
Chapter 1

Integers and Permutations

1.1 INDUCTION

1. In each case we give the equation that makes pk imply pk+1.

(a) k(2k − 1) + (4k + 1) = 2k2 + 3k + 1 = (k + 1)(2k + 1)

(c) 1
4k2(k + 1)2 + (k + 1)3 = 1

4 (k + 1)2(k2 + 4k + 4) = 1
4 (k + 1)2(k + 2)2

(e) 1
12k(k + 1)(k + 2)(3k + 5) + (k + 1)(k + 2)2

= 1
12 (k + 1)(k + 2)(3k2 + 17k + 24) = 1

12 (k + 1)(k + 2)(k + 3)(3k + 8)

(g) k
3 (4k2 − 1) + (2k + 1)2 = k

3 (2k − 1)(2k + 1) + (2k + 1)2

= 1
3 (2k + 1)[2k2 + 5k + 3] = 1

3 (2k + 1)(k + 1)(2k + 3)
= 1

3 (k + 1)[4(k + 1)2 − 1]

(i) 1 − 1
(k+1)! + k+1

(k+2)! = 1 − 1
(k+2)! [(k + 2) − (k + 1)] = 1 − 1

(k+2)!

2. In each case we give the inequality that makes pk imply pk+1.

(a) 2k+1 = 2 · 2k > 2 · k ≥ k + 1.

(c) If k! ≤ 2k2
, then (k + 1)! = (k + 1)k! ≤ (k + 1)2k2 ≤ 2(k+1)2 provided

k + 1 ≤ 22k+1. This latter inequality follows, again by induction on k ≥ 1,
because 22k+3 = 4 · 22k+1 ≥ 4(k + 1) ≥ k + 2.

(e) 1√
1

+ · · · + 1√
k

+ 1√
k+1

≥
√

k + 1√
k+1

=
√

k2+k+1√
k+1

≥ k+1√
k+1

=
√

k + 1.

3. In each case we give the calculation that makes pk imply pk+1.

(a) If k3 + (k + 1)3 + (k + 2)3 = 9m, then
(k + 1)3 + (k + 2)3 + (k + 3)3 = 9m − k3 + (k + 3)3 = 9m + 9k2 + 27k + 27.

(c) If 32k+1 + 2k+2 = 7m, then

32k+3 + 2k+3 = 9(7m − 2k+2) + 2k+3 = 9 · 7m − 2k+2(9 − 2).
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1.1. Induction 7

5. If 33k + 1 = 7m where k is odd, then passing to k + 2,

33(k+2) + 1 = 36(7m − 1) + 1 = 36 · 7m − (36 − 1)
= 36 · 7m − 728 = 7(36 · m − 104).

7. It is clear if n = 1. In general, such a (k + 1) digit number must end in 4, 5 or
6, and there are 3k of each by induction. We are done since 3 · 3k = 3k+1.

9. It is clear if n = 1. Given k + 1 secants, remove one and color the result unam-
biguously by induction. Now reinsert the removed secant. On one side of this
secant, leave all regions the original color (including the new regions of that side
created by the new secant). On the other side, interchange colors everywhere
(including those regions newly created). This is an unambiguous coloring.

10. (a) If k ≥ 2 cents can be made up, there must be a 2-cent or a 3-cent stamp.
In the first case, replace a 2-cent stamp by a 3-cent stamp; in the second
case, replace a 3-cent stamp by two 2-cent stamps.

(c) If k ≥ 18 can be made up, either one 7-cent stamp is used (replace with
two 4-cent stamps) or five 4-cent stamps are used (replace with three 7-cent
stamps).

11. a0 = 0 , a1 = 7, a2 = 63 = 7.9, a3 = 511 = 7 · 73. The conjecture is that 23n − 1
is a multiple of 7 for all n ≥ 0. If 23k − 1 = 7x for some n ≥ 0, then we have
23(k+1) − 1 = 23(7x + 1) − 1 = 7(23 + 1).

12. (a) If Sn is the statement “13 + 23 + 33 + · · · + n3 is a perfect square”, then
S1 is true. If k ≥ 1, assume that 13 + 23 + · · · + k3 = x2 for some integer
x. Then 13 + 23 + · · · + (k + 1)3 = x2 + (k + 1)3 and it is not clear how
to deduce that this is a perfect square without some knowledge about
how x is dependent upon k. Thus induction fails for Sn. However, if we
strengthen the statement to 13 + 23 + · · · + n3 =

[
1
2n(n + 1)

]2, induction
does go through (see Exercise 1(c)). The reason is that now the inductive
hypothesis brings more information to the inductive step and so allows the
(stronger) conclusion to be deduced.

