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1.1 Introduction

In the analysis of discrete data, for ex-
ample, count data analyzed under a Pois-
son model, or binary data analyzed under
& binomial model quite often the empiri-
cal variance exceeds the theoretical vari-
ance under the presumed model. This
phenomenon is called overdispersion. If
overdispersion is ignored, standard errors
of parameter estimates will be underesti-
mated, and therefore p-values for tests and
hypotheses will be too small, leading to
incorrectly declaring a predictor as signifi-
cant when in fact it may not be.

The Poisson and binomial distributions
are simple models but have strict assump-
tions. In particular, they assume a spe-
cial mean~-variance relationship since each
of these distributions is determined by &
single parameter. On the other hand, the
normal distribution is determined by two
parameters, the mean u and variance o2,
which characterize the location and the
spread of the data around the mean. In
both the Poisson and binomial distribu-
tions, the variance is fixed once the mean
or the probability of success has been de-
fined.

Hilbe {25] provides a very comprehen-

sive discussion of what he calls apparent
overdispersion, which refers to scenarios
in which the data exhibit variation be-
youd what can be explained by the model
and this lack of fit is due to several “fix-
able” reasons. These reasons may be omit-
ting important predictors in the model,
the presence of outliers, omitting impor-
tant interactions as predictors, the need
of a transformation for a predictor, and
misspecifying the link function for relat-
ing the mean response to the predictors.
Hilbe [25] also discusses how to recognize
overdispersion, and how to adjust for it
when i% is present beyond apparent cases,
and provides an excellent overall review of
the topic.

H is important to note that if apparent
overdispersion has been ruled out, in log-
linear or logistic analyses, the point esti-
mates of the covariate effects will be quite
similar regardless of whether overdisper-
sion is accounted for or not. Hence, treat-
ment and other effects will not be aberrant
or give a hint of the presence of overdisper-
sion. As well, this suggests that adjusting
for overdispersion can be handled through
adjustments of variance estimates [35].

Evidence of apparent or real overdisper-
sion exists when the Pearson or deviance
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residuals are too large {6]; the correspond-
ing Pearson and deviance goodness-of-fit
statistics indicate a poor fit. Several tests
have been developed for overdispersion in
the context of Poisson or biromial analy-
ges [11, 12, 54|, as well as in the context of
zero-heavy data [30, 51, 53, 52].

1.2 Overdispersed Binomial
and Count Models

1.2.1 Overdispersed Binomial
Model

In the binomial context, overdispersion
typically arises because the independence
assumption is viclated. This is commonly
caused by clustering of responses; for in-
stance, clinics or hospitals may induce a
clustering effect due to differences in pa-
tient care strategies across institutions.

Let ¥; denote a binomial response for
cluster i, 1 = 1,..., M, which results in
the sum of m; binary outcomes Yi;, that
is, ¥; = EJ , Yi;, where 7 denotes individ-
uwal j, 7 = L,...,my. If Y}, are indepen-
dent binary vanables taking values 0 or 1
with probabilities {1 — p;) and p;, respec-
tively, then E(Y;) = m;p; and var(¥;) =
m;p;(1 —p;). If there exists correlation be-
tween two responses in any given cluster,
with corr(Yy;, Yik) = ¢ > 0, then

Ef:) =
var(¥;) =

mypy, and
mipi(L — pi}{1 +(ms — 1)),
ey

leading to overdispersion. Note that ¢y < 0
leads to underdispersion. If we consider
p;8 as random variables with E{(p;) = =
and var(p;} = ¥m(l — w), then the un-
conditional mean and variance also have
the form of (1). And if we further as-
sume that the p; follow Beta{a, 8) distri-
bution, the distribution of ¥; is the =o
called beta-binomial distribution, which
has been studied extensively (see, for

example, Hinde and Demétrio [26] and
Molenberghs et al. [37]).

1.2.2 Overdispersed Poisson
Model

Poisson and overdispersed Poisson data
are examples of data from counting pro-
cesses that arise when individuals expe-
rience repeated cccurrence of events over
time. Such data are known as recur-
rent event date (see, for example, Cook
and Lawless [10] and Juarez-Colunga [29]).
Consider M individuals each monitored for
occurrence of events from a start time 0
through time 7;, called the fermination
time, i = 1,...,M. Let {N;(t),t > 0} be
the right-continuous counting process that
records the number of events for individual
i over the interval [0,t]. The termination
time is here assumed to be independent of
the counting process {N;(t),t > 0}. Let
the intensity of the counting process be
MNEHE) = lima, Pf{”‘ﬁ“””‘ 20)3

where H;{t) = {Nf(s) 10 < 5 <t} rep-
resents the history of the process up to
time ¢. This intensity represents the in-
stantaneous probability of occurrence of
an event at time t. If the counting pro-
cess is Poisson, given the memoryless prop-
erty of the Poisson process, the intensity
only depends on the history through t,
Mt H(E)) = Ai(t), and the expected num-
ber of events over the entire follow-up can
be written as piy = [, AMt)dt. Let the
total number of events in the entire fol-
lowup be n;, for individual 4; then nsy
follows a Poisson distribution with mean
fi+ = E(niy) = var(ni).

