
PART I

The C# Language

 � CHAPTER 1: .NET Architecture

 � CHAPTER 2: Core C#

 � CHAPTER 3: Objects and Types

 � CHAPTER 4: Inheritance

 � CHAPTER 5: Generics

 � CHAPTER 6: Arrays and Tuples

 � CHAPTER 7: Operators and Casts

 � CHAPTER 8: Delegates, Lambdas, and Events

 � CHAPTER 9: Strings and Regular Expressions

 � CHAPTER 10: Collections

 � CHAPTER 11: Language Integrated Query

 � CHAPTER 12: Dynamic Language Extensions

 � CHAPTER 13: Asynchronous Programming

 � CHAPTER 14: Memory Management and Pointers

 � CHAPTER 15: Refl ection

 � CHAPTER 16: Errors and Exceptions

c01.indd 1c01.indd 1 01/10/12 4:16 PM01/10/12 4:16 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 01/10/12 4:16 PM01/10/12 4:16 PM

.NET Architecture
WHAT’S IN THIS CHAPTER?

 ➤ Compiling and running code that targets .NET

 ➤ Advantages of Microsoft Intermediate Language (MSIL)

 ➤ Value and reference types

 ➤ Data typing

 ➤ Understanding error handling and attributes

 ➤ Assemblies, .NET base classes, and namespaces

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

THE RELATIONSHIP OF C# TO .NET

This book emphasizes that the C# language must be considered in parallel with the .NET Framework,
rather than viewed in isolation. The C# compiler specifi cally targets .NET, which means that all code
written in C# always runs within the .NET Framework. This has two important consequences for the
C# language:

 1. The architecture and methodologies of C# refl ect the underlying methodologies of .NET.

 2. In many cases, specifi c language features of C# actually depend on features of .NET or of the
.NET base classes.

Because of this dependence, you must gain some understanding of the architecture and methodology
of .NET before you begin C# programming, which is the purpose of this chapter.

1

c01.indd 3c01.indd 3 01/10/12 4:16 PM01/10/12 4:16 PM

4 ❘ CHAPTER 1 .NET ARCHITECTURE

C# is a programming language newly designed for .NET. and is signifi cant in two respects:

 ➤ It is specifi cally designed and targeted for use with Microsoft’s .NET Framework (a feature-rich
platform for the development, deployment, and execution of distributed applications).

 ➤ It is a language based on the modern object-oriented design methodology, and when designing it
Microsoft learned from the experience of all the other similar languages that have been around since
object-oriented principles came to prominence 20 years ago.

C# is a language in its own right. Although it is designed to generate code that targets the .NET
environment, it is not part of .NET. Some features are supported by .NET but not by C#, and you might
be surprised to learn that some features of the C# language are not supported by .NET (for example, some
instances of operator overloading).

However, because the C# language is intended for use with .NET, you must understand this Framework if
you want to develop applications in C# effectively. Therefore, this chapter takes some time to peek under-
neath the surface of .NET.

THE COMMON LANGUAGE RUNTIME

Central to the .NET Framework is its runtime execution environment, known as the Common Language
Runtime (CLR) or the .NET runtime. Code running under the control of the CLR is often termed
managed code.

However, before it can be executed by the CLR, any source code that you develop (in C# or some other
language) needs to be compiled. Compilation occurs in two steps in .NET:

 1. Compilation of source code to Microsoft Intermediate Language (IL).

 2. Compilation of IL to platform-specifi c code by the CLR.

This two-stage compilation process is important because the existence of the Microsoft Intermediate
Language is the key to providing many of the benefi ts of .NET.

IL shares with Java byte code the idea that it is a low-level language with a simple syntax (based on numeric
codes rather than text), which can be quickly translated into native machine code. Having this well-defi ned
universal syntax for code has signifi cant advantages: platform independence, performance improvement,
and language interoperability.

Platform Independence

First, platform independence means that the same fi le containing byte code instructions can be placed on
any platform; at runtime, the fi nal stage of compilation can then be easily accomplished so that the code can
run on that particular platform. In other words, by compiling to IL you obtain platform independence for
.NET in much the same way as compiling to Java byte code gives Java platform independence.

The platform independence of .NET is only theoretical at present because, at the time of writing, a complete
implementation of .NET is available only for Windows. However, a partial, cross-platform implementation
is available (see, for example, the Mono project, an effort to create an open source implementation of .NET,
at www.go-mono.com).

Performance Improvement

Although previously compared to Java, IL is actually a bit more ambitious than Java byte code. IL is always
Just-in-Time compiled (known as JIT compilation), whereas Java byte code was often interpreted. One of
the disadvantages of Java was that, on execution, the process to translate from Java byte code to native
executable resulted in a loss of performance (with the exception of more recent cases in which Java is JIT
compiled on certain platforms).

c01.indd 4c01.indd 4 01/10/12 4:16 PM01/10/12 4:16 PM

The Common Language Runtime ❘ 5

Instead of compiling the entire application at one time (which could lead to a slow startup time), the JIT
compiler simply compiles each portion of code as it is called (just in time). When code has been compiled
once, the resultant native executable is stored until the application exits so that it does not need to be
recompiled the next time that portion of code is run. Microsoft argues that this process is more effi cient
than compiling the entire application code at the start because of the likelihood that large portions of any
application code will not actually be executed in any given run. Using the JIT compiler, such code can never
be compiled.

This explains why you can expect that execution of managed IL code will be almost as fast as executing
native machine code. What it does not explain is why Microsoft expects that you get a performance
improvement. The reason given for this is that because the fi nal stage of compilation takes place at runtime,
the JIT compiler knows exactly what processor type the program runs on. This means that it can optimize the
fi nal executable code to take advantage of any features or particular machine code instructions offered by
that particular processor.

Traditional compilers optimize the code, but they can perform optimizations that are only independent
of the particular processor that the code runs on. This is because traditional compilers compile to native
executable code before the software is shipped. This means that the compiler does not know what type of
processor the code runs on beyond basic generalities, such as that it is an x86-compatible processor or an
Alpha processor.

Language Interoperability

The use of IL not only enables platform independence, but it also facilitates language interoperability.
Simply put, you can compile to IL from one language, and this compiled code should then be interoperable
with code that has been compiled to IL from another language.

You are probably now wondering which languages aside from C# are interoperable with .NET. The following
sections briefl y discuss how some of the other common languages fi t into .NET.

Visual Basic 2012

Visual Basic .NET 2002 underwent a complete revamp from Visual Basic 6 to bring it up to date with the
fi rst version of the .NET Framework. The Visual Basic language had dramatically evolved from VB6, which
this meant that VB6 was not a suitable language to run .NET programs. For example, VB6 is heavily
integrated into Component Object Model (COM) and works by exposing only event handlers as source code
to the developer — most of the background code is not available as source code. Not only that, it does not
support implementation inheritance, and the standard data types that Visual Basic 6 uses are incompatible
with .NET.

