of control systems that control body tem-
perature, heart rate, respiration, and so on. Conirol theory is
normally taught, at the undergraduate and graduate levels, in
engineering and bioengineering departments.

15. Free Fall and Terminal Velocity; Drag Proportional to
Velocity Squared. The equation of motion of a body of mass
m falling vertically in a fluid (such as air or water) follows
from Newton'’s second law as

m% =mg—-B—-D,
in which v(f) is the velocity (so dv/d¢t is the acceleration),
B is the “buoyant force,” and D is the “drag force” exerted
on the body by the fluid. The buoyant force, by Archimedes’
principle, is constant and equal to the weight of the fluid dis-
placed by the body. The drag force is more complicated. For
definiteness, suppose the body is spherical. It is shown, in a
course on fluid mechanics, that if the Revaolds number param-
eter Re = pud/p is small, in which d = 2r is the diameter of
the sphere, and p and ;¢ are the mass density and viscosity of
the fluid, respectively, then the drag force D in (15.1) is pro-
portional to the velocity v. In that case (15.1) is linear. Here,
we consider instead the case of large Reynolds number, in the
range

(15.1)

10% < Re < 10°. (15.2)

If (15.2) is satisfied then the drag force D on the sphere is
approximately

D =2 0.23nr% pu?. (15.3)

This time the quadratic dependence of I} on v expressed by
(15.3) results in the differential equation (15.1) for v being
nonlinear. Take g = 32.2 ft/sec?, and let the mass density of
the body be 5 slugs/t® (typical of stone). Let the fluid be wa-
ter, with p = 1.94 slugs/ft> and gt = 2.36 x 10~ slugs/ftsec
(at 60° F). With these values (15.1) becomes

6.67w3% = 21577% — 83373 — (0.23)(1.94)7r%v?,
o d 0.067 ,
v _ _ 22
=197 —02, (15.4)



(a) Using a phase line approach to (15.4), show that there is a
steady-state value
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{a) Show, from the figure, that
dy bt—y
(15.9) dr = 11 (16.1)

v, = 17.1 /7 fifsec,

called the rermina{ velocity, and that the latter is stable. [Note
from (15.5) that large spheres, of a gtven mass density, fall
faster than smaller ones.]

(b) Also, solve (15.4) with »{0) = 0 and show that

v(t) = 17.1\/r tanh {1.15¢//7). (15.6)

Sketch the graph of v(t), labeling any key values.

(¢} Find the time, in terms of r, that it takes for the body o
attain 90% of its terminal velocity.

{d) Remember that the approximate formula (15.3) for the
drag force is accurate only for large Reynolds numbers in
the interval defined by (15.2). In terms of the size of the
sphere, (15.2) implies that our analysis is valid only if the di-
ameter d of the sphere falls within certain limits, Show that
with v given by (15.5), with 4 = 2r, and with the values
of p and p given above, the inequality (15.2) requires that
0.0050 {t < r < 0.108 ftor

006 in <7 < L3 in. (15.6)
For a stone of radius 0.06 inches (0.005 ft), (15.5) gives the
terminal velocity as 1.21 fi/sec, and for a stone of radius 1.3
inches (0.108 f() the terminal velocity is 5.62 ft/sec.

16. Curve of Pursuit. The following is a classical problem of
pursuit — for instance, of one ship by another. Denote the pur-
sued ship by point B and the pursuing ship by point A in the
figure. Suppose B is at {z,%) = (1,0) attime ¢ = ( and moves

Fs
y
(1, br)
B
X, ¥ A
4] -
(] l X

in the positive y direction with a constant speed b, and that A
hegins at the origin at ¢ = 0, steers a course that is always di-
rected at B, and moves with a constant speed a that is greater
than b.

(b} Think about the variables used in (16.1): It is natural to
think of = and ¥ as functions of the time £, but in {16.1) the
dy/dz implies that we are instead regarding z and y as inde-
pendent and dependent variables, respectively. Fine, but then
the ¢ in (16.1) is not welcome. To eliminate it, differentiate
(16.1) with respect to . That step gives rise 10 a dt/dz term,
and Lo obiain an expression for dt /dx use the formula

ds _
dt

_ds o
T dx dt

in which s is the arclength along the curve of pursuit, from

the origin to A. Show, from (16.2), that dt /dx = /1 + y'2/a,
and that {16.1) becomes

a (16.2)

b
(1—2)y’ = . 1+ (16.3)

(c) The latter ts a second-order equation, and we haven’t stud-
ied second-order equations yet, but the substitution u(x) =
y'(x) reduces it to a first-order equation for u(z). Do that,
solve for u{xr) by separation of variables, and obtain the solu-
tion (in implicit form)

wtVul+l=001—-2)"",

where r = b/a < 1 and C' is an arbitrary constant. Applying
the initial condition «(0) = ¢'{0) = 0, evalvate C.

(16.4)

{d) Solve (16.4) by algebra lor u, replace w by y' (), and inte-
grate again to show that

1 (1-a)'"

ylr) = —3 TR

14r

+ D, (16.5)

1

2 1-7 2

where D is an arbitrary constant. Finally, apply the tnitial con-

dition y(0) = 9 to solve for D, and thus show that the curve
of pursuit is given by

(l—:r:]l"’”] .
1—7 172"

(e} Determine the location of B when it s caught by A, and
show that capture occurs at the time T = a/(a® — b?). Sketch
the curve of pursuit up to the time of captare, with suitable
labeling and with key features clearly rendered.

B ll:(l_x]1+r
20 147

y(x) (16.6)
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(f) For A to catch B, is it really an optimal strategy for it to al-
ways steer 30 as to be aiming at B? What would be the optimal
pursuit path, optimal in the sense of overtaking B in minimal
time, and what would be the time and place when that occurs?
NOTE: This is the strategy used by a (good) baseball player in
catching a “fly ball.”

17. Projectile Dynamics and Escape Velocity. Consider a
classical problem in Newtonian mechanics, the motion of a
projectile subject to a gravitational force field. Newton’s law
of gravitation states that the force of attraction F exerted by
one point mass M on another point mass m is

Mm
F= G—&Q—, {17.1)
where d is the distance between them and G = 6.67 x

108 cm3 /gm sec? is called the universal gravitational con-
stant; (17.1) is called an inverse-square law because the force
F varies as the inverse square of the distance d. (By M and
m being point masses, we mean that their sizes are negligi-
ble compared to the distance between them; even an elephant
could be a “point mass.”)

Consider the linear motion of a projectile of mass m launched
from the sorface of the earth, as sketched in the figure,
where M and R are the mass and radius of the earth respec-

—x—

tively, and where any air resistance is neglected. From New-
ton's second law of motion and his law of gravitation (17.1), it
follows that the equation of motion of the projectile is

Mm

= G($+R)2, (17.2)
the minus sign because the force is in the negative x direction,
and x + R being the distance between mass centers. (It is not
at all obvious, but can be proved, and indeed was proved by
Newton and published in his Principia Mathematica. that the
force of attraction of a spherical homogeneous mass A at any
point outside that mass is the same as if the entire mass A
were compressed to a point, at the center of thal sphere.)

Here is the problent:

(a) Now, (17.2) is of second order and we have not yet studied
equations of second order, but we can reduce it to a first-order
equation as follows: If we integrate both sides with respect to
t, the left side is simple; it merely gives mdx /dt, but the right-
hand integral cannot be evaluated because the z(#) in the inte-
grand is not yet known. It we integrate both sides with respect
to & instead, then the right-hand integral can be evaluated, but
what can we do with the integral on the left, [ mz"” dx? Pro-
ceeding as in Equation (9) of Section 1.5, show that the result
of integrating (17.2) with respect to x is

GMm
2
=R +C, (17.3)

! m
2
in which C is the arbitrary constant of integration. NOTE:
Physically, if we express the latter in the form

tmat?y (- SMTY g (17.4)
< —

2 x+ R

KE PE

we can understand it as a statement of conservation of energy,
for it says the kinetic energy plus the gravitational potential en-
ergy is a constant over the course of the motion. If we solve
(17.3) for z'(¢) by taking square roots of both sides, the resn{t-
ing differential equation for x(t) will be separable, but the z
integration is difficult and leads to a messy solution in implicit
form. Thus, let us forego the solution for x(t) and see what
we can learn, in the remainder of this exercise, directly from
(17.3).

(b) Denote the velocity x'(t) as v(t) and let the launch velocity
be v(0) = V. Applying that initial condition, solve (17.3) for
', and show that

2GM  =x
= V2 _—— -
v \/ R x+R

It is possible to eliminate the universal gravitational constant
( in favor of the more familiar constant g, the gravitational ac-
celeration g at the earth’s surface, by noting that when z = 0
the right-hand side of (17.2) must be the weight force —myg.
Thus, show that G = R?g/M so (17.5) becomes

(17.5)

xr

V2 _—3qR .
g r+ R

=

(17.6)

{c) Show, from (17.6), that if V" is less than a certain critical
velocity, the escape velocity 1, then the projectile reaches a
maximum diStance Tma. from the earth and then returns to the
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earth, but if V' > 1, then the projectile escapes and does not
return. Show that

. __VR
™ T 9gR — V2

and V.= 2gR.

(7.7

(d) Sketch the graph of v versus x for two representative
launch velocities V', one smaller than V,, and one greater than
V.. and label any key values.

(¢} Calculate V, in km/sec and in miles/hr, using B == 6378
km = 3960 mi, and g = 9.81 m/sec? = 32.2 ft/sec?.

