
1
Models of Computation and
Complexity Classes

O time! thou must untangle this, not I;
It is too hard a knot for me to untie.

— William Shakespeare

The greatest friend of truth is time.
— Charles Caleb Colton

The notions of algorithms and complexity are meaningful only when they
are defined in terms of formal computational models. In this chapter,
we introduce our basic computational models: deterministic Turing
machines and nondeterministic Turing machines. Based on these models,
we define the notion of time and space complexity and the fundamental
complexity classes including P and NP. In the last two sections, we study
two best known proof techniques, diagonalization and simulation, that
are used to separate and collapse complexity classes, respectively.

1.1 Strings, Coding, and Boolean Functions

Our basic data structure is a string. All other data structures are to
be encoded and represented by strings. A string is a finite sequence of

Theory of Computational Complexity, Second Edition. Ding-Zhu Du and Ker-I Ko.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

3

CO
PYRIG

HTED
 M

ATERIA
L

4 COMPLEXITY CLASSES

symbols. For instance, the word string is a string over the symbols of
English letters; the arithmetic expression “3 + 4 − 5” is a string over sym-
bols 3, 4, 5, +, and −. Thus, to describe a string, we must specify the set of
symbols to occur in that string. We call a finite set of symbols to be used to
define strings an alphabet. Note that not every finite set can be an alpha-
bet. A finite set S can be an alphabet if and only if the following condition
holds.

Property 1.1 Two finite sequences of elements in S are identical if and only
if the elements in the two sequences are identical respectively in ordering.

For example, {0, 1} and {00, 01} are alphabets, but {1, 11} is not an
alphabet because 11 can be formed by either 11 or (1 and 1).

Assume that Σ is an alphabet. A set of strings over the alphabet Σ is
called a language. A collection of languages is called a language class, or
simply a class.

The length of a string x is the number of symbols in the string
x, denoted by |x|. For example, |string| = 6 and |3 + 4 − 5| = 5. For
convenience, we allow a string to contain no symbol. Such a string is
called the empty string, which is denoted by 𝜆. So, |𝜆| = 0. (The notation| ⋅ | is also used on sets. If S is a finite set, we write |S| to denote its
cardinality.)

There is a fundamental operation on strings. The concatenation of two
strings x and y is the string xy. The concatenation follows associative law,
that is, x(yz) = (xy)z. Moreover, 𝜆x = x𝜆 = x. Thus, all strings over an
alphabet form a monoid under concatenation.1 We denote x0 = 𝜆 and
xn = xxn−1 for n ≥ 1.

The concatenation operation on strings can be extended to languages.
The concatenation of two languages A and B is the language AB = {ab ∶
a ∈ A, b ∈ B}. We also denote A0 = {𝜆} and An = AAn−1 for n ≥ 1. In
addition, we define A∗ =

⋃∞
i=0 Ai. The language A∗ is called the Kleene

closure of A. The Kleene closure of an alphabet is the set of all strings
over the alphabet.

For convenience, we will often work only on strings over the alphabet
{0, 1}. To show that this does not impose a serious restriction on the the-
ory, we note that there exists a simple way of encoding strings over any
finite alphabet into the strings over {0, 1}. Let X be a finite set. A one–
one mapping f from X to Σ∗ is called a coding (of X in Σ∗). If both X
and {f (x) ∶ x ∈ X} are alphabets, then, by Property 1.1, f induces a cod-
ing from X∗ to Σ∗. Suppose that X is an alphabet of n elements. Choose
k = ⌈log n⌉ and choose a one–one mapping f from X to {0, 1}k.2 Note

1A set with an associative multiplication operation and an identity element is a monoid.
A monoid is a group if every element in it has an inverse.

2Throughout this book, unless otherwise stated, log denotes the logarithm function
with base 2.

1.1 Strings, Coding, and Boolean Functions 5

that any subset of {0, 1}k is an alphabet, and hence, f is a coding from X
to {0, 1}∗ and f induces a coding from X∗ to {0, 1}∗.

Given a linear ordering for an alphabet Σ = {a1, · · · , an}, the lexico-
graphic ordering < on Σ∗ is defined as follows: x = ai1

ai2
· · · aim

< y =
aj1

aj2
· · · ajk

if and only if either [m < k] or [m = k and for some 𝓁 < m,
i1 = j1, · · · , i𝓁 = j𝓁 and i𝓁+1 < j𝓁+1]. The lexicographic ordering is a coding
from natural numbers to all strings over an alphabet.

A coding from Σ∗ × Σ∗ to Σ∗ is also called a pairing function on Σ∗. As
an example, for x, y ∈ {0, 1}∗ define ⟨x, y⟩ = 0|x|1xy and x # y = x0y1xR,
where xR is the reverse of x. Then ⟨⋅, ⋅⟩ and “#” are pairing functions on
{0, 1}∗. A pairing function induces a coding from Σ∗ × · · · × Σ∗

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
n

to Σ∗ by

defining ⟨x1, x2, x3,… , xn⟩ = ⟨· · · ⟨⟨x1, x2⟩, x3⟩,… , xn⟩.
Pairing functions can also be defined on natural numbers. For instance,

let 𝜄 ∶ {0, 1}∗ → ℕ be the lexicographic ordering function, that is, 𝜄(x) = n
if x is the nth string in {0, 1}∗ under the lexicographic ordering (starting
with 0). Then, we can define a pairing function on natural numbers from
a pairing function on binary strings: ⟨n,m⟩ = 𝜄(⟨𝜄−1(n), 𝜄−1(m)⟩).

In the above, we have seen some specific simple codings. In general, if
A is a finite set of strings over some alphabet, when can A be an alpha-
bet? Clearly, A cannot contain the empty string 𝜆 because 𝜆x = x𝜆. The
following theorem gives another necessary condition.

Theorem 1.2 (McMillan’s Theorem) Let s1,… , sq be q nonempty strings
over an alphabet of r symbols. If {s1,… , sq} is an alphabet, then

q∑
i=1

r−|si| ≤ 1.

Proof. For any natural number n, consider

(q∑
i=1

r−|si|
)n

=
n𝓁∑

k=n

mkr−k,

where 𝓁 = max{|s1|,… , |sq|} and mk is the number of elements in the
following set:

Ak = {(i1, · · · , in) ∶ 1 ≤ i1 ≤ q,… , 1 ≤ in ≤ q, k = |si1
| + · · · + |sin

|}.
As {s1,… , sq} is an alphabet, different vectors (i1,… , in) correspond to
different strings si1

… sin
. The strings corresponding to vectors in Ak all

have length k. Note that there are at most rk strings of length k. Therefore,
mk ≤ rk. It implies

6 COMPLEXITY CLASSES

(q∑
i=1

r−|si|
)n

≤

n𝓁∑
k=n

rkr−k = n𝓁 − (n − 1) ≤ n𝓁. (1.1)

Now, suppose
∑q

i=1 r−|si| > 1. Then for sufficiently large n, (
∑q

i=1 r−|si|)n >
n𝓁, contradicting (1.1). ◾

A Boolean function is a function whose variable values and function
value are all in {TRUE, FALSE}. We often denote TRUE by 1 and FALSE by
0. In the following table, we show two Boolean functions of two variables,
conjunction ∧ and disjunction ∨, and a Boolean function of a variable,
negation ¬.

x y x ∧ y x ∨ y ¬x
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

All Boolean functions can be defined in terms of these three functions.
For instance, the two-variable function exclusive-or ⊕ can be defined by

x⊕ y = ((¬x) ∧ y) ∨ (x ∧ (¬y)).
For simplicity, we also write xy for x ∧ y, x + y for x ∨ y, and x for ¬x.
A table like the above, in which the value of a Boolean function for each
possible input is given explicitly, is called a truth-table for the Boolean
function. For each Boolean function f over variables x1, x2,… , xn, a
function 𝜏 ∶ {x1, x2,… , xn} → {0, 1} is called a Boolean assignment
(or, simply, an assignment) for f . An assignment on n variables can
be seen as a binary string of length n, that is, a string in {0, 1}n. A
function 𝜏 ∶ Y → {0, 1}, where Y = {xi1

, xi2
,… , xik

} is a subset of
X = {x1, x2,… , xn}, is called a partial assignment on X . A partial assign-
ment 𝜏 on n variables can be seen as a string of length n over {0, 1, ∗}, with
∗ denoting “unchanged.” If 𝜏 ∶ Y → {0, 1} is a partial assignment for f ,
we write f |𝜏 or f |xi1

= 𝜏(xi1
),…, xik

= 𝜏(xik
) to denote the function obtained by

substituting 𝜏(xij
) for xij

, 1 ≤ j ≤ k, into f . This function f |𝜏 is a Boolean
function on X − Y and is called the restriction of f by 𝜏. We say a partial
assignment 𝜏 satisfies f or 𝜏 is a truth assignment for f , if f |𝜏 = 1.3

The functions conjunction, disjunction, and exclusive-or all follow
the commutative and associative laws. The distributive law holds for
conjunction to disjunction, disjunction to conjunction, and conjunction
to exclusive-or, that is, (x + y)z = xz + yz, xy + z = (x + z)(y + z), and

3In the literature, the term truth assignment sometimes simply means a Boolean assign-
ment.

1.2 Deterministic Turing Machines 7

(x⊕ y)z = xz⊕ yz. An interesting and important law about negation is
de Morgan’s law, that is, xy = x + y and x + y = xy. A Boolean formula
is a formula over Boolean variables using operators ∨, ∧, and ¬.

A literal is either a Boolean variable or the negation of a Boolean vari-
able. An elementary product is a product of several literals. Consider an
elementary product p and a Boolean function f . If p = 1 implies f = 1,
then p is called an implicant of f . An implicant p is prime if no product of
any proper subset of the literals defining p is an implicant of f . A prime
implicant is also called a minterm. For example, function f (x1, x2, x3) =
(x1 + x2)(x2 + x3) has minterms x1x2, x1x3, and x2x3. x1x2x3 is an impli-
cant of f but not a minterm. The size of an implicant is the number of vari-
ables in the implicant. We let D1(f) denote the maximum size of minterms
of f . A DNF (disjunctive normal form) is a sum of elementary products.
Every Boolean function is equal to the sum of all its minterms. So, every
Boolean function can be represented by a DNF with terms of size at most
D1(f). For a constant function f ≡ 0 or f ≡ 1, we define D1(f) = 0. For a
nonconstant function f , we always have D1(f) ≥ 1.

Similarly, an elementary sum is a sum of several literals. Consider an
elementary sum c and a Boolean function f . If c = 0 implies f = 0, then
c is called a clause of f . A minimal clause is also called a prime clause.
The size of a clause is the number of literals in it. We let D0(f) denote the
maximum size of prime clauses of f . A CNF (conjunctive normal form)
is a product of elementary sums. Every Boolean function is equal to the
product of all its prime clauses, which is a CNF with clauses of size at
most D0(f). For a constant function f ≡ 0 or f ≡ 1, we define D0(f) = 0.
For a nonconstant function f , we always have D0(f) ≥ 1.

The following states a relation between implicants and clauses.

Proposition 1.3 Any implicant and any clause of a Boolean function f have
at least one variable in common.

Proof. Let p and c be an implicant and a clause of f , respectively. Suppose
that p and c have no variable in common. Then we can assign values to all
variables in p to make p = 1 and to all variables in c to make c = 0 simul-
taneously. However, p = 1 implies f = 1 and c = 0 implies f = 0, which is
a contradiction. ◾

1.2 Deterministic Turing Machines

Turing machines (TMs) are simple and yet powerful enough compu-
tational models. Almost all reasonable general-purpose computational
models have been known to be equivalent to TMs, in the sense that they
define the same class of computable functions. There are many variations
of TMs studied in literature. We are going to introduce, in this section,

8 COMPLEXITY CLASSES

the simplest model of TMs, namely, the deterministic Turing machine
(DTM). Another model, the nondeterministic Turing machine (NTM),
is to be defined in the next section. Other generalized TM models, such
as deterministic and nondeterministic oracle TMs, will be defined in
later chapters. In addition, we will introduce in Part II other nonuniform
computational models which are not equivalent to TMs.

A deterministic (one-tape) TM (DTM) consists of two basic units: the
control unit and the memory unit. The control unit contains a finite num-
ber of states. The memory unit is a tape that extends infinitely to both
ends. The tape is divided into an infinite number of tape squares (or, tape
cells). Each tape square stores one of a finite number of tape symbols.
The communication between the control unit and the tape is through a
read/write tape head that scans a tape square at a time (See Figure 1.1).

A normal move of a TM consists of the following actions:

(1) Reading the tape symbol from the tape square currently scanned by
the tape head;

(2) Writing a new tape symbol on the tape square currently scanned by
the tape head;

(3) Moving the tape head to the right or left of the current square; and

(4) Changing to a new control state.

The exact actions of (2)–(4) depend on the current control state and the
tape symbol read in (1). This relation between the current state and the
current tape symbol and actions (2)–(4) is predefined by a program.

Formally, a TM M is defined by the following information:

(1) A finite set Q of states;

(2) An initial state q0 ∈ Q;

(3) A subset F ⊆ Q of accepting states;

(4) A finite set Σ of input symbols;

(5) A finite set Γ ⊃ Σ of tape symbols, including a special blank symbol
B ∈ Γ − Σ; and

B B B B Ba a ab b

Finite
control

Tape head

Tape

Figure 1.1 A Turing machine.

1.2 Deterministic Turing Machines 9

(6) A partial transition function 𝛿 that maps (Q − F) × Γ to Q × Γ ×
{L,R} (the program).