13.
(

n
r−1

)
+

(
n
r

)
= n!

(r−1)!(n−r+1)! + n!
r!(n−r)! = n!

r!(n+1−r)! [r + (n + 1 − r)] =
(
n+1

r

)
.

14. (a)
(
n
0

)
+

(
n
1

)
+ · · · +

(
n
n

)
= (1 + 1)n = 2n by the binomial theorem (Example

6 with x = 1).

15. We use the well-ordering principle to prove the principle of induction. Let
p1, p2, p3, · · · be statements such that p1 is true and pk ⇒ pk+1 for every k ≥ 1.
We must show that pn is true for every n ≥ 1. To this end consider the set
X = {n ≥ 1 | pn is false}; we must show that X is empty. But if X is nonempty
it has a smallest member m by the well-ordering principle. Hence m /= 1
(because p1 is true), so m − 1 is a positive integer. But then pm−1 is true
(because m is the smallest member of X) and so pm is true (because
pm−1 ⇒ pm). This contradiction shows that X must be empty, as required.

17. If pn is “n has a prime factor”, then p2 is true. Assume p2, . . . , pk are all true.
If k + 1 is a prime, we are done. If k + 1 = ab write 2 ≤ a ≤ k and 2 ≤ b ≤ k,
then a (and b) has a prime factor by strong induction. Thus k + 1 has a prime
factor.
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18. (a) an = 2(−1)n an+1 = −an = −2(−1)n = 2(−1)n+1

(c) an = 1
2 [1 + (−1)n]

an+1 = 1 − an = 1 − 1
2 [1 + (−1)n] = 1

2 [2 − 1 − (−1)n] = 1
2 [1 + (−1)n+1]

19. Given n lines, another line intersects all existing lines (because no two are
parallel) at new intersection points (none of these are concurrent) and so en-
ters n + 1 regions. Hence it creates n + 1 new regions; so an+1 = an + (n + 1).
Then a0 = 1, a1 = 1 + 1, a2 = 1 + 1 + 2, a3 = 1 + 1 + 2 + 3; and this suggests
an = 1 + (1 + 2 + · · · + n). Hence Gauss’ formula (Example 1) gives

an = 1 + 1
2n(n + 1) = 1

2 (n2 + n + 2).

This is valid for n = 0; if it holds for n = k ≥ 1 then

ak+1 = ak + (k + 1) = 1
2 [(k2 + k + 2) + 2(k + 1)] = 1

2 [(k + 1)2 + (k + 1) + 2].

21. (a) Let pn denote the statement an = (−1)n. Then p0 and p1 are
true by hypothesis. If pk and pk+1 are true for some k ≥ 0, then
ak = (−1)k, ak+1 = (−1)k+1 and so

ak+2 = ak+1 + 2ak = (−1)k+1 + 2(−1)k = (−1)k[−1 + 2] = (−1)k = (−1)k+2.

Thus pk+2 is true and the principle applies.

23. p1 ⇒ p2 fails.

24. (a) Prove p1 and p2 are true.

25. If pk is true for some k, then pk−1, pk−2, . . . , p1 are all true by induction using
the first condition. Given m, the second condition implies that pk is true for
some k ≥ m, so pm is true.

27. (a) Apply the recursion theorem with s0 = a0 and sn = sn−1 + an.

1.2 DIVISORS AND PRIME FACTORIZATION

1. (a) 391 = 23 · 17 + 0 (c) −116 = (−9) · 13 + 1

2. (a) n/d = 51837/386 = 134.293, so q = 134. Thus r = n − qd = 113.

3. If d > 0, then |d| = d and this is the division algorithm. If d < 0, then
|d| = −d > 0 so n = q(−d) + r = (−q)d + r, 0 ≤ r ≤ |d|.

5. Write m = 2k + 1, n = 2j + 1. Then m2 − n2 = 4[k(k + 1) − j(j + 1)]. But
each of k(k + 1) and j(j + 1) is even, so 8 | (m2 − n2).