HISTORICAL NOTE: Newion inferred (17.1) from Kepler’s
laws of planetary motion, which were, in turn, inferred empir-
ically by Kepler from the voluminous measurements recorded
by the Danish astronomer Tvcho Brahe (1546-1601). Usually,
in applications, one knows the force exerted on a mass and de-
termines the motion by twice integrating Newton's second law
of moiion. In deriving (17.1), however, Newton worked “back-
wards:” The motion of the planets was described by Kepler’s

laws, and Newton used those laws to infer the force needed to
cause that motion. It turned out to be an inverse-square force
directed toward the sun. Newton then proposed the bold gen-
eralization that (17.1) holds not only between each planet and
the sun, but between any two bodies in the universe; hence the
name universal law of gravitation. Imagine how the idea of
a force acting at a distance, rather than through physical con-
tact, must have been incredible when first proposed. In fact,
such great scientists and mathematicians as Huygens, Leib-
niz, and John Bernoulli called Newton’s idea of gravitation
absurd and revolting! But. Newton stood upon the results of
his mathematics, in inferring the concept of gravitation, even
in the face of such distinguished opposition. Remarkably,
Coulomb’s law subsequently stated an inverse-square type of
attraction or repulsion between two electric charges. But, al-
though the forms of the two laws are identical, the magnitudes
of the forces are staggeringly different. Specifically, the elec-
trical force of repulsion between two electrons is, independent
of the distance of separation. 4.17 x 10*? times stronger than
their gravitational attraction due to their mass!

1.7 EXACT EQUATIONS AND EQUATIONS

THAT CAN BE MADE EXACT

Thus far we've developed solution techniques for first-ovder differential equations

that are linear or separable.

In this section we consider another important case,

equations that are “exact.” The method that we develop will be a version of the inte-
grating factor method used in Section 1.2 to solve the linear equation 3’ + p(x)y =

g{x).

1.7.1 Exact differential equations.

consider
dy siny
de 2y —xcosy

or, in differential form,

sinydz + (rcosy — 2y)dy =0,

To motivate the idea of exact equations,

(1

(2)

The left-hand side is the differential of F(z,y) = xsiny —y? because, by the chain

mle,

- OF oF

dF = —dr + — dy = sinydzr + (x cos y — 2y) dy,

ar Jdy

3
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Here we are regarding

x as independent variable
and y as dependent
variable.

Here we change our
viewpoint temporarily
and regard both x and y
as independent variables.

so (2} is simply dF' = 0, which is readily integrated and gives F' = constant. Thus,
F(z,y) =zsiny —y*> = C, 4)

with (' an arbitrary constant. Equation (4) is the solution to (1), in implicit form.
To generalize the method outlined above, consider the differential equation

dy _  Mz,y)
dz — N(z,y)’ ®

in which the minus sign is included merely so that when we re-express (3) in the
differential form

M(z,y)dz + N(z,y)dy =0 (6)

we end up with a plus sign in (6). For (1), for instance, we see by comparing (2)

and (6) that M =sinyand N = xcosy — 2y.

Before proceeding, notice that in equation (5) y is regarded as a function of x,
as is implied by the presence of the derivative dy/dx; x is the independent variable
and y is the dependent variable. But upon re-expressing (35) in the form (6) we've
changed our viewpoint, and now consider x and y as having the same status: now,
both are independent variables.

We’ve seen that integration of (6) is simple if Mdx + Ndy happens to be the
differential of some function F'(x, i}, for if there is a function F'(z, y) such that

dF(x,y} = M(z,y)dr + N(x,y)dy, 7

then (6) is simply
dF(z,y) =0, (8)

which gives the solution
Flz,y) =C &)

of (6), with C an arbitrary constant,

Given M(x,y) and N (x, i}, which we can identify when we write the given
differential equation in the differential form (6), suppose there does existan F'(i, y)
such that Mdx + Ndy = dF. If so, we call Mdzx + Ndy an exact differential,
and we call (6) an exact differential equation,

Two questions arise: Given a first-order differential equation, expressed in the
differential format (6), does such an F(x,y)} exist and, if so. how do we find it? The
first is answered by the following theorem.

THEOREM 1.7.1 Test for Exactness _
Let M{z,y), N(x,y), OM/dy, and AN/dzx be continuous within a rectangle R in
the x, ¥y plane, Then Mdz + Ndy is an exact differential in R if and only if
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oM ON

2 o (10)

cverywhere in R.

Partial Proof: Suppose Mdzx + Ndy is exact, so there is a function F' such that
dF = Mdx + Ndy. Then, by the chain rule,

pm=2F (11a)
dx
and 5F
_oF i
i (11b)

Differentiating (11a) partiaily with respect to y, and (11b} partially with respect to
x, gives

and
Ny = Fye. (12b)

Since M, N, My, and N, have been assumed continuous in R, it follows from (11)
and (12) that F,, F,, F,,,,, and F,, are too, so Fyy = F.‘M.I Then it follows from
(12) that M, = N, which is equation (10). Because of the “if and only if” word-
ing in the theorem, we must also prove the reverse, that the truth of (10) implies the
existence of F, but we will omit that part.2 m

Assuming that the conditions of the theorem are met, so we are assured that
such an F exists, how do we find it? From (11a) and (11b). We will illustrate the
procedure by revisiting our introductory example.

EXAMPLE 1. Solving an Exact Equation. Consider equation (1) again, in differ-
ential form,
sinydr + (reosy — 2yidy = 0. (13

Compare (13) with (6) and identily M = siny and ¥ = rcosy — 2y. Clearly, M, N,
M,, and N are continuous in the whole plane, so turn to the exactness condition (10):

"Recall that the partial derivative notation Fiy, means (Fy ), differentiate first with respect to
and then with respect to y. Tt is shown in the calculus that a sufficient condition lor Fr.y = Fy. is
that ¥, Fy,. F.,. and F,, are all continuous within the region in question. This is typically truc in
applications.

?See, for example, William E, Boyce and Richard C. DiPrima, Elementary Differential Equations
and Boundary Value Problems. 6th ed. (NY: Wiley, 1997), page 85. In applications, of course, the
existence of I Tollows when we actually find F, as in our Example |.

In (12a) and below, we use

73

subscripts for partial deriva-

tives, for compactness. For
example, M, = % and

Fﬂfy:(Fx)y:?%(

ar

Az

)
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The “partial integration”
notation [ ( )&z is not
standard. We use it here
to remind us that any y’s
in the integrand are to be
treated as constants,

How can the method fail?
Be sure 1o understand
this point.

M, = cosy, and N, = cosy, so (10) is satisfied, and it follows from Theorem 1.7.1 that
there does exist an F'(xx, y} such that the left-hand side of (13) is dF. To find F use (11):

— =siny, (14a)
dz

ar

—— = xeosy — 2y. (14b)
ady

Integrating (14a) partially, with respect to x, gives

F(.’s,y]:/Siny3m=xsi11y+A(y), (15)

The sin ¥ integrand was treated as a constant in the integration because we performed a
“partial imtegration” on x, holding y fixed [just as y was held fixed in computing 3F/9z in
(14a)]. The constant of integration A must therefore be allowed to depend on y since y was
held fixed and was therefore constant. As a check, taking a partial derivative of (15) with
respect to = does recover (14a). Next, (14b) will determine A(y): Putting (15) into (14b)

9
gives e [wsiny + A{y)] = zcosy — 2y, or,

zcosy + A'(y) = reosy — 2y, (16)

in which A'{y) denotes dA/dy. Canceling terms gives A'(y} = —2y, so

Mm:-/@@z—f+3 (17)

{The integration in (17) was not a “partial integration;” it was an ordinary integration on y
because A'(y) in A'(y) = —2y was an ordinary derivative.] Putting (17) into (15) gives

F(z,y) = xsiny — y* + B = constant. (18)

Finally, absorb B into the constant, and call the resulting constant C. Thus, we have the
solution
xsiny —y? =C (19N

of (13}, in implicit form.

COMMENT 1. It would be natural to wonder how this method can fail. After ali, even
if M, # IV, can’t we integrate (11} to find F'? The clue, in this example, is in (16). For
suppose (16) were 2 cosy + A'(y) = x cosy — 2y, for instance, instead. Then the z cos y
terms would not cancel, as they did in (16), and we would have A'{(y) = —xcosy — 2y,
which is impossible because it expresses a relationship between x and y, whereas z and y
are independent variables. Put differently, A’(y) is a function of y only, so it cannot depend
on x. Thus, the cancelation of the x cos y terms in (16) was crucial and was not an accident,
but was a consequence of M and N satisfying the exactness condition (10).

COMMENT 2. We integrated {14a) and then (14b), but the order doesn’t matter. 1l
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1.7.2 Making an equation exact; integrating factors. If M and N fail to sat-
isfy (10}, so the equation

is not exact, we can try to find a function o{z, ) so that if we multiply (20) by that
function, then the new equation,

o(z, )M (z, y)dz + o(x, y)N{x,y)dy = 0, (21)

is exact,
Here, o M is our new “M ™ and oV is our new “N.” We are seeking a function
o(x,y) so that the exactness condition

J 0

is satisfied for (21). If we can find a function o{z,y) satisfying (22), we call it
an integrating factor of (20) because then the left-hand side of (21) is dF, the
differential of some function F{z,y). Then (21) is simply dF = 0, which gives
the solution of (20) as F'(x, y) = constant.

How can we find &7 It is any (nontrivial) solution of (22), that is, of

oM + oMy = o, N + aN,. (23

in which subscripts denote partial derivatives. Since (23) contains partial deriva-
tives of o{x,y) it is not an ordinary differential equation but a partial differential
equation for o. Partial differential equations are beyond the scope of this text, so we
have made dubious headway: To solve the original ordinary differential equation
on y(x) we now need to solve the partial differential equation (23) for o{x, y)!

