I CHAPTER 1

Introduction

1.1 EARLY HISTORY OF FUZZY CONTROL

Fuzzy control (also known as fuzzy logic control) is regarded as the most widely
used application of fuzzy logic and is credited with being a well-accepted method-
ology for designing controllers that are able to deliver satisfactory performance in
the face of uncertainty and imprecision (Lee, 1990; Sugeno, 1985; Feng, 2006).
In addition, fuzzy logic theory provides a method for less skilled personnel to
develop practical control algorithms in a user-friendly way that is close to human
thinking and perception, and to do this in a short amount of time. Fuzzy logic
controllers (FLCs) can sometimes outperform traditional control systems [like
proportional —integral—derivative (PID) controllers] and have often performed
either similarly or even better than human operators. This is partially because most
FLCs are nonlinear controllers that are capable of controlling real-world systems
(the vast majority of such systems are nonlinear) better than a linear controller
can, and with minimal to no knowledge about the mathematical model of the plant
or process being controlled.

Fuzzy logic controllers have been applied with great success to many real-world
applications. The first FLC was developed by Mamdani and Assilian (1975), in the
United Kingdom, for controlling a steam generator in a laboratory setting. In 1976,
Blue Circle Cement and SIRA in Denmark developed a cement kiln controller
(the first industrial application of fuzzy logic), which went into operation in 1982
(Holmblad and Ostergaard, 1982). In the 1980s, several important industrial
applications of fuzzy logic control were launched successfully in Japan, including
a water treatment system developed by Fuji Electric. In 1987, Hitachi put a
fuzzy logic based automatic train operation control system into the Sendai city’s
subway system (Yasunobu and Miyamoto, 1985). These and other applications
of FLCs motivated many Japanese engineers to investigate a wide range of
novel applications for fuzzy logic. This led to a “fuzzy boom” in Japan, a
result of close collaboration and technology transfer between universities and
industry.

According to Yen and Langari (1999), in 1988, a large-scale national research
initiative was established by the Japanese Ministry of International Trade and
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Industry (MITTI). The initiative established by MITI was a consortium called the
Laboratory for International Fuzzy Engineering Research (LIFE). In late January
1990, Matsushita Electric Industrial (Panasonic) named their newly developed
fuzzy-controlled automatic washing machine the fuzzy washing machine and
launched a major commercial campaign of it as a fuzzy product. This campaign
turned out to be a successful marketing effort not only for the product but also for
fuzzy logic technology (Yen and Langari, 1999). Many other home electronics
companies followed Panasonic’s approach and introduced fuzzy vacuum cleaners,
fuzzy rice cookers, fuzzy refrigerators, fuzzy camcorders (for stabilizing the image
under hand jittering), fuzzy camera (for smart autofocus), and other applications.
As a result, consumers in Japan recognized the now en-vogue Japanese word
“fuzzy,” which won the gold prize for a new word in 1990 (Hirota, 1995).
Originating in Japan, the “fuzzy boom” triggered a broad and serious interest in
this technology in Korea, Europe, the United States, and elsewhere. For example,
Boeing, NASA, United Technologies, and other aerospace companies developed
FLCs for space and aviation applications (Munakata and Jani, 1994).

Today FLCs are used in countless real-world applications that touch the lives of
people all over the world, including white goods (e.g., washing machines, refrig-
erators, microwaves, rice cookers, televisions, etc.), digital video cameras, cars,
elevators (lifts), heavy industries (e.g., cement, petroleum, steel), and the like.

While this book focuses on type-2 fuzzy logic control, it will also provide back-
ground material about type-1 fuzzy logic control. Indeed, before we can explain
what type-2 fuzzy logic control is we must briefly explain what type-1 fuzzy sets,
type-1 fuzzy logic control, and type-2 fuzzy sets are. In this chapter we do this from
a high-level perspective without touching on the mathematical aspects in order to
give a feel for the nature of fuzzy sets and their applications. Later chapters in this
book provide rigorous treatments of mathematical underpinnings of the subjects
just mentioned.

1.2 WHAT IS A TYPE-1 FUZZY SET?

Suppose that a group of people is asked about the temperature values they associate
with the linguistic concepts Hot and Cold. If crisp sets are employed, as shown in
Fig. 1.1a, then a threshold must be chosen above which temperature values are
considered Hot and below which they are considered Cold. Reaching a consensus
about such a threshold is difficult, and even if an agreement can be reached—for
example, 18°C—, is it reasonable to conclude that 17.99999°C is Cold whereas
18.00001°C is Hot?

On the other hand, Hot and Cold can be represented as type-1 fuzzy sets (T1
FSs) whose membership functions (MFs) are shown in Fig. 1.1b. Note that, prior
to the appearance of type-2 fuzzy sets, the phrase fuzzy set was used instead of the
phrase 71 fuzzy set. Even today, in many publications that focus only on T1 FSs,
such sets are called fuzzy sets. In this book we shall use the phrase type-1 fuzzy set.
Returning to Fig. 1.1b, observe that no sharp boundaries exist between the two sets
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Figure 1.1 Representing Cold and Hot using (a) crisp sets, and (b) type-1 fuzzy sets.

and that each value on the horizontal axis may simultaneously belong to more than
one T1 FS but with different degrees of membership. For example, 26°C, which is
in the crisp Hot set with a membership value of 1.0 (Fig. 1.1a), is now in that set to
degree 0.8, but is also in the Cold set to degree 0.2 (Fig. 1.1b).

Type-1 FSs provide a means for calculating intermediate values between the
crisp values associated with being absolutely true (1) or absolutely false (0). Those
values range between O and 1 (and can include them); thus, it can be said that a
fuzzy set allows the calculation of shades of gray between white and black (or true
and false). As will be seen in this book, the smooth transition that occurs between
T1 FSs gives a good decision response for a type-1 fuzzy logic control system in
the face of noise and other uncertainties.

1.3 WHATIS A TYPE-1 FUZZY LOGIC CONTROLLER?

With the advent of type-2 fuzzy sets and type-2 fuzzy logic control, it has become
necessary to distinguish between fype-2 fuzzy logic control and all earlier fuzzy
logic control that uses type-1 fuzzy sets (the distinctions between such fuzzy sets
are explained in Section 1.4). We refer to fuzzy logic control that uses type-1 fuzzy
sets as type-1 fuzzy logic control. When it does not matter whether the fuzzy sets
are type-1 or type-2, we just use fuzzy logic control or fuzzy control.

Fuzzy logic control aims to mimic the process followed by the human mind
when performing control actions. For example, when a person drives (controls) a
car, he/she will not think:

If the temperature is /0 degrees Celsius and the rainfall is 70.5 mm and the road is
40% slippery and the distance between my car and the car in front of me is 3 meters,
then I will depress the acceleration pedal only /0%.

Instead, it is much more likely that he/she thinks:

Ifitis Cold and the rainfall is High and the road is Somewhat Slippery and the distance
between my car and the car in front of me is Quite Close, then I will depress the
acceleration pedal Slightly.
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So, in systems controlled by humans, the control cycle starts by a person convert-
ing a physical quantity (e.g., a distance) from numbers into words or perceptions
(e.g., Quite Close distance). The input words (or perceptions) then trigger a person’s
knowledge, accumulated through that person’s experience, resulting in words rep-
resenting actions (e.g., depress the acceleration pedal Slightly). The person then
executes an action to actuate a given device that interfaces the person with the con-
trolled system (e.g., depress the acceleration pedal only 10% might represent the
person’s implementation of “depress the accelerator pedal Slightly”). Because peo-
ple think and reason by using imprecise linguistic information, FLCs try to mimic
and convert linguistic control information into numerical control information that
can be used in automatic control systems.