7. (a) 10(11k + 4) − 11(10k + 3) = 7, so d | 7. Thus d = 1 or d = 7.

9. (a) 72 = 42 + 30
42 = 30 + 12
30 = 2 · 12 + 6
12 = 2 · 6
Thus, gcd(72, 42) = 6 and
6 = 30 − 2(42 − 30)
= 3 · 30 − 2 · 42
= 3(72 − 42) − 2 · 42
= 3 · 72 − 5 · 42

(c) 327 = 6 · 54 + 3
54 = 3 · 18
Thus gcd(327 · 54) = 3 and
3 = 1 · 327 − 6 · 54
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(e) 377 = 13 · 29
Hence 29 | 377, so
gcd(29, 377) = 29. Thus
29 = 0 · 377 + 1 · 29

(g) 72 = 0 · (−176) + 72
−175 = (−3) · 72 + 41
72 = 41 + 31
41 = 31 + 10
31 = 3 · 10 + 1
Hence gcd(72,−175) = 1 and
1 = 31 − 3(41 − 31)
= 4(72 − 41) − 3 · 41
= 4 · 72 − 7(−175 + 3 · 72)
= (−17) · 72 − 7 · (−175)

11. If m = qd, then m
k = q d

k , so d
k | m

k . Similarly, d
k | n

k . If d = xm + yn, then
d
k = xm

k + y n
k , so any common divisor of m

k and n
k is a divisor of d

k .

13. It is prime for n = 1, 2, . . . , 9; but 102 + 10 + 11 = 121 = 112.

15. If d = gcd(m, n) and d1 = gcd(m1, n1), then d | m and d | n, so d | m1 and d | n1

by hypothesis. Thus d | d1.

17. If 1 = xm + yn and 1 = x1k + y1n, then

1 = (xm + yn)(x1k + y1n) = (xx1)mk + (xmy1 + yx1k + yny1)n.

Thus gcd(mk, n) = 1 by Theorem 4.
Alternatively, if d = gcd(mk, n) /= 1 let p | d, p a prime. Then p | n and

p | mk But then p | m or p | k, a contradiction either way because we have
gcd(m, n) = 1 = gcd(m, n).

19. Write d = gcd(m, n) and d′ = gcd(km, kn). We must show kd = d′. First, d | m
and d | n, so kd | km and kd | kn. Hence, kd | d′. On the other hand, write
km = qd′ and kn = pd′. We have d = xm + yn, x, y ∈ Z, so

kd = xkm + ykn = xqd′ + ypd′.

Thus d′ | kd. As k ≥ 1 it follows that d′ = kd.

21. If p is not a prime, then assume p = mn with m ≥ 2 and n ≥ 2. But then p | m
or p | n by hypothesis, so p ≤ m < p or p ≤ n < p, a clear contradiction.

23. No. If a = 18 and n = 12 then d = 6 so a
d = 3 is not relatively prime to n = 12.

25. Let them be 2k + 1, 2k + 3, 2k + 5. We have k = 3q + r, r = 0, 1, 2. If r = 0 then
3 | (2k + 3); if r = 1, then 3 | (2k + 1); and if r = 2, then 3 | (2k + 5). Thus one
of these primes is a multiple of 3, and so is 3.

27. Let d = gcd(m, pk), then d | m and d | pk. Thus d = pj , j ≤ k. If j > 0, then
p | d, so (since d | m) p | m. This contradicts gcd(m, p) = 1. So j = 0 and d = 1.

29. We have a | a1b1 and (a, b1) = 1. Hence a | a1 by Theorem 5. Similarly a1 | a,
so a = a1 because both are positive. Similarly b = b1.

30. (a) 27783 = 34 · 73

(c) 2431 = 11 · 13 · 17
(e) 241 = 241 (a prime)
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31. (a) 735 = 20 · 31 · 51 · 72 · 110 and 110 = 21 · 30 · 51 · 70 · 111. Hence
gcd(735, 110) = 20 · 30 · 51 · 72 · 110 = 5, and

lcm(735, 110) = 21 · 31 · 51 · 72 · 111 = 16170.

(c) 139 = 20 · 1391 and 278 = 21 · 1391. Hence
gcd(139, 278) = 20 · 1391 = 139, and lcm(139, 278) = 21 · 1391 = 278.