However, perhaps an integrating factor ¢ can be found that is a function of
i« alone, o(x). In that case o, = 0 and (23) reduces to the ordinary differential
equation

d
oM, = :},—EN +aN,

do  (M,—N,
=== T, 24
dx ( N ) 7 (@
This idea succeeds if and only if the (M, — N, )/N in (24) is a function of « only,
for if it contained any y dependence, then (24) would amount to a contradiction:

a function of = equaling a function of x and y, where x and y are independent
variables. Thus, if

or

My_

= £ — function of z alone, (25

By trivial solution we
mean o(z,y) = 0.

For o(x).

75
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If M, = N, then (26) gives
o{z)=1. After all, if M, =
N, then the equation was
exact in the first place.

For o{y).

then (24} is separable and gives

My—N,
o(a:)zef N dT

(26)

Actually, the general solution of (24) for o(z) is an arbitrary constant times the
right-hand side of (26), but the constant can be taken to be 1 withoot loss since all
we need is an integrating factor.

If (M, — N)/N is not a function of = alone, then an integrating factor o(z)
does not exist, but perhaps we can find o as a function of y alone, o{y). In that
case, (23) reduces to

do
d_yM + oMy = oN,
or
dy. - M -
This time, if
M, - N.
—Y¥ "% — function of y alone, (27)
M
then
My—Ng
oly) =e S dy (28)

'EXAMPLE 2. Finding and Using an Integrating Factor. Consider the equation

y' = 2re¥/(e¥—4), or
2re¥dr + (d—e¥)dy = 0. (29)

Then M({x,y) = 2re? and N(z,y) = 4 — e¥, s0 (10} is not satisfied and (29} is not exact.
If we seek an integrating factor that is a function of x alone, we find that
M, -N;  2ze?—0
N  4—e

£ function of x alone, (30)

s¢ o(z) is not possible. Secking instead an integrating factor that is a function of y alone,

My—N, 2xe¥—0 . . .
T s 1 = function of y alone, (31)

so a(y) is possible, and

‘Ma—N;
a(y) = e Tady _ - [1dy _ v,

(32)
Thus, multiply (29) through by o(y) = ¢~ ¥ and obtain

2zdx + (de7¥ — 1) dy = 0, (33)
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which is exact. Then, (33) gives
."?_F— = 2T (34a)
dx

and oF
——=4e"¥ 1, (34h)
Ay

and (34a) gives

Flz,y) = /21:6;.*: =2 + A(y). (35)
Next, put the right-hand side of (35) into the lefi-hand side of (34b):
9 [:::2 + A(y)] =4e7¥ - 1
Ay
or
Ally) =4e™ — 1. (36)
Thus,
Algy=—de ™V —y+B
and
F(z,y) = 2> + A(y) = 2° — 4¢7¥ ~ yy + B = constant
or
2? =y+de”V + O, 37)

with € an arbitrary constant; {37} is the desired solution of (29)..in implicit form.

COMMENT., Suppose we impose an initial condition y{2) = 0. Then (37) becomes 4 =
0+ 4+ C.s0C = 0. Thus, in implicit form. we have the particular solution
¥ =y +4e7Y, (38)

which is plotted in Fig.1. The curve consists of two branches, an upper branch AB and a
lower branch AC. The initial point is on the lower branch so discard the upper branch AB
and keep the lower branch AC. Point A can be determined from the fact that the slope is
infinite there. By setting the denominator in the differential equation ¢’ = 2weY /(¥ — 4)
equal to zero we obtain ¢¥ = 4, s0 A is at y = lnd and, as follows from (3R8), at x =
In4 + 1. Thus, the interval of existence of the solution satislying the initial condition

Y2y =0isvind+1 <z <o B

EXAMPLE 3. Application to General Linear First-Order Equation. We’ve
already solved the general linear first-order equation
Wt ey = ala) (39

in Section 1.2, but let us see if we can solve it again, using the ideas in this section. Firsl,
put (39} into the form Mdx + Ndy = 0 by writing it as

[p(z)y — q{x)] de + dy = 0. (40

Actually, the steps (349)—(37)
are overkill, for if we have the
form f(x)dx + g(y)dy =0,
as we do in (33), we can sim-
ply integrate. Doing so gives
2% —4e~¥ —y = C, which is
the same result as (37).

¥ B
4
2

A y(2)=0

Figure 1. Graph of the
relation (38).
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To check your solution, a
differential of F(x,y) = C
should give back the original
equation Mdx + Ndy = (.

Thus, M = p{x)y — g(x) and N = 1, so M, = p{z) and N, = 0. Hence M, # N,.so
(40) is not exact {unless p{z) = 0]. Since

M,—N. p{x)-0
N 1
M,~N,  p(x)-0

M p{r)y—q(z}

we can find an integrating factor that is a function of = alone, but not one that is a function
of y alone. We leave it for the exercises to show that the integrating factor is

= p{x) = function of & alone,

# function of y alone,

o(x) = efp(:r) dJ:!

and that the final solution (this time obtainable in explicit form} is
y(ir)Ze_fpdm(/efpdqu:r—l-(?), “n

as we found in Section 1.2. 11

Closure. Summary of the method of exact differentials:

1. Express the equation in the differential form M{z,y)dz + N(z,y)dy = 0.
If M, N, My, and N, are continuous in the z,y region of interest, check
the exactness condition (10). If it is satisfied, the equation is exact, and its
solution is F(x,y) = C, with F found from (11a) and (11b).

2. 1f the equation is not exact, see if (M, — N, )/N is a function of x alone. If
it is, an integrating factor o(x) can be found from (26). Multiply the given
equation Mdz+ Ndy = 0 through by that o () so the new equation is exact,
then proceed as outlined in step 1.

3. If (M, — N;}/N is not a function of x alone, see if (M, ~ N;}/M is a
function of y alone. If it is, an integrating factor o(y) can be found from
(28). Multiply Mdx + Ndy = 0 through by that #(y) so the new equation
is exact, then proceed as outlined in step 1.

4. If My # Ny, (M, — N;)/N is not a function of « alone, and (M, — Ny)/M
is not a function of y alone, then perhaps an integrating factor ¢ can be found
that is a function of both z and y. Some examples of this type are inciuded
in the exercises.

Thus far, we’ve studied three types of first-order equation: the linear equation
¥ +p(x)y = g(z) (Section 1.2), separable equations ' = X ()Y (y)} (Section 1.4),
and equations that are exact or can be made exact by the methods of this secction.
Are these cases mutually exclusive? No. For instance, a subset of linear equations
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is also separable, namely, if q(x) is zero or if p(x) is a constant times g(x). Further,
every separable equation is exact if we write it in the form

X{x)da dy =10,

1
Y{y)
and every linear equation can be made exact (as we did in Example 3). These
results are indicated schematically in Fig. 2.

We see from Fig.2 that in principle it would suffice to study only equations that
are exact [or can be made exact by o(x) or ¢(y)] since that set includes linear and
separable equations. However, it is important and traditional to study these cases
separately — the lincar equation because its theory is so complete and because it
is so prominent in applications, and separable equations because the separation-of-
variables solution method is so simple and, like the linear equation, it is so impor-
tant in applications.

In fact, given a first-order differential equation, we suggest first checking to
see if it 15 separable. If it is, solve by separation of variables. If not, see if it is
linear or exact, whichever of these methods you prefer. If it is none of these, see if
you can make it exact.

Exact or can
be made exact
by o(x) or o(y)

P

Separable Linear
Figure 2. Schematic of the sets
of first-order equations that are
exacl (or can be made cxact),
separable, or linear.

EXERCISES 1.7

1. Exact Equations. Show that the equation is exact, and ob-
tain its solution. You may leave the answer in impticit form.
If an initial condition is specified, also obtain a particular so-
lution satisfying that condition.

(@3de —dy=0 _

(b) zdr — 4ydy = 0;  y(0) = -1
(€) 4cos2zxdxr — e Pdy =0

(d) (y%e* + Lydx + 2ye*dy = 0;
{e) {(e* +y)dr + (x —siny)dy = 0
(N {xr-2y)de +(y~2x)dy =0
(g) (siny + ycosx)dr + (sinz + xcosy)dy = 0;
y(n/2) =2

(h} e¥de + (xe? — D)dy =0

() 2zydr + [(y + 1)e¥ + 22 ]dy = 0

() (ye™ + L)de + ze™dy = 0; y{(2) =0

(k) 2ryinyde + [2%(lny + 1) +2yldy =0 (y > 0}

y(0) = -3

2. Describe a way to make up exact equations, such as those
in Exercise 1, and give an example to illustrate your procedure.

3. Determine whatever conditions, if any, must be satisfied by
the constants a.b,..., f, A, B, ..., F for the equation to be

exacl.

(a) (ax+by+edds + (Ac+By+ Cldy =0
(b) (ax? + byl +exy+dr+ey+ fidr + (Az? + By? +Cay
+Dx+ Ey+ Fydy =10

4. An Integrating Factor Needed. Find an integrating factor
a{x} or a{y), if possible, and use it to solve the given differ-
ential equation. If neither is possible, state that.

(a) 3ydr +dy =0

(M yde +xlnxdy =0 {(x>0)
Dyhhyde+(x+y)dy=0 {(y>0)
(dr+{x—-e¥)dy=0

(e}dr + zdy =0

(F(ye™™ + L)dx + {ze )}y =0

(g) xydx + sinx cosydy = ()

(h) sinxdx + ycosady =0

M) 3z - 2y)dr — xdy =10

() 2zydr + (2 —x%)dy =0

(k) (yIny + 2xy?)de + (c+22y)dy = 0

3. First-Order Linear Equation. Use the integrating factor
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o(x) = ef =142 of (40) to derive the general solution (41).
That is, fill in the missing steps between (40) and (41).