In its attempt to mimic human control actions, a type-1 FLC, whose structure is
shown in Fig. 1.2, is composed of four main components: fuzzifier, rules, inference
engine, and defuzzifier, where the operation of each component is summarized as
follows:

e The fuzzifier maps each measured numerical input variable into a fuzzy set.
One motivation for doing this is that measurements may be corrupted by noise
and are somewhat uncertain (even after filtering). So, for example, a measured
temperature of 26°C may be modeled as a triangular type-1 fuzzy set that is
symmetrically centered around 26°C, where the base of the triangle is related
to the uncertainty of this measurement. If, however, one believes that there
is no measurement uncertainty, then the measurements can be modeled as
crisp sets.

e Rules have an if—then structure, for example, If Temperature is Low and
Pressure is High, then Fan Speed is Low. Each IF part of a rule is called its
antecedent, and the THEN part of a rule is called its consequent. Rules relate
input fuzzy sets to output fuzzy sets. All of the rules are collected into a rule
base.

Type-1 FLC

| Rules |
Measured crisp
inputs — Crisp outputs

X A u

T1 fuzzy input A 4 T1 fuzzy output

sets Inference sets
engine

A 4

u = f(x)

Figure 1.2 General structure of a type-1 FLC. The heavy lines with arrows indicate the
path taken by signals during the actual operation of the FLC. Rules are used during the
design of the FLC and are activated by the inference engine during the actual operation of
the FLC (Mendel et al. (2006); © 2006, IEEE).
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e The inference engine decides which rules from the rule base are fired and
what their degrees of firing are, by using the fuzzy sets provided to it from the
fuzzifier as well as some mathematics about fuzzy sets. The inference engine
may also combine each rule’s degree of firing with that rule’s consequent
fuzzy set to produce the rule’s output fuzzy set (i.e., its fired-rule output set),
and then combine all of those sets (across all of the fired rules) to produce
an aggregated fuzzy output set using the mathematics of fuzzy sets; or it may
send each rule’s degree of firing directly to the defuzzifier where they are all
aggregated in a different way.

e The defuzzifier receives either the aggregated fuzzy output sets from the
inference engine or the degrees of firing for each rule plus some information
about each consequent fuzzy set, and then processes this data to produce crisp
outputs that are then passed to the physical actuators that control the actual
plant.

In general, real-world control systems, such as fuzzy logic control systems, are
affected by the following uncertainties:

e Uncertainties about the inputs to the FLC. For instance, sensor measurements
can be affected by high noise levels and changing observation conditions such
as changing environmental conditions, for example, wind, rain, humidity, and
so forth. In addition to measurement noise, other possible inputs to the FLC,
such as those estimated by an observer or computed using a process model,
can also be imprecise and exhibit uncertainty.

e Uncertainties about control outputs that can occur because of changes in an
actuator’s characteristics due to wear and tear, environmental changes, and
the like.

e Uncertainties about the change in operating conditions of the controller, such
as changes in a plant’s parameters.

e Uncertainties due to disturbances acting upon the system when those distur-
bances cannot be measured, for example, wind buffeting an airplane.

In a T1 FLC all of these uncertainties are handled by the T1 FSs in the
antecedents and consequents of the rules, as well as through the chosen type of
fuzzifier. Regarding the latter, one may choose to use: (1) a singleton fuzzifier
in which a measured value is treated as perfect and is modeled as a crisp set;
or (2) a type-1 fuzzifier in which a measured value is treated as signal plus
stationary noise and is modeled as a normal, convex T1 FS (also called a T1 fuzzy
number).

The type-1 FLC in Fig. 1.2 is a nonlinear controller that maps its inputs X into
an output u, that is, u = f(x), where f is a nonlinear function that is formed by
fuzzy logic operations and the mathematics of fuzzy sets. Often, f(x) is formed
from linguistic rules that summarize human knowledge or experience (or may be
constructed from data); thus, the type-1 FLC directly maps such knowledge or



6 INTRODUCTION

experience into a nonlinear control law whose explicit mathematical expression
is unknown in most cases.

Many researchers (e.g., Wang, 1992; Wang and Mendel, 1992a; Castro, 1995;
Kosko, 1994; Kreinovich et al. 1998) have shown that the type-1 FLC f(x) can
uniformly approximate any real continuous function on a compact domain to any
degree of accuracy; hence, FLCs are known to be universal approximators. One
way to interpret what this means is that the FLC f{(x) approximates a function
by covering its graph with fuzzy patches (Kosko, 1994), where each rule in the
FLC defines a fuzzy patch in system’s input—output space, and it then averages
overlapping patches. This approximation improves as the fuzzy patches grow
in number and shrink in size; however, as more smaller patches are included,
the complexity of the model increases (i.e., the number of fuzzy sets and rules
increases).

Type-1 FLCs produce nonlinear control laws f(x) that cannot be effectively
generated by any other mathematical means because such f(x) are derived from
linguistic if—then rules. This has enabled fuzzy logic control to be used in complex
ill-defined processes, especially those that can be controlled by a skilled human
operator without the knowledge of their underlying dynamics (Mamdani and
Assilian, 1975).

Recall that variable structure control (VSC) is a form of discontinuous nonlin-
ear control that alters the dynamics of a nonlinear system through the application
of high-frequency switching control. A T1 FLC can also be regarded as a vari-
able structure controller by virtue of the mathematics of fuzzy sets and systems;
that is, it partitions the state space automatically rather than by a planned design.
This is because different rules are activated for different regions of the state space.
Palm (1992) showed that an FLC can be regarded as an extension of a conventional
variable structure controller with a boundary layer.

There are two widely used architectures for a type-1 FLC that mainly differ in
their fuzzy rule consequents. Those architectures, both of which are examined in
this book, are:

e Mamdani FLC, developed by Mamdani and Assilian (1975) in which the
antecedents and consequents of the rules are linguistic terms, for example:
If x, is Low and x, is High, then u is Low. The linguistic labels in a Mamdani
FLC are represented by type-1 fuzzy sets.

e Takagi—Sugeno (TS) FLC or Takagi—Sugeno—Kang (TSK) FLC (Takagi and
Sugeno, 1985) in which the antecedents of the rules are also linguistic terms
(modeled as type-1 fuzzy sets), but each rule’s consequent is modeled as a
mathematical function of the input variables, for example: If x, is Low and x,
is High, then u = g(x,, x,), where g(x,, x,) is a polynomial function of x; and
X, (this can include a constant, a linear or affine function, a quadratic function,
etc.). An example of a first-order TSK FLC rule, the most widely used order,
is: If x; is Low and x, is High, then u = ¢, + ¢, x| + c,x,, where ¢, ¢, and ¢,
are the consequent parameters.
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1.4 WHATIS A TYPE-2 FUZZY SET?

Because T1 FSs (e.g., as in Fig. 1.1b) are themselves crisp and precise (i.e., their
MFs are supposedly known perfectly), this does not allow for any uncertainties
about membership values, which is a potential shortcoming when using such fuzzy
sets. A type-2 fuzzy set (T2 FS) is characterized by a fuzzy MF, that is, the mem-
bership value for each element of this set is itself a fuzzy set in [0,1]. The MFs of
T2 FSs are three dimensional (3D) and include a footprint of uncertainty (FOU)
(which is shaded in gray in Fig. 1.3a). It is the new third dimension of T2 FSs
(e.g., Fig. 1.4c) and its FOU that provide additional degrees of freedom that make
it possible to directly model and handle MF uncertainties.

In Fig. 1.3a, observe that the 26°C membership value in Hot is no longer a crisp
value of 0.8 (as was the case in Fig. 1.1b); instead, it is a function that takes values
from 0.6 to 0.8 in the primary membership domain, and maps them into a triangular
distribution in the third dimension (Fig. 1.3b), called a secondary MF. This trian-
gular secondary MF weights the interval [0.6, 0.8] more strongly over its middle
values and less strongly away from those middle values. Of course, other weight-
ings are possible, including equal weightings, in which case the T2 FS is called an
interval type-2 FS (IT2 FS). Being able to choose different kinds of secondary MFs
demonstrates one of the flexibilities of T2 FSs.