Visual Basic 6 was upgraded to Visual Basic .NET in 2002, and the changes that were made to the language
are so extensive you might as well regard Visual Basic as a new language. Existing Visual Basic 6 code does
not compile to the present Visual Basic 2012 code (or to Visual Basic .NET 2002, 2003, 2005, 2008, and
2010 for that matter). Converting a Visual Basic 6 program to Visual Basic 2012 requires extensive changes
to the code. However, Visual Studio 2012 (the upgrade of Visual Studio for use with .NET) can do most
of the changes for you. If you attempt to read a Visual Basic 6 project into Visual Studio 2012, it can
upgrade the project for you, which means that it can rewrite the Visual Basic 6 source code into Visual Basic
2012 source code. Although this means that the work involved for you is heavily reduced, you need to check
through the new Visual Basic 2012 code to make sure that the project still works as intended because the
conversion is not perfect.

One side effect of this language upgrade is that it is no longer possible to compile Visual Basic 2012 to
native executable code. Visual Basic 2012 compiles only to IL, just as C# does. If you need to continue
coding in Visual Basic 6, you can do so, but the executable code produced completely ignores the .NET
Framework, and you need to keep Visual Studio 6 installed if you want to continue to work in this developer
environment.

c01.indd 5c01.indd 5 01/10/12 4:16 PM01/10/12 4:16 PM

6 ❘ CHAPTER 1 .NET ARCHITECTURE

Visual C++ 2012

Visual C++ 6 already had a large number of Microsoft-specifi c extensions on Windows. With Visual C++
.NET, extensions have been added to support the .NET Framework. This means that existing C++ source
code will continue to compile to native executable code without modifi cation. It also means, however,
that it will run independently of the .NET runtime. If you want your C++ code to run within the .NET
Framework, you can simply add the following line to the beginning of your code:

#using <mscorlib.dll>

You can also pass the fl ag /clr to the compiler, which then assumes that you want to compile to managed
code and will hence emit IL instead of native machine code. The interesting thing about C++ is that when
you compile to managed code, the compiler can emit IL that contains an embedded native executable. This
means that you can mix managed types and unmanaged types in your C++ code. Thus, the managed
C++ code

class MyClass

{

defi nes a plain C++ class, whereas the code

ref class MyClass

{

gives you a managed class, just as if you had written the class in C# or Visual Basic 2012. The advantage to
use managed C++ over C# code is that you can call unmanaged C++ classes from managed C++ code
without resorting to COM interop.

The compiler raises an error if you attempt to use features not supported by .NET on managed types (for
example, templates or multiple inheritances of classes). You can also fi nd that you need to use nonstandard
C++ features when using managed classes.

Writing C++ programs that uses .NET gives you different variants of interop scenarios. With the compiler
setting /clr for Common Language Runtime Support, you can completely mix all native and managed C++
features. Other options such as /clr:safe and /clr:pure restrict the use of native C++ pointers and thus enable
writing safe code like with C# and Visual Basic.

Visual C++ 2012 enables you to create programs for the Windows Runtime (WinRT) with Windows 8. This
way C++ does not use managed code but instead accesses the WinRT natively.

COM and COM+

Technically speaking, COM and COM+ are not technologies targeted at .NET — components based on
them cannot be compiled into IL. (Although you can do so to some degree using managed C++ if the original
COM component were written in C++). However, COM+ remains an important tool because its features
are not duplicated in .NET. Also, COM components can still work — and .NET incorporates COM
interoperability features that make it possible for managed code to call up COM components and vice
versa (discussed in Chapter 23, “Interop”). In general, you will probably fi nd it more convenient for most
purposes to code new components as .NET components so that you can take advantage of the .NET base
classes and the other benefi ts of running as managed code.

Windows Runtime

Windows 8 offers a new runtime used by the new applications. You can use this runtime from Visual Basic,
C#, C++, and JavaScript. When using the runtime with these different environments, it looks different.
Using it from C# it looks like classes from the .NET Framework. Using it from JavaScript it looks like what

c01.indd 6c01.indd 6 01/10/12 4:16 PM01/10/12 4:16 PM

A Closer Look at Intermediate Language ❘ 7

JavaScript developers are used to with JavaScript libraries. And using it from C++, methods looks like the
Standard C++ Library. This is done by using language projection. The Windows Runtime and how it looks
like from C# is discussed in Chapter 31, “Windows Runtime.”

A CLOSER LOOK AT INTERMEDIATE LANGUAGE

From what you learned in the previous section, Microsoft Intermediate Language obviously plays a
fundamental role in the .NET Framework. It makes sense now to take a closer look at the main features of
IL because any language that targets .NET logically needs to support these characteristics.

Here are the important features of IL:

 ➤ Object orientation and the use of interfaces
 ➤ Strong distinction between value and reference types
 ➤ Strong data typing
 ➤ Error handling using exceptions
 ➤ Use of attributes

The following sections explore each of these features.

Support for Object Orientation and Interfaces

The language independence of .NET does have some practical limitations. IL is inevitably going to
implement some particular programming methodology, which means that languages targeting it need to be
compatible with that methodology. The particular route that Microsoft has chosen to follow for IL is that of
classic object-oriented programming, with single implementation inheritance of classes.

In addition to classic object-oriented programming, IL also brings in the idea of interfaces, which saw their
fi rst implementation under Windows with COM. Interfaces built using .NET produce interfaces that are not
the same as COM interfaces. They do not need to support any of the COM infrastructure. (For example,
they are not derived from IUnknown and do not have associated globally unique identifi ers, more commonly
known as GUIDs.) However, they do share with COM interfaces the idea that they provide a contract, and
classes that implement a given interface must provide implementations of the methods and properties
specifi ed by that interface.

You have now seen that working with .NET means compiling to IL, and that in turn means that you need
to use traditional object-oriented methodologies. However, that alone is not suffi cient to give you language
interoperability. After all, C++ and Java both use the same object-oriented paradigms but are still not
regarded as interoperable. You need to look a little more closely at the concept of language interoperability.

So what exactly is language interoperability?

After all, COM enabled components written in different languages to work together in the sense of calling
each other’s methods. What was inadequate about that? COM, by virtue of being a binary standard, did
enable components to instantiate other components and call methods or properties against them, without
worrying about the language in which the respective components were written. To achieve this, however,
each object had to be instantiated through the COM runtime and accessed through an interface. Depending
on the threading models of the relative components, there may have been large performance losses associated
with marshaling data between apartments or running components or both on different threads. In the
extreme case of components hosted as an executable rather than DLL fi les, separate processes would need to
be created to run them. The emphasis was very much that components could talk to each other but only via
the COM runtime. In no way with COM did components written in different languages directly
communicate with each other, or instantiate instances of each other — it was always done with COM as an
intermediary. Not only that, but the COM architecture did not permit implementation inheritance, which
meant that it lost many of the advantages of object-oriented programming.

c01.indd 7c01.indd 7 01/10/12 4:16 PM01/10/12 4:16 PM

8 ❘ CHAPTER 1 .NET ARCHITECTURE

An associated problem was that, when debugging, you would still need to debug components written in
different languages independently. It was not possible to step between languages in the debugger. Therefore,
what you actually mean by language interoperability is that classes written in one language should talk
directly to classes written in another language. In particular

 ➤ A class written in one language can inherit from a class written in another language.
 ➤ The class can contain an instance of another class, no matter what the languages of the two classes are.
 ➤ An object can directly call methods against another object written in another language.
 ➤ Objects (or references to objects) can be passed around between methods.
 ➤ When calling methods between languages, you can step between the method calls in the debugger,

even when this means stepping between source code written in different languages.