6. Cases Requiring o (x,y). Show that the following equa-
tions are not exact, nor do they admit an integrating factor that
is a function of x alone or of y alone. If possible, find an inte-
grating factor in the form o(x,y) = x°%y°, where a and b are
suitably chosen constants. You need not solve the equation,
just find o3 if such a & cannot be found, state that.

(@) ydx + (z —2?y)dy = 0
(b) (z+y*)dz + (x—y)dy = 0
©) (3xy+2y9)dx + (32° + 4ay)dy = 0

7. Nonuniqueness of or. Of course, if ¢ is an integrating fac-
tor of a given equation then so is any nonzero constant times o.
But, integrating factors may be nonunique beyond an arbitrary
scale factor. To illustrate, show that the equation

2ydr + Jedy =0 {(7.1)

has integrating factors o(z) = x~'/% and also o{z,y) =

1/xy. You need not derive these; just verify them.

8. Integrating Factors for Separable Equations. Show that

P(z)Q(y)dx + R(z)S(y)dy = 0 (8.1)
has an integrating factor o(z,y) = 1/[R(x)Q(y}] and, after
multiplying (8.1) by that integrating factor, that the solution
can be found from

Sy, _

P(x)
fT?-(—:E_)der o

NOTE: Actually, (8.1) is a separable equation, and using the
integrating factor o(z, y) = 1/[R(x)Q{y)}] simply amounts to
separating the variables. Having thus shown the connection
between separable equations and the method of integrating
factors, we suggest that if an equation is separable it is sim-
plest to just separate the variables and integrate, rather than to
invoke the integrating factor method. For instance, in Exercise
4 the equations in parts (a), (b), (¢), (g), and ¢h) could have
been sobved more readily by separation of variables than by
the integrating mactor method. Note also that a special case of
(8.1} is Pla)dx + S(y)dy = 0, which is exact.

0. (8.2}

9. Solve, using the methods of this section. HINT: First re-
express the equation in differential form.

r2 cos@
2rsinf4+1

dr
(b) pr i

dy x-—y
@ dr x4y

dv dy

— =9 ‘U 1 ; A
(g)tdt te’ + () {xcosy+x )d:r siny
10. I Mdzx + Ndy = 0 and Pdx + Qdy = 0 are exact, does
it follow that (A + P)dx + (N 4+ Q)dy = 0 is exact? Explain.

11. We solved (1) by vsing the fact that (2) is exact. Al-
ternatively, observe that although (1) is neither separable nor
first-order linear, it is first-order linear if we change our view-
point and regard z as a function of y. Use that idea to solve for
x(y) and verify that your solution agrees with (4).

12. Grade This. Asked to solve

(3z~2y)dzx — xdy =0, (12.1)
a student writes this: “If we can find an F(z,y) such that
(12.1) is dF = Fyodx + Fydy = 0, then the general solu-
ton of (12.1) is F(z,y} = C. Integrating F;, = 3z — 2y
gives F(x,y) = 32%/2 — 2zy + A(y), and then F, =
0— 2z + A'(y) = —x gives A'(y) = xand A{y) = xy + B.
Then, F(x,y) = 32%/2 — 2xy + zy + B = constant gives the
general solution as 3x2/2 — xy = C." Grade that response,
based on 10 points, and explain your grade.

13. Thermodynamics; the Entropy of an Ideal Gas. Con-
sider an ideal gas, namely, a gas for which

pr = RT, (13.1)
in which p is the pressure, v is the specific volume (i.e., the
volume per mole), T is the absolute temperature, and E is the
universal gas constant. The first law of thermodynamics for
one mole of an ideal gas can be expressed in differential form
as

dq = pdv + c, dT

= RT%” +el(T)dT

(13.2)
in which dg is the heat input and the known function ¢,{T) is
the specific heat at constant volume. (Here, the independent
variables are v and T rather than the generic x and 3.) Show
that the right-hand side of (13.2) is not an exact differential.
Show that an integrating factor that is a function of v does not
exist, but that an integrating factor that is a function of T does
exist, a(T) = 1/T, so that

dq _ Rd—j" + oy
1

= = (13.3)
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is an exact differential, which we will call ds(v,T); s is the The latter formula is fundamental in the study of thermody-
entropy and we have just shown that it can be defined by the  namics.
integral

s(v,T) = 5;3 (13.4)

1.8 SOLUTION BY SUBSTITUTION

2 o
EFT §+‘f)2 may look difficult, but with the substitution u =
w 7]

2% + 5 we obtain I = % fu."zdu, which readily gives J = —1/3u + C. Finally,
replace u by x* + 5 and obtain I = —1/[3(x® + 5)] + C. The same idea of subsri-
tution can be used to solve differential equations.

The integral 7 = |

1.8.1 Bernoulli’s equation. The differential equation

dy _ 7
i p(x)y = q(x)y", (N

in which # is a constant {not necessarily an integer), is called Bernoulli’s equation
after the Swiss mathematician James Bernoulli.! If » is 0 or 1, then (1) is linear
and readily solved, so our interest is in the case where n is neither O nor 1.

Following Leibniz, change the dependent variable from y to v by the substitu-
tion

v(z) = y(x)' ", (2)

keeping x as the independent variable. To substitute (2) into (1), we will need y It is always important to be
and dy/dx in terms of v and dv/d: clear as to which variables
are the independent and

— 1/(1-n)
y(z) = v(x) from (2)] (a) dependent variables.
and P ) . d
E?i - l__v(lfﬁ -1) (—;i [by chain differentiation of (3a)] (3b)
r  1-n x

James {1654-£705). his brother John (1667-1748), and John's son Daniel (1700-1782) are
the best known of the eight members of the BernouHi family who were mathematicians and scien-
tists. James proposed equation (1) as a challenge to the mathematicians of his day in F695 and solved
it himself in 1696. Other solutions were put forward by his brother John and by Gottfried Leibniz
{1646-1716), and it is Leibniz’s substittion method that we will discuss. The Bernonili equation
{17 is mot related to the Bernowlli (energy) equation that one studies in a course in fluid mechanics.
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First, put (6} in the form (1) by
multiplying through by 1/x.

so (1) becomes

U njaem) @0 o 1(en) _ ooy m/(1-m)
T T +plx)v = g{x)v : 4)

Finally, multiplying (4) by (1—n)v™"/ (1~ gives

% + (1=n)p(z)v = (1 —n)g(z). (5)

The upshot is that the substitution (2) works — in the sense that it reduces the
nonlinear equation (1) to a simpler one, the linear equation (5). We can solve (5)
for v{z), then return from v(z) to y(x) by (3a).

EXAMPLE 1. Solve J
22—y = ~2ay’. ©)

The latter is a Bernoulli equation with p{z) = ~1/x, ¢{x) = —2, and n = 2. Then, (2)
gives v = 1/y. Assuming that ¥ # 0, for v = 1/y to be meaningful, (5} is the linear
equation

CLME NP 0
dr =
with solution
C
r)y=x+—. ®
X
But v = 1/y, 50 (8) gives 1/y = & 4+ C/x, and hence
@
) = 9
W) = 2@ )

is the solution of (6).

COMMENT. Since we assumed that ¥ £ 0, we must check ¥y = 0 separately. In fact,
y{z)} = 0 does satisfy (6), and it cannot be obtained from (9) by any (finite) choice of .
Thus, besides the one-parameter family of solutions (9} we have the additional solution
y(x)=0. 1

The sequence of steps in solving a differential equation by the method of sub-
stitution is as follows: Find a substitution, if possible, that converts the given dif-
ferential equation to one we can solve. Make the substitution, obtain the new
differential equation, solve it, and return to the original variables.
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1.8.2 Homegeneous equations. An equation 3’ = f{z,y) is homogeneous if
f(z,y) can be expressed as a function of the ratio i/« alone, in which case we can
express the equation as

& _p (3"5) . (10
dx x
For instance,
dy  2r+ 2y
dr ~ 3z +y (h

is homogeneous because if we divide the numerator and denominator on the right-
hand side by x we can express (11) as

dy 2+ 2% Y
%Y _ ~F (_) ‘ 12
dr  3+12 T (i2)
However, the equation
d-y'_x+y+2:;:2:1+g+2x a3)

dr T4 dy 1+4%2
is not homogeneous because the right-hand side is a function of y/z and , not of
y/x alone.

If the equation is homogeneous, of the form (10}, it seems natural to let />

be a single variable, say v, so v = y/x. Thatis, v(x) = y(z}/x, or

y(z) = zv(x). (14)

To put (14) into (10) we need dy/dx, so differentiate (14):

dy ¥
e vz} + e

Using (14) and (15), equation (10} becomes

(15)

v+ m% = F(v}

or

dv

T = F(v) — v,

(16)

which is simple because it is separable. Thus,

[r==/%

(7

CAUTION: Earlier, we
defined a linear equation
¥ +p(z)y = q(z) tobe
homogeneous if the forc-
ing function g{x) is zero.
That was a different use of
the word homogeneous
and is not relevant in the
present discussion,

As discussed in Section
1.4, if vy is any root of
F(v)—v = 0then v(x)
= wp 15 an additional so-
lution of (16), in addition
to the solutions found
from (17). This point
will come up, below,

in COMMENT 2,
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Figure 1. Solution of (18) with the
initial condition y(2) = 0, together

with the direction field.
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Evaluate the integrals in (17) and, in the result, replace v by y/x.

