
PART I

Language Constructs and
Environment

 � CHAPTER 1: Visual Studio 2012

 � CHAPTER 2: The Common Language Runtime

 � CHAPTER 3: Objects and Visual Basic

 � CHAPTER 4: Custom Objects

 � CHAPTER 5: Advanced Language Constructs

 � CHAPTER 6: Exception Handling and Debugging

c01.indd 1c01.indd 1 11/28/2012 5:17:02 PM11/28/2012 5:17:02 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 11/28/2012 5:17:03 PM11/28/2012 5:17:03 PM

1
Visual Studio 2012

WHAT’S IN THIS CHAPTER?

 ‰ Versions of Visual Studio

 ‰ An introduction to key Visual Basic terms

 ‰ Targeting a runtime environment

 ‰ Creating a baseline Visual Basic Windows Form

 ‰ Project templates

 ‰ Project properties—application, compilation, debug

 ‰ Setting properties

 ‰ IntelliSense, code expansion, and code snippets

 ‰ Debugging

 ‰ The Class Designer

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118314456 on the Download Code tab. The code is in the chapter 1 down-
load and individually named according to the code fi lenames listed in the chapter.

You can work with Visual Basic without Visual Studio. In practice, however, most Visual
Basic developers treat the two as almost inseparable; without a version of Visual Studio, you’re
forced to work from the command line to create project fi les by hand, to make calls to the
associated compilers, and to manually address the tools necessary to build your application.
While Visual Basic supports this at the same level as C#, F#, C++, and other .NET languages,
this isn’t the typical focus of a Visual Basic professional.

c01.indd 3c01.indd 3 11/28/2012 5:17:03 PM11/28/2012 5:17:03 PM

4 x CHAPTER 1 VISUAL STUDIO 2012

Visual Basic’s success rose from its increased productivity in comparison to other languages when
building business applications. Visual Studio 2012 increases your productivity and provides assis-
tance in debugging your applications and is the natural tool for Visual Basic developers.

Accordingly this book starts off by introducing you to Visual Studio 2012 and how to build and
manage Visual Basic applications. The focus of this chapter is on ensuring that everyone has a
core set of knowledge related to tasks like creating and debugging applications in Visual Studio
2012. Visual Studio 2012 is used throughout the book for building solutions. Note while this is
the start, don’t think of it as an “intro” chapter. This chapter will intro key elements of work-
ing with Visual Studio, but will also go beyond that. You may fi nd yourself referencing back to it
later for advanced topics that you glossed over your fi rst time through. Visual Studio is a power-
ful and, at times, complex tool, and you aren’t expected to master it on your fi rst read through
this chapter.

This chapter provides an overview of many of the capabilities of Visual Studio 2012. The goal is to
demonstrate how Visual Studio makes you, as a developer, more productive and successful.

VISUAL STUDIO 2012

For those who aren’t familiar with the main elements of .NET development there is the common
language runtime (CLR), the .NET Framework, the various language compilers and Visual Studio.
Each of these plays a role; for example, the CLR—covered in Chapter 2—manages the execution of
code on the .NET platform. Thus code can be targeted to run on a specifi c version of this runtime
environment.

The .NET Framework provides a series of classes that developers leverage across implementation
languages. This framework or Class Library is versioned and targeted to run on a specifi c minimum
version of the CLR. It is this library along with the language compilers that are referenced by Visual
Studio. Visual Studio allows you to build applications that target one or more of the versions of
what is generically called .NET.

In some cases the CLR and the .NET Framework will be the same; for example, .NET Framework
version 1.0 ran on CLR version 1.0. In other cases just as Visual Basic’s compiler is on version 10,
the .NET Framework might have a newer version targeting an older version of the CLR.

The same concepts carry into Visual Studio. Visual Studio 2003 was focused on .NET 1.1, while
the earlier Visual Studio .NET (2002) was focused on .NET 1.0. Originally, each version of Visual
Studio was optimized for a particular version of .NET. Similarly, Visual Studio 2005 was opti-
mized for .NET 2.0, but then along came the exception of the .NET Framework version 3.0. This
introduced a new Framework, which was supported by the same version 2.0 of the CLR, but which
didn’t ship with a new version of Visual Studio.

Fortunately, Microsoft chose to keep Visual Basic and ASP.NET unchanged for the .NET 3.0
Framework release. However, when you looked at the .NET 3.0 Framework elements, such as
Windows Presentation Foundation, Windows Communication Foundation, and Windows Workfl ow
Foundation, you found that those items needed to be addressed outside of Visual Studio. Thus,
while Visual Studio is separate from Visual Basic, the CLR, and .NET development, in practical
terms Visual Studio was tightly coupled to each of these items.

c01.indd 4c01.indd 4 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

Visual Basic Keywords and Syntax x 5

When Visual Studio 2005 was released, Microsoft expanded on the different versions of Visual
Studio available for use. Earlier editions of this book actually went into some of the differences
between these versions. This edition focuses on using Visual Studio’s core features. While some of
the project types require Visual Studio Professional, the core features are available in all versions of
Visual Studio.

In Visual Studio 2008, Microsoft loosened the framework coupling by providing robust support
that allowed the developer to target any of three different versions of the .NET Framework. Visual
Studio 2010 continued this, enabling you to target an application to run on .NET 2.0, .NET 3.0,
.NET 3.5, or .NET 4.

However, that support didn’t mean that Visual Studio 2010 wasn’t still tightly coupled to a specifi c
version of each compiler. In fact, the new support for targeting frameworks is designed to support
a runtime environment, not a compile-time environment. This is important, because when projects
from previous versions of Visual Studio are converted to the Visual Studio 2010 format, they cannot
be reopened by a previous version.

The reason for this was that the underlying build engine used by Visual Studio 2010 accepts syntax
changes and even language feature changes, but previous versions of Visual Studio do not recognize
these new elements of the language. Thus, if you move source code written in Visual Studio 2010
to a previous version of Visual Studio, you face a strong possibility that it would fail to compile.
However, Visual Studio 2012 changed this, and it is now possible to open projects associated with
older versions of Visual Studio in Visual Studio 2012, work on them, and have someone else con-
tinue to work in an older version of Visual Studio.

Multitargeting support continues to ensure that your application will run on a specifi c version of the
framework. Thus, if your organization is not supporting .NET 3.0, .NET 3.5, or .NET 4, you can
still use Visual Studio 2012. The compiler generates byte code based on the language syntax, and
at its core that byte code is version agnostic. Where you can get in trouble is if you reference one or
more classes that aren’t part of a given version of the CLR. Visual Studio therefore manages your
references when targeting an older version of .NET, allowing you to be reasonably certain that your
application will not reference fi les from one of those other framework versions. Multitargeting is
what enables you to safely deploy without requiring your customers to download additional frame-
work components they don’t need.

