
PART I

� CHAPTER 1: Introducing C#

� CHAPTER 2: Writing a C# Program

� CHAPTER 3: Variables and Expressions

� CHAPTER 4: Flow Control

� CHAPTER 5: More About Variables

� CHAPTER 6: Functions

� CHAPTER 7: Debugging and Error Handlinglin

� CHAPTER 8: Introduction to Object-Oriented Programming-Oriented Pro ammi g

� CHAPTER 9: Defi ning Classes

� CHAPTER 10: Defi ning Class Membersass Member

� CHAPTER 11: Collections, Comparisons, and Conversionsections, Comparisons, and Conversions

� CHAPTER 12: Generics

�� CHAPTER 13:CHAPTER 13 Additional OOP TechniquesAdditional OOP Techniques

�� CHAPTER 14:CHAPTER 14: C# Language Enhancements C# Language Enhancements

CO
PYRIG

HTED
 M

ATERIA
L

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What the .NET Framework is and what it contains

➤ How .NET applications work

➤ What C# is and how it relates to the .NET Framework

➤ Which tools are available for creating .NET applications with C#

Welcome to the fi rst chapter of the fi rst section of this book. This section provides you with the basic
knowledge you need to get up and running with the most recent version of C#. Specifi cally, this
chapter provides an overview of C# and the .NET Framework, including what these technologies are,
the motivation for using them, and how they relate to each other.

It begins with a general discussion of the .NET Framework. This technology contains many concepts
that are tricky to come to grips with initially. This means that the discussion, by necessity, covers
many new concepts in a short amount of space. However, a quick look at the basics is essential to
understanding how to program in C#. Later in the book, you revisit many of the topics covered here,
exploring them in more detail.

After that general introduction, the chapter provides a basic description of C# itself, including its
origins and similarities to C++. Finally, you look at the primary tool used throughout this book:
Visual Studio 2012 (VS). VS 2012 is the latest in a long line of development environments that
Microsoft has produced, and it includes all sorts of new features (including full support for Windows
Store applications) that you will learn about throughout this book.

WHAT IS THE .NET FRAMEWORK?

The .NET Framework (now at version 4.5) is a revolutionary platform created by Microsoft for
developing applications. The most interesting thing about this statement is how vague it is — but
there are good reasons for this. For a start, note that it doesn’t “develop applications on the Windows
operating system.” Although the Microsoft release of the .NET Framework runs on the Windows and
Windows Phone operating systems, it is possible to fi nd alternative versions that will work on other
systems. One example of this is Mono, an open-source version of the .NET Framework (including a
C# compiler) that runs on several operating systems, including various fl avors of Linux and Mac OS.
There are also variants of Mono that run on iPhone (MonoTouch) and Android (Mono for Android,

1

4 ❘ CHAPTER 1 INTRODUCING C#

a.k.a. MonoDroid) smartphones. One of the key motivations behind the .NET Framework is its intended use
as a means of integrating disparate operating systems.

In addition, the preceding defi nition of the .NET Framework includes no restriction on the type of
applications that are possible. That’s because there is no restriction — the .NET Framework enables the
creation of desktop applications, Windows Store applications, web applications, web services, and pretty
much anything else you can think of. Also, with web applications it’s worth noting that these are, by
defi nition, multi-platform applications, since any system with a web browser can access them.

The .NET Framework has been designed so that it can be used from any language, including C# (the subject
of this book) as well as C++, Visual Basic, JScript, and even older languages such as COBOL. For this to
work, .NET-specifi c versions of these languages have also appeared, and more are being released all the
time. Not only do all of these have access to the .NET Framework, but they can also communicate with
each other. It is possible for C# developers to make use of code written by Visual Basic programmers, and
vice versa.

All of this provides an extremely high level of versatility and is part of what makes using the .NET
Framework such an attractive prospect.

What’s in the .NET Framework?

The .NET Framework consists primarily of a gigantic library of code that you use from your client
languages (such as C#) using object-oriented programming (OOP) techniques. This library is categorized
into different modules — you use portions of it depending on the results you want to achieve. For example,
one module contains the building blocks for Windows applications, another for network programming, and
another for web development. Some modules are divided into more specifi c submodules, such as a module
for building web services within the module for web development.