In the above, the transition function 𝛿 is a partial function, meaning that
the function 𝛿 may be undefined on some pairs (q, s) ∈ (Q − F) × Γ. The
use of the initial state, accepting states, and the blank symbol is explained
in the following text.

In order to discuss the notions of accepting a language and computing a
function by a TM, we add some convention to the computation of a TM.
First, we assume that initially an input string 𝑤 is stored in the consec-
utive squares of the tape of M, and the other squares contain the blank
symbol B. The tape head of M is initially scanning the leftmost square
of the input 𝑤, and the machine starts at the initial state q0. (Figure 1.1
shows the initial setting for a TM with input abbaa.) Starting from this
initial configuration, the machine M operates move by move according
to the transition function 𝛿. The machine may either operate forever or
halt when it enters a control state q and reads a tape symbol s for which
𝛿(q, s) is undefined. If a TM M eventually halts at an accepting state q ∈ F
on input 𝑤, then we say M accepts 𝑤. If M halts at a nonaccepting state
q ∉ F on input 𝑤, then we say M rejects 𝑤.

To formally define the notion of accepting an input string, we need
to define the concept of configurations. A configuration 𝛼 of a TM M
is a record of all the information of the computation of M at a specific
moment, which includes the current state, the current symbols in the tape,
and the current position of the tape head. From this information, one can
determine what the future computation is. Formally, a configuration of a
TM M is an element (q, x, y) of Q × Γ∗ × Γ∗ such that the leftmost symbol
of x and the rightmost symbol of y are not B. A configuration (q, x, y)
denotes that the current state is q, the current nonblank symbols in the
tape are the string xy, and the tape head is scanning the leftmost symbol of
y (when y is empty, the tape head is scanning the blank that is immediately
to the right of the rightmost symbol of x).4 Assuming Q ∩ Γ = ∅, we also
write xqy to stand for (q, x, y).

We now generalize the transition function 𝛿 of a TM M to the next
configuration function ⊢M (or, simply ⊢ if M is understood) defined on
configurations of M. Intuitively, the function ⊢ maps each configuration
to the next configuration after one move of M. To handle the special
nonblank requirement in the definition of configurations, we define two
simple functions: 𝓁(x) = the string x with the leading blanks removed
and r(x) = the string x with the trailing blanks removed. Assume that
(q1, x1, y1) is a configuration of M. If y1 is not the empty string, then
let y1 = s1y2 for some s1 ∈ Γ and y2 ∈ Γ∗; if y1 = 𝜆, then let s1 = B and

4The nonblank requirement for the leftmost symbol of x and for the rightmost symbol
of y is added so that each configuration has a unique finite representation.

10 COMPLEXITY CLASSES

y2 = 𝜆. Then, we can formally define the function ⊢ as follows (we write
𝛼 ⊢𝛽 for ⊢(𝛼) = 𝛽):

Case 1. 𝛿(q1, s1) = (q2, s2,L) for some q2 ∈ Q and s2 ∈ Γ. If x1 = 𝜆,
then let s3 = B and x2 = 𝜆; otherwise, let x1 = x2s3 for some x2 ∈ Γ∗ and
s3 ∈ Γ. Then, (q1, x1, y1)⊢(q2,𝓁(x2), r(s3s2y2)).

Case 2. 𝛿(q1, s1) = (q2, s2,R) for some q2 ∈ Q and s2 ∈ Γ. Then,
(q1, x1, y1)⊢(q2,𝓁(x1s2), r(y2)).

Case 3. 𝛿(q1, s1) is undefined. Then, ⊢ is undefined on (q1, x1, y1).
Now we define the notion of the computation of a TM. A TM M halts

on an input string 𝑤 if there exists a finite sequence of configurations
𝛼0, 𝛼1,… , 𝛼n such that

(1) 𝛼0 = (q0, 𝜆, 𝑤) (this is called the initial configuration for input 𝑤);

(2) 𝛼i ⊢𝛼i+1 for all i = 0, 1,… , n − 1; and

(3) ⊢(𝛼n) is undefined.

A TM M accepts an input string 𝑤 if M halts on 𝑤 and, in addition,
the halting state is in F , that is, in (3) above, 𝛼n = (q, x, y) for some q ∈ F
and x, y ∈ Γ∗. A TM M outputs y ∈ Σ∗ on input 𝑤 if M halts on 𝑤 and,
in addition, the final configuration 𝛼n is of the form 𝛼n = (q, 𝜆, y) for some
q ∈ F .

Example 1.4 We describe a TM M that accepts the strings in L = {aibaj∶
0 ≤ i ≤ j}. The machine M has states Q = {q0, q1,… , q5}, with the initial
state q0 and accepting state q5 (i.e., F = {q5}). It accepts input symbols
from Σ = {a, b} and uses tape symbols in Γ = {a, b, c,B}. Figure 1.2 is the
transition function 𝛿 of M.

It is not hard to check that M halts at state q5 on all strings in L, that
it halts at a state qi, 0 ≤ i ≤ 4, on strings having zero or more than one b,
and that it does not halt on strings aibaj with i > j ≥ 0. In the following,
we show the computation paths of machine M on some inputs (we write
xqiy to denote the configuration (qi, x, y)):

a b c B
q0 q1, c, R q4, B, R q0, B, R
q1 q1, a, R q2, b, R
q2 q3, c, L q2, c, R q2, B, R
q3 q3, a, L q3, b, L q3, c, L q0, B, R
q4 q4, a, R q4, B, R q5, B, R

δ

Figure 1.2 The transition function of machine M.

1.2 Deterministic Turing Machines 11

On input abaa: q0abaa ⊢ cq1baa ⊢ cbq2aa ⊢ cq3bca ⊢ q3cbca ⊢
q3Bcbca ⊢ q0cbca ⊢ q0bca ⊢ q4ca ⊢ q4a ⊢ aq4 ⊢ aBq5.

On input aaba: q0aaba ⊢ cq1aba ⊢ caq1ba ⊢ cabq2a ⊢ caq3bc ⊢
cq3abc ⊢ q3cabc ⊢ q3Bcabc ⊢ q0cabc ⊢ q0abc ⊢ cq1bc ⊢ cbq2c ⊢
cbcq2 ⊢ cbcBq2 ⊢ cbcBBq2 ⊢ · · · .

On input abab: q0abab ⊢ cq1bab ⊢ cbq2ab ⊢ cq3bcb ⊢ q3cbcb ⊢
q3Bcbcb ⊢ q0cbcb ⊢ q0bcb ⊢ q4cb ⊢ q4b. ◽

The notion of computable languages and computable functions can
now be formally defined. In the following, we say f is a partial function
defined on Σ∗ if the domain of f is a subset of Σ∗, and f is a total function
defined on Σ∗ if the domain of f is Σ∗.

Definition 1.5 (a) A language A over a finite alphabet Σ is recursively enu-
merable (r.e.) if there exists a TM M that halts on all strings 𝑤 in A and
does not halt on any string 𝑤 in Σ∗ − A.

(b) A language A over a finite alphabet Σ is computable (or, recursive)
if there exists a TM M that halts on all strings 𝑤 in Σ∗, accepts all strings
𝑤 in A and does not accept any string 𝑤 in Σ∗ − A.

(c) A partial function f defined from Σ∗ to Σ∗ is partial computable (or,
partial recursive) if there exists a TM M that outputs f (𝑤) on all 𝑤 in the
domain of f and does not halt on any 𝑤 not in the domain of f .

(d) A (total) function f ∶ Σ∗ → Σ∗ is computable (or, recursive) if it is
partial computable (i.e., the TM M that computes it halts on all 𝑤 ∈ Σ∗).

For each TM M with the input alphabet Σ, we let L(M) denote the
set of all strings 𝑤 ∈ Σ∗ that are accepted by M. Thus, a language A is
recursively enumerable if and only if A = L(M) for some TM M. Also,
a language A is recursive if and only if A = L(M) for some TM M that
halts on all inputs 𝑤.

Recursive sets, recursively enumerable sets, partial recursive functions,
and recursive functions are the main objects studied in recursive function
theory, or, recursion theory. See, for instance, Rogers (1967) for a complete
treatment.

The above classes of recursive sets and recursively enumerable sets are
defined based on the model of deterministic, one-tape TMs. As TMs look
very primitive, the question arises whether TMs are as powerful as other
machine models. In other words, do the classes of recursive sets and recur-
sively enumerable sets remain the same if they are defined based on dif-
ferent computational models? The answer is yes, according to the famous
Church–Turing Thesis.

Church–Turing Thesis. A function computable in any reasonable computa-
tional model is computable by a TM.

12 COMPLEXITY CLASSES

What is a reasonable computational model? Intuitively, it is a model in
which the following conditions hold:

(1) The computation of a function is given by a set of finite instruc-
tions.

(2) Each instruction can be carried out in this model in a finite number
of steps or in a finite amount of time.

(3) Each instruction can be carried out in this model in a deterministic
manner.5

As the notion of reasonable computational models in the Church–
Turing Thesis is not well defined mathematically, we cannot prove the
Church–Turing Thesis as a mathematical statement but can only collect
mathematical proofs as evidence to support it. So far, many different
computational models have been proposed and compared with the TM
model, and all reasonable ones are proven to be equivalent to TMs. The
Church–Turing Thesis thus remains trustworthy.

In the following, we show that multi-tape TMs compute the same class
of functions as one-tape TMs. A multi-tape TM is similar to a one-tape
TM with the following exceptions. First, it has a finite number of tapes
that extends infinitely to the both ends. Each tape is equipped with its own
tape head. All tape heads are controlled by a common finite control. There
are two special tapes: an input tape and an output tape. The input tape is
used to hold the input strings only; it is a read-only tape that prohibits
erasing and writing. The output tape is used to hold the output string
when the computation of a function is concerned; it is a write-only tape.
The other tapes are called the storage tapes or the work tapes. All work
tapes are allowed to read, erase, and write (see Figure 1.3).

Next, we allow each tape head in a multi-tape TM, during a move, to
stay at the same square without moving to the right or the left. Thus,
each move of a k-tape TM is defined by a partial transition function 𝛿
that maps (Q − F) × Γk to Q × Γk × {L,R,S}k (where S stands for stay).
The initial setting of the input tape of the multi-tape TM is the same as
that of the one-tape TM, and other tapes of the multi-tape TM initially
contain only blanks. The formal definition of the computation of a multi-
tape TM on an input string x and the concepts of accepting a language
and computing a function by a multi-tape TM can be defined similar to
that of a one-tape TM. We leave it as an exercise.

5By condition (1), we exclude the nonuniform models; by condition (2), we exclude the
models with infinite amount of resources; and by condition (3), we exclude the nonde-
terministic models and probabilistic models. Although they are considered unreasonable,
meaning probably not realizable by reliable physical devices, these nonstandard models
remain as interesting mathematical models and will be studied extensively in the rest of
the book. In fact, we will see that the Church–Turing Thesis still holds even if we allow
nondeterministic or probabilistic instructions in the computational model.

1.2 Deterministic Turing Machines 13

Figure 1.3 A multitape TM.

Theorem 1.6 For any multi-tape TM M, there exists a one-tape TM M1
computing the same function as M.

Proof. Suppose that M has k tapes and the tape symbol set is Γ. Then we
use the tape symbol set Γ1 = (Γ × {X ,B})k for M1, where X is a symbol
not in Γ. This means that we divide the one tape of M1 into 2k sections
which form k groups. Each group contains two sections: one uses the tape
symbol set Γ and the other uses the tape symbol set {X ,B}. Thus, the
blank symbol in Γ1 is (B,… ,B) (with 2k B’s). Each group records the
information about a tape of M, with the symbol X in the second section
indicating the position of the tape head, and the first section containing
the corresponding symbol used by M. For instance, Figure 1.4 shows the
machine M1 that simulates a three-tape TM M. The nonblank symbols
in the three tapes of M are 0110101, 0011110, and 1100110, and the tape
heads of the three tapes are scanning the second, the fifth, and the last
symbol of the nonblank symbols, respectively.

For each move of M, M1 does the following to simulate it. First, we
assume that after each simulation step, M1 is scanning a square such that
all symbols X appear to the right of that square. To begin the simulation,
M1 moves from left to right scanning all groups to look for the X symbols
and the symbols in Γ that appear in the same groups as X ’s. After it finds
all X symbols, it has also collected all the tape symbols that are currently
scanned by the tape heads of M (cf. Exercise 1.10). Next, M1 moves back
from right to left and looks for each X symbol again. This time, for each
X symbol, M1 properly simulates the action of M on that tape. Namely,
it may write over the symbol of the first section of the square where the
second section has an X symbol, or it may move the X symbol to the right
or the left. The simulation finishes when actions on all k tapes are taken

14 COMPLEXITY CLASSES

0 0 0 1111

0 1 1 0110

1 0 1 0101

X

X

X

Tape 1

Head 1

Head 2

Head 3

Tape 2

Tape 3

Figure 1.4 The TM M1.

care of. Note that, by then, all X symbols appear to the right of the tape
head of M1.

To complete the description of the machine M1, we only need to add
the initialization and the ending parts of the machine program for M1.
That is, we first initialize the tape of M1 so that it contains the input in
the first group and all blanks in the other groups. At the end, when M
reaches a halting configuration, M1 erases all symbols in all groups except
the output group. We omit the details. ◾

It is obvious that a one-tape TM can be simulated by a multi-tape TM.
So, an immediate corollary is that the set of functions computable by one-
tape TMs is the same as that by multi-tape TMs. Similarly, we conclude
that the set of recursive sets as well as the set of r.e. sets defined by one-tape
TMs are the same as those defined by multi-tape TMs.