Figure 1.4c depicts the 3D MF of a general T2 FS whose secondary MFs [f,(1)]
are triangles. By convention, such a T2 FS is called a triangular T2 FS. Its FOU
is depicted in Fig. 1.4a and its secondary MF at x’ [f,,(u)] is depicted by the solid
triangle in Fig. 1.4b. When the secondary membership values equal 1 for all the
primary membership values (as in the dashed curve in Fig. 1.4b), this results in
an interval-valued secondary membership function, and, as just mentioned, the
resulting T2 FS is called an IT2 FS. In Fig. 1.4c, u(x, u) denotes the MF value
at (x, u).

Figure 1.5 depicts the FOU of an IT2 FS for Low. The three dashed functions
that are embedded within that FOU are T1 FSs. Clearly, one can cover this FOU
with a multitude of such T1 FSs. At this point it is not important whether there are a
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Figure 1.3 Type-2 fuzzy sets: (a) FOU and a primary membership and (b) a triangle
secondary membership function.
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Figure 1.4 (a) FOU with primary membership (dashed) at x’, (b) two possible secondary
membership functions (triangle in solid line and interval in dashed line) associated with x’,
and, (c) the resulting 3D type-2 fuzzy set.
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Figure 1.5 Three type-1 fuzzy sets that are embedded in the FOU of Low.

countable or uncountable number of such T1 FSs. What is important is interpreting
an IT2 FS as the aggregation of a multitude of T1 FSs. This suggests that T1 FSs and
everything that is already known about them can be used in derivations involving
IT2 FSs, something that is exploited very heavily in this book. This interpretation
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also plays a very important role in understanding why an IT2 FLC may outperform a
T1FLC, something that we shall return to in the section below and in other chapters
of this book.

1.5 WHATIS A TYPE-2 FUZZY LOGIC CONTROLLER?

A type-2 FLC is depicted in Fig. 1.6. It contains five components: fuzzifier, rules,
inference engine, type reducer, and defuzzifier. In a T2 FLC the inputs and/or out-
puts are represented by T2 FSs, and it operates as follows: crisp inputs, obtained
from input sensors, are fuzzified into input T2 FSs, which then activate an inference
engine that uses the same rules used in a T1 FLC to produce output T2 FSs. These
are then processed by a type reducer that projects the T2 FSs into a T1 FS (this step
is called type reduction) (Karnik et al., 1999; Liang and Mendel, 2000) after which
that T1 FS is defuzzified to produce a crisp output that, for example, can be used
as the command to an actuator in the control system. Type reduction followed by
defuzzification is usually referred to as output processing.

In Section 1.3 we presented some sources of uncertainties that face real-world
control systems in general. FLCs are also affected by:

e Linguistic uncertainties because the meaning of words that are used in the
antecedents’ and consequents’ linguistic labels can be uncertain, that is, words
mean different things to different FLC designers (Mendel, 2001).

e In addition, experts do not always agree and they often provide different con-
sequents for the same antecedents. A survey of experts will usually lead to a
histogram of possibilities for the consequent of a rule; this histogram repre-
sents the uncertainty about the consequent of a rule (Mendel, 2001).

Type-2 FLC

Output processing

Crisp outputs
u

Defuzzifier

A 4

| Rules I

Measured crisp
inputs

‘m T 3 Type-reduced set
P Fuzzifier e reducer -
X — e T TiEs
T2 Fuzzy input v T2 fuzzy output
sets _|Inference sets
| engine
u =f(x)

Figure 1.6 Overview of the architecture of a T2 FLC. The heavy lines with arrows indicate
the path taken by signals during the actual operation of the FLC. Rules are used during the
design of the FLC and are activated by the inference engine during the actual operation of
the FLC (Mendel et al., 2006; © 2006, IEEE).
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In a T2 FLC all of these uncertainties are modeled by the T2 FSs’ MFs in the
antecedents and/or consequents of the rules, as well as by the kind of fuzzifier.
Regarding the latter, one may choose to use: (1) a singleton fuzzifier (as in a T1
FLC) in which a measured value is treated as perfect and is modeled as a crisp
set; (2) a type-1 fuzzifier (as in a T1 FLC) in which a measured value is treated as
signal plus stationary noise and is modeled as a normal, convex T1 FS (also called
a T1 fuzzy number); or (3) a type-2 fuzzifier in which a measured value is treated
as signal plus nonstationary noise and is modeled as a normal, convex T2 FS.

As we have explained in Section 1.4, a T2 FS can be thought of as a collection
of many embedded T1 FSs (Mendel and John, 2002a). A T2 FLC may, therefore,
be conceptually thought of as a collection of many (embedded) T1 FLCs whose
crisp output is obtained by aggregating the outputs of all the embedded T1 FLCs
(Karnik et al., 1999). Consequently, a T2 FLC has the potential to outperform a
T1 FLC under certain conditions because it deals with uncertainties by aggregating
a multitude of embedded T1 FLCs. The actual implementation of a T2 FLC does
not actually require such an aggregation, but in this first chapter of this book, it is
helpful to think of the output of a T2 FLC in this way.

Just as a T1 FLC is a variable structure controller so is a T2 FLC, and just as
a T1 FLC has two architectures, Mamdani and TSK, a T2 FLC also has those two
architectures. In a T2 Mamdani or TSK FLC, the fuzzy sets are type-2. Like their T1
FLC counterparts, T2 Mamdani and TSK FLCs are universal approximators (Ying,
2008, 2009). Both of these T2 FLC architectures will be covered in this book.

1.6 DISTINGUISHING AN FLC FROM OTHER NONLINEAR
CONTROLLERS

Nonlinear control involves a nonlinear relationship between the controller’s inputs
and outputs and is more complicated than linear control; however, it is able to
achieve better performance than linear control for many real-world control appli-
cations. Nonlinear control theory requires more challenging mathematical analy-
sis and design than does linear control theory.

As mentioned in Section 1.3, an FLC is a nonlinear controller, that is, the func-
tion f{(x) is nonlinear. This will be demonstrated in later chapters of this book. What
distinguishes an FLC, T1 or T2, from other nonlinear controllers is that it generates
its nonlinear mapping function f{(x) through linguistic if—then rules and linguis-
tic terms for the antecedents and consequents of the rules (e.g., Low Temperature,
High Pressure). Such rules can be (easily) obtained from a human operator or can be
postulated and learned from data. According to Kosko (1994), an FLC is unique in
that it ties vague words like Low and High, and common sense rules, to state-space
geometry.

According to Mamdani (1994), when tuned, the parameters of a PID controller
affect the shape of the entire control surface. Because fuzzy logic control is a
rule-based controller, the shape of the control surface can be individually manipu-
lated for the different regions of the state space, thus limiting possible effects only
to neighboring regions.
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Fuzzy logic controllers have two important advantages over other classes of
nonlinear controllers, namely (1) they are able to incorporate linguistic terms in
the designs of the input—output membership functions, and (2) they are capable of
handling uncertainties in inputs and state measurements more effectively. More-
over, similar to other classes of nonlinear controllers, they can be mathematically
expressed, analyzed, and designed.

If the FLC rules are obtained from a group of experts, they may not all agree on
the rule’s consequents. By using T2 FSs, one is able to model the group’s histogram
of rule consequents, something that cannot be done by using a T1 FLC.

An FLC can be studied like any other nonlinear controller, for example, for
the Mamdani FLC, stability and robustness studies can be performed by exten-
sive simulations and by analyzing its control surface; see Fig.1.7, which depicts
the mathematical function that maps robot controller inputs [e.g., right sensor front
(RSF) and right sensor back (RSB)] into a control output (e.g., Steering). For a
TSK FLC, it is possible to perform the same kinds of mathematical analyses that
are applied to other nonlinear controllers, such as Lyapunov stability and robust-
ness, and the like. Performance analyses of T2 Mamdani and TSK FLCs are given
in later chapters of this book.