This is all quite an ambitious aim, but amazingly .NET and IL have achieved it. In the case of stepping
between methods in the debugger, this facility is actually offered by the Visual Studio integrated
development environment (IDE) rather than by the CLR.

Distinct Value and Reference Types

As with any programming language, IL provides a number of predefi ned primitive data types. One
characteristic of IL, however, is that it makes a strong distinction between value and reference types.
Value types are those for which a variable directly stores its data, whereas reference types are those for
which a variable simply stores the address at which the corresponding data can be found.

In C++ terms, using reference types is similar to accessing a variable through a pointer, whereas for Visual
Basic the best analogy for reference types are objects, which in Visual Basic 6 are always accessed through
references. IL also lays down specifi cations about data storage: Instances of reference types are always stored
in an area of memory known as the managed heap, whereas value types are normally stored on the stack.
(Although if value types are declared as fi elds within reference types, they will be stored inline on the heap.)
Chapter 2, “Core C#,” discusses the stack and the managed heap and how they work.

Strong Data Typing

One important aspect of IL is that it is based on exceptionally strong data typing. That means that all
variables are clearly marked as being of a particular, specifi c data type. (There is no room in IL, for example,
for the Variant data type recognized by Visual Basic and scripting languages.) In particular, IL does not
normally permit any operations that result in ambiguous data types.

For instance, Visual Basic 6 developers are used to passing variables around without worrying too much
about their types because Visual Basic 6 automatically performs type conversion. C++ developers are used
to routinely casting pointers between different types. Performing this kind of operation can be great for
performance, but it breaks type safety. Hence, it is permitted only under certain circumstances in some
of the languages that compile to managed code. Indeed, pointers (as opposed to references) are permitted
only in marked blocks of code in C#, and not at all in Visual Basic. (Although they are allowed in managed
C++.) Using pointers in your code causes it to fail the memory type-safety checks performed by the CLR.
Some languages compatible with .NET, such as Visual Basic 2010, still allow some laxity in typing but only
because the compilers behind the scenes ensure that the type safety is enforced in the emitted IL.

Although enforcing type safety might initially appear to hurt performance, in many cases the benefi ts gained
from the services provided by .NET that rely on type safety far outweigh this performance loss. Such
services include the following:

 ➤ Language interoperability
 ➤ Garbage collection
 ➤ Security
 ➤ Application domains

c01.indd 8c01.indd 8 01/10/12 4:16 PM01/10/12 4:16 PM

A Closer Look at Intermediate Language ❘ 9

The following sections take a closer look at why strong data typing is particularly important for these
features of .NET.

Strong Data Typing as a Key to Language Interoperability

If a class is to derive from or contains instances of other classes, it needs to know about all the data types
used by the other classes. This is why strong data typing is so important. Indeed, it is the absence of any
agreed-on system for specifying this information in the past that has always been the real barrier to
inheritance and interoperability across languages. This kind of information is simply not present in a
standard executable fi le or DLL.

Suppose that one of the methods of a Visual Basic 2012 class is defi ned to return an Integer — one of the
standard data types available in Visual Basic 2012. C# simply does not have any data type of that name.
Clearly, you can derive from the class, use this method, and use the return type from C# code only if the
compiler knows how to map Visual Basic 2012’s Integer type to some known type defi ned in C#. So, how
is this problem circumvented in .NET?

Common Type System

This data type problem is solved in .NET using the Common Type System (CTS). The CTS defi nes the
predefi ned data types available in IL so that all languages that target the .NET Framework can produce
compiled code ultimately based on these types.

For the previous example, Visual Basic 2012’s Integer is actually a 32-bit signed integer, which maps
exactly to the IL type known as Int32. Therefore, this is the data type specifi ed in the IL code. Because the
C# compiler is aware of this type, there is no problem. At source code-level, C# refers to Int32 with the
keyword int, so the compiler simply treats the Visual Basic 2012 method as if it returned an int.

The CTS does not specify merely primitive data types but a rich hierarchy of types, which includes well-defi ned
points in the hierarchy at which code is permitted to defi ne its own types. The hierarchical structure of the
CTS refl ects the single-inheritance object-oriented methodology of IL, and resembles Figure 1-1.

Built-in Value

Types

User-defined

Value Types

Value Type

Pointer Types

Type

Reference

Type

Enumerations

Interface Types

Self-describing

Types

ArraysClass Types

User-defined

Reference

Types

Delegates
Boxed Value

Types

FIGURE 1-1

All of the built-in value types aren’t here because they are covered in detail in Chapter 3, “Objects and
Types.” In C#, each predefi ned type is recognized by the compiler maps onto one of the IL built-in types.
The same is true in Visual Basic 2012.

c01.indd 9c01.indd 9 01/10/12 4:16 PM01/10/12 4:16 PM

10 ❘ CHAPTER 1 .NET ARCHITECTURE

Common Language Specifi cation

The Common Language Specifi cation (CLS) works with the CTS to ensure language interoperability. The
CLS is a set of minimum standards that all compilers targeting .NET must support. Because IL is a rich
language, writers of most compilers prefer to restrict the capabilities of a given compiler to support only a
subset of the facilities offered by IL and the CTS. That is fi ne as long as the compiler supports everything
defi ned in the CLS.

For example, take case sensitivity. IL is case-sensitive. Developers who work with case-sensitive languages
regularly take advantage of the fl exibility that this case sensitivity gives them when selecting variable names.
Visual Basic 2012, however, is not case-sensitive. The CLS works around this by indicating that CLS-
compliant code should not expose any two names that differ only in their case. Therefore, Visual Basic 2012
code can work with CLS-compliant code.

This example shows that the CLS works in two ways:

 1. Individual compilers do not need to be powerful enough to support the full features of .NET — this
should encourage the development of compilers for other programming languages that target .NET.

 2. If you restrict your classes to exposing only CLS-compliant features, then it guarantees that code
written in any other compliant language can use your classes.

The beauty of this idea is that the restriction to using CLS-compliant features applies only to public and
protected members of classes and public classes. Within the private implementations of your classes, you can
write whatever non-CLS code you want because code in other assemblies (units of managed code; see later
in the section Assemblies) cannot access this part of your code.

Without going into the details of the CLS specifi cations here, in general, the CLS does not affect your C#
code much because of the few non-CLS-compliant features of C#.

NOTE It is perfectly acceptable to write non-CLS-compliant code. However, if you do,
the compiled IL code is not guaranteed to be fully language interoperable.

Garbage Collection

The garbage collector is .NET’s answer to memory management and in particular to the question of what
to do about reclaiming memory that running applications ask for. Up until now, two techniques have been
used on the Windows platform for de-allocating memory that processes have dynamically requested from
the system:

 ➤ Make the application code do it all manually.
 ➤ Make objects maintain reference counts.

Having the application code responsible for de-allocating memory is the technique used by lower-level,
high-performance languages such as C++. It is effi cient and has the advantage that (in general) resources are
never occupied for longer than necessary. The big disadvantage, however, is the frequency of bugs. Code
that requests memory also should explicitly inform the system when it no longer requires that memory.
However, it is easy to overlook this, resulting in memory leaks.