1.3 Nondeterministic Turing Machines

The TMs we defined in the last section are deterministic, because from
each configuration of a machine there is at most one move to make, and
hence, there is at most one next configuration. If we allow more than one
moves for some configurations, and hence those configurations have more
than one next configurations, then the machine is called a nondeterministic
Turing machine (NTM).

Formally, an NTM M is defined by the following information: states
Q; initial state q0; accepting states F ; input symbols Σ; tape symbols Γ,
including the blank symbol B; and the transition relation Δ. All infor-
mation except the transition relation Δ is defined in the same form as

1.3 Nondeterministic Turing Machines 15

a DTM. The transition relation Δ is a subset of (Q − F) × Γ × Q × Γ ×
{L,R}. Each quintuple (q1, s1, q2, s2,D) in Δ indicates that one of the pos-
sible moves of M, when it is in state q1 and scanning symbol s1, is to
change the current state to q2, to overwrite symbol s1 by s2, and to move
the tape head to the direction D.

The computation of an NTM can be defined similar to that of a DTM.
First, we consider a way of restricting an NTM to a DTM. Let M be
an NTM defined by (Q, q0,F ,Σ,Γ,Δ) as above. We say M1 is a restricted
DTM of M if M1 has the same components Q, q0,F ,Σ,Γ as M and it
has a transition function 𝛿1 that is a subrelation of Δ satisfying the prop-
erty that for each q1 ∈ Q and s1 ∈ Γ, there is at most one triple (q2, s2,D),
D ∈ {L,R}, such that (q1, s1, q2, s2,D) ∈ 𝛿1. Now we can define the notion
of the next configurations of an NTM easily: For each configuration 𝛼 =
(q1, x1, y1) of M, we let ⊢M(𝛼) be the set of all configurations 𝛽 such that
𝛼 ⊢M1

𝛽 for some restricted DTM M1 of M. We write 𝛼 ⊢M𝛽 if 𝛽 ∈ ⊢M(𝛼).
As each configuration of M may have more than one next configurations,
the computation of an NTM on an input 𝑤 is, in general, a computation
tree rather than a single computation path (as it is in the case of DTMs).
In the computation tree, each node is a configuration 𝛼 and all its next
configurations are its children. The root of the tree is the initial configu-
ration.

We say an NTM M halts on an input string 𝑤 ∈ Σ∗ if there exists a
finite sequence of configurations 𝛼0, 𝛼1,… , 𝛼n such that

(1) 𝛼0 = (q0, 𝜆, 𝑤);
(2) 𝛼i ⊢M𝛼i+1 for all i = 0, 1,… , n − 1; and

(3) ⊢M(𝛼n) is undefined (i.e., it is an empty set).

The notion of an NTM M halting on input 𝑤 can be rephrased in
terms of its computation tree as follows: M halts on 𝑤 if the computa-
tion tree of M(𝑤) contains a finite path. This finite path (i.e., the sequence
𝛼0, 𝛼1,… , 𝛼n of configurations satisfying the above conditions (1)–(3)) is
called a halting path for M(𝑤).

A halting path is called an accepting path if the state of the last con-
figuration is in F . An NTM M accepts an input string 𝑤 if there exists
an accepting path in the computation tree of M on 𝑤. (Note that this
computation tree may contain some halting paths that are not accepting
paths and may contain some nonhalting paths. As long as there exists at
least one accepting path, we will say that M accepts 𝑤.) We say an NTM
M accepts a language A ⊆ Σ∗ if M accepts all𝑤 ∈ A and does not accept
any𝑤 ∈ Σ∗ − A. For each NTM M, we write L(M) to denote the language
accepted by M.

Example 1.7 Let L = {ai1bai2b · · · baik bbaj ∶ i1,… , ik, j > 0,
∑

r∈A ir = j
for some A ⊆ {1, 2,… , k}}. We define an NTM M = (Q = {q0,… , q9},

16 COMPLEXITY CLASSES

a b c B
q0 q1, B, R q7, B, R

q2, c, R
q1 q1, B, R q0, B, R
q2 q2, a, R q3, b, R
q3 q2, a, R q4, b, R

q4 q5, c, L q4, c, R q4, B, R

q5 q5, a, L q5, b, L q5, c, L q6, B, R
q6 q2, c, R q0, B, R q6, B, R
q7 q8, B, R
q8 q8, B, R q9, B, R

Δ

Figure 1.5 The transition function of machine M.

q0, F = {q9},Σ = {a, b},Γ = {a, b, c,B),Δ) that accepts the set L. We
show Δ in Figure 1.5.

The main idea of the machine M is that, for each block of a’s, except
for the last one, it nondeterministically chooses (at state q0) to either erase
the whole block or, similar to Example 1.4, erase the block and the same
number of a’s from the last block. Thus, if all blocks, including the last
one, are erased, then accept. States q2 to q6 are devoted to the task of the
second choice. We show the computation tree of M on input aababbaa in
Figure 1.6. ◽

The notion of an NTM M computing a function is potentially ambigu-
ous because for each input𝑤, the computation tree of M(𝑤) may contain
more than one halting path and each halting path may output a different
value. We impose a strong requirement to eliminate the ambiguity.

Definition 1.8 (a) We say that an NTM M outputs y on input x if (i) there
exists at least one computation path of M(x) that halts in an accepting state
with output y and (ii) whenever a computation path of M(x) halts in an
accepting state, its output is y.

(b) We say that an NTM M computes a partial function f from Σ∗ to
Σ∗ if for each input x ∈ Σ∗ that is in the domain of f , M outputs f (x), and
for each input x ∈ Σ∗ that is not in the domain of f , M does not accept x.

The Church–Turing Thesis claims that DTMs are powerful enough to
simulate other types of machine models as long as the machine model is a
reasonable implementation of the intuitive notion of algorithms. NTMs
are, however, not a very reasonable machine model, because the nondeter-
ministic moves are obviously beyond the capability of currently existing
and foreseeable physical computing devices. Nevertheless, DTMs are still

1.3 Nondeterministic Turing Machines 17

q0aababbaa

q1ababbaa

q0abbaa

q1bbaa

q0baa

q7aa
(Reject)

cq2bbaa

q6cbbca

q0bca

q7ca

q8a
(Reject)

cq2ababbaa

cq2babbca

q0abbcc

q1bbcc

q0bcc

q7cc

q8

q9
(Accept)

cq2bbcc

cbbq4cc

cbbccq4

cbbccBq4
(Infinite loop)

∗

∗

∗

∗

∗

∗

∗

∗

Figure 1.6 The computation tree of machine M on input aababbaa. An edge
with ∗ means that the transition between configurations takes more than one
deterministic moves.

powerful enough to be able to simulate NTMs (although this simula-
tion may require much more resources for DTMs than the corresponding
NTMs, as we will see in later sections).

Theorem 1.9
(a) All languages accepted by NTMs are recursively enumerable.

(b) All functions computed by NTMs are partial recursive.

Proof. Let M be a one-tape NTM defined by (Q, q0,F ,Σ,Γ,Δ). We may
regard Δ as a multivalued function from Q × Γ to Q × Γ × {L,R}. Let k be
the maximum number of values thatΔ can assume on some (q, s) ∈ Q × Γ.

We are going to design a DTM M1 to simulate M. Our DTM M1 is
a three-tape DTM that uses k additional symbols 𝜂1,… , 𝜂k that are not
in Γ. The DTM M1 uses the third tape to simulate the tape of M and
uses the second tape to store the current simulation information. More

18 COMPLEXITY CLASSES

precisely, M1 operates on input x in stages. At stage r > 0, M1 performs
the following actions:

(1) M1 erases anything in tape 3 that may have been left over from stage
r − 1 and copies the input x from tape 1 to tape 3.

(2) M1 generates the rth string 𝜂i1
… 𝜂im

in {𝜂1,… , 𝜂k}∗, in the lexico-
graphic ordering, on tape 2. (This string overwrites the (r − 1)th string
generated in stage r − 1.)

(3) M1 simulates M on input x on tape 3 for at most m moves. At the
jth move, 1 ≤ j ≤ m, M1 examines the jth symbol 𝜂ij

on the second tape
to determine which transition of the relation Δ is to be simulated. More
precisely, if the current state is q and the symbol currently scanned on tape
3 is s, and Δ(q, s) contains at least ij values, then M1 follows the ijth move
of Δ(q, s); if Δ(q, s) has less than ij values, then M1 goes to stage r + 1.

(4) If the simulation halts within m moves in an accepting state, then
M1 enters a state in F and halts; otherwise, it goes to stage r + 1.

It is clear that if M does not accept x then M1 never accepts x either.
Conversely, if M accepts x, then there is a finite string 𝜂i1

… 𝜂im
with

respect to which M1 will simulate the accepting path of M(x) and, hence,
will accept x.

The above proves part (a). In addition, the above simulation of M1 also
yields the same output as M and so part (b) also follows. ◾

Informally we often describe a nondeterministic algorithm as a guess-
and-verify algorithm. That is, the nondeterministic moves of the algo-
rithm are to guess a computation path and, for each computation path,
a deterministic subroutine verifies that it is indeed an accepting path.
The critical guess that determines an accepting path is called a witness
to the input. For instance, the NTM of Example 1.7 guesses a subset
A ⊆ {1,… , k} and then verifies that

∑
r∈A ir = j. In the above simulation

of NTM M by a DTM M1, M1 generates all strings𝑤 = 𝜂i1
· · · 𝜂im

in tape
2 one by one and then verifies that this string 𝑤 is a witness to the input.

1.4 Complexity Classes

Computational complexity of a machine is the measure of the resources
used by the machine in the computation. Computational complexity
of a problem is the measure of the minimum resources required by any
machine that solves the problem. For TMs, time and space are the two
most important types of resources of concern. Let M be a one-tape
DTM. For an input string x, the running time of M on x is the number of
moves made by M from the beginning until it halts, denoted by 𝑡𝑖𝑚𝑒M(x).
(We allow 𝑡𝑖𝑚𝑒M(x) to assume the value ∞.) The working space of M

1.4 Complexity Classes 19

on input x is the number of squares which the tape head of M visited
at least once during the computation, denoted by 𝑠𝑝𝑎𝑐𝑒M(x). (Again,
𝑠𝑝𝑎𝑐𝑒M(x) may be equal to ∞. Note that 𝑠𝑝𝑎𝑐𝑒M(x) may be finite even if
M does not halt on x.) For a multi-tape DTM M, the time complexity
𝑡𝑖𝑚𝑒M(x) is defined in a similar way, and the space complexity 𝑠𝑝𝑎𝑐𝑒M(x)
is defined to count only the squares visited by the heads of working
tapes, excluding the input and output tapes. This allows the possibility of
having 𝑠𝑝𝑎𝑐𝑒M(x) < |x|.

The functions 𝑡𝑖𝑚𝑒M and 𝑠𝑝𝑎𝑐𝑒M are defined on each input string. This
makes it difficult to compare the complexity of two different machines.
The common practice in complexity theory is to compare the complex-
ity of two different machines based on their growth rates with respect to
the input length. Thus, we define the time complexity of a DTM M to
be the function tM ∶ ℕ → ℕ with tM(n) = max{𝑡𝑖𝑚𝑒M(x) ∶ |x| = n}. The
space complexity function sM of M is similarly defined to be sM(n) =
max{𝑠𝑝𝑎𝑐𝑒M(x) ∶ |x| = n}.

We would like to define the (deterministic) time complexity of a func-
tion f to be the minimum tM with respect to DTMs M which compute f .
Unfortunately, for some recursive function f , there is no best DTM.
In other words, for any machine M1 that computes f , there is another
machine M2 also computing f such that tM2

(n) < tM1
(n) for infinitely

many n (Blum’s speed-up theorem). So, formally, we can only talk about
the upper bound and lower bound of the time complexity of a function.
We say that the time (space) complexity of a recursive function f is
bounded (above) by the function 𝜙 ∶ N → N if there exists a TM M that
computes f such that for almost all n ∈ N, tM(n) ≤ 𝜙(n) (sM(n) ≤ 𝜙(n),
respectively). The time and space complexity of a recursive language
L is defined to be, respectively, the time and space complexity of its
characteristic function 𝜒L. (The characteristic function 𝜒L of a language
L is defined by 𝜒L(x) = 1 if x ∈ L and 𝜒L(x) = 0 if x ∉ L.)

Now we can define complexity classes of languages as follows: Let t ∶
ℕ → ℕ be a nondecreasing function from integers to integers, and C be a
collection of such functions.

Definition 1.10 (a) We define DTIME(t) to be the class of languages L
that are accepted by DTMs M with tM(n) ≤ t(n) for almost all n ≥ 0. We
let DTIME(C) =

⋃
t∈C DTIME(t).

(b) Similarly, we define DSPACE(s) to be the class of languages L that
are accepted by DTMs M with sM(n) ≤ s(n) for almost all n ≥ 0. We let
DSPACE(C) =

⋃
s∈C DSPACE(s).

For NTMs, the notion of time and space complexity is a little more
complex. Let M be an NTM. On each input x, M(x) defines a compu-
tation tree. For each finite computation path of this tree, we define the
time of the path to be the number of moves in the path and the space

20 COMPLEXITY CLASSES

of the path to be the total number of squares visited in the path by the
tape head of M. We define the time complexity timeM(x) of M on an
input x to be the minimum time of the computation paths among all
accepting paths of the computation tree of M(x). The space complex-
ity spaceM(x) is the minimum space of the computation paths among all
accepting paths of the computation tree of M(x). (When M is a multi-tape
NTM, 𝑠𝑝𝑎𝑐𝑒M(x) only counts the space in the work tapes.) If M does not
accept x (and, hence, there is no accepting path in the computation tree of
M(x)), then 𝑡𝑖𝑚𝑒M(x) and 𝑠𝑝𝑎𝑐𝑒M(x) are undefined. (Note that the mini-
mum time computation path and the minimum space computation path
in the computation tree of M(x) are not necessarily the same path.)