EXAMPLE 2. Solve the homogeneous equation (11},

dy  2x+2y  2+42(y/x) y
dr  3zx+y 3+(y/z) _F(T)' (18)
. 2420 .
In this case Fi(») = e so (16) is
xd_‘v _ 2420
dr  3+w
vty -2
T 49
If v2 4 v — 2 # (), separation of variables (and partial fractions) gives
(3+v)dv  fdx
[1J2+1J—2_fﬂ:° (202)
1 dv 4 du dx
5[1?4"2”5 U—l_/;—’ (200)
1 4
§ln|’v+21—§ln|v—1|=ln|;r:|—|—A, (20c)
(w+2)173 |
o | =4 (20d)
(v+2)Y% 1
2w = )73 =e”, {20e)
(v+2)!/8 A
= = 2
(v — 1)1/3 te" =B, (200
(v+2)= B3 (v—-1)% (20g)

Putting v = 3/, renaming B> as C and simplifying gives the solution in implicit form as

¥+ 2z = Cly—x)t. (21)

If we have an initial condition y(2) = 0, for instance, (21} gives C = 1/4. The corre-
sponding solution, and the direction field, are plotted in Fig. 1.

COMMENT 1. Is C arbitrary in (21)? We need to track A, B,C in (20). In (20c), A is
arbitrary (—oo < A < 00). Consequently, B = +e” is arbitrary but nonzero, because
e4 £ 0. Finally, since B is arbitrary but nonzero and C = B?, then C is arbitrary but
nonzero in (21). Conclusion: € in (21} is arbitrary but nonzero.

COMMENT 2. Besides the family of solutions given by (2 1), we must see if there are any
additional solutions from the roots of %2 + » — 2 = 0, which we assumed was nonzero
when we proceeded from (19) to (20a). The roots are v = 1 and v = -2, which, recalling
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that v = y/x, correspond to straight-line solutions ¥ = x and y = —2x of (18). Of these,
¥ = —2ux is contained within (21} if we allow ¢ = 0, but y = x cannot be obtained from
(21} by any finite choice of C. We conclude that the solutions of (18) are those defined
implicitly by (21} (with —oo < € < o), plus the line y = x. It is tempting to not fuss
with such details as whether C in (21} is arbitrary, or arbitrary but nonzero, and whether
there are any additional solutions from the roots of v2 + v — 2 = 0, but if we did not Tuss
with those details we would have missed the solution y = @. That loss would be [atal if an
initiat condition were prescribed on that line.
A number of solutions of (18) are plotted in Fig. 2. ‘11

Closure. In earlier sections we attacked the differential equation ' = f(x,y) by
considering only special cases that are tractable: equations that are linear, sepa-
rable, or exact (or can be made exact by an integrating factor that is a function
of x or y). Those cases by no means cover all possible equations ¢’ = f(x,y),
but they do cover a great many equations that arise in applications. Similarly, for
the method of substitution one tries to develop substitutions that work for various
types of equations. In this section we considered only two: Bernoulli equations and

85

P LAl A
Fr NSX P s gl
Frrs

U Bt e e
i

B " i
ettt ol g

e e o Lt ot 7 i

g

o e e e

'_2 - D e et et

e e e e

yoax

N

o 2 X 4
Figure 2. Representative solutions
of {18}, together with the direction

field.

homogeneous equations. Additional types are included in the exercises.

EXERCISES 1.8

1. Bernoulli Equations. Show thai the equation is of
Bernoulli type; that is, identify p(z), ¢{x), and . Then, solve
it accordingly. If the equation happens to also be separable you
can solve it by separation of variables as well, if you wish, to
check your results.

(@) ry' -2y = 2%y?

© (1+2)y +2y =2y
© vy(3y' +y) ==

(2 Y= Y

by y + 2y = —6e37y3/?
(dy ' =y- 2y

) y’ =y ‘
(h} my’ —y = —12:1:3_7__;‘3

2. Inventing Leibniz’s Substitution. In case you regard a
substitution such as Leibniz’s substitmtion (2) as a “miracle,”
let us illustrate how that this (and other substitutions) might be
developed in a reasonable and systematic way. To begin, we
observe that the difficulty with (1) is the y™ term, Thus, try
letting 4™ be a new variable, for surely the substitution » = 3"
will simplify the right-hand side of (1). But it is possible that
while simplifying the right-hand side it might complicate the
left-hand side.

{a} Try it. Let v = y™ and show that it does not work.

(b) Not discouraged, try v = y" instead, where this time the
exponent - is not prescribed in advance. Make that substitation
in (1) and choose r, if possible, so that the equation for v(x) is

simple, such as linear or separable. Show that these steps lead
to the choice ¥ = 1 — n and hence to Letbniz’s substitution (2),

3. Homogeneouns. (a) Solve (2x — )y’ = o — 2y and find a
particular soluiion for cach of the initial conditions y(2) = 0,
y(2)=4-2v3,4(2) = L y(2) =7, y(2) = 4+2v3, 4(2) =8
and determine its interval of existence. Obtain computer-
generated graphs of those solutions,

{b) Solve y' = (42 + 3y?)/2xy with the initial condition
y{1} = 2, and determine the interval of existence,

(©) Solve ¥ = (xy + 2y*)/2? (x > 0), lind a particular so-
lution satislying y(1) = 2, and determine its interval of exis-
tence. NOTE: The diffcrential equation is both homogeneous
and a Bernoulli equation. Solve it both ways and show that
your resuits are the same,

(d) Solve y = €¥/% 4 y/x (z > 0) with the initial condition
y(1) = 0, and determine the solution’s interval of existence.
(&) Solve y' = tan(y/x) + y/x (z > 0) with the initial con-
dition y(1) = = /6, and determine the solution’s interval of
existence.

4. Almost Homogeneous. The equation

, ar+by+te
¥y = —, 4.1
A @0
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in which a, b, ..., f are constants, is “almost homogeneous™ in
the sense that it would be homogeneous if ¢ and f were not
present.

(a) Change variables from z,y{z) to X,Y (X} according to
the “translation”

T=X+h, y=Y+k, 4.2)
and choose the constants h and % so as to knock out the ¢ and
the f. Show that the result is

{iﬁ _eX 4bY
dX  dX +eY’

with /s = (bf ~ ce}/{ae — bd) and k = (cd — a f)/(ae — bd),
provided that ae — bd £ 0.

{b) Use the idea in part (a) to solve ' = (y+1)/(2z—y - 3).
(This problem is continued in Exercise 10.}

(c) Similarly, solve ' = (x —y—4)/{(x+y—4).-

(d) Similarly, solve y' = (y+z+2}/(y — x).

(e) As stated in part (a), the change of variables (4.2) fails if
ae — bd = 0. Devise a substitution that will work in that case,
and use itto solve y' = (20 +4y+1)/(dx+8y—2).

(4.3)

5. The equation 3’ = z3e¥/* + y/x is not homogeneous he-
cause of the 3, Show that the change of variables v = y/x
from y(x) to v(z) works nevertheless, and use it to solve for
y(x).

6. To solve equations of the form

y' = flax+by) (6.1

it seems reasonable to try the substitution v = ax 4 by; that s,

v(z) = ar + by(rx). (6.2)

(a) Show that (6.2) simplifies (6.1) to the separable equation

¥ = bf{v) +a. 6.3)

Use this idea to solve the following equations.

By = (2r+y)? -2
©)(@-yy =4
@y =(x+y+2)/(x+y)

7. Riccati’s Equation. The equation

(7.1}

y = flz,y); yla)="b

Chapter 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

is called Riccati’s equation after the Italian mathematician
Jacopo Francesco Riccati (1676—1754). The latter is made
difficult by the 32 term, which makes the equation nonlinear
[unless p(z) is zero]. The key to being able to solve a Riccad
equation is to find any one solution, hopefully by inspection.
For suppose y = n{x) is any particular solution of (7.1). Then,
show that by changing the dependent variable from ¥ to v ac-
cording to

1
y = nlz) + v (7.2)
the Riccati equation (7.1) is converted to
o + [2p(z)n(z) + ¢(2)] v = —p(z), (7.3)

which is linear. This solution method was discovered by
Leonhard Euler (1707 -1783) in 1760. Note that if r(z)
= 0in (7.1}, then an obvious choice for a particular solution
is simply y = n(z) = 0, although in that case (7.1} is also a
Bernoulli equation.

8. Read Exercise 7 and use the method described there to solve
the fellowing Riccati equations. HINT: In part (b) ry n(z)
in the form ax and determine an a that works.

@y = dy+y? (b)y' =y*—2xy+1+22
(Q) yr — e—xy2 — (d) y: — xzyz_y

9. Smorgasbord. You don’t need to solve these. Fust identify
any solution method that will work and give any substitutions
that will be needed. You may find ideas in the preceding exer-
cises,

@ zy = /Ty +y
() 2z -9}y =y
(©) (zyYy = y>?
@ vy = (z+y)?
)y —y? = 3yc®

by’ = (y+2)?
@y =zly—2)*+1
Oy =9y
My =z—y

@y = 4+(y—5z)

10. Continunation of Exercise 4(b). For the differential equa-
tion in Exercise 4(b}, use computer graphics to plot represen-
tative solution curves, being sure to include the two straight
line solutions.