The intention is for different operating systems to support some or all of these modules, depending on their
characteristics. A smartphone, for example, includes support for all the core .NET functionality but is
unlikely to require some of the more esoteric modules.

Part of the .NET Framework library defi nes some basic types. A type is a representation of data,
and specifying some of the most fundamental of these (such as “a 32-bit signed integer”) facilitates
interoperability between languages using the .NET Framework. This is called the Common Type System
(CTS).

As well as supplying this library, the .Net Framework also includes the .NET Common Language Runtime
(CLR), which is responsible for the execution of all applications developed using the .NET library.

Writing Applications Using the .NET Framework

Writing an application using the .NET Framework means writing code (using any of the languages that
support the Framework) using the .NET code library. In this book you use VS for your development. VS is a
powerful, integrated development environment that supports C# (as well as managed and unmanaged C++,
Visual Basic, and some others). The advantage of this environment is the ease with which .NET features
can be integrated into your code. The code that you create will be entirely C# but use the .NET Framework
throughout, and you’ll make use of the additional tools in VS where necessary.

In order for C# code to execute, it must be converted into a language that the target operating system
understands, known as native code. This conversion is called compiling code, an act that is performed by ag
compiler. Under the .NET Framework, this is a two-stage process.rr

CIL and JIT

When you compile code that uses the .NET Framework library, you don’t immediately create
operating system–specifi c native code. Instead, you compile your code into Common Intermediate
Language (CIL) code. This code isn’t specifi c to any operating system (OS) and isn’t specifi c to C#. Other

What Is the .NET Framework? ❘ 5

.NET languages — Visual Basic .NET, for example — also compile to this language as a fi rst stage. This
compilation step is carried out by VS when you develop C# applications.

Obviously, more work is necessary to execute an application. That is the job of a just-in-time (JIT) compiler,
which compiles CIL into native code that is specifi c to the OS and machine architecture being targeted.
Only at this point can the OS execute the application. The just-in-time part of the name refl ects the fact that
CIL code is compiled only when it is needed. This compilation can happen on the fl y while your application
is running, although luckily this isn’t something that you normally need to worry about as a developer.
Unless you are writing extremely advanced code where performance is critical, it’s enough to know that this
compilation process will churn along merrily in the background, without interfering.

In the past, it was often necessary to compile your code into several applications, each of which targeted a
specifi c operating system and CPU architecture. Typically, this was a form of optimization (to get code to
run faster on an AMD chipset, for example), but at times it was critical (for applications to work in both
Win9x and WinNT/2000 environments, for example). This is now unnecessary, because JIT compilers
(as their name suggests) use CIL code, which is independent of the machine, operating system, and CPU.
Several JIT compilers exist, each targeting a different architecture, and the CLR uses the appropriate one to
create the native code required.

The beauty of all this is that it requires a lot less work on your part — in fact, you can forget about
system-dependent details and concentrate on the more interesting functionality of your code.

NOTE You might come across references to Microsoft Intermediate Language (MSIL)

or just IL. MSIL was the original name for CIL, and many developers still use this

terminology.

Assemblies

When you compile an application, the CIL code is stored in an assembly. Assemblies include both executable
application fi les that you can run directly from Windows without the need for any other programs (these
have a .exe fi le extension) and libraries (which have a .dll extension) for use by other applications.

In addition to containing CIL, assemblies also include meta information (that is, information about the
information contained in the assembly, also known as metadata) and optional resources (additional data
used by the CIL, such as sound fi les and pictures). The meta information enables assemblies to be fully
self-descriptive. You need no other information to use an assembly, meaning you avoid situations such as
failing to add required data to the system registry and so on, which was often a problem when developing
with other platforms.

This means that deploying applications is often as simple as copying the fi les into a directory on a remote
computer. Because no additional information is required on the target systems, you can just run an
executable fi le from this directory and (assuming the .NET CLR is installed) you’re good to go.

Of course, you won’t necessarily want to include everything required to run an application in one place.
You might write some code that performs tasks required by multiple applications. In situations like that, it
is often useful to place the reusable code in a place accessible to all applications. In the .NET Framework,
this is the global assembly cache (GAC). Placing code in the GAC is simple — you just place the assembly
containing the code in the directory containing this cache.

