
1

CHAPTER ONE

The Fundamentals of Data

THIS BOOK IS DESIGNED to address the fundamental concepts found
in the emerging and rapidly evolving fi eld of cyber forensics.

Before one can profess to be knowledgeable and fully cognizant of
the breadth encompassing the professional discipline of cyber forensics, a foun-
dation, rooted in the basics of information technology, data storage, handling,
and processing, as well as how data is moved and manipulated, is essential.

For the cyber forensic investigator, data is evidence. Understanding how
evidence emerges from data is pivotal; however, more important is being able
to confi dently articulate how evidential data was identifi ed, collected, and
processed.

As a cyber forensic investigator, simply pressing buttons or checking off
options in a forensic software suite, without the knowledge of what is happening
behind the scenes, creates a potential liability. Understanding the “life cycle” of
data is pivotal, from its humble beginnings as electronic bits, evolving into bytes,

1

c01.indd 1c01.indd 1 14/03/12 4:53 PM14/03/12 4:53 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 � The Fundamentals of Data

characters, then words, fi nally emerging as a language, as information, and
perhaps eventually as evidence.

This book will provide a platform for both broadening as well as enhancing
your skills in the basic elements of information technology as the technology
supports and is embedded within the science of cyber forensic investigations.

As you read this book, you will encounter words that have been italicized.
These words represent key concepts and are more fully defi ned by a working
defi nition, which is included within a glossary at the end of the book. Should
you desire an explanation of any italicized word, please refer to this glossary.

As with most tasks, one must crawl prior to walking and certainly before
dashing off in a full run. Therefore, our fi rst chapter begins naturally, at the
beginning, with a discussion of the prime building blocks of data and how as a
society we carbon-based humans have learned to communicate with a silicon-
based technology—computers.

 BASE 2 NUMBERING SYSTEM:
BINARY AND CHARACTER ENCODING

Modern humans use character sets (or alphabets) to represent written sounds
and words. In many alphabets, including Latin-based alphabets, each symbol
or letter has its own phonetic sound.

The letter (or combination of letters, such as “ph”) is paired to its correspond-
ing sound, forming a character code. It is through the combination of these
symbols or letters that humans generate words, then phrases, and ultimately
complex communication.

Symbolic characters, such as alphanumeric symbols found in Latin-
based languages, work reasonably well for the complex computing power of
the human brain. Computers, however, have yet to evolve to a level capable
of exactly duplicating the complex processing—consistently, seamlessly, and
reliably—of the human brain. Currently, computers can best communicate
with other computers, in a manner based upon the principles of fundamental
mathematics. Computer-to-human communication, while having evolved to
a certain degree of voice replication, is still based, again, upon the principles of
fundamental mathematics.

The current methodology for digital data transfer is called binary, and it
is the basis for all computing technology. In order to understand how computers
handle, move, store, access, save, delete, or otherwise manipulate data, it is
essential to fi rst understand the concepts of the binary system.

c01.indd 2c01.indd 2 14/03/12 4:53 PM14/03/12 4:53 PM

 Electricity and Magnetism � 3

Binary is a name given to a Base 2 numbering system or encoding scheme.
As the name Base 2 implies, there are two and only two possible states. In fact,
a Base 2 encoding scheme is the only option of communication when only
two possible states exist. Such an encoding scheme works well with electronic
communication.

Consider electricity, where only two states are present. Electricity is either
on or off; there exists no other possible option or state. A circuit is either open
or closed. So, if we were to attach a light bulb to an electrical circuit we could
visually see when the circuit is open or closed, as the light would either be
off or on, respectively (remember, a closed circuit implies closed loop, and is
therefore on).

 COMMUNICATION IN A TWO-STATE UNIVERSE

Communication in a two-state environment is now possible; the light is either
on, equal to “yes,” or it is off, equal to “no.” The potential to answer rudimentary,
close-ended questions simply by indicating a response as either “yes” (1) or “no” (0)
is entirely feasible.

This is important, being that presently, computers essentially can pass or
store information as either electrical or magnetic states. Remember our light
bulb can be “on” or “off” only.

Without going into great detail on the basics of electricity or magnetism,
perhaps it is necessary to delve ever so gently into the very basic concepts of
magnetism and electricity, and their relationship to data construction, storage,
mobility, and processing.

 ELECTRICITY AND MAGNETISM

Magnetism is the force whereby objects are attracted to or repelled by one
another. Usually these objects are metals such as iron. (See Figure 1.1.)