ADDITIONAL EXERCISES

11. Swimming in a Current. A river is a miles wide and
has a current W mi/hr. Two swimmers, Maifeng and Yuan,
are to race, from point A on one bank to point B on the oppo-
site bank (see the figure). They are equally fast, able to swim
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with a constant speed V' relative to the water, so the outcome
will be determined by strategy. Yuan elects to swim 50 as (o
always aim at the destination B, as indicated in the figure, and
Maiteng elects to aim upstream so as to swim straight across
from 4 to B. Assume that they swim faster than the current,
soV > W,

(a) Compute and compare the crossing time T for each of
them. The calculation for Yuan is the harder so we’ll get you
started. Yuan’s x and y velocity components are

z

V2 +y2‘

Yy =W -—Vsin=W -V

=—-Veosf=-V (11.1a)

Y

and dividing {1 1.1b) by (11.1a} gives

dy _y-rvait+y? (11.2)

dx x

{11.1b)

87

with r = W/V, Solve (11.2) and show that the path traversed
by Yuan is

(11.3)

Put (11.3} into (11.1a) and get a differential equation for x{#)
atone. Sofve that equation for x(f), and compute Yuan's cross-
ing time, Then compute Maifeng’s time — which should be a
much simpler calculation. You should obtain the two times

I3 1 a

T= g and Vi

(11.4)

-

but we leave it for you to determine which one corresponds to
Yuan and which one to Maifeng. As a partial check on (11.4)
show that both results are correct in the limitas r — 0.

(b) Show that Maifeng wins if W < V (r < 1), as assumed,
but that if W > V (v > 1) then neither swimmer can reach
point B,

NOTE: This problem is based on one given in Ralph Palmer
Agnew’s dated-but-still-excellent text Differential Equations
{(NY: McGraw Hilt, 1942).

1.9 NUMERICAL SOLUTION BY EULER’S METHOD

The preceding sections have been devoted mostly to analytical solution methods:
for instance, solving the linear equation ' + p(x)y = g(x) by using an integrating
factor, the use of separation of variables; exactness, and so on. Our use of direction
fields and phase line analysis in those sections has been more qualitative. Here, we
complement those analvtical and qualitative approaches with a brief introduction to
quantitative methods. By a quantitative method we mean one that uses a numerical
algorithm to generate the solution numerically, approximately and only at discrete
points, the calculations normally being carried out on a computer rather than by

hand.

We consider the IVP

yla}=1b

1.9.1 Euler’s method.

¥ = flz,y)

Our chief interest is the case
in which ¥ = f(z,y) is non-
linear, because we have an
exact solution for the linear

L equation y' + p(x)y = q(r).
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for y(x).
To motivate the simplest numerica! solution method, Euler’s method, consider
a specific example,

Y =y+2r—12% y0)=1 (0<2z <o) (2)
which has the exact solution (Exercise 1) |
y(z) = 2° + €% 3)

Of course, we don’t need to solve (2) numerically because we know its solution,
given by (3), but our aim here is only to illustrate the method. In fact, it is good
to begin with a problem for which we do know the exact solution because then we
can compare our numerical results with that solution.

In Fig. 1 we display the direction field defined by f(x,y) = y + 2z — z2, and
the exact solution y(z) given by (3). In graphical terms, Euler’s method amounts to
using the direction field as a “road map” to develop an approximate solution to (2)
in a step-by-step manner. Beginning at the initiat point P, namely {0, 1}, we strike
out in the direction dictated by the lineal element at that point. As seen from the
figure, the farther we move along that line, from the starting point P to a stopping
point ¢, the more we can expect our path to deviate from the exact solution. Thus,
the idea is not to move very far. Stopping at x = (1.5, for the sake of illustration,
we then revise our direction according to the slope of the lineal element there, at
(2. Moving in that new direction until = = 1, we revise our direction again at R,
and so om, in x increments of 0.5.

Thus, our strategy is this: First, discretize the problem (1) by seeking the so-
lution y(x) noteverywhere on the x interval, but only at discrete points zp = a,
r1 = zg+h, x3 = x1+h, and s0 on, where h is our chosen step size for the calcu-
lation; in Fig. 1, A = 0.5. That is, rather than seek the function y{z) we seek only
the discrete approximate values 1, 32, . . . at 1, o, . . ., respectively. According to

}-‘0= 14 I
0 T T -
1.5 X

0 0.5 1
b b b

Figure 1. Direction field motivation of Euler's method,
for the initial value problemn (2); “going with the flow.”
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the algorithm known as Euler’s method, we compute 3,1 as the preceding value
¥n plus the slope f(x,, yn) at (xy, yn) times the step size .

Yn+l = Yn + f(xm y?t)h's (n =0,1,2,.. ) 4

in which { is the function on the right-hand side of the given differential equation
(), xp = a, yo = b, his the chosen step size, and «,, = x5 + nh.

Euler’s method is also known as the tangent-line method because each straight-
line segment of the approximate solution, emanating from (x,,, y,), is tangent to
the exact solution curve through that point.

We will illustrate the calculation, using the IVP (2).

EXAMPLE 1. Application of Euler’s Method to (2). In(2), fix,y) = y+2x 22,
xg = 0,and gy = 1. With h = 0.5, Euler’s method (4) gives

=y + (Mo+2m0—22) h =1+ (1+0-0)(0.5) = 1.5,

y2 =y + (g1 +221 —7) h = 1.5+ (1.5 +1 - 0.25) {0.5) = 2.625,

ys = y2 + (y2 + 202 — 23} h = 2.625 + (2.625+2— 1) (0.5) = 4.4375,

andsoon. B

We can see from Example 1 that Euler’s method is simple and readily imple-
mented, even by hand calculation. _

Evidently, the greater the step size the less accurate the results, in general. For
instance, we can see that the first point € in Fig. 1 deviates more and more from
the exact solution as the step size is increased — that is, as the segment PQ} is ex-

tended. Conversely, we expect the approximate solution to approach the exact so-

Table 1. Comparison of numerical solution of (2)
using Euler’s method, with the exact solution (3).

x h=05 h=01 h = 0.02 Exact y(x)

0 yo =1 Yo = 1 Yo = 1 y{0) =1
05| yi=15 | ys=1.7995 | yos = 1.8778 | »(0.5) = 1.8987
1.0 | yo=2625 | y10=3.4344 | y5o = 3.6578 | y(1.0) = 3.7183
15 | y3 = 4.4375 | 15 = 6.1095 | yr5 = 6.5975 | y(1.5) = 6.7317

lution curve as h — 0. We are encouraged in this expectation by the resulis shown
in Table 1 for the IVP (2), obtained by Euler’s method with step sizes h = 0.5, 0.1,
and 0.02; we’ve inciuded the exact solution given by (3) in the final column, for
comparison. To keep the tabulation short, many intermediate w,, and y{x) values
were omitted for the cases h = 0.1 and » = (0.02. For instance, for & = 0.1 we
omitted 3y through 4. yg through yo, and y;; through y4.

&9

From Fig. 1, we see that the
values ¥, ¥y, ... generated
by the Euler algorithm (4) do
not, in general, fall on the
solution curve and are only
approximate.

Figure 2. Plot of the results
reported in Table 1. Noie that
the approximate solution ap-
ptoaches the exact solution
as b is decreased.
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In Table 1, this amounts to
moving from left to right
across a given row. Under-
stand this definition.

Notation: We denote the ex-
act solution at x,, as y{x,)
and the numerical solution
there as ¥,,.

In the final equality in (5) we
use the fact that we begin our
step, at x,,, with y,, equal to
the exact solution there,

y{xn).

The single-step error, denoted
here as SSE, is the error at

Tnt1 If Y(n) = Y-

According to (8), the SSE
for Euler’s method is of
order h2,

If we scan across each of the bottom three rows of the tabulation, we see that
the approximate solution values do appear to be converging to the exact solution
as h — 0 (though we cannot be certain of that, no matter how much we reduce
h). Besides tabulating the results, above, we have also plotted them in Fig. 2 for
h=0.5and0.1.

1.9.2 Convergence of Euler’s method. Two questions follow: Does the method
really give convergence to the exact solution as A — 0 and, if so, how fast? By the
method being convergent we mean that for any fived x value in the x interval of
interest the sequence of y values, obtained from (4) using smaller and smaller siep
size h, tends to the exact solution y(x) of (1), at that point x, as h — 0.

There are two sources of error in the nomerical solution. One is the tangent-
line approximation upon which the method is based, and the other is an accumu-
lation of numerical roundoff errors that result from the machine carrying only a
finite number of significant figures, after which it rounds (or chops) off. Typically,
roundoff errors are negligible, and they will be ignored in this discussion.

The single-step error. Although we are interested in the accumulation of error
after many steps have been carried out, to reach a given z, it is logical to begin by
investigating the error incurred in a single step, from &, t0 4.

To distinguish between the exact and the approximate solutions, we will de-
note the exact solution at any computation point x,, as y(x,,), and the approximate
namerical solution there by a subscript notation, as yy,.

If we start out at x,, with the correct value, so y(z,) = yn, what is the error
Y(ZTpt1) = Yny1 after that one step? Write expressions for y(xp41) and yp,.1, and
then subtract them. First, the Taylor series expansion of y about x,, gives

[ y”(:‘tn) 2
Y(Tn+1) = y(xn) + ¥ (@) {21 —2n) + _2'—(1371—!—1 —Zn)
' (x
= yan) + fanulzn+ Lomly2 s
Yy (z
= Yo+ f(@n,yn)h + & (21")"”'“- s)
Next, the Euler algorithm gives
Ynrt = Yn + f(@nYn)h, (6)
and if we subtract (6) from (5), we obtain the single-step error (SSE), as
7 M T ftr T 1" r
SSE = y(anes) s = Loy U0l y W)y )

as b — (. We are interested in how fast SSE — 0 as h — 0 and (7) tells us that it
tends to zero propottional to h? so we write, more simply than (7),

SSE = O(h?). (8)
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In words, (8) means that the single-step error SSE tends to zero proportional to k2.
That is, SSE ~ C'h? for some nonzero constant C, as A — . The notation used in
(8) is the standard big oh notation used to express order of magnitude. Read (8) as
follows: SSE is of order k% as k& — 0.