33. (a) Use Theorem 8. In forming d = pd1
1 . . . pdr

r , there are (n1 + 1) choices for
d1 among 0, 1, 2, . . . , ni; then there are (n2 + 1) choices for d2 among
0, 1, 2, . . . , n2; and so on. Thus there are (n1 + 1)(n2 + 1) · · · (nr + 1)
choices in all, and each leads to a different divisor by the uniqueness in
the prime factorization theorem.

35. Let m = pm1
1 . . . pmr

r and n = qn1
1 . . . qns

s be the prime factorizations of m and
n. Since gcd(m, n) = 1, pi /= qj for all i and j, so the prime factorization of mn

is mn = pm1
1 . . . pmr

r qn1
1 . . . qns

s . Since d | mn, we have d = pd1
1 . . . pdr

r qe1
1 . . . qes

s

where 0 ≤ di ≤ mi for each i and 0 ≤ ej ≤ nj for each j. Take m1 = pd1
1 . . . pdr

r

and n1 = qe1
1 . . . qes

s .

37. Write a = pa1
1 pa2

2 . . . par
r and b = pb1

1 pb2
2 . . . pbr

r where the pi are distinct primes,

ai ≥ 0 and bi ≥ 0. Let ui =

{
0 if ai < bi

ai if ai ≥ bi

and vi =

{
bi if ai < bi

0 if ai ≥ bi

, and then

take u = pu1
1 pu2

2 . . . pur
r and v = pv1

1 pv2
2 . . . pvr

r . Then u | a, v | b and gcd(u, v)=1.
Moreover uv = lcm(a, b) by Theorem 9 because ui + vi = max(ai, bi) for each i.

39. (a) By the division algorithm, p = 4k + r for r = 0, 1, 2 or 3. But r = 0 or 2 is
impossible since p is odd (being a prime greater than 2).

41. (a) 28665 = 32 · 51 · 72 · 110 · 131 and 22869 = 33 · 50 · 71 · 112 · 130 so,

gcd(28665, 22869) = 32 · 50 · 71 · 110 · 130 = 63
lcm(28665, 22869) = 33 · 51 · 72 · 112 · 131 = 10, 405, 395

43. Let X = {x1a1 + · · · + xkak | xi ∈ Z, x1a1 + · · · + xkak ≥ 1}. Then X /=∅
because a2

1 · · · + a2
k ∈ X, so let m be the smallest member of X. Then

m = x1a1+ · · · + xkak for integers ak, so we show d = m. Since d | ai for each
i, it is clear that d | m. We can show m | d, if we can show that m is a com-
mon divisor of the ai (by definition of d = gcd(a1, · · · , ak)). Write a1 = qm + r,
0 ≤ r < m. Then

r = a1 − qm = (1 − qx1)a1 + (−qx2)a2 + · · · + (−qxk)ak,

and this contradicts the minimality if r ≥ 1. So r = 0 and m | a1. A similar
argument shows m | ai for each i.

45. (a) Let m = qn + r, 0 ≤ r < n. If m < n, then q = 0 and r = m. If m ≥ n, then
q ≥ 1. Thus q ≥ 0. We want x ∈ Z such that 2m − 1 = x(2n − 1) + (2r − 1).
Solving for x (possibly in Q):

x =
2m − 2r

2n − 1
= 2r

(
2m−r − 1
2n − 1

)
= 2r

(
(2n)q − 1
2n − 1

)
.

If q = 0, take x = 2r = 2m; if q > 0, take x = (2n)q−1 + · · · + 2n + 1.
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1.3 INTEGERS MODULO n

1. (a) True. 40 − 13 = 3 · 9
(c) True. −29 − 6 = (−5)7

(e) True. 8 − 8 = 0 · n for any n.

(g) False. 84 ≡ (64)2 ≡ (−1)2 ≡ 1 (mod 13).

2. (a) 2k − 4 = 7q, so q is even. Thus k = 2 + 7x for some integer x; that is
k ≡ 2 (mod 7).

(c) 2k ≡ 0 (mod 9), so 2k = 9q. Thus 2 | q, so k = 9x for some integer x; that
is k ≡ 0 (mod 9).

3. (a) 10 ≡ 0 (mod k), so k | 10: k = 2, 5, 10.

(c) k2 − 3 = qk, so k | 3. Thus k = 1, 3 so, (as k ≥ 2 by assumption) k = 3.

5. (a) a ≡ b (mod 0) means a − b = q · 0 for some q, that is a = b.