1.7 T2 FLCs VERSUS T1 FLCs

Type-1 FLCs use T1 FSs that have precise MFs, that is, there is nothing uncertain
about such MFs. The following uncertainties that an FLC may encounter have been
enumerated in Section 1.3: uncertainties about the inputs to the FLC, the control
outputs, changing operating conditions of the controller, and disturbances acting
upon the plant. Such uncertainties must somehow be mapped into MF uncertainties,
and this is feasible to a greater extent in a T2 FL.C than it is in a TI FLC because of
the “noncrisp” nature of a T2 FS, the FOU for an IT2 FLC, or the combination of
an FOU and secondary MFs for a general T2 FLC.

In addition to the above traditional kinds of uncertainties, which affect any kind
of a controller, fuzzy or nonfuzzy, an FLC is also affected by the following addi-
tional uncertainties:

e Uncertainties about a rule’s consequent, when rules are obtained from a group
of experts, because, as we have mentioned above, experts do not generally all
agree on the same consequent.

e Linguistic uncertainties about the meanings of the words used in a rule’s
antecedent and consequent linguistic terms, because words mean different
things to different people (Mendel, 2001).

e Uncertainties associated with noisy training data that may be used to optimize
(learn, tune) the MF parameters of an FLC.

It is difficult to directly model or minimize the effects of such uncertainties using
T1 FSs. Consequently, using T1 FSs in an FLC may cause degradation in the per-
formance of such a system.
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Figure 1.7 (a) Control surface of a robot T2 FLC with 4 rules, (b) control surface of a

robot T1 FLC with 4 rules, (c¢) control surface of a robot T1 FLC with 9 rules, and (d)
control surface of a robot T1 FLC with 25 rules (Hagras, 2004; © 2004, IEEE).

Because the MFs of a T2 FS are fuzzy, that is, have an FOU (and secondary MFs
for a general T2 FS), they have more design degrees of freedom; hence, they have
a greater potential to better model and handle all of the uncertainties just described
in comparison to T1 FSs. Consequently, an FLC that is based on T2 FSs has the
potential to produce better performance than a T1 FLC when dealing with such
uncertainties. Observe that we have twice put emphasis on the word “potential.”
We have done this so as not to fool the reader into believing that a T2 fuzzy logic
control system will always outperform a T1 fuzzy logic control system. The later
chapters in this book will examine and compare the relative performances of both



T2 FLCs VERSUS T1 FLCs 13

T1 and T2 fuzzy logic control systems so that we may all better understand when or
if a T2 fuzzy logic control system will outperform a T1 fuzzy logic control system.

As a preview to what will be demonstrated in those chapters, we note the fol-
lowing from Hagras (2004), Hagras (2007), and Wu (2012):

1. Using T2 FSs to represent the FLC inputs and outputs can lead to a smaller
FLC rule base because MF uncertainties, represented by the FOUs of T2 FSs,
let the T2 MFs cover the same range as T1 FSs, but with a smaller number of
terms. This rule reduction (at the expense of more complicated MFs) increases
as the number of FLC inputs increases.

2. A T2 FLC may give a smoother control surface than its T1 counterpart, espe-
cially in the region around the steady state [for a proportional—integral (PI)
controller this means both the error and the change of error approach zero].
For example, Wu and Tan (2010) have shown that when a baseline T1 FLC
implements a linear PI control law and the IT2 FSs of an IT2 FL.C are obtained
from symmetrical perturbations of the respective T1 FSs, the resulting T2
FLC implements a variable gain PI controller around the steady state. These
gains are smaller than the PI gains of the baseline T1 FLC, which results in
a smoother control surface around the steady state. The PI gains of the IT2
FLC also change with the inputs, something that cannot be achieved by the
baseline T1 FLC.

3. Type-2 FLCs may realize more complex input—output relationships than T1
FLCs. Karnik et al. (1999) pointed out that an IT2 fuzzy logic system can be
thought of as a collection of many different embedded T1 fuzzy logic systems
(as mentioned above). Additionally, Wu and Tan (2005) proposed a system-
atic method to identify the equivalent generalized T1 FSs that can be used
to replace the FOU. They showed that the equivalent generalized T1 FSs are
significantly different from traditional T1 FSs, and there are different equiv-
alent generalized T1 FSs for different inputs. Du and Ying (2010) and Nie
and Tan (2010) also showed that a symmetrical IT2 fuzzy PI [or the corre-
sponding proportional—derivative (PD)] controller, obtained from a baseline
T1 PI FLC, partitions the input domain into many small regions, and in each
region the IT2 fuzzy PI controller is equivalent to a nonlinear PI controller
with variable gains. The control law of the IT2 FLC in each small region is
much more complex than that of the baseline T1 FLC, and hence it can real-
ize more complex input—output relationships that cannot be achieved by a T1
FLC using the same rule base.

4. Type-2 FLCs have a novelty that does not exist in traditional T1 FLCs. Wu
(2011) showed that in an IT2 FLC different membership grades from the same
IT2 FS can be used in different rules (due to an IT2 FS being described by
lower and upper MFs), whereas for a traditional T1 FLC the same membership
grade from the same T1 FS is always used in the different rules. This further
supports item 3, that an IT2 FLC can realize more complex input—output rela-
tionships than a T1 FLC, and that an IT2 FLC cannot be implemented by a
T1 FLC using the same set of rules.
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Figure 1.7, which shows control surfaces for an outdoor mobile robot, demonstrates
how a T2 FLC with a rule base of only four rules (Fig. 1.7a) can produce a smoother
control surface than its T1 counterparts that use a rule base of 4 (Fig. 1.7b),
9 (Fig. 1.7¢c), and 25 rules (Fig. 1.7d), respectively (Hagras, 2004). Observe, also,
that as the T1 FLC rule base increases, its response approaches that of the T2 FLC
because the latter includes a multitude of embedded type-1 FLCs.

1.8 REAL-WORLD APPLICATIONS OF IT2 MAMDANI FLCs

The last 10 years have witnessed a continuous increase in the deployment of IT2
Mamdani FLCs to real-world control problems. This trend promises to replicate
the widespread use of type-1 FLCs to applications that touch the lives of people
all over the world. The following subsections provide a brief overview of some of
recent IT2 Mamdani FLCs for real-world control applications that are grouped into
high-level application areas. We want to emphasize that all of the reported results
are for specific systems and that we do not claim they apply universally. They are
meant to whet the curiosity of the reader about potential performance improvements
of IT2 FLC over T1 FLC, so as to encourage him or her to read the rest of this book.

1.8.1 Applications to Industrial Control

1.8.1.1 Speed Control of Marine Diesel Engines The first heavy-industry
application of IT2 Mamdani FLCs was for the speed control of marine diesel
engines (Lynch et al., 2005, 2006a, 2006b). These are huge engines classified
according to their speeds, as slow-speed engines, medium-speed engines, or
high-speed engines.

Due to their vast size and large power output, marine diesel engines require accu-
rate and robust speed control/governing. Accurate speed control of such engines
is of critical importance because significant deviations from the speed set point
can be detrimental and damaging to the engine and its respective loads. Moreover,
for applications such as power generation sets, the engine speed in revolutions per
minute (rpm) must be stable in relation to multiples of the generated base frequency,
that is, 50 Hz frequency requires the engine to operate at 1000 rpm, 1500 rpm, and
so forth; hence, significant speed deviation can cause the generation of incorrect
frequencies, resulting in loss of synchronization between the generator and its asso-
ciated power grid, which is very problematic for any power generation system and
its coupled loads.

Robustness in speed control is required for the marine diesel engine to overcome
and recover quickly from the inherent instabilities and disturbances associated with
the fast and dynamic changes of the environment, as well as load and operating
conditions that marine diesel engines are exposed to on an everyday basis.

The ability to provide improved speed control response for marine diesel engines
is not just desirable but is a requirement of the British Standard BS5514 “Recipro-
cating Internal Combustion Engines: Speed Governing,” which details regulations
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concerning the speed controller’s ability to recover from load changes and distur-
bances in terms of settling time, overshoot, and undershoot (British Standards).