Although modern developer environments do provide tools to assist in detecting memory leaks, they remain
diffi cult bugs to track down. That’s because they have no effect until so much memory has been leaked that
Windows refuses to grant any more to the process. By this point, the entire computer may have appreciably
slowed down due to the memory demands made on it.

Maintaining reference counts is favored in COM. The idea is that each COM component maintains a count
of how many clients are currently maintaining references to it. When this count falls to zero, the component
can destroy itself and free up associated memory and resources. The problem with this is that it still relies on

c01.indd 10c01.indd 10 01/10/12 4:16 PM01/10/12 4:16 PM

A Closer Look at Intermediate Language ❘ 11

the good behavior of clients to notify the component that they have fi nished with it. It takes only one client
not to do so, and the object sits in memory. In some ways, this is a potentially more serious problem than a
simple C++-style memory leak because the COM object may exist in its own process, which means that it
can never be removed by the system. (At least with C++ memory leaks, the system can reclaim all memory
when the process terminates.)

The .NET runtime relies on the garbage collector instead. The purpose of this program is to clean up
memory. The idea is that all dynamically requested memory is allocated on the heap. (That is true for all
languages; although in the case of .NET, the CLR maintains its own managed heap for .NET applications to
use.) Sometimes, when .NET detects that the managed heap for a given process is becoming full and therefore
needs tidying up, it calls the garbage collector. The garbage collector runs through variables currently in
scope in your code, examining references to objects stored on the heap to identify which ones are accessible
from your code — that is, which objects have references that refer to them. Any objects not referred to are
deemed to be no longer accessible from your code and can therefore be removed. Java uses a system of
garbage collection similar to this.

Garbage collection works in .NET because IL has been designed to facilitate the process. The principle
requires that you cannot get references to existing objects other than by copying existing references and that
IL is type safe. In this context, if any reference to an object exists, there is suffi cient information in the
reference to exactly determine the type of the object.

The garbage collection mechanism cannot be used with a language such as unmanaged C++, for example,
because C++ enables pointers to be freely cast between types.

One important aspect of garbage collection is that it is not deterministic. In other words, you cannot
guarantee when the garbage collector will be called. It will be called when the CLR decides that it is needed;
though you can override this process and call up the garbage collector in your code. Calling the garbage
collector in your code is good for testing purposes, but you shouldn’t do this in a normal program.

Look at Chapter 14, “Memory Management and Pointers,” for more information on the garbage collection
process.

Security

.NET can excel in terms of complementing the security mechanisms provided by Windows because it can
offer code-based security, whereas Windows offers only role-based security.

Role-based security is based on the identity of the account under which the process runs (that is, who owns
and runs the process). Code-based security, by contrast, is based on what the code actually does and on how
much the code is trusted. Because of the strong type safety of IL, the CLR can inspect code before running
it to determine required security permissions. .NET also offers a mechanism by which code can indicate in
advance what security permissions it requires to run.

The importance of code-based security is that it reduces the risks associated with running code of dubious
origin (such as code that you have downloaded from the Internet). For example, even if code runs under the
administrator account, you can use code-based security to indicate that the code should still not be permitted
to perform certain types of operations that the administrator account would normally be allowed to do, such
as read or write to environment variables, read or write to the registry, or access the .NET refl ection features.

NOTE Security issues are covered in more depth in Chapter 22, “Security.”

Application Domains

Application domains are an important innovation in .NET and are designed to ease the overhead involved
when running applications that need to be isolated from each other, but also need to communicate with each
other. The classic example of this is a web server application, which may be simultaneously responding to a

c01.indd 11c01.indd 11 01/10/12 4:16 PM01/10/12 4:16 PM

12 ❘ CHAPTER 1 .NET ARCHITECTURE

number of browser requests. It can, therefore, probably have
a number of instances of the component responsible for
servicing those requests running simultaneously.

In pre-.NET days, the choice would be between allowing
those instances to share a process (with the resultant risk
of a problem in one running instance bringing the whole
website down) or isolating those instances in separate
 processes (with the associated performance overhead).
Before .NET, isolation of code was only possible by
using different processes. When you start a new
application, it runs within the context of a process.
Windows isolates processes from each other through
address spaces. The idea is that each process has
available 4GB of virtual memory in which to store its
data and executable code (4GB is for 32-bit
systems; 64-bit systems use more memory). Windows
imposes an extra level of indirection by which this virtual
memory maps into a particular area of actual physical memory or disk space. Each process gets a
different mapping, with no overlap between the actual physical memories that the blocks of virtual
address space map to (see Figure 1-2).

In general, any process can access memory only by specifying an address in virtual memory — processes
do not have direct access to physical memory. Hence, it is simply impossible for one process to access the
memory allocated to another process. This provides an excellent guarantee that any badly behaved code
cannot damage anything outside of its own address space.

Processes do not just serve as a way to isolate instances of running code from each other; they also form
the unit to which security privileges and permissions are assigned. Each process has its own security token,
which indicates to Windows precisely what operations that process is permitted to do.

Although processes are great for security reasons, their big disadvantage is in the area of performance.
Often, a number of processes can actually work together, and therefore need to communicate with each
other. The obvious example of this is where a process calls up a COM component, which is an executable
and therefore is required to run in its own process. The same thing happens in COM when surrogates are
used. Because processes cannot share any memory, a complex marshaling process must be used to copy
data between the processes. This results in a signifi cant performance hit. If you need components to work
together and do not want that performance hit, you must use DLL-based components and have everything
running in the same address space — with the associated risk that a badly behaved component can bring
everything else down.

Application domains are designed as a way to separate components
without resulting in the performance problems associated with passing
data between processes. The idea is that any one process is divided into
a number of application domains. Each application domain roughly
corresponds to a single application, and each thread of execution can
run in a particular application domain (see Figure 1-3).

If different executables run in the same process space, then they clearly
can easily share data because theoretically they can directly see each
other’s data. However, although this is possible in principle, the CLR
makes sure that this does not happen in practice by inspecting the code
for each running application to ensure that the code cannot stray out-
side of its own data areas. This looks, at fi rst, like an almost impossible
task to pull off — after all, how can you tell what the program is going
to do without actually running it?

FIGURE 1-2

Physical memory

or disk space

PROCESS 1

4GB virtual

memory

Physical

Memory

Physical memory

or disk space

PROCESS 2

4GB virtual

memory

PROCESS - 4GB virtual memory

APPLICATION DOMAIN:
an application uses some

of this virtual memory

APPLICATION DOMAIN:
another application uses

some of this virtual memory

FIGURE 1-3

c01.indd 12c01.indd 12 01/10/12 4:16 PM01/10/12 4:16 PM

A Closer Look at Intermediate Language ❘ 13

It is usually possible to do this because of the strong type safety of the IL. In most cases, unless code uses
unsafe features such as pointers, the data types it uses ensures that memory is not accessed inappropriately.
For example, .NET array types perform bounds checking to ensure that no out-of-bounds array operations
are permitted. If a running application does need to communicate or share data with other applications
running in different application domains, it must do so by calling on .NET’s remoting services.