6. (a) a ≡ a for all a because n | (a − a). Hence if n | (a − b), then n | (b − a).
Hence if a − b = xn and b − c = yn, x, y ∈ Z, then a − c = (x + y)n.

7. If n = pm and a ≡ b(mod n), then a − b = qn = qpm. Thus a ≡ b(mod m).

8. (a) In Z7 : 10 = 3̄, so 102 = 9̄ = 2̄, 103 = 6̄ = −1, 106 = 1̄. Since
515 = 6 · 85 + 5 we get 10515 = (106)85 · 105 = 1̄85 · 102 · 103 = 2̄ · (−1) = 5̄.
Hence 10515 ≡ 5(mod 7).

9. (a) In Z10 : 3̄2 = 9̄ = −1, so 3̄4 = 1̄. Since 1027 = 4 · 256 + 3, we get
3̄1027 = (3̄4)256 · 3̄3 = 1̄256 · 27 = 7̄. The unit decimal is 7.

11. p̄ = 0̄, 1̄, 2̄, 3̄, 4̄, 5̄ in Z6. If p̄ = 0̄, 2̄, 4̄ then 2 | p; if p̄ = 3̄, then 3 | p. So p̄ = 1̄ or
p̄ = 5̄.

12. (a) ā = 0̄, 1̄, 2̄, 3̄ in Z4, so ā2 = 0̄, 1̄, 0̄, 1̄ respectively.

13. ā = 0̄, 1̄, . . . , 10 in Z11. Taking each case separately:

0̄5 = 0̄ 6̄5 = (−5)
5

= −55 = −1

1̄5 = 1̄ 7̄5 = (−4)
5

= −45 = −1

2̄5 = 32 = −1 8̄5 = (−3)
5

= −35 = −1

3̄5 = 9̄ · 27 = 9̄ · 5̄ = 1̄ 9̄5 = (−2)
5

= −25 = 1̄

4̄5 = 16 · 64 = 5̄ · 9̄ = 1̄ 105 = (−1)
5

= −1
5̄5 = 25 · 25 · 5̄ = 3̄ · 3̄ · 5̄ = 1̄

15. One of a, a + 1 must be even so 2 | a(a + 1)(a + 2); similarly, one of a,
a + 1, a + 2 is a multiple of 3 [in fact a ≡ 0 means 3 | a, a ≡ 1 means 3 | a + 2,
and a ≡ 2 means 3 | a + 1]. Hence 3 | a(a + 1)(a + 2). But 2 and 3 are relatively
prime so 2 · 3 = 6 also divides a(a + 1)(a + 2). Hence

ā(ā + 1̄)(ā + 2̄) = a(a + 1)(a + 2) = 0̄ in Z6.
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17. Since ā = 0̄, 1̄, . . . , 5̄ in Z6, we examine every case.

0̄3 = 0̄ 3̄3 = 27 = 3̄

1̄3 = 1̄ 4̄3 = (−2)
3

= −(2̄)3 = −2 = 4̄

2̄3 = 8̄ = 2̄ 5̄3 = (−1)
3

= −1 = 5̄

Hence ā3 = ā in all cases.

18. (a) Since ā = 0̄, 1̄, . . . , 4̄ in Z5, it suffices to show each of these is a cube
in Z5. Look at the cubes in Z5 : 0̄3 = 0̄, 1̄3 = 1̄, 2̄3 = 3̄, 3̄3 = 2̄, and
4̄3 = (−1)

3
= −1̄ = 4̄. Thus every residue 0̄, 1̄, 2̄, 3̄, 4̄ is a cube in Z5.

19. (a) Since k̄ = 0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄ in Z7, we get k̄2 + 1̄ = 1̄, 2̄, 5̄, 3̄, 3̄, 5̄, 2̄ respectively.
Clearly k̄2 + 1̄ = 0̄ does not occur in Z7.

21. We have n = d0 + 10d1 + 102d2 + · · · + 10kdk.
(a) 10 = 1̄ in Z3, so n̄ = d0 + 1̄ · d1 + 1̄2d2 + · · · + 1̄kdk = d0 + d1 + · · · + dk.

Thus n̄ = d0 + d1 + · · · + dk(mod 3).