The error and convergence. Of ultimate interest, however, is not the error in-
curred in a single step, but the error that accumulates over all the steps (from xzq to
any given point x ). That error is the difference between the exact solution and the
computed solution at v, and we will simply call it the error E:
E=ylzn)—yn- (9
Let us illustrate, using Table 1. For h = (.02, for instance, the error at x = 1 is
y(1) — yso = 3.7183 — 3.6578. = 0.0605, and at x = 1.5 it is y(1.5) — ymo =
6.7317 - 6.5975 = (1.1342,
We can estimate E, at least insofar as its order of magnitude, as the single-step
error SSE times the number of steps N. Since SSE = O(h?), that idea gives

E=0(?)-N = O(h?)%f = O(h?)y

= O(h)(zn —xq) = O(h). (10)
In the last equality in (10) we absorbed the xx — ¢ factor into the O(h) be-
cause ry — xp is simply a constant, and the big oh notation is insensitive to (non-

zero) constant scale factors. Thus,

E = O(h), (1

which tells us how fast the numerical soluation converges to the exact solution, at
any fixed x location, as h — 0: E ~ Ch, as h — 0, for some constant C'. It tends
to zero proportional to A.

Our steps in (10) were formal, not rigorous, but the result (11) is correct and
indicates that the Euler method (4) is convergent because E = O(h) does tend to
zero as b — (). More generally, if, for a given method, E = O(kP) as h — 0, then
the method is convergent if p > 0 (because AP — Oas h — 0if p > 0), and the
method is said to be of order p. With p = 1 in (11), we see that Euler’s method
is a first-order method.

How do we know how small to choose h in a given application? As a rule of
thumb, repeat the calculation, reducing A until the results settle down to the desired
accuracy. The foregoing is the same idea normally used in summing an infinite
series, adding more terms until successive partial sums settle down to the desired
number of significant figures.

Regarding the last step in
(10), the big oh notation is
insensitive to nonzero scale
factors. For ingtance. both
G+ =0
. 83.'1.3

andsi118$=8:r:—T+...

= Ofx),as x = . We do
not distinguish between
O(8x) and O(x).

sing =& —

The order of the method and
the order of the differential
equation are distinct and un-
related.
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The accuracy increases if for
a given method we decrease

h, or if for a given h we turn
to higher-order methods.

1.9.3 Higher-order methods. Though convergent and readily implemented,
Euler’s method may be too inaccurate because it is only a first-order method. That
is, since the error at any given x point is proportional to h to the first power, we must
make h extremely small if the error is to be extremely small, and if A is extremely
small then the number of computational steps is extremely large. Consequently, it
is common to favor higher-order methods.

If a method is of order p, then E = O(h?) as A — 0 or, equivalently,

E(h) ~ CHP (12

as h — 0.

There are higher-order methods available, such as the Runge-Kutta methods
of orders 2, 3, and 4, which are abbreviated as rk2, k3, and rkd, respectively. As
their names indicate, they are of orders p = 2, 3, and 4, respectively. We will not
give those methods here, but merely highlight the dramatic increase in accuracy
afforded by such higher-order methods, in Table 2. There, we tabulate the values of
the numerical solution of the IVP (2), obtained using the first-order Euler method
and the second- and fourth-order Runge-Kuita methods, at z = 1, for step sizes
of h = (1.1 and 0.01. We’ve tabulated the first eleven digits and have indicated by
bold fonts as many digits as agree with those in the exact solution. We see from

Table 2. Increasing the order of the method.

Euler k2 rkd
h=01 3.4343682140 | 3.7059185568 | 3.7182763403

h =001 | 3.6877656911 | 37181513781 | 3.7182818278
Exacty(1) | 3.7182818285 | 3.7182818285 | 3.7182818285

the table that the accuracy of fourth-order methods is quite impressive. In fact, rk4
is one of the most widely used methods.

Closure. The Euler method is given by (4). It is readily implemented, either using
a hand-held calculator or running it on a computer. The method is convergent but is
only of first order, so it is generally not very accurate unless the step size h is made
extremely small. Thus, for “serious computation,” higher-order methods such as
k4 are normally used and are available within CAS software. Of course, in a given
application we may not even have a very accurate differential equation model in the
first place and/or may not know the physical parameters very accurately, in which
case there may be little point in demanding extreme accuracy from the numerical
algorithm. By the way, when studying the calculus, one is not in a position to ap-
preciate the many important applications: of Taylor series. They are invaluable in
developing numerical solution methods for differential equations, as we begin to
see here in Section 1.9.2.
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a3

EXERCISES 1.9

1. Filling in a Gap. Derive the particular solution (3} of the
IVP (2).

2. By Hand. Use the Euler method to compute, by hand. 7,
2, and y3 for the specified IVP using £ = 0.2.

@y =-y y0)=1

(hyy = 2y, p(0) =4

)y =142zy% y(-1)=2
(dyy’ =2xe¥; (1) =-1
@y =22 -y%: yB)=0
(Ny' ==zsiny; y(0) =1
gy =5y-24 3(1)=3
My =ty y0)=3

3. By Computer. Use computer software to solve the given
IVP for y(x) by Euler’s method, with a step size of 0.001.
Print your Buler-computed values y100, Y200, and yagp (1., at
x = 1,2,3) as well as the exact solution (which is given) at
those same points, for comparison.

@y =-y, y(0)=1; yla) =" -
My =01{z+)e¥, y(0) =10 y(z) = lnm
@)y =2"—y, y(0) =2 y(x) =2 - 22 +2

(d) y' = 0.01zy®, y(0) = 5; y(x) = 200/(40 - z?)
@y =z/y?, y(0) = 4; y(z) = (=% +64)'/?

r U 2 xr—5

= —-2 0 :1 rTl= -
By === -2 y(0) =1 y(e) = F—{5-—3
gy

~y2, y(0) = ~0.2; y(x) = 1/(x—5)

4. (a)-(g) Convergence. For the corresponding pant of Exer-
cise 3, use computer software to solve the given IVP for y(x)
at x = 3. Obtain computed values of y{3) using step sizes of
0.1,0.01, 0.001, and 0.0001, as well as the exact value of y(3).
Do your results appear to be consistent with Euler’s method
being a first-order method? Explain.

5. Negative Steps? Thus far we've taken the step A to be pos-
itive, and therefore we've developed solutions to the right of
the initial point. Is Evler's method valid if we use a negative
step, i < 0, and devetop a solution to the left? Explain.

6. Variable Step Size? In this section we've taken the step
size h to he a constant from one step to the next. Is there any
rcason why we could not vary i from one step to the next?
Why might we want to use a variable step size? Explain.

7. (a) What is meant by discretizing an IVP?
{b) What is meant by a method being convergent?

8. Verifying Convergence for a Simple Example. For the
simple IVP

y = Ay, y(0) = yo, 8.0

in which A is a constant, we can actually show that its Eu-
ler solution converges to the exact solution y(z) = ype*” as
h - 0. For (8.1}, Euler’s method gives

Ypr1 = Un + Ady, — (1 + AR)y,;  yo given (8.2)
(a) Show that (8.2) gives the solution for y, as
Un = (1 4+ ARY y. (8.3)

{b) To see if the latter converges to the cxact solution, consider
a fixed point :x. To arrive at « after n steps we must choose k&
to be /1 so (8.3) becomes

B (1 + A:L‘)“
Yn = " Ha-

With = fixed, £ tending to zero corregponds to # tending to
infinity. Show that the limit of (8.4) as n — oo is indeed the
exact solution ype*®. HINT: Recall from the calculus that

1\
li 141 =e
h%-r.ﬁ)( + h,) ¢

9, Empirical Determination of the Order of Evler’s Me-
thod. Suppose we do not know Euler's method is a first-order
method, and want o determine its order empirically. Make up
a simple “test equation” such as ¢’ = —y. with initial condi-
tion {0} = 1, so the known exact solution is y{z) = e *.
Next, suppose we salve that IVP by Euler’s method, for vari-
ous k's, each time computing the solution at x = 1, at which
point the known exact solution is y(1}) = 0.3678794412.
For i = 0.1, 0.0}, 0.00L, and 0.0001 the results at x = 1
are: Ylp=a1 = 0.3486784401, y|p=0.01 = 0.36G60323413,
Ylh=0.001 = 0.3676954248, and y|n=0.0001 = 0.3678610464.

(a) From the computed values of y at # = 1 for b = 0.1 and
h = 0.01, and the exact value of y(1), use (12) to solve for p.
That is, write 0.3678794412 - ).3486784401 = C(0.1)? and
(0.3678704412 — 0.3660323413 = C(0.01)7, and solve those
two equations for p. Show that p = 1.01683.

(b) Repeat the empirical evaluation of p, this time using the re-
sults for b = (.01 and k. = §.001, and show that p = 1.00163.
(c) Finally, repeat the evaluation of p again, this time using

(8.4)
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the results for A = 0.001 and A = 0.0001, and show that
» = 1.00016.

NOTE: The results for p in parts (a), (b), (c) are not exact, but
only approach the exact value p = 1 as h — 0 because (12} is
only an asymptotic result, valid as A —+ 0.

10. Formula for Empirical Determination of the Order
of Any Given Method. Exercise 9 pertained specifically to
Euler’s method. More generally, suppose we are using any
numerical solution algorithm and want to determine its order
empirically, for instance as a check against possible program-
ming errors that would no doubt reduce its order. To do so,
consider a simple test equation such as ' = —y with initial
condition »(0) = 1 and exact solution y{x) = e~*. Suppose
we use our algorithm to solve that problem, for two different
h's, hy and hs, obtaining the values y|p, and y|s,, respec-
tively, at = t. Then the errors are E(hy) = (1) —y|n, and
E{ha) = (1) —y|p,, respectively. From (12), show that

E(hl)
A tn [E(hz)]
In [h—l] .
h‘,g

11. Use of (10.1), Above, for Some Other Methods. First,
read Exercise 10. A few well known higher-order methods
are as follows: the improved Euler method (Heun's method),
the fourth-order Runge - Kutta method rk4, and the Fehlberg
fourth-fifth order Runge — Kutta method rkf4-5. Suppose we
use each of these methods, which are available in CAS sys-
tems, to solve the test problem given in Exercise 10.