Code that has been verifi ed to check that it cannot access data outside its application domain (other than
through the explicit remoting mechanism) is memory type safe. Such code can safely be run alongside other
type-safe code in different application domains within the same process.

Error Handling with Exceptions

The .NET Framework is designed to facilitate handling of error conditions using the same mechanism based
on exceptions that is employed by Java and C++. C++ developers should note that because of IL’s stronger
typing system, there is no performance penalty associated with the use of exceptions with IL in the way that
there is in C++. Also, the finally block, which has long been on many C++ developers’ wish lists, is
supported by .NET and by C#.

Exceptions are covered in detail in Chapter 16, “Errors and Exceptions.” Briefl y, the idea is that certain
areas of code are designated as exception handler routines, with each one dealing with a particular error
condition (for example, a fi le not being found, or being denied permission to perform some operation).
These conditions can be defi ned as narrowly or as widely as you want. The exception architecture ensures
that when an error condition occurs, execution can immediately jump to the exception handler routine that
is most specifi cally geared to handle the exception condition in question.

The architecture of exception handling also provides a convenient means to pass an object containing
precise details of the exception condition to an exception-handling routine. This object might include
an appropriate message for the user and details of exactly where in the code the exception was detected.

Most exception-handling architecture, including the control of program fl ow when an exception occurs, is
handled by the high-level languages (C#, Visual Basic 2012, C++), and is not supported by any special IL
commands. C#, for example, handles exceptions using try{}, catch{}, and finally{} blocks of code.
(For more details, see Chapter 16.)

What .NET does do, however, is provide the infrastructure to enable compilers that target .NET to support
exception handling. In particular, it provides a set of .NET classes that can represent the exceptions and the
language interoperability to enable the thrown exception objects to be interpreted by the exception-handling
code, regardless of what language the exception-handling code is written in. This language independence is
absent from both the C++ and Java implementations of exception handling; although it is present to a
limited extent in the COM mechanism for handling errors, which involves returning error codes from methods
and passing error objects around. Because exceptions are handled consistently in different languages is a
crucial aspect of facilitating multi-language development.

Use of Attributes

Attributes are familiar to developers who use C++ to write COM components (through their use in
Microsoft’s COM Interface Defi nition Language [IDL]). The initial idea of an attribute was that it provided
extra information concerning some item in the program that could be used by the compiler.

Attributes are supported in .NET — and now by C++, C#, and Visual Basic 2012. What is, however,
particularly innovative about attributes in .NET is that you can defi ne your own custom attributes in your
source code. These user-defi ned attributes will be placed with the metadata for the corresponding data types
or methods. This can be useful for documentation purposes, in which they can be used with refl ection
technology to perform programming tasks based on attributes. In addition, in common with the .NET
philosophy of language independence, attributes can be defi ned in source code in one language and read by
code written in another language.

c01.indd 13c01.indd 13 01/10/12 4:16 PM01/10/12 4:16 PM

14 ❘ CHAPTER 1 .NET ARCHITECTURE

NOTE Chapter 15, “Refl ection,” covers attributes.

ASSEMBLIES

An assembly is the logical unit that contains compiled code targeted at the .NET Framework. This chapter
doesn’t cover assemblies in detail because they are covered thoroughly in Chapter 19, “Assemblies,” but
 following are the main points.

An assembly is completely self-describing and is a logical rather than a physical unit, which means that it
can be stored across more than one fi le. (Indeed, dynamic assemblies are stored in memory, not on fi le.) If
an assembly is stored in more than one fi le, there will be one main fi le that contains the entry point and
describes the other fi les in the assembly.

The same assembly structure is used for both executable code and library code. The only difference is that
an executable assembly contains a main program entry point, whereas a library assembly does not.

An important characteristic of assemblies is that they contain metadata that describes the types and
methods defi ned in the corresponding code. An assembly, however, also contains assembly metadata that
describes the assembly. This assembly metadata, contained in an area known as the manifest, enables checks
to be made on the version of the assembly and on its integrity.

NOTE ildasm, a Windows-based utility, can be used to inspect the contents of an
assembly, including the manifest and metadata. ildasm is discussed in Chapter 19.

Because an assembly contains program metadata means that applications or other assemblies that call up
code in a given assembly do not need to refer to the registry, or to any other data source, to fi nd out how
to use that assembly. This is a signifi cant break from the old COM way to do things, in which the GUIDs
of the components and interfaces had to be obtained from the registry, and in some cases, the details of the
methods and properties exposed would need to be read from a type library.

Having data spread out in up to three different locations meant there was the obvious risk of something
getting out of synchronization, which would prevent other software from using the component successfully.
With assemblies, there is no risk of this happening because all the metadata is stored with the program
executable instructions. Even though assemblies are stored across several fi les, there are still no problems
with data going out of synchronization. This is because the fi le that contains the assembly entry point also
stores details of, and a hash of, the contents of the other fi les, which means that if one of the fi les is replaced,
or in any way tampered with, this will almost certainly be detected and the assembly will refuse to load.

Assemblies come in two types: private and shared assemblies.

Private Assemblies

Private assemblies are the simplest type. They normally ship with software and are intended to be used only
with that software. The usual scenario in which you ship private assemblies is when you supply an application
in the form of an executable and a number of libraries, where the libraries contain code that should be used
only with that application.

The system guarantees that private assemblies will not be used by other software because an application
may load only private assemblies located in the same folder that the main executable is loaded in, or in a
subfolder of it.

Because you would normally expect that commercial software would always be installed in its own directory,
there is no risk of one software package overwriting, modifying, or accidentally loading private assemblies

c01.indd 14c01.indd 14 01/10/12 4:16 PM01/10/12 4:16 PM

Assemblies ❘ 15

intended for another package. And, because private assemblies can be used only by the software package
that they are intended for, you have much more control over what software uses them. There is, therefore,
less need to take security precautions because there is no risk, for example, of some other commercial
software overwriting one of your assemblies with some new version of it (apart from software designed
specifi cally to perform malicious damage). There are also no problems with name collisions. If classes in
your private assembly happen to have the same name as classes in someone else’s private assembly, that does
not matter because any given application can see only the one set of private assemblies.

Because a private assembly is entirely self-contained, the process to deploy it is simple. You simply place the
appropriate fi le(s) in the appropriate folder in the fi le system. (No registry entries need to be made.) This
process is known as zero impact (xcopy) installation.

Shared Assemblies

Shared assemblies are intended to be common libraries that any other application can use. Because any other
software can access a shared assembly, more precautions need to be taken against the following risks:

 ➤ Name collisions, where another company’s shared assembly implements types that have the same
names as those in your shared assembly. Because client code can theoretically have access to both
assemblies simultaneously, this could be a serious problem.

 ➤ The risk of an assembly being overwritten by a different version of the same assembly — the new
version is incompatible with some existing client code.

The solution to these problems is placing shared assemblies in a special directory subtree in the fi le system,
known as the global assembly cache (GAC). Unlike with private assemblies, this cannot be done by simply
copying the assembly into the appropriate folder; it must be specifi cally installed into the cache. This process
can be performed by a number of .NET utilities and requires certain checks on the assembly, as well as
setting up of a small folder hierarchy within the assembly cache used to ensure assembly integrity.