Managed Code

The role of the CLR doesn’t end after you have compiled your code to CIL and a JIT compiler has compiled
that to native code. Code written using the .NET Framework is managed when it is executed (a stage usually d
referred to as runtime). This means that the CLR looks after your applications by managing memory,
handling security, allowing cross-language debugging, and so on. By contrast, applications that do not run

6 ❘ CHAPTER 1 INTRODUCING C#

under the control of the CLR are said to be unmanaged, and certain languages such as C++ can be used to
write such applications, which, for example, access low-level functions of the operating system. However,
in C# you can write only code that runs in a managed environment. You will make use of the managed
features of the CLR and allow .NET itself to handle any interaction with the operating system.

Garbage Collection

One of the most important features of managed code is the concept of garbage collection. This is the .NET
method of making sure that the memory used by an application is freed up completely when the application
is no longer in use. Prior to .NET this was mostly the responsibility of programmers, and a few simple errors
in code could result in large blocks of memory mysteriously disappearing as a result of being allocated to the
wrong place in memory. That usually meant a progressive slowdown of your computer, followed by a system
crash.

.NET garbage collection works by periodically inspecting the memory of your computer and removing
anything from it that is no longer needed. There is no set time frame for this; it might happen thousands of
times a second, once every few seconds, or whenever, but you can rest assured that it will happen.

There are some implications for programmers here. Because this work is done for you at an unpredictable
time, applications have to be designed with this in mind. Code that requires a lot of memory to run should
tidy itself up, rather than wait for garbage collection to happen, but that isn’t as tricky as it sounds.

Fitting It Together

Before moving on, let’s summarize the steps required to create a .NET application as discussed previously:

1. Application code is written using a .NET-compatible language such as C# (see Figure 1-1).

2. That code is compiled into CIL, which is stored in an assembly (see Figure 1-2).

FIGURE 1-1

C# code

FIGURE 1-2

C# application
code AssemblyCompilation

FIGURE 1-3

Assembly
Native CodeJIT Compilation

3. When this code is executed (either in its own right if it is an executable or when it is used from other
code), it must fi rst be compiled into native code using a JIT compiler (see Figure 1-3).

4. The native code is executed in the context of the managed CLR, along with any other running
applications or processes, as shown in Figure 1-4.

What Is C#? ❘ 7

Linking

Note one additional point concerning this process. The C# code that compiles into CIL in step 2 needn’t
be contained in a single fi le. It’s possible to split application code across multiple source-code fi les, which
are then compiled together into a single assembly. This extremely useful process is known as linking. It is
required because it is far easier to work with several smaller fi les than one enormous one. You can separate
logically related code into an individual fi le so that it can be worked on independently and then practically
forgotten about when completed. This also makes it easy to locate specifi c pieces of code when you need
them and enables teams of developers to divide the programming burden into manageable chunks, whereby
individuals can “check out” pieces of code to work on without risking damage to otherwise satisfactory
sections or sections other people are working on.

WHAT IS C#?

C#, as mentioned earlier, is one of the languages you can use to create applications that will run in the .NET
CLR. It is an evolution of the C and C++ languages and has been created by Microsoft specifi cally to work
with the .NET platform. The C# language has been designed to incorporate many of the best features from
other languages, while clearing up their problems.

Developing applications using C# is simpler than using C++, because the language syntax is simpler. Still,
C# is a powerful language, and there is little you might want to do in C++ that you can’t do in C#. Having
said that, those features of C# that parallel the more advanced features of C++, such as directly accessing
and manipulating system memory, can be carried out only by using code marked as unsafe. This advanced
programmatic technique is potentially dangerous (hence its name) because it is possible to overwrite
system-critical blocks of memory with potentially catastrophic results. For this reason, and others, this book
does not cover that topic.