Marine diesel engines operate in highly dynamic and uncertain environments
and experience vast changes in ambient temperature, fuel, humidity, and load. There
are many sources of uncertainty facing speed controllers of marine diesel engines,
including:

e Uncertainties associated with the change in engine operation and load con-
ditions due to varying loads, weather and sea conditions, wind strength, hull
fouling (growth of algae, sea grass, and barnacles), and vessel displacement
(which is dependent on cargo). For example, the resistance (the force work-
ing against the ship propulsion) as a result of weather and sea variations can,
in general, increase by as much as 100% of the total ship resistance in calm
weather. Also, experience shows that hull fouling may cause an increase of
up to 40% in ship resistance. An increase in ship resistance can consequently
cause a drastic reduction of the ship’s speed and significant vibration that can
affect the engine’s sensors and actuators. These uncertainties are considered
to be the most dynamic and severe uncertainties that can affect both the inputs
and output of the FL.C and can cause serious degradation in the performance
of the marine diesel engine.

e Uncertainties affecting the inputs to the controller, because sensor measure-
ments are affected by high noise levels from various sources, such as electro-
magnetic and radio frequency interference, and vibration-induced triboelec-
tric cable charges.

e Uncertainties affecting the outputs of the controller, which can be due to the
change of the actuator’s characteristics because of wear and tear or environ-
mental changes, for example, worn linkages between the actuator output and
the fuel pump can result in excessive friction and/or backlash causing insta-
bility in the control loop.

e Linguistic uncertainties because the meanings of the words that are used in the
antecedent’s and consequent’s linguistic labels are inherently uncertain, since
words mean different things to different engineers, which causes uncertainties
when designing the FLC for marine diesel engine control.

Due to the size and cost of marine diesel engines it is important to test and verify
the engine speed controllers under different operating and load conditions before
their deployment on a specific engine.

Speed controllers can be tested and verified by using the testing platform
depicted in Fig. 1.8. This testing platform is designed to realistically reflect the
characteristics and operating conditions of the marine diesel engines and has the
ability to alter speed,1 load, inertia, and torque. It uses the real-world noisy sensors
that are used by a specific marine diesel engine and has the ability to introduce the
same uncertainty levels faced by that engine.

'The speed of a marine diesel engine is associated with the rate of fuel delivery to its cylinders, which
is a function of a hydraulic servoactuator that is controlled by an electronic embedded speed controller.
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Figure 1.9 Control surfaces for (a) T1 Mamdani FLC and (b) IT2 Mamdani FLC (Hagras,
2007; © 2007, IEEE).

d

Figure 1.9a depicts the control surface for a T1 Mamdani FLC that was used in
one of the marine diesel engine’s speed controllers, and Fig. 1.9b depicts the control
surface of an I'T2 Mamdani FLC that was used for the same engine. Observe that the
control surface for the T1 FLC is steep and nonsmooth, especially near the set point
where the error (e) between the speed set point and the actual value, as well as the
change of error (d), should both be equal to zero. Consequently, any small variations
of e and d can cause considerable changes to the manipulated variable (mv) (i.e., the
actuator controlling the fuel supply to the engine), which means that the T1 FLC is
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vulnerable to noise and uncertainties. Moreover, the larger the variations in ¢ and
d, due to the uncertainties, the larger are the disturbances to mv, which can cause
instability and can potentially lead to the destruction of the engine.

The control surface that is depicted in Fig. 1.9b for the IT2 Mamdani FLC shows
a very smooth and gradual response with no steep changes because it is (in theory)
aggregating the outputs of a large number of embedded T1 FLCs. This smooth
response gives very good control performance and can handle the uncertainties
and disturbances that are near the set point where e = 0 and d = 0, that is, small
variations in e and d do not cause significant changes to mv.

Many control experiments were performed in order to evaluate the performance
of the IT2 and T1 Mamdani FLCs for handling uncertainties. The real operation
of the diesel engines was mimicked where in each experiment the controllers were
allowed to reach the set point and stabilize with no load, after which different loads
were added suddenly to mimic the uncertainties associated with change of operation
and load conditions. It is necessary for the diesel engine’s speed controller to be able
to deal quickly with the uncertainties associated with a change of load (for up to a
100% load addition) producing minimum overshoot/undershoot and settling times
that must be in accordance with the British Standard BS5514 (British Standards).

In Lynch et al. (2006a), an IT2 Mamdani Real-Time Neuro-Fuzzy Controller?
(RT2NFC) was developed. The performance of the RT2NFC was compared to the
performances from a T1 FLC and a Viking 25 controller. The latter has been used
in the past to control marine diesel engines and uses a PID algorithm with various
nonlinear and gain-scheduling functions. Both the T1 and IT2 FLCs were coded
in ANSI C and embedded in the industrial controller. For the engine testing plat-
form, a set point of 905 rpm was chosen that corresponds with the requirements of
medium-speed diesel engines.

All three controllers were tuned so that they could handle disturbances that were
equivalent to 20% of the full load (which is a common disturbance for engines at
a normal sea condition). It was noticed (not shown here) during the design process
that the performances from all three controllers were very similar for the 20% load
disturbance that they were designed to handle. However, as the uncertainty asso-
ciated with the change of load increased to 100% load, the performance of both
the Viking 25 and T1 FLC degraded significantly (see Fig. 1.10), producing large
overshoots/undershoots as well as long settling times; hence, the performance of
the Viking 25 and the T1 FLCs became unacceptable under these levels of uncer-
tainties, which did not satisfy the desired standards.

A common practice in such situations is to retune the controller, which is a
time-consuming process. The IT2 Mamdani FLC effectively handled the uncer-
tainties associated with the change of the load and operating conditions to give
a very good performance with small overshoots/undershoots as well as short set-
tling times (see Fig. 1.10). The performance of the IT2 Mamdani FLC satisfied
the required standards and required no further tuning. Therefore, the IT2 Mamdani

2 A neuro-fuzzy controller is an FLC whose MF parameters are optimized using a tuning algorithm such
as the back-propagation algorithm that is commonly used to tune the weights of a neural network.
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Figure 1.10 Comparison of the responses of the T1 FLC and Viking 25 against a T2NFC
with 100% load addition (Lynch et al., 2006b; © 2006, IEEE).

FLC could be used effectively to produce accurate and robust speed controllers for
marine diesel engines.

1.8.1.2 Liquid-Level Process Control In Wu and Tan (2004), a genetic algo-
rithm? was used to design an IT2 Mamdani FLC to control a liquid-level process.
The controlled process is the coupled tank apparatus depicted in Fig. 1.11a, which
consists of two small tower-type tanks mounted above a reservoir that stores water
that is pumped into the top of each tank by two independent pumps. The level of
water in each tank is measured using a capacitive-type probe sensor, and each tank
is outfitted with an outlet at the side near its base. Raising the baffle between the
two tanks allows for water to flow between them. The amount of water that returns
to the reservoir is approximately proportional to the square root of the height of
the water column in the tank, and this is the main source of nonlinearity in this
coupled-tank system. The volumetric flow rate of the pumps in the coupled-tank
apparatus is nonlinear, and the system has nonzero transport delay.

It was observed (not shown here) that both the T1 and IT2 FLCs were able to
attenuate oscillations when the modeling uncertainties were small. The liquid level
in a tank eventually reached the desired set point, although the settling time was
shorter when the IT2 FLC was used.

When, however, modeling uncertainties became larger, the T1 FLC gave rise to
persistent oscillations (see Fig. 1.11b), whereas the IT2 FLC was able to eliminate
these oscillations and the liquid level reached its desired height at steady state. Wu

3A genetic algorithm is a biologically inspired optimization algorithm that is used for tuning the MF
parameters of the FLC as well as many other kinds of systems such as a neural network. See Section
3.6.2 for more details.
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Figure 1.11 (a) Coupled-tank liquid-level control system and (b) T1 FLC (solid line) and
IT2 FLC (dashed line) responses (Wu and Tan, 2004; © 2004, IEEE).

and Tan (2004) concluded that the IT2 FLC is more robust than the T1 FLC because
the IT2 FLC outperformed its T1 FLC counterpart, especially when the uncertainty
was large.