We now define the time complexity function tM ∶ ℕ → ℕ of an NTM
M to be tM(n) = max({n + 1} ∪ {𝑡𝑖𝑚𝑒M(x) ∶ |x| = n, M accepts x}).6
Similarly, the space complexity function sM of an NTM M is defined to
be sM(n) = max({1} ∪ {𝑠𝑝𝑎𝑐𝑒M(x) ∶ |x| = n, M accepts x}).

Definition 1.11 (a) NTIME(t) = {L ∶ L is accepted by an NTM M with
tM(n) ≤ t(n) for almost all n > 0}; NTIME(C) =

⋃
t∈C NTIME(t).

(b) NSPACE(s) = {L ∶ L is accepted by an NTM M with sM(n) ≤ s(n)
for almost all n > 0}; NSPACE(C) =

⋃
s∈C NSPACE(s).

It is interesting to point out that for these complexity classes, an
increase of a constant factor on the time or the space bounds does not
change the complexity classes. The reason is that a TM with a larger
alphabet set and a larger set of states can simulate, in one move, a
constant number of moves of a TM with a smaller alphabet set and a
smaller number of states. We only show these properties for deterministic
complexity classes.

Proposition 1.12 (Tape Compression Theorem) Assume that c > 0. Then,
DSPACE(s(n)) = DSPACE(c ⋅ s(n)).

Proof. Let M be a TM that runs in space bound s(n). We will construct a
new TM M′ that simulates M within space bound c ⋅ s(n), using the same
number of tapes. Assume that M uses the alphabet Γ of size k, has r states
Q = {q1,… , qr}, and uses t tapes. Let m be a positive integer such that
m > 1∕c. Divide the squares in each work tape of M into groups; each
group contains exactly m squares. The machine M′ uses an alphabet of
size km so that each square of M′ can simulate a group of squares of M.
In addition, M′ has rmt states, each state represented by ⟨qi, j1,… , jt⟩, for
some qi ∈ Q, 1 ≤ j1 ≤ m, … , 1 ≤ jt ≤ m. Each state ⟨qi, j1,… , jt⟩ encodes
the information that the machine M is in state qi and the local positions

6The extra value n + 1 is added so that when M does not accept any x of length n; the
time complexity is n + 1, the time to read the input x.

1.4 Complexity Classes 21

of its t tape heads within a group of squares. So, together with the posi-
tion of its own tape heads, it is easy for M′ to simulate each move of M
using a smaller size of space. For instance, if a tape head of M moves left
and its current local position within the group is j and j > 1, then the cor-
responding tape head of M′ does not move but the state of M is modified
so that its current local position within the group becomes j − 1; if j = 1,
then the corresponding tape head of M′ moves left and the local position
is changed to m. By this simulation, L(M) = L(M′) and M′ has a space
bound s(n)∕m ≤ c ⋅ s(n). ◾

Proposition 1.13 (Linear Speed-up Theorem) Suppose limn→∞ t(n)∕n
= ∞. Then for any c > 0, DTIME(t(n)) = DTIME(c ⋅ t(n)).

Proof. Let M be a TM that runs in time bound t(n). We will construct
a new TM M′ that simulates M within time c ⋅ t(n), using an additional
tape. Let m be a large positive integer whose exact value is to be deter-
mined later. Divide the squares in each tape of M into groups; each group
contains m squares. That is, if M uses alphabet Γ, then each group g is an
element of Γm. For each group g, call its left neighboring group g𝓁 and the
right neighboring group gr. Let H(g, g𝓁, gr) be a history of the moves of
M around g, that is, the collection of the moves of M starting from enter-
ing the group g until halting, entering a loop, or leaving the three groups
g, g𝓁, and gr. (Note that the number of possible histories H(g, g𝓁, gr) is
bounded by a function of m, independent of the input size n.)

The new machine M′ encodes each group of M into a symbol. Ini-
tially, it encodes the input and copies it to tape 2. Then, it simulates M
using the same number of work tapes (in addition to tape 2). It simulates
each history H(g, g𝓁, gr) of M by a constant number of moves as follows:
M′ visits the groups g, g𝓁, and gr. Then, according to the contents of
the three squares, it finds the history H(g, g𝓁, gr) of M. From the history
H(g, g𝓁, gr), it overwrites new symbols on g, g𝓁, and gr and sets up the new
configuration for the simulation of the next step. In the above simulation
step, the contents of the three groups are stored in the states of M′ and the
history H(g, g𝓁, gr) is stored in the form of the transition function of M′.
For instance, after M′ gets the contents a, a𝓁, and ar of the three groups
g, g𝓁, and gr, respectively, the state of M′ is of the form ⟨qi, j, a, a𝓁, ar⟩,
where qi is a state of M and j is the starting position of the tape head of
M within the group g (j = 1,… ,m). (Here, we assume that M′ uses only
one tape.)

Note that each history H(g, g𝓁, gr) encodes at least m moves of M,
and its simulation takes c1 moves of M′ where c1 is an absolute constant,
independent of m. As the initial setup of M′, including the encoding of
the input string and returning the tape head to the leftmost square, takes
n + ⌈n∕m⌉ moves, M′ has the time bound

n + ⌈n∕m⌉ + c1⌈t(n)∕m⌉ ≤ n + n∕m + c1t(n)∕m + c1 + 1.

22 COMPLEXITY CLASSES

Choose m > c1∕c. Because limn→∞ t(n)∕n = ∞, we have that for
sufficiently large n, n + n∕m + c1 ⋅ t(n)∕m + c1 + 1 ≤ c ⋅ t(n). Thus,
L(M) ∈ DTIME(c ⋅ t(n)). ◾

The above two theorems allow us to write simply, for instance,
DSPACE(log n) to mean

⋃
c>0 DSPACE(c ⋅ log n) and NTIME(n2) to

mean
⋃

c>0 NTIME(c ⋅ n2).
Next, let us introduce the notion of polynomial-time computability. Let

poly be the collection of all integer polynomial functions with nonnegative
coefficients. Define

𝑃 = DTIME(poly),
NP = NTIME(poly),

PSPACE = DSPACE(poly),
NPSPACE = NSPACE(poly).

We say a language L is polynomial-time (polynomial-space) computable
if L ∈ 𝑃 (L ∈ PSPACE, respectively).

In addition to polynomial-time/space-bounded complexity classes,
some other important complexity classes are

LOGSPACE = DSPACE(log n),
NLOGSPACE = NSPACE(log n),

EXP =
⋃
c>0

DTIME(2cn),

NEXP =
⋃
c>0

NTIME(2cn),

EXPSPACE =
⋃
c>0

DSPACE(2cn).

For the classes of functions, we only define the classes of (determin-
istically) polynomial-time and polynomial-space computable functions.
Other complexity classes of functions will be defined later. We let FP to
denote the class of all recursive functions f that are computable by a DTM
M of time complexity tM(n) ≤ p(n) for some p ∈ poly and let FPSPACE
to denote the class of all recursive functions f that are computable by a
DTM M of space complexity sM(n) ≤ p(n) for some p ∈ poly.

The classes P and FP are often referred as the mathematical equiva-
lence of the classes of feasibly computable problems. That is, a problem
is considered to be feasibly solvable if it has a solution whose time com-
plexity grows in a polynomial rate; on the other hand, if a solution has a
superpolynomial growth rate on its running time, then the solution is not

1.4 Complexity Classes 23

feasible. Although this formulation is not totally accepted by practition-
ers, so far it remains the best one, because these complexity classes have
many nice mathematical properties. For instance, if two functions f , g are
feasibly computable, then we expect their composition h(x) = f (g(x)) also
to be feasibly computable. The class FP is indeed closed under composi-
tion; as a matter of fact, it is the smallest class of functions that contains
all quadratic-time computable functions and is closed under composition.

Another important property is that the classes 𝑃 and 𝐹𝑃 are indepen-
dent of computational models. We note that we have defined the classes 𝑃
and 𝐹𝑃 based on the TM model. We have argued, based on the Church–
Turing Thesis, that the TM model is as general as any other models, as
far as the notion of computability is concerned. Here, when the notion of
time and space complexity is concerned, the Church–Turing Thesis is no
longer applicable. It is obvious that different machine models define dif-
ferent complexity classes of languages. However, as far as the notion of
polynomial-time computability is concerned, it can be verified that most
familiar computational models define the same classes 𝑃 and 𝐹𝑃 . The
idea that the classes 𝑃 and 𝐹𝑃 are machine independent can be formu-
lated as follows.

Extended Church–Turing Thesis. A function computable in polynomial
time in any reasonable computational model using a reasonable time com-
plexity measure is computable by a DTM in polynomial time.

The intuitive notion of reasonable computational models has been dis-
cussed in Section 1.2. They exclude any machine models that are not real-
izable by physical devices. In particular, we do not consider an NTM to
be a reasonable model. In addition, we also exclude any time complexity
measures that do not reflect the physical time requirements. For instance,
in a model like the random access machine (see Exercises 1.14 and 1.15),
the uniform time complexity measure for which an arithmetic operation
on integers counts only one unit of time, no matter how large the integers
are, is not considered as a reasonable time complexity measure.7

The Extended Church–Turing Thesis is a much stronger statement
than the Church–Turing Thesis, because it implies that TMs can simulate
each instruction of any other reasonable models within time polynomial
in the length of the input. It is not as widely accepted as the Church–
Turing Thesis. To disprove it, however, one needs to demonstrate in
a formal manner a reasonable model and a problem A and to prove

7The reader should keep in mind that we are here developing a general theory of com-
putational complexity for all computational problems. Depending on the nature of the
problems, we may sometime want to apply more specific complexity measures to specific
problems. For instance, when we compare different algorithms for the integer matrix mul-
tiplication problem, the uniform time complexity measure appears to be more convenient
than the bit-operation (or, logarithmic) time complexity measure.

24 COMPLEXITY CLASSES

formally that A is computable in the new model in polynomial time and
A is not solvable by DTMs in polynomial time. Although there are some
candidates for the counterexample A, such a formal proof has not yet
been found.8

To partially support the Extended Church–Turing Thesis, we verify
that the simulation of a multi-tape TM by a one-tape TM described in
Theorem 1.6 can be implemented in polynomial time.

Corollary 1.14 For any multi-tape TM M, there exists a one-tape TM M1
that computes the same function as M in time tM1

(n) = O((tM(n))2).

Proof. In the simulation of Theorem 1.6, for each move of M, the
machine M1 makes one pass from left to right and then one pass from
right to left. In the first pass, the machine M1 looks for all X symbols and
then stores the information of tape symbols currently scanned by M in its
states, and it takes at most 𝑡𝑖𝑚𝑒M(x) moves to find all X symbols. (Note
that at any point of computation, the tape heads of M can move at most
𝑡𝑖𝑚𝑒M(x) squares away from the starting square.) In the second pass, M1
needs to adjust the positions of the X symbols and to erase and write
new symbols in the first section of each group. For each group, these
actions take two additional moves, and the total time for the second pass
takes only 𝑡𝑖𝑚𝑒M(x) + 2k, where k is the number of tapes of M. Thus, the
total running time of M1 on x is at most (𝑡𝑖𝑚𝑒M(x))2 + (2k + 2)𝑡𝑖𝑚𝑒M(x)
(where the extra 2𝑡𝑖𝑚𝑒M(x) is for the initialization and ending stages). ◾

The above quadratic simulation time can be reduced to quasi-linear
time (i.e., tM(n) ⋅ log(tM(n))) if we allow M1 to have two work tapes (in
addition to the input tape).

Theorem 1.15 For any multi-tape TM M, there exists a two-worktape
TM M1 that computes the same function as M in time tM1

(n) = O(tM(n) ⋅
log(tM(n))).

Proof. See Exercise 1.19. ◾

For the space complexity, we observe that the machine M1 in Theorem
1.6 does not use any extra space than M1.

Corollary 1.16 For any multi-tape TM M, there exists a one-worktape TM
M1 that computes the same function as M in space sM1

(n) = O(sM(n)).

8One of the new computational models that challenges the validity of the Extended
Church–Turing Thesis is the quantum TM model. It has been proved recently that some
number theoretic problems which are believed to be not solvable in polynomial time by
DTMs (or, even by probabilistic TMs) are solvable in polynomial time by quantum TMs.
See, for instance, Shor (1997) and Bernstein and Vazirani (1997) for more discussions.

1.5 Universal Turing Machine 25

The relationship between the time- and space-bounded complexity
classes and between the deterministic and nondeterministic complexity
classes is one of the main topics in complexity theory. In particular, the
relationship between the polynomial bounded classes, such as whether
𝑃 = NP and whether 𝑃 = PSPACE, presents the ultimate challenge to
the researchers. We discuss these questions in the following sections.

1.5 Universal Turing Machine

One of the most important properties of a computation system like TMs
is that there exists a universal machine that can simulate each machine
from its code.