Complete coverage of all of Visual Studio’s features warrants a book of its own, especially when you
take into account all of the collaborative and Application Lifecycle Management features introduced
by Team Foundation Server and its tight integration with both Team Build and SharePoint Server.

VISUAL BASIC KEYWORDS AND SYNTAX

Those with previous experience with Visual Basic are already familiar with many of the language
keywords and syntax. However, not all readers will fall into this category, so this introductory sec-
tion is for those new to Visual Basic. A glossary of keywords is provided, after which this section
will use many of these keywords in context.

Although they’re not the focus of the chapter, with so many keywords, a glossary follows. Table 1-1
briefl y summarizes most of the keywords discussed in the preceding section, and provides a short

c01.indd 5c01.indd 5 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

6 x CHAPTER 1 VISUAL STUDIO 2012

description of their meaning in Visual Basic. Keep in mind there are two commonly used terms that
aren’t Visual Basic keywords that you will read repeatedly, including in the glossary:

 1. Method—A generic name for a named set of commands. In Visual Basic, both subs and
functions are types of methods.

 2. Instance—When a class is created, the resulting object is an instance of the class’s defi nition.

TABLE 1-1: Commonly Used Keywords in Visual Basic

KEYWORD DESCRIPTION

Namespace A collection of classes that provide related capabilities. For example, the System

.Drawing namespace contains classes associated with graphics.

Class A defi nition of an object. Includes properties (variables) and methods, which can be

Subs or Functions.

Sub A method that contains a set of commands, allows data to be transferred as param-

eters, and provides scope around local variables and commands, but does not

return a value.

Function A method that contains a set of commands, returns a value, allows data to

be transferred as parameters, and provides scope around local variables and

commands.

Return Ends the currently executing Sub or Function. Combined with a return value for

functions.

Dim Declares and defi nes a new variable.

New Creates an instance of an object.

Nothing Used to indicate that a variable has no value. Equivalent to null in other languages

and databases.

Me A reference to the instance of the object within which a method is executing.

Console A type of application that relies on a command-line interface. Console applications

are commonly used for simple test frames. Also refers to a .NET Framework Class

that manages access of the command window to and from which applications can

read and write text data.

Module A code block that isn’t a class but which can contain Sub and Function methods.

Used when only a single copy of code or data is needed in memory.

Even though the focus of this chapter is on Visual Studio, during this introduction a few basic ele-
ments of Visual Basic will be referenced and need to be spelled out. This way, as you read, you can
understand the examples. Chapter 2, for instance, covers working with namespaces, but some exam-
ples and other code are introduced in this chapter that will mention the term, so it is defi ned here.

c01.indd 6c01.indd 6 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

Visual Basic Keywords and Syntax x 7

Let’s begin with namespace. When .NET was being created, the developers realized that attempting
to organize all of these classes required a system. A namespace is an arbitrary system that the .NET
developers used to group classes containing common functionality. A namespace can have multiple
levels of grouping, each separated by a period (.). Thus, the System namespace is the basis for classes
that are used throughout .NET, while the Microsoft.VisualBasic namespace is used for classes
in the underlying .NET Framework but specifi c to Visual Basic. At its most basic level, a namespace
does not imply or indicate anything regarding the relationships between the class implementations
in that namespace; it is just a way of managing the complexity of both your custom application’s
classes, whether it be a small or large collection, and that of the .NET Framework’s thousands of
classes. As noted earlier, namespaces are covered in detail in Chapter 2.

Next is the keyword Class. Chapters 3 and 4 provide details on object-oriented syntax and the
related keywords for objects and types, but a basic defi nition of this keyword is needed here.
The Class keyword designates a common set of data and behavior within your application. The
class is the defi nition of an object, in the same way that your source code, when compiled, is the def-
inition of an application. When someone runs your code, it is considered to be an instance of your
application. Similarly, when your code creates or instantiates an object from your class defi nition, it
is considered to be an instance of that class, or an instance of that object.

Creating an instance of an object has two parts. The fi rst part is the New command, which tells the
compiler to create an instance of that class. This command instructs code to call your object defi ni-
tion and instantiate it. In some cases you might need to run a method and get a return value, but in
most cases you use the New command to assign that instance of an object to a variable. A variable is
quite literally something which can hold a reference to that class’s instance.

To declare a variable in Visual Basic, you use the Dim statement. Dim is short for “dimension” and
comes from the ancient past of Basic, which preceded Visual Basic as a language. The idea is that
you are telling the system to allocate or dimension a section of memory to hold data. As discussed
in subsequent chapters on objects, the Dim statement may be replaced by another keyword such as
Public or Private that not only dimensions the new value, but also limits the accessibility of that
value. Each variable declaration uses a Dim statement similar to the example that follows, which
declares a new variable, winForm:

Dim winForm As System.Windows.Forms.Form = New System.Windows.Forms.Form()

In the preceding example, the code declares a new variable (winForm) of the type Form. This variable
is then set to an instance of a Form object. It might also be assigned to an existing instance of a Form
object or alternatively to Nothing. The Nothing keyword is a way of telling the system that the vari-
able does not currently have any value, and as such is not actually using any memory on the heap.
Later in this chapter, in the discussion of value and reference types, keep in mind that only reference
types can be set to Nothing.

A class consists of both state and behavior. State is a fancy way of referring to the fact that the class
has one or more values also known as properties associated with it. Embedded in the class defi nition
are zero or more Dim statements that create variables used to store the properties of the class. When
you create an instance of this class, you create these variables; and in most cases the class contains
logic to populate them. The logic used for this, and to carry out other actions, is the behavior. This
behavior is encapsulated in what, in the object-oriented world, are known as methods.

c01.indd 7c01.indd 7 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

8 x CHAPTER 1 VISUAL STUDIO 2012

However, Visual Basic doesn’t have a “method” keyword. Instead, it has two other keywords that
are brought forward from Visual Basic’s days as a procedural language. The fi rst is Sub. Sub, short
for “subroutine,” and it defi nes a block of code that carries out some action. When this block of
code completes, it returns control to the code that called it without returning a value. The following
snippet shows the declaration of a Sub:

Private Sub Load(ByVal object As System.Object)

End Sub

The preceding example shows the start of a Sub called Load. For now you can ignore the word
Private at the start of this declaration; this is related to the object and is further explained in the
next chapter. This method is implemented as a Sub because it doesn’t return a value and accepts one
parameter when it is called. Thus, in other languages this might be considered and written explicitly
as a function that returns Nothing.

The preceding method declaration for Sub Load also includes a single parameter, object, which
is declared as being of type System.Object. The meaning of the ByVal qualifi er is explained in
chapter 2, but is related to how that value is passed to this method. The code that actually loads the
object would be written between the line declaring this method and the End Sub line.