22. (a) By the euclidean algorithm,
35 = 2 · 13 + 9
13 = 1 · 9 + 4
9 = 2 · 4 + 1

so
1 = 9 − 2(13 − 9)

= 3(35 − 2 · 13) − 2 · 13
= 3 · 35 − 8 · 13

.

Hence (−8) · 13 ≡ 1(mod 35), so −8 = 27 is the inverse of 13 in Z35. Then
13 · x̄ = 9̄ gives x̄ = 27 · 13 · x̄ = 27 · 9̄ = −8 · 9̄ = −72 = −2 = 33.

(c) Euclidean algorithm:
20 = 11 + 9
11 = 9 + 2
9 = 4 · 2 + 1

so

1 = 9 − 4(11 − 9)
= 5 · 9 − 4 · 11
= 5(20 − 11) − 4 · 11
= 5 · 20 − 9 · 11

.

Hence the inverse of 11 is −9 = 11, so 11 · x̄ = 16 gives x̄ = 11 · 16 = 16.

23. (a) Let d̄ be the inverse of ā in Zn, so d̄ · ā = 1̄ in Zn, then multiply ā · b̄ = ā · c̄
by d̄ to get d̄ · ā · b̄ = d̄ · ā · c̄, that is 1̄ · ā = 1̄ · c̄, that is ā = c̄.

24. (a) If c̄ and d̄ are the inverses of ā and b̄ respectively in Zn, then c̄ · ā = 1̄ and
d̄ · b̄ = 1̄. Multiplying, we find c̄ · ā · d̄ · b̄ = 1̄, that is (c̄ · d̄)(ā · b̄) = 1̄. Hence
c̄ · d̄ is the inverse of ā · b̄ = ab in Zn.

25. (a) Multiply equation 2 by 2̄ to get 10x + 2̄y = 2̄. Subtract this from equation
1: 7̄x = 1̄. But 8̄ · 7̄ = 1̄ in Z11, so x = 8̄ · 1̄ = 8̄. Then equation 2 gives
y = 1̄ − 5̄ · 8̄ = 5̄.

(c) Multiply equation 2 by 2̄ to get 3̄x + 2̄y = 2̄. Comparing this with the first
equation gives 1̄ = 3̄x + 2̄y = 2̄, an impossibility. So there is no solution to
these equations in Z7. (Compare with (a)).

(e) Multiply equation 2 by 2̄ to get 3̄x + 2̄y = 1̄, which is just equation 1. Hence,
we need only solve equation 2. If x = r̄ is arbitrary in Z7 (so r̄ = 0̄, 1̄, . . . , 6̄),
then y = 4̄ − 5̄x = 4 − 5r. Thus the solutions are:

x 0̄ 1̄ 2̄ 3̄ 4̄ 5̄ 6̄

y 4̄ 6̄ 1̄ 3̄ 5̄ 0̄ 2̄
.
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27. If an expression x2 + ax is given where a is a number, we can
complete the square by adding

(
1
2a

)2. Then x2 + ax +
(

1
2a

)2 = (x + 1
2a)2. The

same thing works in Zn except 1
2 is replaced by the inverse of 2̄ if it exists.

(a) x2 + 5̄x + 4̄ = 0̄ means x2 + 5̄x = 3̄ in Z7. The inverse of 2̄ is 4̄ in Z7, so
the square is completed by adding (4̄ · 5̄)2 = 1̄ to both sides. The result is

(x + 6̄)2 = x2 + 5̄x + 1̄ = 3̄ + 1̄ = 4̄.

The only members of Z7 which square to 4̄ are 2̄ and −2 = 5̄. (See Exercise
26.) Hence x + 6̄ = 2̄ or 5̄; that is x = 3̄ or 6̄.

(c) x2 + x + 2̄ = 0̄ gives x2 + x = 3̄ in Z5. The inverse of 2̄ is 3̄ in Z5, so add
3̄2 = 4̄ to both sides

(x + 3̄)2 = x2 + x + 4̄ = 3̄ + 4̄ = 2̄.

But 2̄ is not a square in Z5 [0̄2 = 0̄, 1̄2 = 4̄2 = 1̄, 2̄2 = 3̄2 = 4̄], so there is
no solution.

(e) Since n is odd, gcd(2, n) = 1, so 2̄ has an inverse in Zn; call it r̄. Now
x2 + āx + b̄ = 0̄ in Zn means x2 + āx = −b. Complete the square by adding
(r̄ · ā)2 = ra2 to both sides. The result is

(x + ra)2 = x2 + ā + ra2 = −b + ra2 = (r̄2ā2 − b̄).