Magnetism can store electricity, as in a battery, for example. Magnetism
can also generate electricity (e.g., a generator). Magnetism, as with electricity,
has only two states or opposing poles, positive and negative. Magnetic states
can also be contained or preserved; for example, the direction of an iron oxide
shaving can be manipulated by a magnet. This is called a magnetic domain,
which is a series of atoms that point their poles in the same direction. A bar
magnet is made up of a group of domains.

c01.indd 3c01.indd 3 14/03/12 4:53 PM14/03/12 4:53 PM

4 � The Fundamentals of Data

The most common source of magnetic fi elds is the electric current loop.
Electricity is a type of activity arising from the existence of charge. The basic
unit of charge is that on the proton or electron. The proton’s charge is called
positive while the electron’s is negative.

Electricity tends to move or fl ow in its active state. This being the case,
electricity is good at representing data in motion and magnetism is good at
representing data at rest. Both, however, have two separate and opposing
states, and as discussed, having two separate states allows for Base 2 digital
communication.

With computers, the movement of digital data is easily represented by the
two states of electricity or magnetism, and is conveniently presented by 1
and 0, respectively. Therefore, as the technology used to communicate and to
represent data currently exists, this representation is accomplished through a
two-state or binary numbering system.

 BUILDING BLOCKS: THE ORIGINS OF DATA

A single zero (0) or a single one (1) is equal to what is called a bit. This repre-
sentation of the two possible states of digital data is the smallest unit of data
recognized or processed by a computer.

Therefore, in a one-bit, Base 2 encoding scheme (or as it is usually called,
binary), we have the basic building blocks of a communication system: an ability
to communicate through and between silicon-based technologies.

To communicate, for example, that the status of a light is on, we can assign
the value of one (1). To communicate that the light is turned off, we can just
as easily set the value to zero (0). For more complex situations, to indicate on

FIGURE 1.1 Magnetic Force

c01.indd 4c01.indd 4 14/03/12 4:53 PM14/03/12 4:53 PM

 Growing the Building Blocks of Data � 5

or off (yes or no), we can assign similar values: yes/on equals one (1), or no/off
equals zero (0).

As communications grow in breadth and complexity, we are constrained
by a single-bit, Base 2 encoding scheme. Essentially, we have two and only two
possible outcomes of communication when constrained to a single bit (e.g., yes
or no, on or off, 1 or 0).

Communication is possible, then, when only two states or conditions are
required. Once we desire to expand the possibilities of communication options
to a broader lexicon beyond a two-option state, one bit falls short, severely limit-
ing communication possibilities.

 GROWING THE BUILDING BLOCKS OF DATA

As you connect consecutive 0s and 1s (or bits), however, the ability to represent
an increasingly larger set of characters, words, communication, and messaging
possibilities increases geometrically. Just by adding another bit we double the
potential outcomes or states (from two to four).

There are two possible states with one bit: one (1) or zero (0). Add another
bit and now the number of possible states doubles: 00, 01, 10, and 11. Armed
with such a system we can now represent more complex ideas or those
conditions requiring more than a simplistic, on/off, yes/no, two-state descrip-
tion. For example, the four seasons could now be depicted with two bits, for
example, 00 � winter, 01 � spring, 10 � summer, and 11 � fall.

To better understand the geometric growth of possible outcomes
attained by combining bits, let’s look at a few examples. The following
discussion might send shivers down the spines of many readers, harking
back to younger days and thoughts that math challenges were all behind
us; however, an understanding of this basic math principle is critical in
understanding the fi ner working details of data storage and ultimately data
extraction using forensic software.

What is 2 to the 0 power?
A short explanation, which requires us to use the law of exponents, may be

helpful to fi re up those math synapses. One of the laws of exponents is:

n ̂ x
� n ̂ (x � y)

n ̂ y

for all n, x, and y. So, for example,

2 ̂ 4
� 2 ̂ (4 � 2)

2 ̂ 2

c01.indd 5c01.indd 5 14/03/12 4:53 PM14/03/12 4:53 PM

6 � The Fundamentals of Data

2 ̂ 4
� 2 ̂ (4 � 3)

2 ̂ 3

Now suppose we have the fraction:

2 ̂ 4
� 1

2 ̂ 4

This fraction equals 1, because the numerator and the denominator are
the same. If we apply the law of exponents, we get:

1 �
2 ̂ 4

� 2 ̂ (4 � 4) � 2 ̂ 0
2 ̂ 4

So, 2 ̂ 0 � 1

We can plug in any number in the place of 2, and that number raised to the
zero power will still be 1. In fact, the whole proof works if we just plug in x for 2:

x ̂ 0 � x ̂ (4 � 4) �
x ̂ 4

� 1
x ̂ 4

Wow, math fl ashbacks—we proved that 2 ̂ 0 equals 1, so what about the
following:

What is 2 to the fi rst power? Second power? Third power?
Well, naturally, then we would answer 2 � 1 � 2, 2 � 2 � 4, and 2 � 2 �

2 � 8!
Why is this important? It provides us with a better way to understand the

geometric growth of possible states or outcomes attained by combining bits.
The following is a small example of the power of 2 and the exponential

growth of increasing the bit combination possibilities:

2 ̂ 0 � 1
2 ̂ 1 � 2
2 ̂ 2 � 4
2 ̂ 3 � 8
2 ̂ 4 � 16
2 ̂ 5 � 32
2 ̂ 6 � 64
2 ̂ 7 � 128
2 ̂ 8 � 256
2 ̂ 9 � 512
2 ̂ 10 � 1,024

c01.indd 6c01.indd 6 14/03/12 4:53 PM14/03/12 4:53 PM

 American Standard Code for Information Interchange � 7

From our previous question, “What is 2 to the third power?” we fi nd the
answer in our encoding scheme. The number 2 represents our encoding
scheme, Base 2 or binary; the power (third) represents how many bits will be
strung together.

The answer 8 is how many outcomes or combinations are possible when
we can string together three bits: 000, 111, 001, 010, 100, 110, 101, 011. That’s it!
There are 8 possible outcomes, thus 2 to the third � 8.

 MOVING BEYOND BASE 2

Eight possible outcomes or combinations is still fairly limiting for complex
human communications, as necessary in today’s global business economy.
As we continue to add 0s and 1s, the potential for very complex digital signal-
ing or communication is increased, as stated exponentially. In fact, if we string
together enough bits, we will be able to represent complete alphabets, alphabets
of more than one language, and alphabets to even represent graphical concepts
and expressions.

In order to represent the English alphabet (A–Z) and the numbers 1
through 10, we would need 26 unique representations for letters and 10 for
numbers (0–9). Thus, we need 36 unique identifi ers. How many bits would be
needed to represent 36 unique identifi ers or outcomes?

Well, from our earlier math lesson, 6 bits would easily cover our needs,
resulting in 2 to the sixth or 2 ̂ 6, represented as a result of 2 � 2 � 4 � 2 �
8 � 2 � 16 � 2 � 32 � 2 � 64.

This six-bit combination not only produces the necessary 36 unique identi-
fi ers required, but also gives us some unique identifi ers to spare, 28 to be specifi c,
which we can use to represent special symbols such as (!, @, #, $, %, ̂ , &,*) and so
forth. In fact, 64 unique characters, while signifi cant in the amount of com-
binations possible, do not suffice. In representing most basic characters of
the English language, we use 7 bits or 2 ̂ 7, resulting in 128 unique characters
to be identifi ed or mapped.

 AMERICAN STANDARD CODE FOR INFORMATION
INTERCHANGE

The history of the American Standard Code for Information Interchange
(ASCII) and its development is a long story and will only be briefl y touched

c01.indd 7c01.indd 7 14/03/12 4:53 PM14/03/12 4:53 PM

8 � The Fundamentals of Data

upon in this chapter. The characters identifi ed by 2 ̂ 7, or the 128-bit unique
characters to be identifi ed or mapped, are known as American Standard Code
for Information Interchange/extended ASCII or just ASCII.

English-language personal computers used in America employ a seven-bit
character code called American Standard Code for Information Interchange
(ASCII), which allows for a character set of 128 items of upper- and lower-case
Latin letters, Arabic numerals, signs, and control characters (i.e., 2 ̂ 7 � 128
code points). ASCII also serves as the foundation of the Universal Character Set
(UCS), containing 0–9, A–Z, a–z, and special characters).

When an eighth bit is used as a “parity bit,” with its value used for check-
ing whether or not data have been transmitted properly, then ASCII becomes
an eight-bit, or one-byte (eight bits � one byte), character code. A true eight-
bit character code allows for up to 256 items to be encoded (2^8 � 256 code
points).1

ASCII is a character-encoding scheme based on the ordering of the Eng-
lish alphabet. ASCII codes represent text in computers, communications
equipment, and other devices that use text. Most modern character-encoding
schemes, which support many more characters than did the original, are based
on ASCII.