Alternatively, a method can return a value; Visual Basic uses the keyword Function to describe this
behavior. In Visual Basic, the only difference between a Sub and the method type Function is the
return type.

The Function declaration shown in the following sample code specifi es the return type of the func-
tion as a Long value. A Function works just like a Sub with the exception that a Function returns
a value, which can be Nothing. This is an important distinction, because when you declare a func-
tion the compiler expects it to include a Return statement. The Return statement is used to indicate
that even though additional lines of code may remain within a Function or Sub, those lines of code
should not be executed. Instead, the Function or Sub should end processing at the current line, and
if it is in a function, the return value should be returned. To declare a Function, you write code
similar to the following:

Public Function Add(ByVal ParamArray values() As Integer) As Long
 Dim result As Long = 0
 'TODO: Implement this function
 Return result
 'What if there is more code
 Return result
End Function

In the preceding example, note that after the function initializes the second line of code, there is
a Return statement. There are two Return statements in the code. However, as soon as the fi rst
Return statement is reached, none of the remaining code in this function is executed. The Return
statement immediately halts execution of a method, even from within a loop.

As shown in the preceding example, the function’s return value is assigned to a local variable until
returned as part of the Return statement. For a Sub, there would be no value on the line with the
Return statement, as a Sub does not return a value when it completes. When returned, the return

c01.indd 8c01.indd 8 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

Visual Basic Keywords and Syntax x 9

value is usually assigned to something else. This is shown in the next example line of code, which
calls a function:

Dim ctrl = Me.Add(1, 2)

The preceding example demonstrates a call to a function. The value returned by the function Add
is a Long, and the code assigns this to the variable ctrl. It also demonstrates another keyword that
you should be aware of: Me. The Me keyword is how, within an object, you can reference the current
instance of that object.

You may have noticed that in all the sample code presented thus far, each line is a complete com-
mand. If you’re familiar with another programming language, then you may be used to seeing a
specifi c character that indicates the end of a complete set of commands. Several popular languages
use a semicolon to indicate the end of a command line.

Visual Basic doesn’t use visible punctuation to end each line. Traditionally, the BASIC family of
languages viewed source fi les more like a list, whereby each item on the list is placed on its own line.
At one point the term was source listing. By default, Visual Basic ends each source list item with
the carriage-return line feed, and treats it as a command line. In some languages, a command such
as X = Y can span several lines in the source fi le until a semicolon or other terminating character
is reached. Thus previously, in Visual Basic, that entire statement would be found on a single line
unless the user explicitly indicates that it is to continue onto another line.

To explicitly indicate that a command line spans more than one physical line, you’ll see the use of
the underscore at the end of the line to be continued. However, one of the features of Visual Basic,
originally introduced in version 10 with Visual Studio 2010, is support for an implicit underscore
when extending a line past the carriage-return line feed. However, this feature is limited, as there
are still places where underscores are needed.

When a line ends with the underscore character, this explicitly tells Visual Basic that the code on
that line does not constitute a completed set of commands. The compiler will then continue to the
next line to fi nd the continuation of the command, and will end when a carriage-return line feed is
found without an accompanying underscore.

In other words, Visual Basic enables you to use exceptionally long lines and indicate that the code
has been spread across multiple lines to improve readability. The following line demonstrates the use
of the underscore to extend a line of code:

MessageBox.Show("Hello World", "A Message Box Title", _
 MessageBoxButtons.OK, MessageBoxIcon.Information)

Prior to Visual Basic 10 the preceding example illustrated the only way to extend a single command
line beyond one physical line in your source code. The preceding line of code can now be written as
follows:

MessageBox.Show("Hello World", "A Message Box Title",
 MessageBoxButtons.OK, MessageBoxIcon.Information)

The compiler now recognizes certain key characters like the “,” or the “=” as the type of statement
where a line isn’t going to end. The compiler doesn’t account for every situation and won’t just
look for a line extension anytime a line doesn’t compile. That would be a performance nightmare;

c01.indd 9c01.indd 9 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

10 x CHAPTER 1 VISUAL STUDIO 2012

however, there are several logical places where you, as a developer, can choose to break a command
across lines and do so without needing to insert an underscore to give the compiler a hint about the
extended line.

Finally, note that in Visual Basic it is also possible to place multiple different statements on a single
line, by separating the statements with colons. However, this is generally considered a poor coding
practice because it reduces readability.

Console Applications

The simplest type of application is a console application. This application doesn’t have much of a
user interface; in fact, for those old enough to remember the MS-DOS operating system, a console
application looks just like an MS-DOS application. It works in a command window without support
for graphics or input devices such as a mouse. A console application is a text-based user interface
that displays text characters and reads input from the keyboard.

The easiest way to create a console application is to use Visual Studio. For the current discussion
let’s just look at a sample source fi le for a Console application, as shown in the following example.
Notice that the console application contains a single method, a Sub called Main. By default, if you
create a console application in Visual Studio, the code located in the Sub Main is the code which is
by default started. However, the Sub Main isn’t contained in a class; instead, the Sub Main that fol-
lows is contained in a Module:

Module Module1
 Sub Main()
 Console.WriteLine("Hello World")
 Dim line = Console.ReadLine()
 End Sub
End Module

A Module isn’t truly a class, but rather a block of code that can contain methods, which are then
referenced by code in classes or other modules—or, as in this case, it can represent the execution
start for a program. A Module is similar to having a Shared class. The Shared keyword indicates
that only a single instance of a given item exists.

For example, in C# the Static keyword is used for this purpose, and can be used to indicate that
only a single instance of a given class exists. Visual Basic doesn’t support the use of the Shared
keyword with a Class declaration; instead, Visual Basic developers create modules that provide the
same capability. The Module represents a valid construct to group methods that don’t have state-
related or instance-specifi c data.

Note a console application focuses on the Console Class. The Console Class encapsulates Visual
Basic’s interface with the text-based window that hosts a command prompt from which a com-
mand-line program is run. The console window is best thought of as a window encapsulating the
older nongraphical style user interface, whereby literally everything was driven from the command
prompt. A Shared instance of the Console class is automatically created when you start your appli-
cation, and it supports a variety of Read and Write methods. In the preceding example, if you were
to run the code from within Visual Studio’s debugger, then the console window would open and
close immediately. To prevent that, you include a fi nal line in the Main Sub, which executes a Read
statement so that the program continues to run while waiting for user input.

c01.indd 10c01.indd 10 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

Visual Basic Keywords and Syntax x 11

Creating a Project from a Project Template

While it is possible to create a Visual Basic application working entirely outside of Visual Studio, it
is much easier to start from Visual Studio. After you install Visual Studio, you are presented with
a screen similar to the one shown in Figure 1-1. Different versions of Visual Studio may have a dif-
ferent overall look, but typically the start page lists your most recent projects on the left, some tips
for getting started, and a headline section for topics on MSDN that might be of interest. You may
or may not immediately recognize that this content is HTML text; more important, the content is
based on an RSS feed that retrieves and caches articles appropriate for your version of Visual Studio.