(10.1)

(a) I, at = = 1, the improved Euler method gives y|a—0.001 =
0.367879502531 and y|p—a.0001 = 0.3678794417846, use
(10.1) to evaluate the order of the method. You will need to
know the exact solution at x = 1, which is (1) = 7! =
0.367879441171.

(b) If the rkd4 method gives ylp—o.1 = 0.367879774412 and
Yh=0.05 = 0.367879461148, use (10.1) to evaluate the order
of the method. {Of course, your answer should be close to 4.)
{c) If the rkfd-5 method gives y(1}|n=0.1 = 0.367879437559
and ylp=0.05 = 0.367879441063, use (10.1) to evaluate the
order of the method.

ADDITIONAL EXERCISES

12. Convergence Theorem and Error Bound for Euler’s
Method. More informative than the formula E = O(h) is the
following:

THEOREM 1.9.1. Let y,, be the approximate solution of

v =f(r.y); ylo}=b (12.1)
by Euler’s method (4), and let y(x) denote the exact solution.
Ify" = fo + fuy' = fo + fuf is continuous on the interval
I of interest, ¢ < x < X, and there are constants Af and NV

such that

[fyl < M and |fz + fyfl <N (12.2)

on I, then the error e, = y(x, )} — Y at any fixed point x,, =
a + nh in I is bounded as follows:

N (e(xn_a)M —1)h.

| <
lenl < 537

(12.3)

Before continuing, you may be wendering how the “x,,” in
Theorern 1.9.1 can be a “fixed point,” since it appears to in-
crease with . The idea is that once we choose a point &, we
keep it fixed by decreasing £ and increasing n so that the nh
in x, = a + nhremains constant. To continue, (12.3) is of the
form |e,| < Ch in which C is a constant, s0 e, — 0 at the
fixed point z,. as h — 0, and it follows that Euler’s method is
indeed convergent.

Here is the problem: To illustrate (12.3), consider the Euler
solution of the TVP (2), on 0 < z < 1.5, for which results
were given in Table t. Use (12.3) to obtain a bound on the
error at the fixed point x,, = 1.5, for each of the three h’s
used (namely, 0.5, 0.1, and 0.02), and verify that the actual
errors (determined from Table 1) are indeed consistent with
those bounds. You may use the fact that the solution is known
to be y(z) = x% + e*. HINT: Show that you can take M = 1
and N = 2-+¢!®, Thus, show that (12.3) gives |e,| < 11.284h
at:x,, = 1.5. NOTE: For aderivation of (12.3) see S. D. Conte,
Elementary Numerical Analysis, 3rd ed (Auckland: McGraw-
Hill International Book Company, 1980), Chapter 8. NOTE:
This calculation does not prove (12.3), it only iltustrates its
use.

13. Extrapolation. Suppose we use Euler’s method to find
an approximation ypy to the exact solution y{xx) at some
point z. The error E = y{xx)—yn there satisfies

wry) —yn ~Ch (13.1)

as h — 0. If we don’t actually let & — 0 but merely choose a
small & and compute vy, then the asymprotic formula (13.1)



becomes the approximate formula

y(zn) ~yn = Ch. (13.2)
In (13.2) there are two unknowns, ' and y{xx). We're not
particularly interested in C, but are after the exact solution
y{an). For definiteness, consider the iltustrative IVP (2):

(a) Suppose we wish to find the solution y{x) at £ = 0.5. If we
run the Euler method with b = 0.1 through N = 5, and with
h = .02 through N = 25, we obtain the results y5 = 1.7995
and yo5 = 1.8778, respectively (Table 1}. Thus, (13.2) gives

y(0.5) — 1.7995 =~ C(0.1), (13.3a)
#(0.5) — 1.8778 = C(0.02), (13.3b)

which are two (approximate) equations in the two unknowns
#(0.5) and C'. Solve (13.3a,b) for y(0.5), and show that the
result is much more accurate than the value 1.8778 obtained
using i = (.02, '

NOTE: The latter is called an extrapolation method because
if we know how the error dies out as b — 0 [namely, according
to (13.1) for Euler’s method], and we run the method for two
small but different £’s, then we can “extrapolate™ those two
results to solve for y(xx). Though the method gives an im-
proved result it does not yield the exact solution y{x n ), except
by coincidence, because we've used (13.2) and (13.4) which
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are apprbximatc, not exact,
{(b) Use this same procedure to obtain improved estimates of
y(1.0) and y(1.5).

14. Possible Existence of a Critical Step Size h. First, read
Exercise 8. Suppose 4 = —50, for instance, and 1y = 1.
Then the exact solution of (8.1) is y(x) = Y%, which is
unity at * = 0 and tends rapidly to zero as x increases. Yet,
we see from (8.3) that the Euler approximate solution y,, dies
out as n increases onfy if |1 — B0A| < 1, that is, only if
—1 < 1 — 50k < 1; otherwise it grows with n.

(a) Show from the iwo foregoing inequalities that we must
have 0 < h < 0.04 il we expect meaningful results.

(b) As a numerical experiment, use the computer to run the Eu-
ler solution of (8.1), with A = —h0and yp = 1,on 0 < x5 < 1,
using various values of h, and report your results. The upshot
in this example is that even though Euler’s methed gives con-
vergence to the exact solution at any fixed x as b = 0, we
must reduce f below some threshold before that convergence
begins to be manifested, before it “kicks in.”

(¢) Show, from computer results, that if & > 0.04 then in-
stead of 4, dying out as n increases, as it should, it exhibits
a rapidly growing oscillation. This behavior in the output, a
growing oscillation, with a sign change at each successive cal-
culation point — cven if the step size is changed — should
always suggest to us that the results are not meaningful.

CHAPTER 1 REVIEW

This chapter was devoted to first-order differential equations. We began with the

homogeneous lingar equation

% +p(r)y =10

and obtained its general solution

ylx) = Ae” fp(:r:) dx

(1

(2)

by separation of variables, then considered the general linear equation

dy _
ot p(x)y = q(x).

(3)

Using an integrating factor we obtained a general solution, in explicit form, as

y(x) = ;(E:n_] ( /0(:1.')(1(:5) da + C'),

4)
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in which
of{x) = efp(:c) de (3

is an integrating factor of (3) and C is an arbitrary constant.

If an initial condition y(a) = bis appended to (3}, we can evaluate the constant
' in (4) and obtain

) = s ( [ otate)ds + bo(@). ©

The Existence and Uniqueness Theorem 1.2.1 assored us that the solution (6)
exists and is unique at /least on the broadest x interval, containing the initial point
a, on which p(z) and () are continuous,

The equation

dy

which in general is nonlinear, is much more difficult and we were able to solve it

only in special cases. First, if f(x,y) is of the separable form X (z}Y (y), we can
separate variables and obtain the solution from

/—};‘%) =/X(:x) dz. @®)

If we can do the integrations and solve the resulting equation for y(z), then we
have the solution in explicit form; otherwise (8) gives it in implicit form,

We can divide ' = X (x)Y (y) by Y (y) to obtain (8) only if Y (y) # 0, so the
case where Y () = 0 must be treated separately. If y = yp is any root of Y (1) = 0,
then y{x) = yo ts a solution of ¥ = X (z}Y (y), because it reduces the latter to
the identity 0 = 0, so we must include such constant solutions in addition to the
one-parameter family of solutions given by (8).

After separable equations, we considered exact equations. Expressed in the
differential form

M(z.y)dz + N(z,y)dy = 0, )]

(9) is exact if there exists a function F(x, y) such that Mdx+ Ndy = dF, in which
case integration of dF’ = ( gives the one-parameter family of solutions, in implicit
form, as F(z,y) = C. If (9) is not exact, we may nevertheless be able to make it
exact using an integrating factor that is a function only of x or only of y.

Finally, we studied the use of substitutions in converting a given differential
equation to one that we can solve, such as one that is linear or separable. For
instance, the nonlinear Bernoulli equation

dy

T plxyy = glz)y” (10)

can be converted to a linear equation for »(x) by the substitution v = y!™", and a

homogeneous equation
dy y
— =F{= 11
dx (.r) (1



can be converted to a separable equation for {x) by letting v = y/z.
The Existence and Uniqueness Theorem 1.5.1 for the IVP

d
R R IOR (12

was less informative than the corresponding Theorem 1.2.1 for the linear case, for
whereas Theorem 1.2.1 gave an explicit solution and predicted a minimum x in-
terval on which that solution exists and is unique, Theorem 1.5.1 gave sufficient
conditions ensuring existence but did not give the solution. Also, whereas Theo-
rem 1.5.1 assured existence and uniqueness on “some” x interval, it did not indicate
how broad that interval will be,

We closed our discussion of first-order equations with an introduction to nu-
merical solution methods in Section 1.9, covering only the Euler algorithm for the
approximate solution of the IVP 3/ = f(x, y} with initial condition y{a) = b. The
method generates the approximating sequence yi, ¥s, ... according to the algo-
rithm yny1 = yn + f(@n,ya)h forn = 0,1,2,..., where yo = b and & is the
chosen step size. The latter is a first-order method, which means that at a given
computational z point, the error E is asymptotic to some constant times A to the
first power as b — 0. We mentioned higher-order methods such as the fourth-order
Runge—Kutta methed, but did not study them in this brief introduction.
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