1.8.1.3 Control of Entry Temperature of a Steel Hot Strip Mill Mendez
etal. (2010) applied a Mamdani IT2 FLC to control the coiling entry temperature of
a steel hot strip mill (HSM). Figure 1.12a depicts an overview of an HSM from its
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Figure 1.12 (a) Overview of a hot strip mill and (b) photo of a laminar cooling header at
run-out table (Mendez et al., 2010).

initial stage at the reheat furnace entry to the final stage at the coiler side. In HSM
there is a major need to satisfy quality requirements, for example, steel strip thick-
ness, finishing temperature, and coiler temperature (the latter determines the final
strip’s mechanical properties). The most critical section of the coil is the head-end
section due to the uncertainties involved at the head end of the incoming steel bar
and the varying conditions from bar to bar.

As of 2010, in order to achieve head-end quality requirements, automation sys-
tems based on physical modeling were used, particularly for the reheat furnace,
roughing mill (RM), finishing mill (FM), and the run-out cooling zone. As the mar-
ket became more competitive, there was a need for flexible manufacturing capable
of rolling a wider range of products in shorter periods of time. Such flexibility
requirements yield higher time-varying conditions for the rolling process, thereby
demanding automation systems that are better able to handle the encountered uncer-
tainties. Most commercial systems employ proportional or proportional—integral
controllers, which only compensate for the errors under current conditions; hence,
the first batch in a given production cycle is usually below the given specifications.

A slab generally leaves the furnace at ~1200°C and is transported to the roughing
mill by the transfer table. After several passes, the roughing stands adjust the slab
thickness from ~200 to ~28 mm. The product from the roughing mill is called
the transfer bar. The transfer bar is taken to the finishing mill where the finishing
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temperature and final width specifications have to be fulfilled. During the time the
transfer bar travels from the roughing mill to the finishing mill scale forms on its
surface. The scale breaker washes out the scale in order to allow proper rolling of
the bar. Figure 1.12b shows a photograph of a top strip laminar cooling header.
There are 34 top cooling headers divided into 6 sections of top header control. In
addition, there are 27 bottom cooling headers divided into 3 sections of bottom
spray control, giving 9 control sprays.

Strip resistance, and therefore force and gap setup, depend greatly on the strip
temperature of the incoming bar, which is also essential for the speed setup, since
strip temperature of the incoming bar depends on the entry bar thread speed, and
the former is required to achieve both the specified finishing mill exit target head
gauge and temperature. However, the bar surface temperature measurement at the
scale breaker entry is not reliable due to scale formation and is therefore measured
using a pyrometer located at the roughing mill exit side. Later, the head-end bar
scale breaker entry temperature is estimated and used for the finishing mill and
run-out cooling setup. The measurement at the roughing mill exit is affected by
noise produced by transfer bar scale growth, environmental water steam, pyrometer
location, calibration, resolution, and repeatability.

Experiments and results presented in Mendez et al. (2010) show that IT2 FLCs
are able to model and control the cooling water flow to achieve the target coiler
entry temperature in an HSM. They show that there is a substantial improvement
in performance and stability of an IT2 Mamdani FLC over a T1 Mamdani FLC
(e.g., Fig. 1.13). As can be seen from this figure, the IT2 FLC converged under real
production conditions and had better performance in terms of the root-mean-square
error (RMSE) than the T1 FLC. These results show the feasibility of the IT2 FLC
for this particular industrial application.
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Figure 1.13 Root-mean-squared errors (RMSEs) for type-A cooling coil: (*) T1 FLC and
(o) IT2 FLC models (Mendez et al., 2010).
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Figure 1.14 High-precision milling setup at Mondragén University (Spain). (a) Side view
and (b) front view (Ren et al., 2010; © 2010, IEEE).

1.8.1.4 Modeling of Micromilling Cutting Forces Ren et al. (2010)
designed an IT2 Mamdani FLC for the estimation of dynamic micromilling cutting
forces. The resulting system was tested at the Micro-machining Laboratory at the
Mondragén University in Spain. Figure 1.14 shows the actual setup. Researchers
there noted that type-2 fuzzy estimation not only filters the noise and estimates the
instantaneous cutting force in micromilling using observations acquired by sensors
during cutting experiments but also assesses the uncertainties associated with the
prediction caused by the manufacturing errors and signal processing. Moreover,
the interval output of the type-2 fuzzy system gives very useful information to
machine tool controllers in order to maximize material removal while controlling
tool wear or tool failure to maintain part quality specifications.

1.8.1.5 Thyristor-Controlled Series Capacitor to Improve Power
System Stability Tripathy and Mishra (2011) applied a Mamdani IT2 FLC
to a thyristor-controlled series capacitor (TCSC) for improving power system
stability. They report that the IT2 FLC along with the power system stabilizer
(PSS) in the system satisfactorily damp out the speed and power oscillations
following different critical faults. They show that the damping performance of the
IT2 FLC is considerably better compared to its fixed gain bacteria-swarm-based
tuned PSS and TCSC counterpart. Moreover, the performance of the IT2 FL.C did
not deteriorate even under uncertainty in the input signal to the controller, which
shows the power of the IT2 Mamdani FLC in providing adequate performance
even under conditions of increased uncertainty (in the inputs).

1.8.1.6 Control of Buck Direct-Current—Direct-Current (DC-DC)
Convertors Lin et al. (2005) applied an IT2 Mamdani FLC to the control
of buck DC—-DC converters, which are nonlinear power electronic systems that
convert one level of electrical voltage into another level by a switching action.
They are used extensively in personal computers, computer peripherals, and
adapters of consumer electronic devices.
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Figure 1.15 Block diagram of an IT2 FLC DC-DC converter system (Lin et al., 2005;
© 2005, IEEE).

A control technique for DC—DC converters must cope with their wide input
voltage and load variations to ensure stability in any operating condition while pro-
viding fast transient response. The control problem is to control the duty cycle so
that the output voltage can supply a fixed voltage in the presence of input voltage
uncertainty and load variations.

A block diagram of the IT2 Mamdani FLC DC-DC converter system is
depicted in Fig. 1.15. Lin et al. (2005) have shown that the performance of an IT2
Mamdani FLC is better than its T1 counterpart, namely the rise time response
of the IT2 Mamdani FLC is faster than that of T1 FLC and the former has no
overshoot.

1.8.2 Airplane Altitude Control

Zaheer and Kim (2011) applied an IT2 Mamdani FLC to airplane altitude con-
trol for a propulsion-based airplane as shown in Fig. 1.16a. The throttle is used to
regulate the speed of the airplane by varying the rotational speed of the propeller,
the elevator is used to control the airplane’s ascent and descent, the ailerons are
used for airplane’s lateral stabilization and midair turning, and the rudder is used
for the on-ground taxiing of the airplane. They compared T1 and IT2 Mamdani
FLCs for airplane control, and found that under high uncertainty levels, the IT2
Mamdani FLC outperformed the T1 FLC, namely that the T1 FLC showed oscil-
latory behavior around the reference altitude set points as shown in Figs. 1.16b
and 1.16c.
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Figure 1.16 (a) Basic airplane control; (b) results of the T1 FLC in the simulation
setup with uncertainties [bottom blocks are the magnified steady-state responses (RMSE =
3.58 m)]; and (c) results of IT2 Mamdani FLC in the simulation setup with uncertainties
[bottom blocks are the magnified steady-state responses (RMSE = 0.43 m)] (Zaheer and
Kim, 2011; © 2011, IEEE).