FIGURE 1-1: Visual Studio 2012 Start screen

The start page provides a generic starting point either to select the application you intend to work
on, to quickly receive vital news related to offers, as shown in the fi gure, or to connect with external
resources via the community links.

Once here, the next step is to create your fi rst project. Selecting File Í New Í Project opens the
New Project dialog, shown in Figure 1-2. This dialog provides a selection of templates customized
by application type. One option is to create a Class Library project. Such a project doesn’t include

c01.indd 11c01.indd 11 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

12 x CHAPTER 1 VISUAL STUDIO 2012

a user interface; and instead of creating an assembly with an .exe fi le, it creates an assembly with a
.dll fi le. The difference, of course, is that an .exe fi le indicates an executable that can be started by
the operating system, whereas a .dll fi le represents a library referenced by an application.

FIGURE 1-2: New Project dialogue

Figure 1-2 includes the capability to target a specifi c .NET version in the drop-down box located
above the list of project types. If you change this to .NET 2.0, you’ll see the dialog change to show
only six project types below the selection listed. For the purposes of this chapter, however, you’ll
want .NET 4.5 selected, and the template list should resemble what is shown in Figure 1-2. Note
this chapter is going to create a Windows .NET application, not a Windows Store application.
Targeting keeps you from attempting to create a project for WPF without recognizing that you also
need at least .NET 3.0 available on the client. Although you can change your target after you create
your project, be very careful when trying to reduce the version number, as the controls to prevent
you from selecting dependencies don’t check your existing code base for violations. Changing your
targeted framework version for an existing project is covered in more detail later in this chapter.

Not only can you choose to target a specifi c version of the framework when creating a new proj-
ect, but this window has a new feature that you’ll fi nd all over the place in Visual Studio. In the
upper-right corner, there is a control that enables you to search for a specifi c template. As you work
through more of the windows associated with Visual Studio, you’ll fi nd that a context-specifi c
search capability has often been added to the new user interface.

Reviewing the top level of the Visual Basic tree in Figure 1-2 shows that a project type can be
further separated into a series of categories:

 ‰ Windows—These are projects used to create applications that run on the local computer
within the CLR. Because such projects can run on any operating system (OS) hosting the
framework, the category “Windows” is something of a misnomer when compared to, for
example, “Desktop.”

c01.indd 12c01.indd 12 11/28/2012 5:17:05 PM11/28/2012 5:17:05 PM

Visual Basic Keywords and Syntax x 13

 ‰ Web—You can create these projects, including Web services, from this section of the New
Project dialog.

 ‰ Offi ce—Visual Studio Tools for Offi ce (VSTO). These are .NET applications that are hosted
under Offi ce. Visual Studio 2010 includes a set of templates you can use to target Offi ce
2010, as well as a separate section for templates that target Offi ce 2007.

 ‰ Cloud Services—These are projects that target the Azure online environment model. These
projects are deployed to the cloud and as such have special implementation and deployment
considerations.

 ‰ Reporting—This project type enables you to create a Reports application.

 ‰ SharePoint—This category provides a selection of SharePoint projects, including Web Part
projects, SharePoint Workfl ow projects, and Business Data Catalog projects, as well as things
like site defi nitions and content type projects. Visual Studio 2010 includes signifi cant new
support for SharePoint.

 ‰ Silverlight—With Visual Studio 2010, Microsoft has fi nally provided full support for
working with Silverlight projects. Whereas in the past you’ve had to add the Silverlight SDK
and tools to your existing development environment, with Visual Studio 2010 you get sup-
port for both Silverlight projects and user interface design within Visual Studio.

 ‰ Test—This section is available only to those using Visual Studio Team Suite. It contains the
template for a Visual Basic Unit Test project.

 ‰ WCF—This is the section where you can create Windows Communication Foundation
projects.

 ‰ Workfl ow—This is the section where you can create Windows Workfl ow Foundation
(WF) projects. The templates in this section also include templates for connecting with the
SharePoint workfl ow engine.

Not shown in that list is a Windows Store project group. That option is available only if you are
running Visual Studio 2012 on Windows 8. The project group has fi ve different project types under
Visual Basic, but they are available only if you aren’t just targeting Windows 8, but are actually
using a Windows 8 computer.

This chapter assumes you are working on a Windows 7 computer. The reason for this is that it is
expected the majority of developers will continue to work outside of Windows RT. If you are work-
ing in a Windows 8 or Windows RT environment, then what you’ll look for in the list of Visual
Basic templates is a Windows Store application. Keep in mind, however, that those projects will only
run on Windows 8 computers. Details of working with Windows Store applications are the focus of
Chapters 14 and 15.

Visual Studio has other categories for projects, and you have access to other development languages
and far more project types than this chapter has room for. When looking to create an application
you will choose from one or more of the available project templates. To use more than a single
project to create an application you’ll leverage what is known as a solution. A solution is created by
default whenever you create a new project and contains one or more projects.

When you save your project you will typically create a folder for the solution, then later if you add
another project to the same solution, it will be contained in the solution folder. A project is always

c01.indd 13c01.indd 13 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

14 x CHAPTER 1 VISUAL STUDIO 2012

part of a solution, and a solution can contain multiple projects, each of which creates a different
assembly. Typically, for example, you will have one or more Class Libraries that are part of the same
solution as your Windows Form or ASP.NET project. For now, you can select a WPF Application
project template to use as an example project for this chapter.

For this example, use ProVB_VS2012 as the project name to match the name of the project in
the sample code download and then click OK. Visual Studio takes over and uses the Windows
Application template to create a new WPF Application project. The project contains a blank form
that can be customized, and a variety of other elements that you can explore. Before customizing
any code, let’s fi rst look at the elements of this new project.

The Solution Explorer

The Solution Explorer is a window that is by default
located on the right-hand side of your display when
you create a project. It is there to display the con-
tents of your solution and includes the actual source
fi le(s) for each of the projects in your solution. While
the Solution Explorer window is available and appli-
cable for Express Edition users, it will never contain
more than a single project. Visual Studio provides
the ability to leverage multiple projects in a single
solution. A .NET solution can contain projects of
any .NET language and can include the database,
testing, and installation projects as part of the over-
all solution. The advantage of combining these proj-
ects is that it is easier to debug projects that reside in
a common solution.