Two types of data are common in count-
ing processes, and we will consider both
here in the context of overdispersion: (1)
individual ¢ gives rise to n;+ event times
recorded as £t <t < o0 < iy, < Ti
and (£) only counts within specific follow-
up times 0 = Ty <« T51 < ... < The, =
7; are available; these are called panel
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counts and are denoted ny, = Ny(Tip) ~
Ni(Tip—1), p = 1,2+ &y, with the total
aggregated count for individual ¢ denoted

£
E Thip = My
p=1

A simple way to incorporate overdisper-
sion is through the use of an individual-
specific random effect ;. Given v, and the
covariate vector ; corresponding to the
tth individual, the counting process N;(f)
may be modeled as a Poisson process with
intensity functicn

Milt; ) = vip(t; ey exple, ), (2)

where p is a twice-differentiable baseline in-
tensity function, depending on the parame-
ter o, and 3 are the regression effects. We
may take E{1;) = 1 without loss of gen-
erality, and let var(v;) = ¢. The function
Alt; =) is now interpreted as a population
average rate function among subjects with
covariate vector ®, since E(dN(t)lx) =
Aft;x)dt. In addition to representing co-
variates unaccounted for, ; may also be
a cluster effect, taking the same value for
all individuals within the same cluster.
This can be used to account for unknown
clinic effects, for example, where individ-
uals are patients clustered within clinies.
When v; follows a gamma distribution, the
marginal distribution of n;, is negative bi-
nomial. The variance of the count of to-
tal agpregated events n;y has the form
E(ni+) + $E(ni )2, -

Let the expected number of events over
the entire follow-up [0,7] be pyy =
R;exp(x}3), where R; = fDT“ p(t; a)dt
is called the cumulative baseline intensity
function. Similarly, defining the cumula-
tive baseline mtensu:y function in panel pe-
riod p as Rip = fT”’ (¢; a)dt, we have
tip = E(nip) = Ryp EXP(-’B B).

The likelihood function based on contin-
ucus or panel follow-up can be expressed
in the same framework as follows. Let

= (@,a,¢), and let w;p; be the time of
the Ith event, from the start of the study,
for the ith individual in panel period p, ¢ =
,...,M,p=1,...,e,1=1,...,n4p The
likelihood based on either the full data,
consisting of event times (subscripted by
d = f), or the panel data (subscripted by
d = p) factorizes as:

L4(0) = Lag()L(6), de{f,p} (3)
where
M e My
Loste) = [T TTT] 22252,
i1 pel =1
and
Lo pla)

A

€4 i,
" e JIL(RE) |
Toidy oo oy Mgy =1 Ri !

L(e) = (th-‘t—i- e

1‘*1
Xe "““‘+(n D76 dy;
(6)

is the likelihood for a mixed Poisson model
based on the total counts observed for in-
dividual i. The likelihood L(@) becomes
the negative binomial if »; is gamma dis-
tributed (i.e., G(;.) is & gamma distri-
bution). If there is a single panel, Ly{(8)
jsee Equation (3)] will reduce to the sim-
ple mixed Poisson kernel, L{#), where the
response is the total count of events in the
entire follow-up time,

Overdispersed recurrent event counts are
often encountered in trials where the main
interest is to test whether certain treat-
ments are effective in reducing the recur-
rences of events, as illustrated in the ex-
ample Section 1.2.3. In this case, the
s are parametrized such that the treat-
ment effects are measured relative to treat-
ment 1, so that §; reflects the overall
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mean and o describes the shape of the
intensity function p{t,); common forms
of p(t, @) are exponential {exp{at)) and
Weibull (at*~1),

1.2.3 Example

Consider a clinical trial, conducted by
the Veterans Administration Ce-operative
Urological Research Group, that studied
the effects of placebo pills, pyridoxine pills,
and periodic instillation of thiotepa into
the bladder on the frequency of recurrence
of bladder cancer [8]. The data appear in
Andrews and Herzberg [2]. All 116 pa-
tients had bladder cancer when they en-
tered the study; the tumors were removed,
and the patients were randomly assigned
te one of the three treatments. Here we
consider estimation of the treatment ef-
fect under both a design with continuous
follow-up, as in the study, and an artifi-
ctal design, for illustrative purposes, with
2 equally spaced scheduled follow-up visits
over 64 months; for the panel design, we
record information on event recurrences at
the scheduled follow-up times and at ter-
mination times.