1.8.3 Control of Mobile Robots

Autonomous mobile robots navigating in real-world unstructured environments
must be able to operate under conditions of imprecision and uncertainties present
in such environments, where the uncertainties can be in the form of numerical
uncertainties* (that affect the inputs and/or outputs of the controller). The
numerical uncertainties associated with changing unstructured environments cause

4Numerical uncertainties refer to noise and change of the sensor signal due to change of operating
conditions, for example, an ultrasound sensor assumes that the speed of sound is constant, however, the
speed of sound varies with wind, rain, humidity, and the like, so a sonar sensor at a distance of 1 m will
read different readings in wind, rain, and so forth.
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which gave a poor response when the environment changed (windy weather) (Hagras, 2004;
© 2004, IEEE).

problems in determining the exact and precise antecedents’ and consequents’
membership functions during the FLC design. The designed T1 fuzzy sets can
be suboptimal for specific environment and robot conditions; however, as the
robot operating conditions change from the design conditions, the T1 fuzzy
sets will not be optimal any more, which can cause degradation in the mobile
robot FLC performance. Hagras (2004) employed an IT2 Mamdani FLC for
mobile robot control involving indoor and outdoor robots and found that the IT2
FLC always outperformed its T1 counterpart, and it also used a smaller number
of rules. The former was demonstrated by examining robot paths and control
surfaces (see Fig. 1.7). For the robot shown in Fig. 1.17a, the control surface of
the IT2 Mamdani FLC has a smooth shape, which translated into a smooth control
response that was able to deal effectively with uncertainty and imprecision. By
means of control surface analyses, the more T1 fuzzy sets were used in the T1 FLC
the more its response approached the smooth response of the IT2 Mamdani FLC
(see Figs. 1.7b—1.7d). This is because the T2 fuzzy sets contain a large number of
embedded T1 fuzzy sets, which allow for the detailed description of the control
surface.

Hagras (2004) also performed experiments with robots in outdoor unstructured
environments in order to evaluate the real-time performance of the robot I'T2 FLC so
as to see how they could handle large amounts of uncertainty and imprecision, as is
present in such changing and dynamic environments. The robots were tested under
different environmental conditions (e.g., rain, wind, sunshine), different ground
conditions (e.g., slippery and dry ground), and at different times of the day. These
experiments also involved using different challenging environmental features such
as metallic and vegetation edges, which result in poor responses (i.e., echo) from the
ultrasound sensor. They observed that the T1 FL.C gave a good response under spe-
cific weather, ground, and robot conditions, but if any of these conditions changed,
for example, when operating in windy weather conditions, then a nine-rule T1 FLC
controlling the robot (see Fig. 1.17b) gave a poor oscillatory response because it
could not handle the uncertainties associated with the outdoor environment condi-
tions. On the other hand, they observed that the IT2 Mamdani FLC controlling the
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Figure 1.18 (a) Typical robot soccer platform, (b) player paths when a T1 FLC was used,
and (c) player paths when an IT2 Mamdani FLC was used (Figueroa et al., 2005; © 2005,
IEEE).

robot (see Fig. 1.17a) could handle such uncertainties and gave a better response
while also using a smaller rule base.

Figueroa et al. (2005) described an IT2 Mamdani FLC for a robotic agent that
tracks a mobile object in the context of robot soccer games, where the robotic agent
has to track a ball accurately. In this application, the final goal of a player is to reach
the position of the ball.

In robotic soccer games, positions of players and balls are captured through
image processing because it is simple to do this. The basic configuration of a typi-
cal platform for robotic soccer games is shown in Fig. 1.18a; it comprises a football
pitch (ground plane), a camera for image capture, one or two computers (server and
client), and an radio frequency (RF) data transmitter.

Type-1 FLCs have been used in the past to control players; however, such FLCs
face many sources of uncertainty, which include image processing algorithms (that
cause uncertainties in the FLC inputs) as well as uncertainties in the actuators and
networking resources. Hence, Figueroa et al. (2005) applied an IT2 Mamdani FLC
to this problem and conducted two tests in order to evaluate the performance of the
IT2 Mamdani FLC against its T1 counterpart.

The first test is called a static ball test and is one in which the way a “player”
reaches the position of the ball is observed. During this test, the ball is positioned
at a fixed point, for example, at one of the corners of the ground plane, and a player
starts his movement from another point, usually the farthest corner. Figures 1.18b
and 1.18c depict five static ball tests using the T1 and IT2 Mamdani FLCs, respec-
tively. Observe that for both kinds of controllers the players’ paths are always
different (due to uncertainties); however, for the IT2 Mamdani FLC, the player
only makes two corrections to reach the ball, whereas for the T1 FLC the player
makes three corrections in order to reach the ball. Observe also that the paths fol-
lowed by the T1 player have larger deviations than those of the T2 player, and that
the shapes of those paths varied drastically. On the other hand, the paths followed
by the T2 player were more regular. The control surface for the Mamdani IT2 FL.C
(not shown here) indicated that noisy sensors did not produce significant changes
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in a player’s direction; however, for the T1 FLC, small variations in both the error
and change of error produced a considerable change in direction, indicating that
the T1 FLC was vulnerable to noise artefacts.

The second test is called a mobile ball test and is one in which the ball moves
according to a defined trajectory and the player tries to track it. Figueroa et al.
(2005) showed that, in all tests, the IT2 Mamdani FLC preserved a smaller average
distance between the player and the moving ball. Additionally, they showed that the
associated standard deviation was smaller for the IT2 Mamdani FLC than it was for
the T1 FLC, which means that the paths followed by the IT2 player were closer to
the ball’s parabolic trajectory. They concluded, finally, that the IT2 Mamdani FLC
was able to cope with uncertainties in a better way than the T1 FLC counterpart
and also noted that the IT2 Mamdani FLC used a smaller rule base.

1.8.4 Control of Ambient Intelligent Environments

Ambient intelligence (Aml) provides basic criteria for the development of ambient
intelligent environments (AIEs) in which intelligent computation that is enabled
through simple and intuitive interactions with a user is invisibly embedded into
the user’s surrounding environments. The user is, therefore, empowered through a
digital environment that is aware of her/his context and is sensitive, adaptive, and
responsive to her/his needs in an unobtrusive manner.

Ambient intelligent environments rely on ubiquitous computing technologies
that implement modular, low-powered devices and distributed high-bandwidth het-
erogeneous networks of sensors and actuators. They require distributed intelligence
that uses modular units of intelligent behavior, such as intelligent agents, in order to
create a pervasive distributed “layer of intelligence.” Consequently, agents that are
embedded in a user’s environment (e.g., home, work, car, etc.) provide an intelligent
“presence” by being able to recognize the user (or users) and autonomously pro-
gram themselves to the users’ needs by learning from their behaviors. The intelli-
gence mechanisms employed within the agents must have low computational over-
heads, allowing them to be embedded into small hardware platforms or everyday
consumer appliances. It is also important that these intelligent approaches provide
their learned decisions in a form that is easily interpreted and analyzed by the end
users.

One of the main underlying requirements for determining the kind of intelli-
gent approach to use in the embedded agents is the ability to manage short-term
and long-term uncertainties that arise due to changes in the environmental condi-
tions along with changes in user behavior and activities over time. The AIEs face
short-term uncertainties (within short-term time intervals) such as slight noise and
imprecision associated with the inputs of the FL.Cs, as well as slight mood changes
of the user. The AIEs also face long-term uncertainties because the environmen-
tal conditions and associated user activities change over longer durations of time
due to:

e Seasonal variations in environmental conditions [e.g., external light level (the
difference in the position of the sun can cause a difference between the late
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afternoon light levels in midsummer and the late afternoon light levels in mid-
winter), temperature, time of day (morning, afternoon, or evening)].

e People’s behavior while occupying these environments because their behav-
iors, moods, and activities are dynamic, often nondeterministic and are subject
to change with external factors such as time and season; there is also the fact
that different words mean different things at different times of the year; for
example, the values associated with warm temperature can vary from winter
to summer.

e Changes in an actuator’s characteristics as a result of wear and tear that occurs
over time.