Before discussing these fi les in depth, let’s take a
look at the next step, which is to reveal a few addi-
tional details about your project. Hover over the
small icons at the top of the Solution Explorer until
you fi nd the one with the hint “Show All Files.” Click that button in the Solution Explorer to display
all of the project fi les, as shown in Figure 1-3. As this image shows, many other fi les make up your
project. Some of these, such as those under the My Project grouping, don’t require you to edit them
directly. Instead, you can double-click the My Project entry in the Solution Explorer and open the
pages to edit your project settings. You do not need to change any of the default settings for this
project, but the next section of this chapter walks you through the various property screens.

Additionally, with Visual Studio 2012 the Solution Explorer goes below the level of just showing
fi les. Notice how in Figure 1-3 that below the reference to the VB fi le, the display transitions into
one that gives you class-specifi c information. The Solution Explorer is no longer just a tool to take
you to the fi les in your project, but a tool that allows you to delve down into your class and jump
directly to elements of interest within your solution.

The bin and obj directories shown are used when building your project. The obj directory con-
tains the fi rst-pass object fi les used by the compiler to create your fi nal executable fi le. The “binary”
or compiled version of your application is then placed in the bin directory by default. Of course,

FIGURE 1-3: Visual Studio Solution Explorer

c01.indd 14c01.indd 14 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

Visual Basic Keywords and Syntax x 15

referring to the Microsoft intermediate language (MSIL) code as binary is something of a misnomer,
as the actual translation to binary does not occur until runtime, when your application is compiled
by the just-in-time (JIT) compiler. However, Microsoft continues to use the bin directory as the
default output directory for your project’s compilation.

Figure 1-3 also shows that the project contains an app.config fi le by default. Most experienced
ASP.NET developers are familiar with using web.config fi les. app.config fi les work on the same
principle in that they contain XML, which is used to store project-specifi c settings such as database
connection strings and other application-specifi c settings. Using a .config fi le instead of having
your settings in the Windows registry enables your applications to run side-by-side with another ver-
sion of the application without the settings from either version affecting the other.

For now however, you have a new project and an initial XAML Window, MainWindows, available in
the Solution Explorer. In this case, the MainWIndows.xaml fi le is the primary fi le associated with the
default window. You’ll be customizing this window shortly, but before looking at that, it would be
useful to look at some of the settings available by opening your Project Properties. An easy way to
do this is to right-click on the My Project heading shown in Figure 1-3.

Project Properties

Visual Studio uses a vertically tabbed display for editing your project settings. The Project
Properties display shown in Figure 1-4 provides access to the newly created ProVB_VS2012 project
settings. The Project Properties window gives you access to several different aspects of your
project. Some, such as Signing, Security, and Publish, are covered in later chapters.

FIGURE 1-4: Project Properties—Application tab

c01.indd 15c01.indd 15 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

16 x CHAPTER 1 VISUAL STUDIO 2012

You can customize your assembly name from this screen, as well as your root namespace. In addi-
tion, you can now change the target framework for your application and reset the type of application
and object to be referenced when starting your application. However, resetting the application type
is not typically recommended. In some cases, if you start with the wrong application type, it is better
to create a new application due to all of the embedded settings in the application template.

In addition, you can change attributes such as the class, which should be called when starting your
project. Thus, you could select a screen other than the default MainWindow.xaml as the startup
screen. You can also associate a given default icon with your form (refer to Figure 1-4).

Near the middle of the dialogue are two buttons. Assembly Information is covered in the next sec-
tion. The other button, labeled View Windows Settings, refers to your app.manifest fi le. Within
this fi le are application settings for things like Windows compatibility and User Access Control
settings, which enable you to specify that only certain users can successfully start your application.
In short, you have the option to limit your application access to a specifi c set of users. The UAC set-
tings are covered in more detail in Chapter 18.

Finally, there is a section associated with enabling an application framework. The application frame-
work is a set of optional components that enable you to extend your application with custom events
and items, or access your base application class, with minimal effort. Enabling the framework is
the default, but unless you want to change the default settings, the behavior is the same—as if the
framework weren’t enabled. The third button, View Application Events, adds a new source fi le,
ApplicationEvents.vb, to your project, which includes documentation about which application
events are available.

Assembly Information Screen

Selecting the Assembly Information button
from within your My Project window opens the
Assembly Information dialogue. Within this
dialogue, shown in Figure 1-5, you can defi ne fi le
properties, such as your company’s name and ver-
sioning information, which will be embedded in
the operating system’s fi le attributes for your proj-
ect’s output. Note these values are stored as assem-
bly attributes in AssemblyInfo.vb.

Assembly Attributes

The AssemblyInfo.vb fi le contains attributes that
are used to set information about the assembly.
Each attribute has an assembly modifi er, shown in
the following example:

<Assembly: AssemblyTitle("")>

All the attributes set within this fi le provide infor-
mation that is contained within the assembly
metadata. The attributes contained within the fi le are summarized in Table 1-2:

FIGURE 1-5: Project Properties

Assembly Information dialogue

c01.indd 16c01.indd 16 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

Visual Basic Keywords and Syntax x 17

TABLE 1-2: Attributes of the AssemblyInfo.vb File

ATTRIBUTE DESCRIPTION

Assembly Title This sets the name of the assembly, which appears

within the fi le properties of the compiled fi le as the

description.

Assembly Description This attribute is used to provide a textual descrip-

tion of the assembly, which is added to the

Comments property for the fi le.

Assembly Company This sets the name of the company that produced

the assembly. The name set here appears within

the Version tab of the fi le properties.

Assembly Product This attribute sets the product name of the result-

ing assembly. The product name appears within

the Version tab of the fi le properties.

Assembly Copyright The copyright information for the assembly.

This value appears on the Version tab of the fi le

properties.

Assembly Trademark Used to assign any trademark information to the

assembly. This information appears on the Version

tab of the fi le properties.

Assembly Version This attribute is used to set the version number of

the assembly. Assembly version numbers can be

generated, which is the default setting for .NET

applications. This is covered in more detail in

Chapter 17.

Assembly File Version This attribute is used to set the version number of

the executable fi les.

COM Visible This attribute is used to indicate whether this

assembly should be registered and made available

to COM applications.

Guid If the assembly is to be exposed as a traditional

COM object, then the value of this attribute

becomes the ID of the resulting type library.

NeutralResourcesLanguageAttribute If specifi ed, provides the default culture to use

when the current user’s culture settings aren’t

explicitly matched in a localized application.

Localization is covered further in Chapter 15.

c01.indd 17c01.indd 17 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

18 x CHAPTER 1 VISUAL STUDIO 2012

Compiler Settings

When you select the Compile tab of the Project Properties, you should see a window similar to the
one shown in Figure 1-6. At the top of the display you should see your Confi guration and Platform
settings. By default, these are for Debug and Any CPU.