To prevent name collisions, shared assemblies are given a name based on private key cryptography. (Private
assemblies are simply given the same name as their main fi lename.) This name is known as a strong name; it
is guaranteed to be unique and must be quoted by applications that reference a shared assembly.

Problems associated with the risk of overwriting an assembly are addressed by specifying version information
in the assembly manifest and by allowing side-by-side installations.

Refl ection

Because assemblies store metadata, including details of all the types and members of these types defi ned in
the assembly, you can access this metadata programmatically. Full details of this are given in Chapter 15.
This technique, known as refl ection, raises interesting possibilities because it means that managed code can
actually examine other managed code, and can even examine itself, to determine information about that
code. This is most commonly used to obtain the details of attributes; although you can also use refl ection,
among other purposes, as an indirect way to instantiate classes or calling methods, given the names of those
classes or methods as strings. In this way, you could select classes to instantiate methods to call at runtime,
rather than at compile time, based on user input (dynamic binding).

Parallel Programming

The .NET Framework enables you to take advantage of all the multicore processors available today. The
parallel computing capabilities provide the means to separate work actions and run these across multiple
processors. The parallel programming APIs available now make writing safe multithreaded code simple;
though you must realize that you still need to account for race conditions and things such as deadlocks.

The new parallel programming capabilities provide a new Task Parallel Library and a PLINQ Execution
Engine. Chapter 21, “Tasks, Threads, and Synchronization,” covers parallel programming.

c01.indd 15c01.indd 15 01/10/12 4:16 PM01/10/12 4:16 PM

16 ❘ CHAPTER 1 .NET ARCHITECTURE

Asynchronous Programming

Based on the Task from the Task Parallel Library are the new async features of C# 5. Since .NET 1.0, many
classes from the .NET Framework offered asynchronous methods beside the synchronous variant. The user
interface thread should not be blocked when doing a task that takes a while. You’ve probably seen several
programs that have become unresponsive, which is annoying. A problem with the asynchronous methods
was that they were diffi cult to use. The synchronous variant was a lot easier to program with, and thus this
one was usually used.

Using the mouse the user is — with many years of experience — used to a delay. When moving objects or
just using the scrollbar, a delay is normal. With new touch interfaces, if there’s a delay the experience for the
user can be extremely annoying. This can be solved by calling asynchronous methods. If a method with the
WinRT might take more than 50 milliseconds, the WinRT offers only asynchronous method calls.

C# 5 now makes it easy to invoke new asynchronous methods. C# 5 defi nes two new keywords: async and
await. These keywords and how they are used are discussed in Chapter 13, “Asynchronous Programming.”

.NET FRAMEWORK CLASSES

Perhaps one of the biggest benefi ts to write managed code, at least from a developer’s point of view, is that
you can use the .NET base class library. The .NET base classes are a massive collection of managed code
classes that enable you to do almost any of the tasks that were previously available through the Windows
API. These classes follow the same object model that IL uses, based on single inheritance. This means that
you can either instantiate objects of whichever .NET base class is appropriate or derive your own classes
from them.

The great thing about the .NET base classes is that they have been designed to be intuitive and easy
to use. For example, to start a thread, you call the Start() method of the Thread class. To disable a
TextBox, you set the Enabled property of a TextBox object to false. This approach — though familiar
to Visual Basic and Java developers whose respective libraries are just as easy to use — will be a welcome
relief to C++ developers, who for years have had to cope with such API functions as GetDIBits(),
RegisterWndClassEx(), and IsEqualIID(), and a plethora of functions that require Windows handles to
be passed around.

However, C++ developers always had easy access to the entire Windows API, unlike Visual Basic 6 and Java
developers who were more restricted in terms of the basic operating system functionality that they have
access to from their respective languages. What is new about the .NET base classes is that they combine the
ease of use that was typical of the Visual Basic and Java libraries with the relatively comprehensive coverage
of the Windows API functions. Many features of Windows still are not available through the base classes,
and for those you need to call into the API functions, but in general, these are now confi ned to the more
exotic features. For everyday use, you can probably fi nd the base classes adequate. Moreover, if you do need
to call into an API function, .NET offers a platform-invoke that ensures data types are correctly converted,
so the task is no harder than calling the function directly from C++ code would have been — regardless of
whether you code in C#, C++, or Visual Basic 2012.

Although Chapter 3 is nominally dedicated to the subject of base classes, after you have completed
the coverage of the syntax of the C# language, most of the rest of this book shows you how to use various
classes within the .NET base class library for the .NET Framework 4.5. That is how comprehensive
base classes are. As a rough guide, the areas covered by the .NET 4.5 base classes include the following:

 ➤ Core features provided by IL (including the primitive data types in the CTS discussed in Chapter 3)
 ➤ Windows UI support and controls (see Chapters 35–38)
 ➤ ASP.NET with Web Forms and MVC (see Chapters 39–42)
 ➤ Data access with ADO.NET and XML (see Chapters 32–34)
 ➤ File system and registry access (see Chapter 24, “Manipulating Files and Registry”)

c01.indd 16c01.indd 16 01/10/12 4:16 PM01/10/12 4:16 PM

Creating .NET Applications Using C# ❘ 17

 ➤ Networking and web browsing (see Chapter 26, “Networking”)
 ➤ .NET attributes and refl ection (see Chapter 14)
 ➤ COM interoperability (see Chapter 23)

Incidentally, according to Microsoft sources, a large proportion of the .NET base classes have actually been
written in C#.

NAMESPACES

Namespaces are the way that .NET avoids name clashes between classes. They are designed to prevent
situations in which you defi ne a class to represent a customer, name your class Customer, and then someone
else does the same thing. (A likely scenario in which — the proportion of businesses that have customers
seems to be quite high.)

A namespace is no more than a grouping of data types, but it has the effect that the names of all data
types within a namespace are automatically prefi xed with the name of the namespace. It is also possible to
nest namespaces within each other. For example, most of the general-purpose .NET base classes are in a
namespace called System. The base class Array is in this namespace, so its full name is System.Array.

.NET requires all types to be defi ned in a namespace; for example, you could place your Customer
class in a namespace called YourCompanyName.ProjectName. This class would have the full name
YourCompanyName.ProjectName.Customer.

NOTE If a namespace is not explicitly supplied, the type will be added to a nameless
global namespace.

Microsoft recommends that for most purposes you supply at least two nested namespace names: the fi rst
one represents the name of your company, and the second one represents the name of the technology or
software package of which the class is a member, such as YourCompanyName.SalesServices.Customer.
This protects, in most situations, the classes in your application from possible name clashes with classes
written by other organizations.

Chapter 2 looks more closely at namespaces.

CREATING .NET APPLICATIONS USING C#

You can also use C# to create console applications: text-only applications that run in a DOS window. You
can probably use console applications when unit testing class libraries and for creating UNIX or Linux
daemon processes. More often, however, you can use C# to create applications that use many of the
technologies associated with .NET. This section gives you an overview of the different types of applications
that you can write in C#.