Hagras et al. (2007) describe an agent’s architecture for the control of AIEs that
uses an I'T2 Mamdani FLC and a one-pass (noniterative) method to learn the user’s
particular behaviors and preferences in an online nonintrusive and seamless man-
ner. The system learned the user’s behavior by learning his/her particular rules and
T2 membership functions. These rules and membership functions could then be
adapted incrementally in a life-long learning mode to suit the changing environ-
mental conditions and user’s preferences. They developed a T2 agent architecture
suitable for the embedded platforms used in AIEs, which have limited computa-
tional and memory capacities.

The agent based on IT2 Mamdani FLC was evaluated in the Essex Intelligent
Dormitory (iDorm), depicted in Fig. 1.19a. The iDorm is a multiuser inhabited
space that is fitted with a plethora of embedded sensors, actuators, processors, and
heterogeneous networks that are cleverly concealed (buried in the walls and under-
neath furniture) so that the user is unaware of the hidden intelligent infrastructure
of the room. It looks and feels like an ordinary study/bedroom environment, con-
taining a mix of furnishings such as a bed, work desk, and wardrobe, which split
the room into different areas of activity such as sleeping, working, and entertain-
ing. Any networked embedded computer that can run a standard Java process can
directly access and control the devices in the iDorm. The IT2 Mamdani FLC-based
agent was embedded in an Internet Fridge (iFridge) computer.

300

Day 1

Number of accumulated rule adaptations

Figure 1.19 (a) iDorm and (b) number of accumulated online user adaptations (Hagras
et al., 2007; © 2007, IEEE).
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Experiments were conducted with various users during an extended period
(spanning the course of a year) over which it was possible to evaluate and
demonstrate how the agent could adapt in a life-long learning mode and could
handle short- and long-term uncertainties. The agents based on IT2 Mamdani
FLC were compared with T1-FLC-based agents regarding their ability to model a
user’s behavior while also handling long-term uncertainties. Results demonstrated
that the IT2 FLC was better able to model a user’s behavior and handle the short-
and long-term uncertainties, and it used fewer rules than the T1 FLC.

Further experiments were conducted in the iDorm where user satisfaction was
measured by monitoring how well the agents adjusted the iDorm environment to
the user’s preferences such that user intervention (which can be used as a measure
of a user’s satisfaction) was reduced over time. Figure 1.19b shows, for a two-day
experiment, the number of rules that were adapted online every time the user had to
override the agent’s decision. Observe that agent based on the IT2 Mamdani FLC
required significantly less user interaction than did the T1 agent. The curve for the
T2 agent shows that user intervention initially was high but that it stabilized on
the second day; therefore, the T2 agent only required the very short online tuning
period of approximately one day. This is because the T2 agent better modeled user
behavior and handled the short- and long-term uncertainties better than did the T'1
agent. The curve for the T2 agent also shows it to be more stable (i.e., flat and not
increasing with time) than the T1 agent in controlling the environment between the
points when the user had to intervene in the agent’s decisions to adapt the rules,
that is, the curve for the T1 agent shows that user intervention continues to increase
and does not properly stabilize by the end of the second day.

In conclusion, Hagras et al. (2007) show that T2 agents can adapt to user behav-
iors and that they generated fewer rules as compared with T1 agents. Fewer rules
led to faster processing and more efficient memory usage. More specifically, the
T2 agent was able to outperform the T1 agent achieving a 60% increase in process-
ing speed as a result of a 50% reduction in the size of the rule base, thus reducing
memory usage.

1.9 BOOK RATIONALE

Fuzzy control using familiar T1 FSs and logic has been extensively studied and
applied to practical problems since 1974 and is considered a matured field. As men-
tioned above, fuzzy logic control relying on T2 FSs has now gained the attention of
the fuzzy systems community, and the number of publications about it is growing
rapidly.

Because of a lack of basic calculation methods in the early days of T2 FSs and
logic, T2 FLCs have not emerged in popularity until recently. Now, T2 calculations
can be done in real time.

As an emerging field, many different aspects of T2 fuzzy logic control need to be
investigated in order to advance this new and powerful technology. This is the first
book to bring together some of the latest developments on T2 fuzzy logic control
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in one place, so that interested researchers and practitioners can participate in this
field. This book can be used to quickly understand the fundamentals of T2 fuzzy
logic control and the latest theoretical developments about some important aspects
of this new technology.

The central themes of any control methodology, fuzzy or conventional, are anal-
ysis and design. Analysis includes (1) describing the mathematical structure of T2
FLCs, (2) examining the stability of T2 fuzzy logic control systems, and (3) study-
ing the robustness of T2 fuzzy logic control systems. Design means designing a T2
FLC (Mamdani or TSK) to control a given system to achieve user-desired perfor-
mance, including stability. This book focuses on both topics for T2 FLCs and T2
fuzzy logic control systems, and also explains and demonstrates how to apply T2
fuzzy logic control to some important applications.

1.10 SOFTWARE AND HOW IT CAN BE ACCESSED

Software for Examples 4.1 and 4.6 and the examples in Chapter 6 can be accessed
at http://booksupport.wiley.com/, and software for Appendix A, that supports T1,
IT2 and GT2 FLCs, is available at http://juzzy.wagnerweb.net.

1.11 COVERAGE OF THE OTHER CHAPTERS

Chapter 2 provides background materials about I'T2 FSs that are used in the rest of
the book. To begin, T1 FSs are reviewed because T2 FSs build upon T1 FSs. Then
a lot of information about interval T2 FSs is covered because this is needed in the
rest of this book. Finally, general T2 FSs are introduced because such sets are the
wave of the future.

Chapter 3 provides short reviews of T1 Mamdani and TSK FLCs so as to set the
stage for the complete descriptions of IT2 Mamdani and TSK FLCs. These impor-
tant IT2 FLCs are then developed in great detail, but using only T1 mathematics.
The Wu—Mendel uncertainty bounds, which have let IT2 Mamdani FLCs run in
real time, are stated; however, their derivations are included in Appendix 3A for
completeness. Finally, some design methods for IT2 FLCs are described.

Chapter 4 describes techniques for rigorously deriving the precise mathematical
relationships between the input and output of a variety of IT2 Mamdani and TSK
FLCs. This is a relatively young area that started a few years ago. Some of the T2
FLCs are of the PI or PD type, and their derived relationships reveal them to be non-
linear variable PI or PD controllers that have variable proportional gain and integral
gain (or derivative gain) plus variable control offset. Since many T1 fuzzy PI and
PD controllers are already known to possess such structures, the structural char-
acteristics of the T2 fuzzy PI controller can be (and are) compared to those of the
corresponding T1 fuzzy PI controller. This chapter uses the derived relationships
and structure characteristics analyses for insightfully understanding and studying
the T2 FLCs and for developing their design guidelines.
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Chapter 5 also focuses on the properties of IT2 proportional plus derivative (PD)
and proportional plus integral (PI) FLCs. First, a class of IT2 PD/PI FLCs that
has lower computational requirements, but still retains the properties previewed in
Section 1.7, is introduced. The key idea is to only replace some critical T1 FSs
by T2 FSs. Experimental results are presented that demonstrate the proposed sim-
plified T2 FLC has the potential to be as robust as a conventional T2 FLC, while
lowering the computational cost. Next, a methodology is presented, which is use-
ful for theoretical studies, for deriving the analytical structure of IT2 PI/PD FLCs
that have a symmetrical rule base. The methodology extends the analytical struc-
ture technique for T1 FLCs by leveraging a property of the Karnik—Mendel (KM)
type reducer (which is derived and explained in Chapter 2) that constrains switch
points to the locations of the consequent sets. Finally, examples are presented that
illustrate how this framework may be applied to analyze IT2 FLCs.

Chapter 6 focuses on IT2 TSK FLCs. Its approach is based on rigorous math-
ematical analyses for both FLC analysis and design. It includes stability analysis
and systematic methodologies for the design of adaptive and robust control, and
introduces and provides some design approaches for practical control designs of
such FLCs. Finally it includes several examples as well as an industrial application
for modular and reconfigurable robotic systems.

Chapter 7 examines the future for T2 FLCs. Each of its sections has been written
by one or more of the authors of this book and has a futuristic flavor.