At times, C# code is slightly more verbose than C++. This is a consequence of C# being a typesafe language
(unlike C++). In layperson’s terms, this means that once some data has been assigned to a type, it cannot
subsequently transform itself into another unrelated type. Consequently, strict rules must be adhered to
when converting between types, which means you will often need to write more code to carry out the
same task in C# than you might write in C++. However, there are benefi ts to this — The code is more
robust, debugging is simpler, and .NET can always track the type of a piece of data at any time. In C#, you
therefore might not be able to do things such as “take the region of memory 4 bytes into this data and 10
bytes long and interpret it as X,” but that’s not necessarily a bad thing.

C# is just one of the languages available for .NET development, but it is certainly the best. It has the advantage
of being the only language designed from the ground up for the .NET Framework and is the principal
language used in versions of .NET that are ported to other operating systems. To keep languages such as the
.NET version of Visual Basic as similar as possible to their predecessors yet compliant with the CLR, certain
features of the .NET code library are not fully supported, or at least require unusual syntax.

FIGURE 1-4

Native Code

.NET CLR

System Runtime

Native Code Native Code

8 ❘ CHAPTER 1 INTRODUCING C#

By contrast, C# can make use of every feature that the .NET Framework code library has to offer. Also,
each new version of .NET has included additions to the C# language, partly in response to requests from
developers, making it even more powerful.

Applications You Can Write with C#

The .NET Framework has no restrictions on the types of applications that are possible, as discussed earlier.
C# uses the framework and therefore has no restrictions on possible applications. However, here are a few
of the more common application types:

➤ Desktop applications — Applications, such as Microsoft Offi ce, that have a familiar Windows look
and feel about them. This is made simple by using the Windows Presentation Foundation (WPF)
module of the .NET Framework, which is a library of controls (such as buttons, toolbars, menus, and
so on) that you can use to build a Windows user interface (UI).

➤ Windows Store applications — Windows 8 has introduced a new type of application, known as a
Windows Store application. This type of application is designed primarily for touch devices, and it
is usually run full-screen, with a minimum of clutter, and an emphasis on simplicity. You can create
these applications in several ways, including using WPF.

➤ Web applications — Web pages such as those that might be viewed through any web browser. The
.NET Framework includes a powerful system for generating web content dynamically, enabling
personalization, security, and much more. This system is called ASP.NET (Active Server Pages .NET),
and you can use C# to create ASP.NET applications using Web Forms. You can also write applications
that run inside the browser with Silverlight.

➤ WCF services — A way to create versatile distributed applications. Using WCF you can exchange
virtually any data over local networks or the Internet, using the same simple syntax regardless of the
language used to create a service or the system on which it resides.

Any of these types might also require some form of database access, which can be achieved using the
ADO.NET (Active Data Objects .NET) section of the .NET Framework, through the ADO.NET Entity
Framework, or through the LINQ (Language Integrated Query) capabilities of C#. Many other resources
can be drawn on, such as tools for creating networking components, outputting graphics, performing
complex mathematical tasks, and so on.

C# in this Book

The fi rst part of this book deals with the syntax and usage of the C# language without too much emphasis
on the .NET Framework. This is necessary because you can’t use the .NET Framework at all without a
fi rm grounding in C# programming. You’ll start off even simpler, in fact, and leave the more involved topic
of OOP until you’ve covered the basics. These are taught from fi rst principles, assuming no programming
knowledge at all.

After that, you’ll be ready to move on to developing more complex (but more useful) applications. Part II of
this book looks at desktop and Windows Store application programming, Part III tackles web application
programming, Part IV examines data access (for database, fi lesystem, and XML data) and LINQ, and Part
V covers some other .NET topics of interest.

VISUAL STUDIO 2012

In this book, you use the Visual Studio 2012 development tool for all of your C# programming, from
simple command-line applications to more complex project types. A development tool, or integrated
development environment (IDE), such as VS isn’t essential for developing C# applications, but it makes
things much easier. You can (if you want to) manipulate C# source code fi les in a basic text editor, such
as the ubiquitous Notepad application, and compile code into assemblies using the command-line compiler
that is part of the .NET Framework. However, why do this when you have the power of an IDE to help you?

Visual Studio 2012 ❘ 9

The following is a short list of some Visual Studio features that make it an appealing choice for .NET
development:

➤ VS automates the steps required to compile source code but at the same time gives you complete
control over any options used should you want to override them.