Table 1 reports parameter estimates and
their standard errors of a Weibull baseline
model for both Poisson and negative bino-
mial analyses, under a 2-panel design as
well as an analysis of the full data based
on continuous follow-up. Based on both
2-panet and full data analyses there is sub-
stantial overdispersion in the data, with
¢ = 1.351 in the analysis based on con-
tinuous follow-up. The estimate of the
Weibull shape parameter a is quite close
to unity, and the standard errors of the
regression parameter estimates from the
overdispersed model are significantly larger
than those from the simple Poisson analy-
ses. The latter leads to a significant protec-
tive effect of thiotepa treatment (83} based
on the Poisson analysis, but not based on
the overdispersed model,

1.3 Other Approaches to
Account for
Overdispersion

1.3.1 Generalized Linear
Mixed Model

A general class of models that encompasses
the incorporation of several random effects,
not necessatily independent, is generalized
linear mixed models. This may include
an individual-specific random effect, as dis-
cussed above and also more complex struc-
tures that can accommodate dependencies
in outcome variables as well as in random
effects. A generalized linear mixed model
specifies that

glpy =B+ 2y (7)

where g and x; are the mean of the re-
sponse and the vector of covariates, cor-
responding to the ith individual, respec-
tively; z; is a vector of covariates determin-
ing the random effects structure, and the
vector of random effects ~ is distributed
with a mean of zero and finite variance ma-
trix; g is the link function. Conditional
on =, the responses are assumed to have a
distribution in the exponential family, for
example, Poisson or binomial.

Maximum likelihood estimation involves
g-dimensional integration, where q is the
dimension of +; often random effects are
assumed to be Gaussian.  Tuerlinckx
et al. [47] provide a review of methods
used for estimation of generalized linear
mixed models, discussing methods used to
approximate the integral when integrat-
ing over the random effects distribution
and methods that approximate the inte-
grand of the marginal likelihood. Within
the first set of methods, quadrature,
Monte Carlo-based numerical methods,
and expectation-maximization algorithms
are reviewed; within the second, which
approximate the integrand, Laplace’s and
quasi-likelihood methods are considered,
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Table 1: Parameter estimates (Est) and their standard errors (SE), resulting from the
Poisson and negative binomial (NB) likelihood fit to the bladder cancer data. The regres-
sion parameters 5, J2, 3 correspond to the three treatment groups, parametrized with
respect to the placebo, and o parametrizes the baseline intensity function.

With overdispersion present, the use of
the Poisson or binomial maximum likeli-
hood equations for estimating the regres-
sion parameters in the mean is still valid.
The usual likelihood equations obtained as-
suming a generalized linear model are un-
biased, estimating equations regardless of
any misspecification of the variance struc-
ture. Hence, an alternate approach to the
use of generalized linear mixed models is
to use the corresponding generalized linear
model and adjust variance estimates. In
this case, often as a final step, the variance
is estimated by the sandwich estimator for-
mula, which is an empirical estimator; this
approach has become very popular in the
last few decades [31, 46].

Nonparametric approaches for handling
random effects have also been developed.
Lindsay {32] provides a classic comprehen-
sive source on the topic. More recently,
Béhning and Seidel [3} provide a review
of advances in estimation in mixture mod-
els, including nonparametric estimation,
the EM algorithm, likelihood ratio tests
for testing the number of components in
the mixture, special mixtures such as zero-
inflated Poisson models, multivariate mix-
tures, and testing and adjusting for hetero-
geneity. Groeneboom et al. {20] propose
an algorithm, called the support reduc-

Full Data 2-Panel Data
Poisson NB Poisson NB
Est SE Est SE Est SE Est SE
8| -2.852  0.262 | -2.955 0.318 || -2.355 0.394 | -2.483 0.474
Ga 1 0.008 0.170 | 0.132 0.332 1 0.016 0.170| 0.114 0.328
Gz | «0.403 0.184 | -0.282 0.323 || ~-0.406 0.184 | -0.299 0.320
o 0.096 0.066 | 1.019 0.069 || 0.858 0.106 | 0.883 0.123
i) 1.351 0.318 1.329 0.315

tion algorithm, to estimate M-estimators
in mixture models through iterative uncon-
strained optimization. Wang [50] proposes
three algorithms based on the constrained
Newton method [49] to estimate semipara-
metric mixture models. In these, the mix-
ture distribution G is left unspecified and
a finite-dimensional parameter 8 is com-
mon to all mixture components. The three
methods are based on () alternating esti-
mation of parameters G and 8, (2) profiling
the likelihood, and (8) modifying the sup-
port set; they all use the constrained New-
ton method and an additional optimization
algorithm for unconstrained problems.