Let us first consider one-tape DTMs with the input alphabet {0, 1}, the
working alphabet {0, 1,B}, the initial state q0, and the final state set {q1},
that is, DTMs defined by (Q, q0, {q1}, {0, 1}, {0, 1,B}, 𝛿). Such a TM can
be determined by the definition of the transition function 𝛿 only, for Q is
assumed to be the set of states appearing in the definition of 𝛿. Let us use
the notation qi, 0 ≤ i ≤ |Q| − 1, for a state in Q, Xj, j = 0, 1, 2, for a tape
symbol where X0 = 0,X1 = 1 and X2 = B, and Dk, k = 0, 1, for a moving
direction for the tape head where D0 = L and D1 = R. For each equation
𝛿(qi,Xj) = (qk,X𝓁,Dh), we encode it by the following string in {0, 1}∗:

0i+110j+110k+110𝓁+110h+1. (1.2)

Assume that there are m equations in the definition of 𝛿. Let 𝑐𝑜𝑑𝑒i be
the code of the ith equation. Then we combine the codes for equations
together to get the following code for the TM:

code111code211 · · · 11codem. (1.3)

Note that because different orderings of the equations give different
codes, there are m! equivalent codes for a TM of m equations.

The above coding system is a one-to-many mapping 𝜙 from TMs to
{0, 1}∗. Each string x in {0, 1}∗ encodes at most one TM 𝜙−1(x). Let us
extend 𝜙−1 into a function mapping each string x ∈ {0, 1}∗ to a TM M
by mapping each x not encoding a TM to a fixed empty TM M0 whose
code is 𝜆 and that rejects all strings. Call this mapping 𝜄. Observe that 𝜄 is
a mapping from {0, 1}∗ to TMs with the following properties:

(i) For every x ∈ Σ∗, 𝜄(x) represents a TM;

(ii) Every TM is represented by at least one 𝜄(x); and

(iii) The transition function 𝛿 of the TM 𝜄(x) can be easily decoded from
the string x.

We say a coding system 𝜄 is an enumeration of one-tape DTMs if 𝜄
satisfies properties (i) and (ii). In addition, property (iii) means that this

26 COMPLEXITY CLASSES

enumeration admits a universal Turing machine. In the following, we write
Mx to mean the TM 𝜄(x). We assume that ⟨⋅, ⋅⟩ is a pairing function on
{0, 1}∗ such that both the function and its inverse are computable in linear
time, for instance, ⟨x, y⟩ = 0|x|1xy.

Proposition 1.17 There exists a TM Mu, which, on input ⟨x, y⟩, simu-
lates the machine Mx on input y so that L(Mu) = {⟨x, y⟩ ∶ y ∈ L(Mx)}.
Furthermore, for each x, there is a constant c such that 𝑡𝑖𝑚𝑒Mu

(⟨x, y⟩) ≤
c ⋅ (𝑡𝑖𝑚𝑒Mx

(y))2.

Proof. We first construct a four-tape machine Mu. The machine Mu first
decodes ⟨x, y⟩ and copies the string x to the second tape and copies string
y to the third tape. After this, the machine Mu checks that the first string
x is a legal code for a TM, that is, it verifies that it is of the form (1.3)
such that each 𝑐𝑜𝑑𝑒i is of the form (1.2) with 0 ≤ j ≤ 2, 0 ≤ 𝓁 ≤ 2 and
0 ≤ h ≤ 1. Furthermore, it verifies that it encodes a deterministic TM by
verifying that no two 𝑐𝑜𝑑𝑒p and 𝑐𝑜𝑑𝑒q begin with the same initial segment
0i+110j+11. If x does not legally encode a DTM, then Mu halts and rejects
the input. Otherwise, Mu begins to simulate Mx on input y. During the
simulation, the machine Mu stores the current state qi (in the form 0i+1)
of Mx in tape 4 and, for each move, it looks on tape 2 for the equation of
the transition function of Mx that applies to the current configuration on
tape 3 and then simulates the move of Mx on tapes 3 and 4.

To analyze the running time of Mu, we note that decoding of ⟨x, y⟩
into x and y takes only time c1(|x| + |y|) for some constant c1, and the
verification of x being a legal code for a DTM takes only O(|x|2) moves.
In addition, the simulation of each move takes only time linearly propor-
tional to the length of x. Thus, the total simulation time of Mu on ⟨x, y⟩
is only c2 ⋅ 𝑡𝑖𝑚𝑒Mx

(y) for some constant c2 that depends on x only. The
proposition now follows from Theorem 1.14. ◾

Although the above coding system and the universal TM are defined
for a special class of one-tape TMs, it is not hard to see how to extend it
to the class of multi-tape TMs. For instance, we note that a universal TM
exists for the enumeration of one-worktape TMs and its simulation can
be done in linear space.

Proposition 1.18 Assume that {Mx} is an enumeration of one-worktape
TMs over the alphabet {0, 1,B}. Then, there exists a one-worktape TM Mu
such that L(Mu) = {⟨x, y⟩ ∶ y ∈ L(Mx)}. Furthermore, for each x, there is
a constant c such that 𝑠𝑝𝑎𝑐𝑒Mu

(⟨x, y⟩) ≤ c ⋅ 𝑠𝑝𝑎𝑐𝑒Mx
(y).

Proof. Follows from Corollary 1.16. ◾

1.5 Universal Turing Machine 27

The above results can be extended to other types of TMs. For instance,
for each k > 1 and any fixed alphabet Σ, we may easily extend our
coding system to get a one-to-one mapping from {0, 1}∗ to k-tape
TMs over Σ and obtain an enumeration {Mx} for such TMs. Based
on Theorem 1.15 and Corollary 1.16, it can be easily seen that for
this enumeration system, a universal TM Mu exists that simulates
each machine with 𝑡𝑖𝑚𝑒Mu

(⟨x, y⟩) ≤ c ⋅ 𝑡𝑖𝑚𝑒Mx
(y) ⋅ log(𝑡𝑖𝑚𝑒Mx

(y)) and
𝑠𝑝𝑎𝑐𝑒Mu

(⟨x, y⟩) ≤ c ⋅ 𝑠𝑝𝑎𝑐𝑒Mx
(y) for some constant c (depending on k, Σ,

and x). In addition, this enumeration can be extended to NTMs.

Proposition 1.19 There exist a mapping from each string x ∈ {0, 1}∗ to a
multi-tape NTM Mx and a universal NTM Mu, such that

(i) L(Mu) = {⟨x, y⟩ ∶ y ∈ L(Mx)}; and

(ii) For each x, there is a polynomial function p such that 𝑡𝑖𝑚𝑒Mu
(⟨x, y⟩) ≤

p(𝑡𝑖𝑚𝑒Mx
(y)) for all y.

Proof. The proof is essentially the same as Proposition 1.17, together
with the polynomial-time simulation of multi-tape NTMs by two-tape
NTMs. We omit the details. ◾

When we consider the complexity classes like 𝑃 and NP, we are
concerned only with a subclass of DTMs or NTMs. It is convenient
to enumerate only these machines. We present an enumeration of
polynomial-time “clocked” machines. First, we need some notations. A
function t ∶ ℕ → ℕ is called a fully time-constructible function if there is
a multi-tape DTM that on any input x of length n halts in exactly t(n)
moves. Most common integer-valued functions such as cn, n ⋅ ⌈log n⌉,
nc, n⌈log n⌉, 2n, and n! are known to be fully time constructible (see
Exercise 1.20). A DTM that halts in exactly t(n) moves on all inputs of
length n is called a t(n)-clock machine. For any k1-tape DTM M1 and
any fully time-constructible function t for which there exists a k2-tape
clock machine M2, we can construct a t(n)-clocked (k1 + k2)-tape DTM
M3 that simulates M1 for exactly t(n) moves on inputs of length n.
The machine M3 first copies the input to the (k1 + 1)th tape and then
simultaneously simulates on the first k1 tapes machine M1 and on the
last k2 tapes the t(n)-clock machine M2. M3 halts when either M1 or
M2 halts, and it accepts only if M1 accepts. The two moves of M1 and
M2 can be combined into one move by using a state set that is the
product of the state sets of M1 and M2. For instance, assume that M1 is
a one-tape DTM defined by (Q1, q

1
0,F1,Σ1,Γ1, 𝛿1) and M2 is a one-tape

machine defined by (Q2, q
2
0,F2,Σ2,Γ2, 𝛿2). Then, M3 is defined to be

(Q1 × Q2, ⟨q1
0, q

2
0⟩,F1 × Q2,Σ1 × Σ2,Γ1 × Γ2, 𝛿3), where

𝛿3(⟨q1
i , q

2
i′⟩, ⟨s1

j , s
2
j′⟩) = (⟨q1

k, q
2
k′⟩, ⟨s1

𝓁, s
2
𝓁′⟩, ⟨Dh,Dh′⟩)

28 COMPLEXITY CLASSES

if 𝛿1(q1
i , s

1
j) = (q1

k
, s1

𝓁,Dh) and 𝛿2(q2
i′ , s

2
j′) = (q2

k′ , s2
𝓁′ ,Dh′). It is clear that

machine M3 always halts in time t(n) + 2n. Furthermore, if tM1
(n) ≤ t(n)

for all n ≥ 0, then L(M2) = L(M1).
Now, consider the functions qi(n) = ni + i, for i ≥ 1. It is easy to see

that for any polynomial function p, there exists an integer i ≥ 1 such
that p(n) ≤ qi(n) for all n ≥ 0. Assume that {Mx} is an enumeration
of DTMs as described above. For each string x ∈ {0, 1}∗ and each
integer i, let M⟨x,i⟩ denote the machine Mx attached with the qi(n)-clock
machine. Then, {M⟨x,i⟩} is an enumeration of all polynomial-time clocked
machines. This enumeration has the following properties and is called an
effective enumeration of languages in P:

(i) Every machine M⟨x,i⟩ in the enumeration accepts a set in 𝑃 .

(ii) Every set A in 𝑃 is accepted by at least one machine in the enumer-
ation (in fact, an infinite number of machines).

(iii) There exists a universal machine Mu such that for given input⟨x, i, y⟩, Mu simulates M⟨x,i⟩ on y in time p(qi(|y|)), where p is a
polynomial function depending on x only.

Note that the above statements claim that the class 𝑃 of polynomial-
time computable languages are enumerable through the enumeration of
polynomial-time clocked machines. They do not claim that we can enu-
merate all polynomial- time-bounded machines, because the question of
determining whether a given machine always halts in polynomial time is
in fact not decidable (Exercise 1.23).

By a similar setting, we obtain an enumeration of clocked NTMs that
accept exactly the languages in NP.

We can also enumerate all languages in PSPACE through the enumer-
ation of polynomial-space-marking machines. A function s ∶ ℕ → ℕ is
called a fully space-constructible function if there is a two-tape DTM that
on any input x of length n halts visiting exactly s(n) squares of the work
tape. Again, most common functions, including ⌈log n⌉, ⌈log2 n⌉, cn, nc,
are fully space constructible. For any fully space-constructible function s,
we can construct a two-tape s(n)-space marking machine M that, on any
input of length n, places the symbol # on exactly s(n) squares on the work
tape. For any k-tape DTM M1, we can attach this s(n)-space marking
machine to it to form a new machine M2 that does the following:

(1) It first reads the input and simulates the marking machine M1 to
mark each tape with s(n) # symbols.

(2) It then simulates M1 using these marked tapes, treating each # sym-
bol as the blank symbol, such that whenever the machine M1 sees a
real blank symbol B, the machine M2 halts and rejects. (We assume
that M2 begins step (2) with each tape head scanning the square of
the leftmost # mark. It can be proved that for any machine M1 that

1.6 Diagonalization 29

operates within a space bound s(n), there is a machine M′
1 that com-

putes the same function and operates in space bound s(n) starting
with this initial setting (Exercise 1.24).)

We can then enumerate all polynomial-space-marked machines as we
did for polynomial-clocked machines. This enumeration effectively enu-
merates all languages in PSPACE.

1.6 Diagonalization

Diagonalization is an important proof technique widely used in recursive
function theory and complexity theory. One of the earliest applications of
diagonalization is Cantor’s proof for the fact that the set of real numbers is
not countable. We give a similar proof for the set of functions on {0, 1}∗. A
set S is countable (or, enumerable) if there exists a one–one onto mapping
from the set of natural numbers to S.

Proposition 1.20 The set of functions from {0, 1}∗ to {0, 1} is not countable.

Proof. Suppose, by way of contradiction, that such a set is countable,
that is, it can be represented as {f0, f1, f2, · · ·}. Let ai denote the ith string
in {0, 1}∗ under the lexicographic ordering. Then we can define a function
f as follows: For each i ≥ 0, f (ai) = 1 if fi(ai) = 0 and f (ai) = 0 if fi(ai) = 1.
Clearly, f is a function from {0, 1}∗ to {0, 1}. However, it is not in the list
f0, f1, f2, · · ·, because it differs from each fi on at least one input string ai.
This establishes a contradiction. ◾

An immediate consequence of Proposition 1.20 is that there exists
a noncomputable function from {0, 1}∗ to {0, 1}, because we have just
shown that the set of all TMs, and hence the set of all computable func-
tions, is countable. In the following, we use diagonalization to construct
directly an undecidable (i.e., nonrecursive) problem: the halting problem.
The halting problem is the set K = {x ∈ {0, 1}∗ ∶ Mx halts on x}, where
{Mx} is an enumeration of TMs.

Theorem 1.21 K is r.e. but not recursive.

Proof. The fact that K is r.e. follows immediately from the existence of
the universal TM Mu (Proposition 1.17). To see that K is not recursive, we
note that the complement of a recursive set is also recursive and, hence,
r.e. Thus, if K were recursive, then K would be r.e. and there would be an
integer y such that My halts on all x ∈ K and does not halt on any x ∈ K.
Then, a contradiction could be found when we consider whether or not
y itself is in K: if y ∈ K, then My must not halt on y and it follows from

30 COMPLEXITY CLASSES

the definition of K that y ∉ K and if y ∉ K, then My must halt on y and
it follows from the definition of K that y ∈ K. ◾

Now we apply the diagonalization technique to separate complex-
ity classes. We first consider deterministic space-bounded classes.
From the tape compression theorem, we know that DSPACE(s1(n)) =
DSPACE(s2(n)) if c1 ⋅ s1(n) ≤ s2(n) ≤ c2 ⋅ s1(n) for some constants c1
and c2. The following theorem shows that if s2(n) asymptotically
diverges faster than c ⋅ s1(n) for all constants c, then DSPACE(s1(n)) ≠
DSPACE(s2(n)).