FIGURE 1-6: Project Properties—Compile tab

If you don’t see these drop-downs in your display, you can restore them by selecting
Tools Í Options, and then turning on the Advanced compile options. The main reason to restore
these options has to do with being able to properly target the output of your application build.

Before getting to the top four drop-downs related to compile options, let’s quickly discuss the fi fth
drop-down for the Target CPU. In Visual Studio, the default is to target AnyCPU, but this means
that on a 64-bit developer workstation, Visual Studio will target a 64-bit assembly for your debug
environment. When working on a 64-bit workstation, you must explicitly target an x86 environ-
ment in order to enable both Edit and Continue as well as COM-Interop. COM is a 32-bit, so you
are required to target a 32-bit/x86 environment to support COM-Interop.

Aside from your default project fi le output directory and Target CPU, this page contains several
compiler options. The Option Explicit, Option Infer, and Option Strict settings directly affect your
variable usage. Each of the following settings can be edited by adding an Option declaration to the
top of your source code fi le. When placed within a source fi le each of the following settings applies
to all of the code entered in that source fi le, but only to the code in that fi le:

c01.indd 18c01.indd 18 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

Visual Basic Keywords and Syntax x 19

 ‰ Option Explicit—This option has not changed from previous versions of Visual Basic. When
enabled, it ensures that every variable is explicitly declared. Of course, if you are using
Option Strict, then this setting doesn’t matter because the compiler won’t recognize the type
of an undeclared variable. To my knowledge, there’s no good reason to ever turn this option
off unless you are developing pure dynamic solutions, for which compile time typing is
unavailable.

 ‰ Option Strict—When this option is enabled, the compiler must be able to determine the type
of each variable, and if an assignment between two variables requires a type conversion—for
example, from Integer to Boolean—then the conversion between the two types must be
expressed explicitly.

 ‰ Option Compare—This option determines whether strings should be compared as binary
strings or whether the array of characters should be compared as text. In most cases, leav-
ing this as binary is appropriate. Doing a text comparison requires the system to convert the
binary values that are stored internally prior to comparison. However, the advantage of a
text-based comparison is that the character “A” is equal to “a” because the comparison is
case-insensitive. This enables you to perform comparisons that don’t require an explicit case
conversion of the compared strings. In most cases, however, this conversion still occurs, so
it’s better to use binary comparison and explicitly convert the case as required.

 ‰ Option Infer—This option was new in Visual Studio 2008 and was added due to the require-
ments of LINQ. When you execute a LINQ statement, you can have returned a data table
that may or may not be completely typed in advance. As a result, the types need to be
inferred when the command is executed. Thus, instead of a variable that is declared without
an explicit type being defi ned as an object, the compiler and runtime attempt to infer the cor-
rect type for this object.

Existing code developed with Visual Studio 2005 is unaware of this concept, so this option
will be off by default for any project that is migrated to Visual Studio 2012. New projects
will have this option turned on, which means that if you cut and paste code from a Visual
Studio 2005 project into a Visual Studio 2012 project, or vice versa, you’ll need to be pre-
pared for an error in the pasted code because of changes in how types are inferred.

From the properties page Option Explicit, Option Strict, Option Compare, and Option Infer can be
set to either On or Off for your project. Visual Studio 2012 makes it easy for you to customize spe-
cifi c compiler conditions for your entire project. However, as noted, you can also make changes to
the individual compiler checks that are set using something like Option Strict.

Notice that as you change your Option Strict settings in particular, the notifi cations with the top
few conditions are automatically updated to refl ect the specifi c requirements of this new setting.
Therefore, you can literally create a custom version of the Option Strict settings by turning on and
off individual compiler settings for your project. In general, this table lists a set of conditions that
relate to programming practices you might want to avoid or prevent, and which you should defi nitely
be aware of. The use of warnings for the majority of these conditions is appropriate, as there are
valid reasons why you might want to use or avoid each but might also want to be able to do each.

Basically, these conditions represent possible runtime error conditions that the compiler can’t detect
in advance, except to identify that a possibility for that runtime error exists. Selecting a Warning

c01.indd 19c01.indd 19 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

20 x CHAPTER 1 VISUAL STUDIO 2012

for a setting bypasses that behavior, as the compiler will warn you but allow the code to remain.
Conversely, setting a behavior to Error prevents compilation; thus, even if your code might be writ-
ten to never have a problem, the compiler will prevent it from being used.

An example of why these conditions are noteworthy is the warning of an instance variable accessing
a Shared property. A Shared property is the same across all instances of a class. Thus, if a specifi c
instance of a class is updating a Shared property, then it is appropriate to get a warning to that
effect. This action is one that can lead to errors, as new developers sometimes fail to realize that
a Shared property value is common across all instances of a class, so if one instance updates the
value, then the new value is seen by all other instances. Thus, you can block this dangerous but cer-
tainly valid code to prevent errors related to using a Shared property.

As noted earlier, option settings can be specifi c to each source fi le. This involves adding a line to the
top of the source fi le to indicate to the compiler the status of that Option. The following lines will
override your project’s default setting for the specifi ed options. However, while this can be done on
a per-source listing basis, this is not the recommended way to manage these options. For starters,
consistently adding this line to each of your source fi les is time-consuming and potentially open to
error:

Option Explicit On
Option Compare Text
Option Strict On
Option Infer On

Most experienced developers agree that using Option Strict and being forced to recognize when
type conversions are occurring is a good thing. Certainly, when developing software that will be
deployed in a production environment, anything that can be done to help prevent runtime errors is
desirable. However, Option Strict can slow the development of a program because you are forced
to explicitly defi ne each conversion that needs to occur. If you are developing a prototype or demo
component that has a limited life, you might fi nd this option limiting.

If that were the end of the argument, then many developers would simply turn the option off and
forget about it, but Option Strict has a runtime benefi t. When type conversions are explicitly identi-
fi ed, the system performs them faster. Implicit conversions require the runtime system to fi rst iden-
tify the types involved in a conversion and then obtain the correct handler.

Another advantage of Option Strict is that during implementation, developers are forced to consider
every place a conversion might occur. Perhaps the development team didn’t realize that some of the
assignment operations resulted in a type conversion. Setting up projects that require explicit conver-
sions means that the resulting code tends to have type consistency to avoid conversions, thus reduc-
ing the number of conversions in the fi nal code. The result is not only conversions that run faster,
but also, it is hoped, a smaller number of conversions.