Creating ASP.NET Applications

The original introduction of ASP.NET 1.0 fundamentally changed the web programming model. ASP.NET
4.5 is a major release of the product and builds upon its earlier achievements. ASP.NET 4.5 follows on a
series of major revolutionary steps designed to increase your productivity. The primary goal of ASP.NET is
to enable you to build powerful, secure, dynamic applications using the least possible amount of code. As
this is a C# book, there are many chapters showing you how to use this language to build the latest in web
applications.

The following section explores the key features of ASP.NET. For more details, refer to Chapters 39 to 42.

c01.indd 17c01.indd 17 01/10/12 4:16 PM01/10/12 4:16 PM

18 ❘ CHAPTER 1 .NET ARCHITECTURE

Features of ASP.NET

With the invention of ASP.NET, there were only ASP.NET Web Forms, which had the goal of easily creating
web applications in a way a Windows application developer was used to writing applications. It was the goal
not to need to write HTML and JavaScript.

Nowadays this is difference again. HTML and JavaScript became important and modern again. And there’s
a new ASP.NET Framework that makes it easy to do this and gives a separation based on the well-known
Model View Controller (MVC) pattern for easier unit testing: ASP.NET MVC.

ASP.NET was refactored to have a foundation available both for ASP.NET Web Forms and ASP.NET MVC,
and then the UI frameworks are based on this foundation.

NOTE Chapter 39, “Core ASP.NET” covers the foundation of ASP.NET

ASP.NET Web Forms

To make web page construction easy, Visual Studio 2012 supplies Web Forms. Web pages can be built
graphically by dragging controls from a toolbox onto a form and then fl ipping over to the code aspect of
that form and writing event handlers for the controls. When you use C# to create a Web Form, you create
a C# class that inherits from the Page base class and an ASP.NET page that designates that class as its
code-behind. Of course, you do not need to use C# to create a Web Form; you can use Visual Basic 2012 or
another .NET-compliant language just as well.

ASP.NET Web Forms provide a rich functionality with controls that do not create only simple HTML code,
but with controls that do input validation using both JavaScript and server-side validation logic, grids, data
sources to access the database, offer Ajax features for dynamically rendering just parts of the page on the
client and much more.

NOTE Chapter 40, “ASP.NET Web Forms” discusses ASP.NET Web Forms.

Web Server Controls

The controls used to populate a Web Form are not controls in the same sense as ActiveX controls. Rather,
they are XML tags in the ASP.NET namespace that the web browser dynamically transforms into HTML
and client-side script when a page is requested. Amazingly, the web server can render the same server-side
control in different ways, producing a transformation appropriate to the requestor’s particular web browser.
This means that it is now easy to write fairly sophisticated user interfaces for web pages, without worrying
about how to ensure that your page can run on any of the available browsers — because Web Forms take
care of that for you.

You can use C# or Visual Basic 2012 to expand the Web Form toolbox. Creating a new server-side control is
simply a matter of implementing .NET’s System.Web.UI.WebControls.WebControl class.

ASP.NET MVC

Visual Studio comes with ASP.NET MVC 4. This technology is already available in version 4. Contrary to
Web Forms where HTML and JavaScript is abstracted away from the developer, with the advent of HTML
5 and jQuery, using these technologies has become more important again. With ASP.NET MVC the focus
is on writing server-side code separated within model and controller and using views with just a little bit of
server-side code to get information from the controller. This separation makes unit testing a lot easier and
gives the full power to use HTML 5 and JavaScript libraries.

c01.indd 18c01.indd 18 01/10/12 4:16 PM01/10/12 4:16 PM

Creating .NET Applications Using C# ❘ 19

NOTE Chapter 41, “ASP.NET MVC” covers ASP.NET MVC.

ASP.NET Dynamic Data

Creating data-driven web applications is fast using ASP.NET Dynamic Data. Using the Entity Framework
and scaffolding options, forms to read and write data can be done in an effi cient, rapid way. ASP.NET
Dynamic Data is not a one-stop way to create forms; you can also customize the forms and form fi elds,
classes that should be offered for data entry.

NOTE Chapter 42, “ASP.NET Dynamic Data” covers ASP.NET Dynamic Data.

ASP.NET Web API

A new way for simple communication between the client and the server — a REST based style — is offered
with the ASP.NET Web API. This new framework is based on ASP.NET MVC and makes use of controllers
and routing. The client can receive JSON or Atom data based on the Open Data specifi cation.

The features of this new API makes it easy to consume from web clients using JavaScript, but also from
Windows 8 apps.

NOTE Because ASP.NET Web API is based on ASP.NET MVC, this technology is
covered in Chapter 41.

Windows Presentation Foundation (WPF)

For creating Windows desktop applications, two technologies are available: Windows Forms and Windows
Presentation Foundation. Windows Forms consists of classes that just wrap native Windows controls and is
thus based on pixel graphics. Windows Presentation Foundation (WPF) is the newer technology based on
vector graphics.

WPF makes use of XAML in building applications. XAML stands for eXtensible Application Markup
Language. This new way to create applications within a Microsoft environment is something introduced
in 2006 and is part of the .NET Framework 3.0. This means that to run any WPF application, you need to
make sure that at least the .NET Framework 3.0 is installed on the client machine. Of course, you get new
WPF features with newer versions of the framework. With version 4.5, for example, the ribbon control and
live shaping are new features among many new controls.

XAML is the XML declaration used to create a form that represents all the visual aspects and behaviors
of the WPF application. Though you can work with a WPF application programmatically, WPF is a step
in the direction of declarative programming, which the industry is moving to. Declarative programming
means that instead of creating objects through programming in a compiled language such as C#, VB, or
Java, you declare everything through XML-type programming. Chapter 29, “Core XAML,” introduces
XAML (which is also used with XML Paper Specifi cation, Windows Workfl ow Foundation, and Windows
Communication Foundation).

Chapter 35, “Core WPF,” details how to build WPF applications using XAML and C#. Chapter 36 goes
into more details on data-driven business applications with WPF and XAML. Printing and creating
documents is another important aspect of WPF covered in Chapter 37, “Creating Documents with WPF.”

c01.indd 19c01.indd 19 01/10/12 4:16 PM01/10/12 4:16 PM

20 ❘ CHAPTER 1 .NET ARCHITECTURE

Windows 8 Apps

Windows 8 starts a new paradigm with touch-fi rst Windows 8 apps. With desktop applications the user
usually gets a menu and a toolbar, receives a chrome with the application to see what he can do next.
Windows 8 apps have the focus on the content. Chrome should be minimized to tasks the user can do with
the content, and not on different options he has. The focus is on the current task, and not what the user
might do next. This way the user remembers the application based on its content. Content and no chrome is
a buzz phrase with this technology.

Windows 8 apps can be written with C# and XAML, using the Windows Runtime with a subset of the
.NET Framework. Windows 8 apps offer huge new opportunities. The major disadvantage is that they are
only available with Windows 8 and newer operating systems.

NOTE Chapter 38, “Windows 8 UI,” covers creating Windows 8 apps.

Windows Services

A Windows Service (originally called an NT Service) is a program designed to run in the background in
Windows NT kernel based operating systems. Services are useful when you want a program to run
continuously and ready to respond to events without having been explicitly started by the user. A good
example is the World Wide Web Service on web servers, which listens for web requests from clients.