Tables 1.1 and 1.2 highlight the ASCII coding scheme and associated
binary equivalents. Table 1.1 presents the numbers 0–9 and Table 1.2 depicts
a list of special characters.

Alphabetic characters from the English language have similar representa-
tions in the ASCII coding scheme, as represented in Table 1.3.

TABLE 1.1 The Numbers Represented by 0–9

Character ASCII Binary

0 chr(48) 110000

1 chr(49) 110001

2 chr(50) 110010

3 chr(51) 110011

4 chr(52) 110100

5 chr(53) 110101

6 chr(54) 110110

7 chr(55) 110111

8 chr(56) 111000

9 chr(57) 111001

c01.indd 8c01.indd 8 14/03/12 4:53 PM14/03/12 4:53 PM

 American Standard Code For Information Interchange � 9

TABLE 1.2 Special Character Representation

Character ASCII Binary

! chr(33) 100001

“ chr(34) 100010

chr(35) 100011

$ chr(36) 100100

% chr(37) 100101

& chr(38) 100110

' chr(39) 100111

(chr(40) 101000

) chr(41) 101001

* chr(42) 101010

� chr(43) 101011

TABLE 1.3 English-Language Representations in the ASCII Coding Scheme

Character ASCII Binary

A chr(65) 1000001

B chr(66) 1000010

C chr(67) 1000011

D chr(68) 1000100

E chr(69) 1000101

F chr(70) 1000110

G chr(71) 1000111

H chr(72) 1001000

I chr(73) 1001001

J chr(74) 1001010

K chr(75) 1001011

L chr(76) 1001100

M chr(77) 1001101

c01.indd 9c01.indd 9 14/03/12 4:53 PM14/03/12 4:53 PM

10 � The Fundamentals of Data

 CHARACTER CODES: THE BASIS FOR PROCESSING
TEXTUAL DATA

Many people are unaware of the fact that to a computer, textual data is also
numerical data.

In modern computer systems, the individual characters of the scripts that
humans use to record and transmit their languages are encoded in the form
of binary numerical codes, just as are the Arabic numerals used in calculation
programs. (See Tables 1.1, 1.2, and 1.3.) This is because the circuitry of the
microprocessor that lies at the heart of a modern computer system can only
do two things—calculate binary arithmetic operations and perform Boolean
(i.e., true or false) logic operations.2

A character code pairs a character set, such as an alphabet, with something
else, in this case with a decimal and/or binary system. An example most would
be familiar with is the Braille Encoding System. While some of us may not
know what the Braille encoded dots translate to, we have seen them, as many
elevators display the fl oor number along with its Braille counterpart. This com-
bination of information would be considered a character code.

The maximum characters possible in a character code depend upon the
numbering system (Base 2 for Binary) and the number of bits. As demonstrated
previously, the more bits in the character code, the bigger the character set.

In regard to character codes, it should also be noted that computers operate
most effi ciently when they process data in bytes. This is because their internal
circuitry is usually designed with data pathways that are 8, 16, 32, or 64 bits
wide. For that reason, a 10-bit or a 15-bit character code is clumsy and inef-
fi cient to handle inside a personal computer.

On the other hand, if too many bytes are used for encoding characters,
computers will tend to process data ineffi ciently. For example, a three-byte char-
acter code could encode almost 17 million characters (2 ̂ 24 � 16,777,216 code
points), which would cover all known historical and currently used character sets
throughout the world. But the majority of the world’s languages only need a one-
byte (eight bits) code for character encoding, since they are alphabetical scripts.2

 EXTENDED ASCII AND UNICODE

As people gradually required computers to understand additional char-
acters, the ASCII set became restrictive. Extended ASCII is an eight-bit
encoding scheme that includes the standard seven-bit ASCII characters as
well as others.

c01.indd 10c01.indd 10 14/03/12 4:53 PM14/03/12 4:53 PM

 Extended ASCII and Unicode � 11

Unicode is an industry standard developed by the Unicode Consortium. The
Unicode Standard is a character coding system designed to support the world-
wide interchange, processing, and display of the written texts of the diverse
languages and technical disciplines of the modern world. In addition, it supports
classical and historical texts of many written languages.