There have been some efforts in combin-
ing models that account both for overdis-
persion and clustering effects, the latter
perhaps arising from longitudinal measure-
ments. Booth et al. [4] propose a negative
binomial model to account for overdisper-
sion, which incorporates random effects, in
the linear predictor of the mean, to account
for such clustering effects; numerical meth-
ods or the EM algorithm is proposed for
estimation. Along the same lines, Molen-
berghs et al. [36] discuss a similar model
with gamma and normal random effects to
account for overdispersion and clustering
effects and Molenberghs et al. [37] gener-
alize the model to a family of generalized
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linear models for repeated measures with
nermal and conjugate random effects. Iddi
and Molenberghs {27} discuss a marginal-
ized model to account for overdispersion
and longitudinal correlation.

Serial correlation may also be accom-
modated, in addition to overdispersion,
through Gaussian time series [23]. Jowa-
heer and Sutradhar [28] use generalized es-
timating equations to account for autocor-
relation structures as well as overdisper-
sion in longitudinal counts. Parameters are
estimated via a two-stage iterative proce-
dure. Henderson and Shimakura {24] and
Fiocco et al. [18] discuss a model that, con-
ditional on a frailty, follows a Poisson dis-
tribution for counts of events and uses a
gamma serially correlated process to model
dependency between observations arising
from the same individual. In this gener-
alization of the individual frailty model,
the random effects are first-order autocor-
related. Henderson and Shimakura [24]
estimate the parameters of the model us-
ing a composite likelihocod method based
on pairs of time points, while Fiocco et
al. [18] discuss an alternative approach us-
ing a two-stage procedure. In the two-stage
procedure all parameters except the frailty
correlation are estimated at the first stage
while, in the second stage, the correlation
of the frailties is estimated, based on pairs
of observations.

1.3.2 Zero-Inflated Models

Sometimes apparent overdispersion is in-
duced by the presence of another mode
in the data, often at 0. In these cases,
the remedy is to fit a model that handles
the extra zeros that cannot be accounted
for through the Poisson distribution [7,
40]. However, it may alse occur that there
is overdispersion hevond zerc-inflation, in
which case models accounting for both ex-
tra zeros and overdispersion have been de-
veloped, for example, the zero-inflated neg-

ative binomial [19]. There has been great
interest in the last decade in accounting as
well for correlation structures such as lon-
gitudinal, cluster, or spatial components.
Ainsworth [1] provides a review of zero-
inflated models, peointing out several ref-
erences, mainly in the field of environmen-
tal statistics, that address such challenges
in zero-heavy models. Hall [22] consid-
ers the challenges of simultaneously mod-
eling within—and between—subject het-
erogeneity, while Dobbie and Welsh {14]
consider serial correlation; both of these
are framed in the context of zero-heavy
count data models. Along the same lines,
Wan and Chan [48] discuss a modeling ap-
proach based on a geometric process that
accounts for overdispersion in zero-heavy
models and, additionally, can handle serial
correlation.

1.4 Underdispersion

Underdispersion is less common, but also
found in count and binary data. Ridout
and Besbeas [41] review methods for deal-
ing with underdispersed counts, includ-
ing (1) weighted Poisson models, in which
weights are assigned to each probability
density value [9,13]; (2) double Poisson
models, in which the distribution has one
more parameter # than the Poisson and
E(X) =~ A and var(X) = A/8 [15]; (3)
birth processes, which are generalizations
of Poisson processes in which the birth rate
at any time is a function of the number of
events that have already occurred [16,17];
[for example, Bosch and Ryan [5] propose
a class of distributions A\ = n(k + 1)°,
where 4 < 0 corresponds to underdisper-
sion, § > 0 to overdispersion, and § = 0
reduces to Poisson distribution}; (4) so-
called COM-Poisson models, which are a
generalization of the Poisson with one more
parameter (v} that allows it to represent
under- and overdispersion with respect to
Poisson {45, 44| [they can also be seen as
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a weighted Poisson with weights {k!1~)].
Recently, Sellers et al. [43] provided a sur-
vey of the methods and applications re-
lated to the COM-Poisson models. Grun-
wald et al. [21] propose a birth-event pro-
cess approach to model correlated over- or
underdispersed data; this model can han-
dle correlation due to clustering or serial
correlation.

1.5 Software Notes

Software for incorporating overdispersion
includes SAS [42], using, for instance, pro-
cedures LOGISTIC, GENMOD, GLIM.-
MIX, and NLMIXED, and R [39] using,
for example, packages glm, lmer, and Imed.
Parametric mixture models can also be
conducted in the MCMC framework using
WinBUGS [34], OpenBUGS [38], JAGS
[38], or the package meme in R.
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