Thus, there is a solution if and only if (r̄2ā2 − b̄) is a square in Zn.

29. (a) Let ā · b̄ = 0̄ in Zn. If gcd(a, n) = 1, then a has an inverse in Zn, say
c̄ · ā = 1̄. Then b̄ = 1̄ b̄ = c̄ · ā · b̄ = c̄ · 0̄ = 0̄.

31. (1) ⇒ (2). Assume (1) holds but n is not a power of a prime. Then n = pka
where p is a prime, k ≥ 1, and a > 1 has p |/ a. Then gcd(n, a) = a > 1, so ā has
no inverse in Zn. But ān /= 0̄ too. In fact ān = 0̄ means n | an whence p | an.
By Euclid’s lemma, this implies p | a, contrary to choice.

33. In Z223, 2̄8 = 256 = 33. Thus 2̄16 = 332 = 197, 2̄32 = 1972 = 7̄, and finally
2̄37 = 2̄32 · 2̄5 = 7̄ · 32 = 224 = 1̄. Similarly, in Z641,

2̄8 = 256, 2̄16 = 2562 = 154, 2̄32 = 1542 = 640 = −1.

34. (a) If ax ≡ b has a solution x in Zn, then b − ax = qn, q an integer, so
b = ax + qn. It follows that d = gcd(a, n) divides b. Conversely, if d | b write
b = qd, q an integer. Now d = ra + sn for integers r and s (Theorem 3 §1.2),
so b = qd = (qr)a + (qs)n. Thus, (qr)a ≡ b(mod n) and we have our
solution.

35. Working modulo p, x2 = 1̄ means x2 − 1̄ = 0̄. Thus (x − 1̄)(x + 1̄) = 0̄ in Zp,
so x = 1̄ or x = −1̄ by Theorem 7.

37. (a) If n = p2m and a = pm, then a /≡ 0(mod n) and a2 ≡ 0(mod n). Hence
an /≡ a.

1.4 PERMUTATIONS

1. (a) τσ =

(
1 2 3 4 5
2 3 5 1 4

)
(c) τ−1 = τ =

(
1 2 3 4 5
3 2 1 5 4

)
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(e) μτσ−1 =

(
1 2 3 4 5
4 5 2 3 1

)

3. (a) χ = σ−1τ =

(
1 2 3 4
4 2 3 1

)
(c) χ = στ =

(
1 2 3 4
1 3 2 4

)

(e) χ = τ−1εσ−1 = τ−1σ−1 =

(
1 2 3 4
1 3 2 4

)

5. Solution 1. We must have σ1 = 1, 2, 3 or 4; in each case we find σ1 = σ3, a
contradiction.

If σ1 = 1 :
τ1 = τσ1 = 2
σ2 = στ1 = 2
τ2 = τσ2 = 3
σ3 = στ2 = 1

If σ1 = 2 :
τ2 = τσ1 = 2
σ2 = στ2 = 1
τ1 = τσ2 = 3
σ3 = στ1 = 2

If σ1 = 3 :
τ3 = τσ1 = 2
σ2 = τσ3 = 4
τ4 = τσ2 = 3
σ3 = στ4 = 3

If σ1 = 4 :
τ4 = τσ1 = 2
σ2 = στ4 = 3
τ3 = τσ2 = 3
σ3 = στ3 = 4

Solution 2. Let σ =

(
1 2 3 4
a b c d

)
. Then we show στ = (a b c d) is a

cycle, contrary to στ = (1 2)(3 4) :

σ1 = a ⇒ τa = τσ1 = 2 ⇒ στa = σ2 = b

σ2 = b ⇒ τb = τσ2 = 3 ⇒ στb = σ3 = c

σ3 = c ⇒ vτc = τσ3 = 4 ⇒ στc = σ4 = d

σ4 = d ⇒ τd = τσ4 = 1 ⇒ στd = σ1 = a

6. If σk = k, then σ−1k = σ−1(σk) = k. If also τk = k, then (τσ)k = τ(σk)
= τk = k.

7. (a) Here σ =

(
1 2 3 4 5
1 a b c d

)
where a, b, c, d are 2, 3, 4, 5 in some order.