Option Infer is a powerful feature. It is used as part of LINQ and the features that support LINQ,
but it affects all code. In the past, you needed to write the AS <type> portion of every variable defi -
nition in order to have a variable defi ned with an explicit type. However, now you can dimension
a variable and assign it an integer or set it equal to another object, and the AS Integer portion of
your declaration isn’t required; it is inferred as part of the assignment operation. Be careful with
Option Infer; if abused it can make your code obscure, since it reduces readability by potentially

c01.indd 20c01.indd 20 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

Visual Basic Keywords and Syntax x 21

hiding the true type associated with a variable. Some developers prefer to limit Option Infer to
per-fi le declarations to limit its use to when it is needed, for example with LINQ.

In addition, note that Option Infer is directly affected by Option Strict. In an ideal world, Option
Strict Off would require that Option Infer also be turned off or disabled in the user interface. That
isn’t the case, although it is the behavior that is seen; once Option Strict is off, Option Infer is essen-
tially ignored.

Also note in Figure 1-6 that below the grid of individual settings is a series of check boxes. Two of
these are self-explanatory; the third is the option to generate XML comments for your assembly.
These comments are generated based on the XML comments that you enter for each of the classes,
methods, and properties in your source fi le.

Finally, at the bottom is the Advanced Compile Options button. This button opens the Advanced
Compiler Settings dialogue shown in Figure 1-7. Note a couple of key elements on this screen, the
fi rst being the “Remove integer overfl ow checks” check box. When these options are not enabled,
the result is a performance hit on Visual Basic applications in comparison to C#. The compilation
constants are values you shouldn’t need to touch normally. Similarly, the generation of serialization
assemblies is something that is probably best left in auto mode.

FIGURE 1-7: Advanced Compiler Settings

Debug Properties

Figure 1-8 shows the project debugger startup options from Visual Studio 2012. The default action
is to start the current project. However, developers have two additional options. The fi rst is to start
an external program. In other words, if you are working on a DLL or a user control, then you might
want to have that application start, which can then execute your assembly. Doing this is essentially
a shortcut, eliminating the need to bind to a running process. Similarly, for Web development, you
can reference a specifi c URL to start that Web application.

c01.indd 21c01.indd 21 11/28/2012 5:17:06 PM11/28/2012 5:17:06 PM

22 x CHAPTER 1 VISUAL STUDIO 2012

FIGURE 1-8: Project Properties—Debug Tab

Next developers have three options related to starting the debugger. The fi rst is to apply command-
line arguments to the startup of a given application. This, of course, is most useful for console
applications, but in some cases developers add command-line parameters to GUI applications. The
second option is to select a different directory, a working directory, to be used to run the applica-
tion. Generally, this isn’t necessary; but it’s desirable in some cases because of path or permission
requirements or having an isolated runtime area.

As noted, Visual Studio provides support for remote debugging, although such debugging is involved
and not confi gured for simple scenarios. Remote debugging can be a useful tool when working with
an integration test environment where developers are prevented from installing Visual Studio but
need to be able to debug issues. However, you shouldn’t be limited by just using the debugger for
understanding what is occurring in your application at runtime.

Finally, as might be expected, users of Visual Studio who work with multiple languages, and who
use tools that are tightly integrated with SQL Server, have additional debuggers. Within the Enable
Debuggers section of this display are three check boxes. The fi rst of these is for native code debug-
ging and turns on support for debugging outside of the CLR—what is known as unmanaged code.
As a Visual Basic developer, the only time you should be using unmanaged code is when you are ref-
erencing legacy COM components. The developers most likely to use this debugger work in C++.

The next option turns on support for SQL Server debugging, a potentially useful feature. In short,
it’s possible, although the steps are not trivial, to have the Visual Studio debugging engine step
directly into T-SQL stored procedures so that you can see the interim results as they occur within a
complex stored procedure.

c01.indd 22c01.indd 22 11/28/2012 5:17:07 PM11/28/2012 5:17:07 PM

Visual Basic Keywords and Syntax x 23

Finally, the last check box is one you should typically leave unchanged. When you start an appli-
cation for debugging the default behavior—represented by this check box—it hosts your running
application within another process. Called the Visual Studio host, this application creates a dynamic
environment controlled by Visual Studio within which your application runs. The host process
allows Visual Studio to provide enhanced runtime features. For some items such as debugging
partial trust applications, this environment is required to simulate that model. Because of this, if
you are using refl ection, you’ll fi nd that your application name references this host process when
debugging.

References

It’s possible to add additional references as part of your project. Similar to the default code fi les
that are created with a new project, each project template has a default set of referenced libraries.
Actually, it has a set of imported namespaces and a subset of the imported namespaces also refer-
enced across the project. This means that while you can easily reference the classes in the referenced
namespaces, you still need to fully qualify a reference to something less common. For example, to
use a StringBuilder you’ll need to specify the fully qualifi ed name of System.Text
.StringBuilder. Even though the System.Text namespace is referenced it hasn’t been imported by
default.

Keep in mind that changing your target framework does not update any existing references. If you
are going to attempt to target the .NET 2.0 Framework, then you’ll want to remove references that
have a version higher than 2.0.0.0. References such as System.Core enable new features in the
System namespace that are associated with .NET 4.0.

To review details about the imported and referenced namespaces, select the References tab in your
Project Properties display, as shown in Figure 1-9. This tab enables you to check for unused refer-
ences and even defi ne reference paths. More important, it is from this tab that you select other .NET
Class Libraries and applications, as well as COM components. Selecting the Add drop-down button
gives you the option to add a reference to a local DLL or a Web service.

When referencing DLLs you have three options: reference an assembly from the GAC, reference
an assembly based on a fi le path, or reference another assembly from within your current solution.
Each of these options has advantages and disadvantages. The GAC is covered in more detail in
Chapter 17.

In addition you can reference other assemblies that are part of your solution. If your solution con-
sists of more than a single project, then it is straightforward and highly recommended to use project
references in order to enable those projects to reference each other. While you should avoid circular
references—Project A references Project B which references Project A—using project references is
preferred over fi le references. With project references, Visual Studio can map updates to these assem-
blies as they occur during a build of the solution.

This is different from adding a reference to a DLL that is located within a specifi ed directory. When
you create a reference via a path specifi cation, Visual Studio can check that path for an updated
copy of the reference, but your code is no longer as portable as it would be with a project reference.
More important, unless there is a major revision, Visual Studio usually fails to detect the types of
changes you are likely to make to that fi le during the development process. As a result, you’ll need to
manually update the referenced fi le in the local directory of the assembly that’s referencing it.

c01.indd 23c01.indd 23 11/28/2012 5:17:07 PM11/28/2012 5:17:07 PM

24 x CHAPTER 1 VISUAL STUDIO 2012

One commonly used technique with custom references is to ensure that instead of referencing
third-party controls based on their location, add the property “copy local” for some references so
that the version-specifi c copy of the control deploys with the code that depends on it.