Theorem 1.22 (Space Hierarchy Theorem) Let s2(n) be a fully space-
constructible function. Suppose that lim infn→∞ s1(n)∕s2(n) = 0 and
s2(n) ≥ s1(n) ≥ log2 n. Then, DSPACE(s1(n)) ⊂≠ DSPACE(s2(n)).

Proof. We are going to construct a TM M∗ that works within space s2(n)
to diagonalize against all TMs Mx that use space s1(n). To set up for the
diagonalization process, we modify the coding of the TMs a little. Each set
A in DSPACE(s1(n)) is computed by a multi-tape TM within space bound
s1(n). By Corollary 1.16, together with a simple coding of any alphabet Γ
by the fixed alphabet {0, 1}, there is a one-worktape TM over the alphabet
{0, 1,B} that accepts A in space c1 ⋅ s1(n) for some constant c1 > 0. So, it
is sufficient to consider the enumeration {Mx} of one-worktape TMs over
the alphabet {0, 1,B} as defined in Section 1.5. Recall that each TM was
encoded by a string of the form (1.3). We now let all strings of the form
1kx, k ≥ 0, encode Mx if x is of the form (1.3); we still let all other illegal
strings y encode the fixed empty TM M0. Thus, for each TM M, there
now are infinitely many strings that encode it.

Our machine M∗ is a two-worktape TM that uses the tape alphabet
{0, 1,B, #}. On each input x, M∗ does the following:

(1) M∗ simulates a s2(n)-space marking TM to place s2(n) # symbols
on each work tape.

(2) Let t2(n) = 2s2(n). M∗ writes the integer t2(|x|), in the binary form,
on tape 2. That is, M∗ writes 1 to the left of the leftmost # symbol and
writes 0 over all #’s.

(3) M∗ simulates Mx on input x on tape 1, one move at a time. For each
move of Mx, if Mx attempts to move off the # symbols, then M∗ halts and
rejects; otherwise, M∗ subtracts one from the number on tape 2. If tape 2
contains the number 0, then M∗ halts and accepts.

(4) If Mx halts on x within space s2(|x|) and time t2(|x|), then M∗ halts,
and M∗ accepts x if and only if Mx rejects x.

It is clear that M∗ works within space 2s2(n) + 1, and so, by the
tape compression theorem, L(M∗) ∈ DSPACE(s2(n)). Now we claim

1.6 Diagonalization 31

that L(M∗) ∉ DSPACE(s1(n)). To see this, assume by way of contradic-
tion that L(M∗) is accepted by a one-worktape TM M that works in space
c1s1(n) and uses the tape alphabet {0, 1,B} for some constant c1 > 0.
Then, there is a sufficiently large x such that L(Mx) = L(M∗), c1s1(|x|) ≤
s2(|x|), and t1(|x|) ≤ t2(|x|), where t1(n) = c1 ⋅ n2 ⋅ s1(n) ⋅ 3c1s1(n). (Note
that s1(n) ≥ log n and lim infn→∞ s1(n)∕s2(n) = 0, and so such an x exists.)
Consider the simulation of Mx on x by M∗. As c1 ⋅ s1(|x|) ≤ s2(|x|), M∗

on x always works within the # marks.

Case 1. Mx(x) halts in t2(|x|) moves. Then, M∗ accepts x if and only if
Mx rejects x. Thus, x ∈ L(M∗) if and only if x ∉ L(Mx). This is a contra-
diction.

Case 2. Mx(x) does not halt in t2(|x|) moves. As Mx(x) uses only space
c1s1(|x|), it may have at most r ⋅ c1 ⋅ s1(|x|) ⋅ |x| ⋅ 3c1s1(|x|) different config-
urations, where r is the number of states of Mx. (The value s1(|x|) is the
number of possible tape head positions for the worktape, |x| is the number
of possible tape head position for the input tape, and 3c1s1(|x|) is the num-
ber of possible tape configurations.) As r ≤ |x|, we know that this value is
bounded by t2(|x|). So, if Mx does not halt in t2(|x|) moves, then it must
have reached a configuration twice already. For a DTM, this implies that
it loops forever, and so x ∉ L(Mx). But M∗ accepts x in this case, and
again this is a contradiction. ◾

For the time-bounded classes, we show a weaker result.

Theorem 1.23 (Time Hierarchy Theorem) If t2 is a fully time-constructible
function, t2(n) ≥ t1(n) ≥ n and

lim inf
n→∞

t1(n) log(t1(n))
t2(n)

= 0,

then DTIME(t1(n)) ⊂≠ DTIME(t2(n)).

Proof. The proof is similar to the space hierarchy theorem. The only
thing that needs extra attention is that the machines Mx may have an
arbitrarily large number of tapes over an arbitrarily large alphabet, while
the new machine M∗ has only a fixed number of tapes and a fixed-size
alphabet. Thus, the simulation of Mx on x by M∗ may require extra time.
This problem is resolved by considering the enumeration {Mx} of two-
worktape TMs over a fixed alphabet {0, 1,B} and relaxing the time bound
to O(t1(n) log(t1(n))) (Theorem 1.15). ◾

A nondecreasing function f (n) is called superpolynomial if

lim inf
n→∞

ni

f (n)
= 0

32 COMPLEXITY CLASSES

for all i ≥ 1. For instance, the exponential function 2n is superpolynomial,
and the functions 2logk n, for k > 1, are also superpolynomial.

Corollary 1.24 P ⊂
≠

DTIME(f (n)) for all superpolynomial functions f .

Proof. If f (n) is superpolynomial, then so is g(n) = (f (n))1∕2. By the time
hierarchy theorem, P ⊆ DTIME(g(n)) ⊂

≠
DTIME(f (n)). ◾

Corollary 1.25 PSPACE ⊂
≠

DSPACE(f (n)) for all superpolynomial
functions f .

It follows that 𝑃 ⊂
≠

EXP and LOGSPACE ⊂
≠

PSPACE ⊂
≠

EXPSPACE.
The above time and space hierarchy theorems can also be extended

to nondeterministic time- and space-bounded complexity classes. The
proofs, however, are more involved, because acceptance and rejection
in NTMs are not symmetric. We only list the simpler results on non-
deterministic space-bounded complexity classes, which can be proved
by a straightforward diagonalization. For the nondeterministic time
hierarchy, see Exercise 1.28.

Theorem 1.26 (a) NLOGSPACE ⊂
≠

NPSPACE.
(b) For k ≥ 1, NSPACE(nk) ⊂

≠
NSPACE(nk+1).

Proof. See Exercise 1.27. ◾

In addition to the diagonalization technique, some other proof tech-
niques for separating complexity classes are known. For instance, the
following result separating the classes EXP and PSPACE is based on a
closure property of PSPACE that does not hold for EXP. Unfortunately,
this type of indirect proof techniques is not able to resolve the question
of whether PSPACE ⊆ 𝐸𝑋𝑃 or EXP ⊆ PSPACE.

Theorem 1.27 EXP ≠ PSPACE.

Proof. From the time hierarchy theorem, we get EXP ⊆ DTIME(2n3∕2) ⊂
≠

DTIME(2n2). Thus, it suffices to show that if PSPACE = EXP, then
DTIME(2n2) ⊆ PSPACE.

Assume that L ∈ DTIME(2n2). Let $ be a symbol not used in L, and let
L′ = {x $t ∶ x ∈ L, |x| + t = |x|2}. Clearly, L′ ∈ DTIME(2n). So, by the
assumption that PSPACE = EXP, we have L′ ∈ PSPACE, that is, there
exists an integer k > 0 such that L′ ∈ DSPACE(nk). Let M be a DTM
accepting L′ with the space bound nk. We can construct a new DTM M′

that operates as follows.

1.7 Simulation 33

On input x, M′ copies x into a tape and then adds |x|2 − |x|$’s.
Then, M′ simulates M on x $|x|2−|x|.

Clearly, L(M′) = L. Note that M′ uses space n2k, and so L ∈ PSPACE.
Therefore, DTIME(2n2) ⊆ PSPACE, and the theorem is proven. ◾

1.7 Simulation

We study, in this section, the relationship between deterministic and
nondeterministic complexity classes, as well as the relationship between
time- and space-bounded complexity classes. We show several different
simulations of nondeterministic machines by deterministic ones.

Theorem 1.28 (a) For any fully space-constructible function f (n) ≥ n,

DTIME(f (n)) ⊆ NTIME(f (n)) ⊆ DSPACE(f (n)).
(b) For any fully space-constructible function f (n) ≥ log n,

DSPACE(f (n)) ⊆ NSPACE(f (n)) ⊆
⋃
c>0

DTIME(2cf (n)).

Proof. (a): The relation DTIME(f (n)) ⊆ NTIME(f (n)) follows immedi-
ately from the fact that DTMs are just a subclass of NTMs. For the rela-
tion NTIME(f (n)) ⊆ DSPACE(f (n)), we recall the simulation of an NTM
M by a DTM M1 as described in Theorem 1.9. Suppose that M has time
complexity bounded by f (n); then M1 needs to simulate M for at most
f (n) moves. That is, we restrict M1 to only execute the first

∑f (n)
i=1 ki stages

such that the strings written in tape 2 are at most f (n) symbols long. As
f (n) is fully space constructible, this restriction can be done by first mark-
ing off f (n) squares on tape 2. It is clear that such a restricted simulation
works within space f (n).

(b): Again, DSPACE(f (n)) ⊆ NSPACE(f (n)) is obvious. To show that
NSPACE(f (n)) ⊆

⋃
c>0 DTIME(2cf (n)), assume that M is an NTM with

the space bound f (n). We are going to construct a DTM M1 to simulate M
in time 2cf (n) for some c > 0. As M uses only space f (n), there is a constant
c1 > 0 such that the shortest accepting computation for each x ∈ L(M) is
of length ≤ 2c1f (|x|). Thus, the machine M1 needs only to simulate M(x)
for, at most, 2c1f (n) moves. However, M is a nondeterministic machine and
so its computation tree of depth 2c1f (n) could have 22O(f (n))

leaves, and the
naive simulation as (a) above takes too much time.

To reduce the deterministic simulation time, we notice that this
computation tree, although of size 22O(f (n))

, has at most 2O(f (n)) different
configurations: Each configuration is determined by at most f (n) tape
symbols on the work tape, one of f (n) positions for the work tape head,

34 COMPLEXITY CLASSES

one of n positions for the input tape head, and one of r positions for states,
where r is a constant. Thus, the total number of possible configurations
of M(x) is 2O(f (n)) ⋅ f (n) ⋅ n ⋅ r = 2O(f (n)). (Note that f (n) ≥ log n implies
n ≤ 2f (n).)

Let T be the computation tree of M(x) with depth 2c1f (n), with each
node labeled by its configuration. We define a breadth-first ordering ≺ on
the nodes of T and prune the subtree of T rooted at a node 𝑣 as long
as there is a node u ≺ 𝑣 that has the same configuration as 𝑣. Then, the
resulting pruned tree T ′ has at most 2O(f (n)) internal nodes and hence is of
size 2O(f (n)). In addition, the tree T ′ contains an accepting configuration if
and only if x ∈ L(M), because all deleted subtrees occur somewhere else
in T ′. In other words, our DTM M1 works as follows: it simulates M(x)
by making a breadth-first traversal over the tree T , keeping a record of
the configurations encountered so far. When it visits a new node 𝑣 of the
tree, it checks the history record to see if the configuration has occurred
before and prunes the subtree rooted at 𝑣 if this is the case. In this way,
M1 only visits the nodes in tree T ′ and works within time 2cf (n) for some
constant c > 0. ◾

Corollary 1.29 LOGSPACE ⊆ NLOGSPACE ⊆ 𝑃 ⊆ NP ⊆ PSPACE.

Next we consider the space complexity of the deterministic simulation
of nondeterministic space-bounded machines.

Theorem 1.30 (Savitch’s Theorem) For any fully space-constructible func-
tion s(n) ≥ log n, NSPACE(s(n)) ⊆ 𝐷𝑆𝑃𝐴𝐶𝐸((s(n))2).

Proof. Let M be a one-worktape s(n)-space-bounded NTM. We are
going to construct a DTM M1 to simulate M using space (s(n))2. Without
loss of generality, we may assume that M has a unique accepting config-
uration for all inputs x, that is, we require that M cleans up the worktape
and enters a fixed accepting state when it accepts an input x. As pointed
out in the proof of Theorem 1.28, the shortest accepting computation of
M on an x ∈ L(M) is at most 2O(s(n)), and each configuration is of length
s(n). (We say a configuration is of length 𝓁 if its work tape has at most 𝓁
nonblank symbols. Note that there are only 2O(𝓁) configurations on input
x that has length 𝓁.) Thus, for each input x, the goal of the DTM M1 is
to search for a computation path of length at most 2O(s(n)) from the initial
configuration 𝛼0 to the accepting configuration 𝛼f .