Unicode (or Universal Character Set) is another binary mapping scheme
intended to be more universal, and includes a wider array of characters, which
helps to accommodate a truly global character set. UCS incorporates the initial
ASCII character mapping scheme, allowing for backward compatibility.

Unicode could be roughly described as “wide-body ASCII” that has been
stretched from 8 bits to 16 bits. Unicode also allows for 8-, 16-, or 32-bit binary
formats. A 16-bit coding scheme will allow for 65,536 potential outcomes.
It is these 65,536 potential bit outcomes that allow Unicode to encompass most
of the characters of all the world’s living languages.

Figure 1.2 shows the fi rst 20 values from the Unicode Arabic character set,
with the Arabic letter THAL highlighted.

FIGURE 1.2 Arabic Range 0600–06FF—Unicode
Arabic Range 0600–06FF, Unicode Standard 5.2, www.unicode.org/charts/PDF/U0600.pdf,
Copyright © 1991–2009 Unicode, Inc. All rights reserved.

c01.indd 11c01.indd 11 14/03/12 4:53 PM14/03/12 4:53 PM

12 � The Fundamentals of Data

Thus, if the user desired to generate the Arabic letter THAL, the individual
would use the Unicode value 0630. This specifi c numeric value (0630) has
a unique and special meaning when used in electronic, computational com-
munications, and effectively represents the Arabic character THAL (see
Figure 1.3) to a computing device, which currently can only interpret and
calculate numeric values.

 SUMMARY

This fi rst chapter began with a brief introduction and discussion on how
computational communication systems have evolved and how we attempt to
codify our ability to communicate in a world with only two possible states, a
binary existence.

We moved on to a further discussion, not only of the role that a binary
numbering systems plays in our ability to represent the most basic patterns
of human communication, but also how this binary system has allowed us to
expand into producing complex alphabetic patterns, character sets, and ultimately
a method that enables us to represent entire languages.

From primary states of existence to representation of complex language
patterns, carbon-based communication, like that of silicon-based communi-
cation, began with primary building blocks. For computers, that is the bit,
represented by either a one (1) or a zero (0).

The combination and pairing of these 1s and 0s allows computational
machines to communicate and in the end, to perform complex data manipu-
lation. Representing complex textual words or graphics to a mechanical device
is now possible simply by arranging and rearranging the pairings and groupings
of 1s and 0s.

Establishing a method of pairing alphabetic characters with the characters’
binary equivalents produced character codes (which have evolved into more
complex character sets), allowing us to expand our ability to represent a greater
range of characters and also control how computers store, manipulate, and
transmit data.

FIGURE 1.3 The Arabic Letter THAL: Unicode Value 0630

c01.indd 12c01.indd 12 14/03/12 4:53 PM14/03/12 4:53 PM

 Notes � 13

Binary representation of numbers and characters is required when working
in a world restricted to only two states of description or existence (e.g., electrical
or magnetic). Fortunately for us, our human world is more robust, more color-
ful, and exists in many states, well beyond that of a binary life. It would also
be more diffi cult and time-consuming if we were required to perform all of our
fi guring, communicating, and similar functioning with numbers or letters repre-
sented by groups and pairings of 1s and 0s (e.g., the statement, “Hi, my name is
Tom” would be represented by a string of ones and zeroes 144 characters long,
01001000 01101001 00101100 00100000 01101101 01111001 00100000
01101110 01100001 01101101 01100101 00100000 01101001 01110011
00100000 01010100 01101111 01101101).

Luckily, only silicon-based computational devices have to process data
in this binary fashion. Humans, on the other hand, have a more convenient
method. Humans work more effectively and more effi ciently representing
numbers in a Base 10 or decimal equivalent to the computer’s binary repre-
sentation, making life a tad bit easier.

In Chapter 2 we discuss how to convert a binary number into its decimal
equivalent, and why this knowledge is also essential for gaining a greater depth
of understanding of how data is stored, moved, manipulated, and processed
and how this treatment of data is critical to a better understanding of cyber
forensics.

 NOTES

 1. Searle, S. “A Brief History of Character Codes in North America, Europe, and
East Asia,” TRON Web, Sakamura Laboratory, University Museum, University
of Tokyo, August 6, 2004, retrieved October 2009, http://tronweb.super-nova
.co.jp/characcodehist.html.

 2. Ibid.

c01.indd 13c01.indd 13 14/03/12 4:53 PM14/03/12 4:53 PM

c01.indd 14c01.indd 14 14/03/12 4:53 PM14/03/12 4:53 PM