➤ The VS text editor is tailored to the languages VS supports (including C#) so that it can intelligently
detect errors and suggest code where appropriate as you are typing. This feature is called IntelliSense.

➤ VS includes designers for XAML, ASP.NET, and other UI languages, enabling simple drag-and-drop
design of UI elements.

➤ Many types of C# projects can be created with “boilerplate” code already in place. Instead of starting
from scratch, you will often fi nd that various code fi les are started for you, reducing the amount of
time spent getting started on a project.

➤ VS includes several wizards that automate common tasks, many of which can add appropriate code
to existing fi les without you having to worry about (or even, in some cases, remember) the correct
syntax.

➤ VS contains many powerful tools for visualizing and navigating through elements of your projects,
whether they are C# source code fi les or other resources such as bitmap images or sound fi les.

➤ As well as simply writing applications in VS, you can create deployment projects, making it easy to
supply code to clients and for them to install it without much trouble.

➤ VS enables you to use advanced debugging techniques when developing projects, such as the capability
to step through code one instruction at a time while keeping an eye on the state of your application.

There is much more than this, but you get the idea!

Visual Studio Express 2012 Products

In addition to Visual Studio 2012, Microsoft also supplies several simpler development tools known as
Visual Studio Express 2012 Products. These are freely available at http://www.microsoft.com/express.

The various express products enable you to create almost any C# application you might need. They function
as slimmed-down versions of VS and retain the same look and feel. While they offer many of the same
features as VS, some notable feature are absent, although not so many that they would prevent you from
using these tools to work through the chapters of this book.

NOTE This book was written using the Professional version of Visual Studio 2012

because the Express products were not available. At the time of writing, there is an

Express product scheduled for release called Visual Studio Express 2012 for Windows

Desktop that should be suffi cient for the following along with the fi rst part of this book.

The remainder of the book may also allow you to use Visual Studio Express 2012 for

Windows 8 and Visual Studio Express 2012 for web, but at the time of writing we can’t

say for certain whether that will hold true.

Solutions

When you use VS to develop applications, you do so by creating solutions. A solution, in VS terms, is
more than just an application. Solutions contain projects, which might be WPF projects, Web Application
projects, and so on. Because solutions can contain multiple projects, you can group together related code in
one place, even if it will eventually compile to multiple assemblies in various places on your hard disk.

This is very useful because it enables you to work on shared code (which might be placed in the GAC) at
the same time as applications that use this code. Debugging code is a lot easier when only one development
environment is used, because you can step through instructions in multiple code modules.

10 ❘ CHAPTER 1 INTRODUCING C#

SUMMARY

In this chapter, you looked at the .NET Framework in general terms and discovered how it makes it easy for
you to create powerful and versatile applications. You saw what is necessary to turn code in languages such
as C# into working applications, and what benefi ts you gain from using managed code running in the .NET
CLR.

You also learned what C# actually is and how it relates to the .NET Framework, and you were introduced to
the tool that you’ll use for C# development — Visual Studio 2012.

In the next chapter, you get some C# code running, which will give you enough knowledge to sit back and
concentrate on the C# language itself, rather than worry too much about how the IDE works.

Summary ❘ 11

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

.NET Framework fundamentals The .NET Framework is Microsoft’s latest development

platform, and is currently in version 4.5. It includes a common

type system (CTS) and common language runtime (CLR).

.NET Framework applications are written using object-

oriented programming (OOP) methodology, and usually

contain managed code. Memory management of managed

code is handled by the .NET runtime; this includes garbage

collection.

.NET Framework applications Applications written using the .NET Framework are fi rst

compiled into CIL. When an application is executed, the CLR

uses a JIT to compile this CIL into native code as required.

Applications are compiled and diff erent parts are linked

together into assemblies that contain the CIL.

C# basics C# is one of the languages included in the .NET Framework.

It is an evolution of previous languages such as C++, and can

be used to write any number of applications, including web

and desktop applications.

Integrated Development Environments (IDEs) You can use Visual Studio 2012 to write any type of .NET

application using C#. You can also use the free, but less

powerful, Express product range to create .NET applications

in C#. Both of these IDEs work with solutions, which can

consist of multiple projects.