Define a predicate reach (𝛽, 𝛾, k) to mean that both 𝛽 and 𝛾 are con-
figurations of M such that 𝛾 is reachable from 𝛽 in at most k moves, that
is, there exists a sequence 𝛽 = 𝛽0, 𝛽1, … , 𝛽k = 𝛾 such that 𝛽i ⊢M 𝛽i+1 or
𝛽i = 𝛽i+1, for each i = 0,… , k − 1. Using this definition, we see that M
accepts x if and only if reach(𝛼0, 𝛼f , 2

cs(n)), where 𝛼0 is the unique initial
configuration of M on input x, 𝛼f is the unique accepting configuration of

1.7 Simulation 35

M on x, and 2cs(n) is the number of possible configurations of M of length
s(n). The following is a recursive algorithm computing the predicate reach.
The main observation here is that

𝑟𝑒𝑎𝑐ℎ(𝛼1, 𝛼2, j + k) ⇐⇒ (∃𝛼3) [𝑟𝑒𝑎𝑐ℎ(𝛼1, 𝛼3, j) and 𝑟𝑒𝑎𝑐ℎ(𝛼3, 𝛼2, k)].

Algorithm for reach(𝛼1, 𝛼2, i):
First, if i ≤ 1, then return TRUE if and only if 𝛼1 = 𝛼2 or
𝛼1 ⊢M 𝛼2.
If i ≥ 2, then for all possible configurations 𝛼3 of M of
length s(n), recursively compute whether it is true that
reach(𝛼1, 𝛼3, ⌈i∕2⌉) and reach(𝛼3, 𝛼2, ⌊i∕2⌋); return TRUE if and
only if there exists such an 𝛼3.

It is clear that the algorithm is correct. This recursive algorithm can
be implemented by a standard nonrecursive simulation using a stack
of depth O(s(n)), with each level of the stack using space O(s(n)) to
keep track of the current configuration 𝛼3. Thus the total space used is
O((s(n))2). (See Exercise 1.34 for the detail.) ◾

Corollary 1.31 PSPACE = NPSPACE.

For any complexity class , let co (or, co-) denote the class of com-
plements of sets in , that is, co = {S ∶ S ∈ }, where S = Σ∗ − S, andΣ
is the smallest alphabet such that S ⊆ Σ∗. One of the differences between
deterministic and nondeterministic complexity classes is that determinis-
tic classes are closed under complementation, but this is not known to be
true for nondeterministic classes. For instance, it is not known whether
NP = coNP. The following theorem shows that for most interesting non-
deterministic space-bounded classes , co = .

Theorem 1.32 For any fully space-constructible function s(n) ≥ log n,
NSPACE(s(n)) = coNSPACE(s(n)).

Proof. Let M be a one-worktape NTM with the space bound s(n). Recall
the predicate 𝑟𝑒𝑎𝑐ℎ(𝛼, 𝛽, k) defined in the proof of Theorem 1.30. In this
proof, we further explore the concept of reachable configurations from a
given configuration of length s(n). Consider a fixed input x of length n.
Let Cx be the class of all configurations of M on x that is of length s(n).
Let ≺ be a fixed ordering of configurations in Cx such that an O(s(n))
space-bounded DTM can generate these configurations in the increasing
order. First, we observe that the predicate 𝑟𝑒𝑎𝑐ℎ(𝛼, 𝛽, k) is acceptable by
an NTM M1 in space O(s(n) + log k) if 𝛼 and 𝛽 are from Cx. The NTM
M1 operates as follows:

36 COMPLEXITY CLASSES

Machine M1. Let 𝛼0 = 𝛼. For each i = 0,… , k − 2, M1 guesses
a configuration 𝛼i+1 ∈ Cx and verifies that 𝛼i = 𝛼i+1 or 𝛼i ⊢M
𝛼i+1. (If neither 𝛼i ≠ 𝛼i+1 nor 𝛼i ⊢M 𝛼i+1 holds, then M1 rejects
on this computation path.) Finally, M1 verifies that 𝛼k−1 = 𝛽
or 𝛼k−1 ⊢M 𝛽 and accepts if this holds.

Apparently, this NTM M1 uses space O(s(n) + log k) and accepts
(𝛼, 𝛽, k) if and only if 𝑟𝑒𝑎𝑐ℎ(𝛼, 𝛽, k).

Next, we apply this machine M1 to construct another NTM M2 that,
on any given configuration 𝛽, computes the exact number N of configura-
tions in Cx that are reachable from 𝛽, using space O(s(n)). (This is an NTM
computing a function as defined in Definition 1.8.) Let m be the maximum
length of an accepting path on input x. Then, m = 2O(s(n)). The machine
M2 uses the following algorithm to compute iteratively the number Nk
of configurations in Cx that are reachable from 𝛽 in at most k moves, for
k = 0,… ,m + 1. Then, when for some k it is found that Nk = Nk+1, it halts
and outputs N = Nk.

Algorithm for computing Nk:

For k = 0, just let N0 = 1 (𝛽 is the only reachable configura-
tion). For each k > 0, assume that Nk has been found. To com-
pute Nk+1, machine M2 maintains a counter Nk+1, which is
initialized to 0, and then for each configuration 𝛼 ∈ Cx, M2
does the following:

(1) First, let r𝛼 be FALSE. For each i = 1,… ,Nk, M2 guesses a
configuration 𝛾i in Cx, and verifies that (i) 𝛾i−1 ≺ 𝛾i if i > 1
and (ii) 𝑟𝑒𝑎𝑐ℎ(𝛽, 𝛾i, k) (this can be done by machine M1).
It rejects this computation path if (i) or (ii) does not hold.
Next, it deterministically checks whether 𝑟𝑒𝑎𝑐ℎ(𝛾i, 𝛼, 1). If
it is true that 𝑟𝑒𝑎𝑐ℎ(𝛾i, 𝛼, 1), then it sets the flag r𝛼 to TRUE.
In either case, it continues to the next i.

(2) When the above is done for all i = 1,… ,Nk and if the com-
putation does not reject, then M2 adds one to Nk+1 if and
only if r𝛼 = TRUE and goes to the next configuration.

Note that M2 uses only space O(s(n)), because at each step correspond-
ing to configuration 𝛼 and integer i, it only needs to keep the following
information: i, k, Nk, the current Nk+1, r𝛼, 𝛼, 𝛾i−1 and 𝛾i. Furthermore,
it can be checked that this algorithm indeed computes the function that
maps 𝛽 to the number N of reachable configurations: At stage k + 1,
assume that Nk has been correctly computed. Then, for each 𝛼, there
exists one nonrejecting path in stage (k + 1)—the path that guesses the Nk
configurations 𝛾i that are reachable from 𝛽 in k moves, in the increasing

1.7 Simulation 37

order. All other paths are rejecting paths. For each 𝛼, this unique path
must determine whether 𝑟𝑒𝑎𝑐ℎ(𝛽, 𝛼, k + 1) correctly. (See Exercise 1.35
for more discussions.)

Next, we construct a third NTM M3 for L(M) as follows:

Machine M3. First, M3 simulates M2 to compute the number
N of reachable configurations from the initial configuration 𝛼0.
Then, it guesses N configurations 𝛾1,… , 𝛾N , one by one and in
the increasing order as in M2 above, and checks that each is
reachable from 𝛼0 (by machine M1) and none of them is an
accepting configuration. It accepts if the above are checked;
otherwise, it rejects this computation path.

We claim that this machine M3 accepts L(M). First, it is easy to see that
if x ∉ L(M), then all reachable configurations from 𝛼0 are nonaccepting
configurations. So, the computation path of M3 that guesses correctly all
N reachable configurations of 𝛼0 will accept x. Conversely, if x ∈ L(M),
then one of the reachable configuration from 𝛼0 must be an accepting con-
figuration. So, a computation path of M3 must guess either all reachable
configurations that include one accepting configuration or guess at least
one nonreachable configuration. In either case, this computation path
must reject. Thus, M3 accepts exactly those x ∉ L(M).

Finally, the same argument for M2 verifies that M3 uses space O(s(n)).
The theorem then follows from the tape compression theorem for
NTMs. ◾

Recall that in the formal language theory, a language L is called
context-sensitive if there exists a grammar G generating the language
L with the right-hand side of each grammar rule in G being at least
as long as its left-hand side. A well-known characterization for the
context-sensitive languages is that the context-sensitive languages are
exactly the class NSPACE(n).

Corollary 1.33 (a) NLOGSPACE = coNLOGSPACE.
(b) The class of context-sensitive languages is closed under complemen-

tation.

The above results, together with the ones proved in the last section,
are the best we know about the relationship among time/space-bounded
deterministic/nondeterministic complexity classes. Many other impor-
tant relations are not known. We summarize in Figure 1.7 the known
relations among the most familiar complexity classes. More complexity
classes between P and PSPACE will be introduced in Chapters 3, 8,
9, and 10. Complexity classes between LOGSPACE and P will be
introduced in Chapter 6.

38 COMPLEXITY CLASSES

L NL P

NP

EXP

PSPACE

NEXP

EXPSPACE
? ?

?

≠

?

≠

?

≠

?

Figure 1.7 Inclusive relations among the complexity classes. We write L to
denote LOGSPACE and NL to denote NLOGSPACE. The label ≠ means the
proper inclusion. The label ? means the inclusion is not known to be proper.

Exercises

1.1 Let 𝓁1, · · · ,𝓁q be q natural numbers, and Σ be an alphabet of r sym-
bols. Show that there exist q strings s1, · · · , sq over Σ, of lengths 𝓁1, · · · ,𝓁q,
respectively, which form an alphabet if and only if

∑q
i=1 r−𝓁i ≤ 1.

1.2 (a) Let c ≥ 0 be a constant. Prove that no pairing function ⟨⋅, ⋅⟩
exists such that for all x, y ∈ Σ∗, |⟨x, y⟩| ≤ |x| + |y| + c.

(b) Prove that there exists a pairing function 𝜋 ∶ Σ∗ × Σ∗ → Σ∗

such that (i) for any x, y ∈ Σ∗, |𝜋(x, y)| ≤ |x| + |y| + O(log |x|), (ii)
it is polynomial-time computable, and (iii) its inverse function is
polynomial-time computable (if z ∉ 𝑟𝑎𝑛𝑔𝑒(𝜋), then 𝜋−1(z) = (𝜆, 𝜆)).

(c) Let f ∶ ℕ × ℕ → ℕ be defined by f (n,m) = (n + m)(n + m +
1)∕2 + n. Prove that f is one–one, onto, polynomial-time computable
(with respect to the binary representations of natural numbers) and that
f −1 is polynomial-time computable. (Therefore, f is an efficient pairing
function on natural numbers.)

1.3 There are two cities T and F . The residents of city T always tell the
truth and the residents of city F always lie. The two cities are very close.
Their residents visit each other very often. When you walk in city T you
may meet a person who came from city F , and vice versa. Now, suppose
that you are in one of the two cities and you want to find out which city
you are in. Also suppose that you are allowed to ask a person on the street
for only one YES/NO question. What question should you ask? [Hint: You
may first design a Boolean function f of two variables, the resident and
the city, for your need, and then find a question corresponding to f .]

1.4 How many Boolean functions of n variables are there?

1.5 Assume that f is a Boolean function of more than two variables.
Prove that for any minterm p of f |x1=0,x2=1, there exists a minterm of f
containing p as a subterm.

1.6 Design a multi-tape DTM M to accept the language L =
{aibajbak ∶ i, j, k ≥ 0, i + j = k}. Show the computation paths of M on
inputs a2ba3ba5 and a2baba4.

1.7 Design a multi-tape NTM M to accept the language L =
{ai1bai2b · · · baik ∶ i1, i2,… , ik ≥ 0, ir = is for some 1 ≤ r < s ≤ k}. Show

Exercises 39

the computation tree of M on input a3ba2ba2ba4ba2. What is the time
complexity of M?

1.8 Show that the problem of Example 1.7 can be solved by a DTM in
polynomial time.

1.9 Give formal definitions of the configurations and the computation
of a k-tape DTM.

1.10 Assume that M is a three-tape DTM using tape alphabet Σ =
{a, b,B}. Consider the one-tape DTM M1 that simulates M as described
in Theorem 1.6. Describe explicitly the part of the transition function of
M1 that moves the tape head from left to right to collect the information
of the current tape symbols scanned by M.

1.11 Let C = {⟨G, u, 𝑣⟩ ∶ G = (V ,E) is an undirected graph, u, 𝑣 ∈ V
are connected}. Design an NTM M that accepts set C in space
O(log |V |). Can you find a DTM accepting C in space O(log |V |)?
(Assume that V = {𝑣1,… , 𝑣n}. Then, the input to the machine M is⟨0n1e11e12 · · · e1ne21 · · · enn, o

i, oj⟩, where eij = 1 if {𝑣i, 𝑣j} ∈ E and eij = 0
otherwise.)

1.12 Prove that any finite set of strings belongs to DTIME(n).
1.13 Estimate an upper bound for the number of possible computation

histories H(g, g𝓁, gr) in the proof of Proposition 1.13.