It is easy to write services in C#. .NET Framework base classes are available in the System
.ServiceProcess namespace that handles many of the boilerplate tasks associated with services. In addi-
tion, Visual Studio .NET enables you to create a C# Windows Service project, which uses C# source code
for a basic Windows Service. Chapter 27, “Windows Services,” explores how to write C# Windows Services.

Windows Communication Foundation

One communication technology fused between client and server is the ASP.NET Web API. The ASP.NET
Web API is easy to use but doesn’t offer a lot of features such as offered from the SOAP protocol.

Windows Communication Foundation (WCF) is a feature-rich technology to offer a broad set of communication
options. With WCF you can use a REST-based communication but also a SOAP-based communication with
all the features used by standards-based Web services such as security, transactions, duplex and one-way
communication, routing, discovery, and so on. WCF provides you with the ability to build your service one
time and then expose this service in a multitude of ways (under different protocols even) by just making
changes within a confi guration fi le. You can fi nd that WCF is a powerful new way to connect disparate
systems. Chapter 43, “Windows Communication Foundation,” covers this in detail. You can also fi nd
WCF-based technologies such as WCF Data Services and Message Queuing with WCF in Chapter 44,
“WCF Data Services” and Chapter 47, “Message Queuing.”

Windows Workfl ow Foundation

The Windows Workfl ow Foundation (WF) was introduced with the release of the .NET Framework 3.0 but
had a good overhaul that many fi nd more approachable now since .NET 4. There are some smaller improve-
ments with .NET 4.5 as well. You can fi nd that Visual Studio 2012 has greatly improved for working with
WF and makes it easier to construct your workfl ows and write expressions using C# (instead of VB in the
previous edition). You can also fi nd a new state machine designer and new activities.

NOTE WF is covered in Chapter 45, “Windows Workfl ow Foundation.”

c01.indd 20c01.indd 20 01/10/12 4:16 PM01/10/12 4:16 PM

Summary ❘ 21

THE ROLE OF C# IN THE .NET ENTERPRISE ARCHITECTURE

New technologies are coming in a fast pace. What should you use for enterprise applications? There are
many aspects that infl uence the decision. For example, what about the existing applications that have been
developed with current technology knowledge of the developers. Can you integrate new features with legacy
applications? Depending on the maintenance required, maybe it makes sense to rebuild some existing
applications for easier use of new features. Usually, legacy and new can coexist for many years to come.
What is the requirement for the client systems? Can the .NET Framework be upgraded to version 4.5, or is
2.0 a requirement? Or is .NET not available on the client?

There are many decisions to make, and .NET gives many options. You can use .NET on the client with
Windows Forms, WPF, or Windows 8-style apps. You can use .NET on the web server hosted with IIS and
the ASP.NET Runtime with ASP.NET Web Forms or ASP.NET MVC. Services can run within IIS, and you
can host the services from within Windows Services. C# presents an outstanding opportunity for
organizations interested in building robust, n-tiered client-server applications.

When combined with ADO.NET, C# has the capability to quickly and generically access data stores such as
SQL Server or other databases with data providers. The ADO.NET Entity Framework can be an easy way
to map database relations to object hierarchies. This is not only possible with SQL Server, but also many
different databases where an Entity Framework provider is offered. The returned data can easily be
manipulated using the ADO.NET object model or LINQ and automatically rendered as XML or JSON for
transport across an offi ce intranet.

After a database schema has been established for a new project, C# presents an excellent medium for
implementing a layer of data access objects, each of which could provide insertion, updates, and deletion
access to a different database table.

Because it’s the fi rst component-based C language, C# is a great language for implementing a business object tier,
too. It encapsulates the messy plumbing for intercomponent communication, leaving developers free to focus on
gluing their data access objects together in methods that accurately enforce their organizations’ business rules.

To create an enterprise application with C#, you create a class library project for the data access objects and
another for the business objects. While developing, you can use Console projects to test the methods on your
classes. Fans of extreme programming can build Console projects that can be executed automatically from
batch fi les to unit test that working code has not been broken.

On a related note, C# and .NET will probably infl uence the way you physically package your reusable
classes. In the past, many developers crammed a multitude of classes into a single physical component
because this arrangement made deployment a lot easier; if there were a versioning problem, you knew just
where to look. Because deploying .NET components involves simply copying fi les into directories, developers
can now package their classes into more logical, discrete components without encountering “DLL Hell.”

Last, but not least, ASP.NET pages coded in C# constitute an excellent medium for user interfaces. Because
ASP.NET pages compile, they execute quickly. Because they can be debugged in the Visual Studio 2012 IDE,
they are robust. Because they support full-scale language features such as early binding, inheritance, and
modularization, ASP.NET pages coded in C# are tidy and easily maintained.

After the hype of SOA and service-based programming, nowadays using services has becoming the norm.
The new hype is cloud-based programming, with Windows Azure as Microsoft’s offering. You can run
.NET applications in a range from ASP.NET Web Forms, ASP.NET Web API, or WCF either on on-premise
servers or in the cloud. Clients can make use of HTML 5 for a broad reach or make use of WPF or Windows
8 apps for rich functionality. Still with new technologies and options, .NET has a prosperous life.

SUMMARY

This chapter covered a lot of ground, briefl y reviewing important aspects of the .NET Framework and C#’s
relationship to it. It started by discussing how all languages that target .NET are compiled into Microsoft
Intermediate Language (IL) before this is compiled and executed by the Common Language Runtime (CLR).
This chapter also discussed the roles of the following features of .NET in the compilation and execution process:

c01.indd 21c01.indd 21 01/10/12 4:16 PM01/10/12 4:16 PM

22 ❘ CHAPTER 1 .NET ARCHITECTURE

 ➤ Assemblies and .NET base classes
 ➤ COM components
 ➤ JIT compilation
 ➤ Application domains
 ➤ Garbage collection

Figure 1-4 provides an overview of how these features come into play during compilation and execution.

FIGURE 1-4

ASSEMBLY

containing IL

CODE

COMPILATION

EXECUTION

Language

Interoperability

through CTS

and CLS

VB.NET

Source Code

.NET base

classes

Assemblies

loaded

CLR ORGANIZES:

C# Source

Code

ASSEMBLY

containing IL

CODE

JIT

compilation

Security

permissions

granted

Memory type

safety checked

Creates App

Domain

Garbage collector

cleans up sources

PROCESS

Application domain

CODE EXECUTES

HERE COM interop

services

legacy COM

component

You learned about the characteristics of IL, particularly its strong data typing and object orientation, and
how these characteristics infl uence the languages that target .NET, including C#. You also learned how the
strongly typed nature of IL enables language interoperability, as well as CLR services such as garbage
collection and security. There was also a focus on the Common Language Specifi cation (CLS) and the
Common Type System (CTS) to help deal with language interoperability.

Finally, you learned how C# can be used as the basis for applications built on several .NET technologies,
including ASP.NET and WPF.

Chapter 2 discusses how to write code in C#.

c01.indd 22c01.indd 22 01/10/12 4:16 PM01/10/12 4:16 PM