Thus there are 4 choices for a, 3 for b, 2 for c, and 1 for d; and so we have
4 · 3 · 2 · 1 = 4! = 24 choices in all for σ.

(b) Now σ =

(
1 2 3 4 5
1 2 a b c

)
where a, b, c are 3, 4, 5 in some order. As in

(a), there are 3 · 2 · 1 = 3! = 6 choices in all for σ.

8. (a) If στ = ε, then σ = σε = σ(ττ−1) = (στ)τ−1 = τ−1.

9. If σ = τ , then στ−1 = ττ−1 = ε; if στ−1 = ε, then

τ = ετ = (στ−1)τ = σ(τ−1τ) = σε = σ.
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11. (a)

(
1 2 3 4 5 6 7 8 9
8 2 6 1 9 4 5 7 3

)

12. (a) ε, σ = (1 2 3), σ2 = (1 3 2), τ = (1 2), στ = (1 3), σ2τ = (2 3).
These are all six elements of S3. We have σ3 = σσ2 = ε, τ2 = ε and hence
τσ = (2 3) = σ2τ .

13. (a) σ = (1 4 8 3 9 5 2 7 6); σ−1 = (1 6 7 2 5 9 3 8 4)
(c) σ = (1 2 8)(3 6 7)(4 9 5); σ−1 = (1 8 2)(3 7 6)(4 5 9)
(e) σ = (1 3 8 7 2 5); σ−1 = (1 5 2 7 8 3)

15. (a) ε, (1 2 3 4 5), (1 2 3 4), (1 2 3), (1 2 3)(4 5), (1 2), (1 2)(3 4)

17. (a) σ−1 = (4 3 2 1)(7 6 5).

19. They are factored into disjoint cycles in the solution to Exercise 13, so the
parities are:

(a) even (c) even + even + even = even (e) odd

21. (a) We have γ2
i = ε for all i because the γi are transpositions. Hence

(γ1γ2 . . . γm)(γmγm−1 . . . γ2γ2) = (γ1γ2 . . . γm−1)(γm−1 . . . γ2γ1) = . . . = ε.
Now use Exercise 8(a).

(c) If σ and τ are products of k and m transpositions respectively, then τ−1 is
also a product of m transpositions (by (a)) so τστ−1 is a product of k + 2m
transpositions. This has the same parity as k.

23. Let σk = 1 for some k /= 1. Then, as n ≥ 3, choose an m /∈ {k, 1}. Now let
γ = (k, m). This gives γσk = γ1 = 1, but σγk = σm /= 1, since if σm = 1 = σk,
then m = k as σ is one-to-one, contrary to assumption.

25. It suffices to show that any pair of transpositions is a product of
3-cycles. If k, l, m and n are distinct, this follows from

(k l)(m n) = (k m l)(k m n), (k l)(k m) = (k m l), and (k l)2 = ε.

27. (a) Both sides have the same effect on each ki, and both sides fix each
k /∈ {k1, k2, . . . kr}.

(c) Using Exercise 26, we have for all a = 1, 2, . . . , n − 1:

(1 a + 1) = (1 a)(a a + 1)(1 a) (*)

Now if σ ∈ Sn, write it as a product of factors (1 n). Use (*) to write each
(1 n) as a product of (1 2), . . . , (1 n − 1), and (n − 1 n). Then write each
(1, n − 1) in terms of (1 2), . . . , (1 n − 2) and (n − 2, n − 1). Continue. The
result is (c).

28. (a) σ = (1 2 3 4 . . . 2k − 1 2k) so σ2 = (1 3 5 . . . 2k − 1)(2 4 6 . . . 2k).

(c) The action of σ is depicted in the diagram,
and carries k → k + 1 → k + 2 . . .. If k + m >
n, the correct location on the circle is given by
the remainder r when k + m is divided by n,
That is k + m ≡ 4(modn. Now the action of
σm is σmk = k + m, so σmk ≡ k + m mod n.

1

2

3

k
k + 1

n - 2

n - 1
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29. Each of σ and τ may be either even or odd, so four cases arise. They are the
rows of the following table. The parity of στ in each case is clear, and so the
result follows

σ τ στ sgn στ sgn σ sgn τ

E E E 1 1 1
E O O −1 1 −1
O E O −1 −1 1
O O E 1 −1 −1

by verifying, sgn σ·sgnτ = sgn(τ) in every case.