1.14 A random access machine (RAM) is a machine model for comput-
ing integer functions. The memories of a RAM M consists of a one-way
read-only input tape, a one-way write-only output tape, and an infinite
number of registers named R0,R1,R2,… Each square of the input and
output tapes and each register can store an integer of an arbitrary size.
Let c(Ri) denote the content of the register Ri. An instruction of a RAM
may access a register Ri to get its content c(Ri) or it may access the register
Rc(Ri) by the indirect addressing scheme. Each instruction has an integer
label, beginning from 1. A RAM begins the computation on instruction
with label 1 and halts when it reaches an empty instruction. The following
table lists the instruction types of a RAM.
Instruction Meaning

READ(Ri) Read the next input integer into Ri
WRITE(Ri) Write c(Ri) on the output tape
COPY(Ri,Rj) Write c(Ri) to Rj
ADD(Ri,Rj,Rk) Write c(Ri) + c(Rj) to Rk
SUB(Ri,Rj,Rk) Write c(Ri) − c(Rj) to Rk
MULT(Ri,Rj,Rk) Write c(Ri) ⋅ c(Rj) to Rk
DIV(Ri,Rj,Rk) Write ⌊c(Ri)∕c(Rj)⌋ to Rk (write 0 if c(Rj) = 0)
GOTO(i) Go to the instruction with label i
IF THEN(Ri, j) If c(Ri) ≥ 0, then go to the instruction with label j

In the above table, we only listed the arguments in the direct addressing
scheme. It can be changed to indirect addressing scheme by changing the

40 COMPLEXITY CLASSES

argument Ri to R∗
i . For instance, ADD(Ri,R∗

j ,Rk) means to write c(Ri) +
c(Rc(Rj)) toRk. Each instruction can also use a constant argument i instead
of Rj. For instance, COPY(i,R∗

j) means to write integer i to the register
Rc(Rj).

(a) Design a RAM that reads inputs i1, i2,… , ik, j and outputs 1
if

∑
r∈A ir = j for some A ⊆ {1, 2,… , k} and outputs 0 otherwise (cf.

Example 1.7).

(b) Show that for any TM M, there is a RAM M′ that computes the
same function as M. (You need to first specify how to encode tape symbols
of the TM M by integers.)

(c) Show that for any RAM M, there is a TM M′ that computes the
same function as M (with the integer n encoded by the string an).

1.15 In this exercise, we consider the complexity of RAMs. There are
two possible ways of defining the computational time of a RAM M on
input x. The uniform time measure counts each instruction as taking
one unit of time and so the total runtime of M on x is the number of
times M executes an instruction. The logarithmic time measure counts,
for each instruction, the number of bits of the arguments involved.
For instance, the total time to execute the instruction MULT(i,R∗

j ,Rk)
is ⌈log i⌉ + ⌈log j⌉ + ⌈log c(Rj)⌉ + ⌈log c(Rc(Rj))⌉ + ⌈log k⌉. The total
runtime of M on x, in the logarithmic time measure, is the sum of the
instruction time over all instructions executed by M on input x.

Use both the uniform and the logarithmic time measures to analyze the
simulations of parts (b) and (c) of Exercise 1.14. In particular, show that
the notion of polynomial-time computability is equivalent between TMs
and RAMs with respect to the logarithmic time measure.

1.16 Suppose that a TM is allowed to have infinitely many tapes. Does
this increase its computation power as far as the class of computable sets
is concerned?

1.17 Prove Blum’s speed-up theorem. That is, find a function
f ∶ {0, 1}∗ → {0, 1}∗ such that for any DTM M1 computing f there exists
another DTM M2 computing f with 𝑡𝑖𝑚𝑒M2

(x) < 𝑡𝑖𝑚𝑒M1
(x) for infinitely

many x ∈ {0, 1}∗.

1.18 Prove that if c > 1, then for any 𝜖 > 0,

DTIME(cn) = DTIME((1 + 𝜖)n).
1.19 Prove Theorem 1.15.

1.20 Prove that if f (n) is an integer function such that (i) f (n) ≥ 2n and
(ii) f , regarded as a function mapping an to af (n), is computable in deter-
ministic time O(f (n)), then f is fully time constructible. [Hint: Use the
linear speed-up of Proposition 1.13 to compute the function f in less than
f (n) moves, with the output af (n) compressed.]

Exercises 41

1.21 Prove that if f is fully space constructible and f is not a constant
function, then f (n) = Ω(log log n). (We say g(n) = Ω(h(n)) if there exists a
constant c > 0 such that g(n) ≥ c ⋅ h(n) for almost all n ≥ 0.)

1.22 Prove that f (n) = ⌈log n⌉ and g(n) = ⌈√n ⌉ are fully space con-
structible.

1.23 Prove that the question of determining whether a given TM halts
in time p(n) for some polynomial function p is undecidable.

1.24 Prove that for any one-worktape DTM M that uses space s(n),
there is a one-worktape DTM M′ with L(M′) = L(M) such that it uses
space s(n) and its tape head never moves to the left of its starting square.

1.25 Recall that log∗ n = min{k ∶ k ≥ 1, log log · · · log n (k iterations
of log on n) ≤ 1}. Let k > 0 and t2 be a fully time-constructible function.
Assume that

lim inf
n→∞

t1(n) log∗(t1(n))
t2(n)

= 0.

Prove that there exists a language L that is accepted by a k-tape DTM in
time t2(n) but not by any k-tape DTM in time t1(n).

1.26 Prove that DTIME(n2) ⊂
≠

DTIME(n2 log n).
1.27 (a) Prove Theorem 1.26 (cf. Theorems 1.30 and 1.32).

(b) Prove that for any integer k ≥ 1 and any rational 𝜖 > 0,
NSPACE(nk) ⊂

≠
NSPACE(nk+𝜖).

1.28 (a) Prove that NP ⊂
≠

NEXP.

(b) Prove that NTIME(nk) ⊂
≠

NTIME(nk+1) for any k ≥ 1.

1.29 Prove that 𝑃 ≠ DSPACE(n) and NP ≠ EXP.

1.30 A set A is called a tally set if A ⊆ {a}∗ for some symbol a. A
set A is called a sparse set if there exists a polynomial function p such
that |{x ∈ A ∶ |x| ≤ n}| ≤ p(n) for all n ≥ 1. Prove that the following are
equivalent:

(a) EXP = NEXP.

(b) All tally sets in NP are actually in P.

(c) All sparse sets in NP are actually in P.
(Note: The above implies that if EXP ≠ NEXP then 𝑃 ≠ NP.)

1.31 (BUSY BEAVER) In this exercise, we show the existence of an r.e.,
nonrecursive set without using the diagonalization technique. For each
TM M, we let |M| denote the length of the codes for M. We consider only
one-tape TMs with a fixed alphabet Γ = {0, 1,B}. Let f (x) = min{|M| ∶
M(𝜆) = x} and g(m) = min{x ∈ {0, 1}∗ ∶ |M| ≤ m ⇒ M(𝜆) ≠ x}. That
is, f (x) is the size of the minimum TM that outputs x on the input 𝜆, and

42 COMPLEXITY CLASSES

g(m) is the least x that is not printable by any TM M of size |M| ≤ m on
the input 𝜆. It is clear that both f and g are total functions.

(a) Prove that neither f nor g is a recursive function.

(b) Define A = {⟨x,m⟩ ∶ (∃M, |M| ≤ m) M(𝜆) = x}. Apply part (a)
above to show that A is r.e. but is not recursive.

1.32 (BUSY BEAVER, time-bounded version) In this exercise, we apply the
busy beaver technique to show the existence of a set computable in expo-
nential time but not in polynomial time.

(a) Let g(0m, 0k) be the least x ∈ {0, 1}∗ that is not printable by any
TM M of size |M| ≤ m on input 𝜆 in time (m + k)log k. It is easy to see that|g(0m, 0k)| ≤ m + 1, and hence, g is polynomial length bounded. Prove
that g(0m, 0k) is computable in time 2O(m+k) but is not computable in time
polynomial in m + k.

(b) Can you modify part (a) above to prove the existence of a func-
tion that is computable in subexponential time (e.g., nO(log n)) but is not
polynomial-time computable?

1.33 Assume that an NTM computes the characteristic function 𝜒A of
a set A in polynomial time, in the sense of Definition 1.8. What can you
infer about the complexity of set A?

1.34 In the proof of Theorem 1.30, the predicate reach was solved by a
deterministic recursive algorithm. Convert it to a nonrecursive algorithm
for the predicate reach that only uses space O((s(n))2).

1.35 What is wrong if we use the following simpler algorithm to com-
pute Nk in the proof of Theorem 1.32?

For each k, to compute Nk, we generate each configuration 𝛼 ∈
Cx one by one and, for each one, nondeterministically verify
whether 𝑟𝑒𝑎𝑐ℎ(𝛽, 𝛼, k) (by machine M1), and increments the
counter for Nk by one if 𝑟𝑒𝑎𝑐ℎ(𝛽, 𝛼, k) holds.

1.36 In this exercise, we study the notion of computability of real num-
bers. First, for each n ∈ ℕ, we let 𝑏𝑖𝑛(n) denote its binary expansion, and
for each x ∈ ℝ, let 𝑠𝑔𝑛(x) = 𝜆 if x ≥ 0, and 𝑠𝑔𝑛(x) = − if x < 0. An integer
m ∈ ℤ is represented as 𝑠𝑔𝑛(m)𝑏𝑖𝑛(|m|). A rational number r = ±a∕b with
a, b ∈ ℕ, b ≠ 0, and 𝑔𝑐𝑑(a, b) = 1 has a unique representation over alpha-
bet {−, 0, 1, ∕}: 𝑠𝑔𝑛(r)𝑏𝑖𝑛(a)∕𝑏𝑖𝑛(b). We write ℕ (ℤ and ℚ) to denote both
the set of natural numbers (integers and rational numbers, respectively)
and the set of their representations.

We say a real number x is Cauchy computable if there exist two com-
putable functions f ∶ ℕ → ℚ and m ∶ ℕ → ℕ satisfying the property Cf ,m:
n ≥ m(k) ⇒ |f (n) − x| ≤ 2−k. A real number x is Dedekind computable if
the set Lx = {r ∈ ℚ ∶ r < x} is computable. A real number x is binary

Historical Notes 43

computable if there is a computable function bx ∶ ℕ → ℕ, with the prop-
erty bx(n) ∈ {0, 1} for all n > 0, such that

x = 𝑠𝑔𝑛x ⋅
∑
n≥0

bx(n)2−n,

where 𝑠𝑔𝑛x = 1 if x ≥ 0 and 𝑠𝑔𝑛x = −1 if x < 0. (The function bx is not
unique for some x, but notice that for such x, both the functions bx are
computable.) A real number x is Turing computable if there exists a DTM
M that on the empty input prints a binary expansion of x (i.e., it prints the
string bx(0) followed by the binary point and then followed by the infinite
string bx(1)bx(2) · · ·).

Prove that the above four notions of computability of real numbers are
equivalent. That is, prove that a real number x is Cauchy computable if
and only if it is Dedekind computable if and only if it is binary computable
if and only if it is Turing computable.

1.37 In this exercise, we study the computational complexity of a real
number. We define a real number x to be polynomial-time Cauchy com-
putable if there exist a polynomial-time computable function f ∶ ℕ → ℚ
and a polynomial function m ∶ ℕ → ℕ, satisfying Cf ,m, where f being
polynomial-time computable means that f (n) is computable by a DTM
in time p(n) for some polynomial p (i.e., the input n is written in the unary
form). We say x is polynomial-time Dedekind computable if Lx is in P. We
say x is polynomial-time binary computable if bx, restricted to inputs n > 0,
is polynomial-time computable, assuming that the inputs n are written in
the unary form.

Prove that the above three notions of polynomial-time computability
of real numbers are not equivalent. That is, let 𝑃C (𝑃D, and 𝑃b) denote
the class of polynomial-time Cauchy (Dedekind and binary, respectively)
computable real numbers. Prove that 𝑃D

⊂
≠
𝑃b

⊂
≠
𝑃C.

Historical Notes

McMillan’s theorem is well known in coding theory; see, for example,
Roman (1992). TMs were first defined by Turing (1936, 1937). The
equivalent variations of TMs, the notion of computability, and the
Church–Turing Thesis are the main topics of recursive function theory;
see, for example, Rogers (1967) and Soare (1987). Kleene (1979) con-
tains an interesting personal account of the history. The complexity
theory based on TMs was developed by Hartmanis and Stearns (1965),
Stearns, Hartmanis, and Lewis (1965) and Lewis, Stearns, and Hartmanis
(1965). The tape compression theorem, the linear speed-up theorem,
the tape-reduction simulations (Corollaries 1.14–1.16) and the time and
space hierarchy theorems are from these works. A machine-independent
complexity theory has been established by Blum (1967). Blum’s speed-up

44 COMPLEXITY CLASSES

theorem is from there. Cook (1973a) first established the nondeterminis-
tic time hierarchy. Seiferas (1977a, 1977b) contain further studies on the
hierarchy theorems for nondeterministic machines. The indirect separa-
tion result, Theorem 1.27, is from Book (1974a). The identification of 𝑃
as the class of feasible problems was first suggested by Cobham (1964)
and Edmonds (1965). Theorem 1.30 is from Savitch (1970). Theorem
1.32 was independently proved by Immerman (1988) and Szelepcsényi
(1988). Hopcroft et al. (1977) and Paul et al. (1983) contain separa-
tion results between DSPACE(n), NTIME(O(n)), and DTIME(O(n)).
Context-sensitive languages and grammars are major topics in formal
language theory; see, for example, Hopcroft and Ullman (1979).

RAMs were first studied in Shepherdson and Sturgis (1963) and Elgot
and Robinson (1964). The improvements over the time hierarchy theorem,
including Exercises 1.25 and 1.26, can be found in Paul (1979) and Fürer
(1984). Exercise 1.30 is an application of the Translation Lemma of Book
(1974b); see Hartmanis et al. (1983). The busy beaver problems (Exercises
1.31 and 1.32) are related to the notion of the Kolmogorov complexity of
finite strings. The arguments based on the Kolmogorov complexity avoids
the direct use of diagonalization. See Daley (1980) for discussions on the
busy beaver proof technique, and Li and Vitányi (1997) for a complete
treatment of the Kolmogorov complexity. Computable real numbers were
first studied by Turing (1936) and Rice (1954). Polynomial-time com-
putable real numbers were studied in Ko and Friedman (1982) and Ko
(1991a).