FIGURE 1-9: Project Properties—References tab

Resources

In addition to referencing other assemblies, it is quite common for a .NET application to need to
reference things such as images, icons, audio, and other fi les. These fi les aren’t used to provide appli-
cation logic but are used at runtime to provide support for the look, feel, and even text used to com-
municate with the application’s user. In theory, you can reference a series of images associated with
your application by looking for those images based on the installed fi le path of your application.
Doing so, however, places your application’s runtime behavior at risk, because a user might choose
to replace or delete your fi les.

This is where project references become useful. Instead of placing the raw fi les onto the operating
system alongside your executable, Visual Studio will package these fi les into your executable so that
they are less likely to be lost or damaged. Figure 1-10 shows the Resources tab, which enables you to
review and edit all the existing resources within a project, as well as import fi les for use as resources
in your project. It even allows you to create new resources from scratch.

c01.indd 24c01.indd 24 11/28/2012 5:17:07 PM11/28/2012 5:17:07 PM

Visual Basic Keywords and Syntax x 25

FIGURE 1-10: Project Properties—Resources tab

Note one little-known feature of this tab: Using the Add Resource drop-down button and selecting
an image (not an existing image but one based on one of the available image types) will create a new
image fi le and automatically open an image editor; this enables you to actually create the image that
will be in the image fi le.

Additionally, within the list of Add Resource items, Visual Studio users can select or create a new
icon. Choosing to create a new icon opens Visual Studio’s icon editor, which provides a basic set of
tools for creating custom icons to use as part of your application. This makes working with .ico
fi les easier because you don’t have to hunt for or purchase such fi les online; instead, you can create
your own icons.

However, images aren’t the only resources that you can embed with your executable. Resources also
apply to the fi xed text strings that your application uses. By default, people tend to embed this text
directly into the source code so that it is easily accessible to the developer. Unfortunately, this leaves
the application diffi cult to localize for use with a second language. The solution is to group all of
those text strings together, thereby creating a resource fi le containing all of the text strings, which
is still part of and easily accessible to the application source code. When the application is converted
for use in another language, this list of strings can be converted, making the process of localization
easier. Localization is covered in detail in Chapter 15.

c01.indd 25c01.indd 25 11/28/2012 5:17:07 PM11/28/2012 5:17:07 PM

26 x CHAPTER 1 VISUAL STUDIO 2012

NOTE The next tab is the Services tab. This tab is discussed in more detail in
Chapter 11, which addresses services.

Settings

Visual Studio provides signifi cant support for application settings, including the Settings tab, shown
in Figure 1-11. This tab enables Visual Basic developers to identify application settings and auto-
matically create these settings within the app.config fi le.

FIGURE 1-11: Project Properties—Settings tab

Figure 1-11 illustrates several elements related to the application settings capabilities of Visual Basic.
The fi rst setting is of type String. Under .NET 1.x, all application settings were seen as strings, and
this was considered a weakness. Accordingly, the second setting, LastLocation, exposes the Type
drop-down, illustrating that under you can now create a setting that has a well-defi ned type.

However, strongly typed settings are not the customizable attribute related to application settings.
The very next column defi nes the scope of a setting. There are two possible options: application

c01.indd 26c01.indd 26 11/28/2012 5:17:07 PM11/28/2012 5:17:07 PM

Visual Basic Keywords and Syntax x 27

wide or user specifi c. The settings defi ned with application scope are available to all users of the
application.

The alternative is a user-specifi c setting. Such settings have a default value; in this case, the last loca-
tion defaults to 0,0. However, once a user has read that default setting, the application generally
updates and saves the user-specifi c value for that setting. As indicated by the LastLocation setting,
each user of the application might close it after having moved it to a new location on the screen; and
the goal of such a setting would be to reopen the application where it was last located. Thus, the
application would update this setting value, and Visual Basic makes it easy to do this, as shown in
the following code:

My.Settings.LastLocation = Me.Location
My.Settings.Save()

That’s right—Visual Basic requires only two lines of code that leverage the My namespace in order
for you to update a user’s application setting and save the new value.

Visual Studio automatically generated all the XML needed to defi ne these settings and save the
default values. Note that individual user settings are not saved back into the config fi le, but rather
to a user-specifi c working directory. In fact, it is possible not only to update application settings
with Visual Basic, but also to arrange to encrypt those settings, although this behavior is outside the
scope of this chapter.

Other Project Property Tabs

In addition to the tabs that have been examined in detail, there are other tabs which are more spe-
cifi c. In most cases these tabs are used only in specifi c situations that do not apply to all projects.

Signing

This tab is typically used in conjunction with deployment. If you are interested in creating a com-
mercial application that needs to be installed on client systems, you’ll want to sign your application.
There are several advantages to signing your application, including the capability to publish it via
ClickOnce deployment. Therefore, it is possible to sign an application with a developer key if you
want to deploy an application internally.

My Extensions

The My Extensions tab enables you to create and leverage extensions to Visual Basic’s My
namespace. By default, Visual Studio 2012 ships with extensions to provide My namespace shortcuts
for key WPF and Web applications.

Security

The Secutiry tab enables you to defi ne the security requirements of your application for the purposes
of ClickOnce deployment.

Publish

The Publish tab is used to confi gure and initiate the publishing of an application. From this tab you
can update the published version of the application and determine where to publish it.

c01.indd 27c01.indd 27 11/28/2012 5:17:08 PM11/28/2012 5:17:08 PM

28 x CHAPTER 1 VISUAL STUDIO 2012

Code Analysis

This Code Analysis tab enables the developer to turn on and confi gure the static code analysis set-
tings. These settings are used after compilation to perform automated checks against your code.
Because these checks can take signifi cant time, especially for a large project, they must be manually
turned on.

PROJECT PROVB_VS2012

The Design view opens by default when a new project is created. If you have closed it, you can eas-
ily reopen it using the Solution Explorer by right-clicking MainWindow.xaml and selecting View
Designer from the pop-up menu. Figure 1-12 illustrates the default view you see when your project
template completes. On the screen is the design surface upon which you can drag controls from the
Toolbox to build your user interface and update properties associated with your form.

FIGURE 1-12: New WPF project Design view

c01.indd 28c01.indd 28 11/28/2012 5:17:08 PM11/28/2012 5:17:08 PM

Project ProVB_VS2012 x 29

The Properties pane, shown in more detail in Figure 1-13,
is by default placed in the lower-right corner of the Visual
Studio window. Like many of the other windows in the
IDE, if you close it, it can be accessed through the View
menu. Alternatively, you can use the F4 key to reopen this
window. The Properties pane is used to set the properties
of the currently selected control, or for the Form as a
whole.

Each control you place on your form has its own distinct
set of properties. For example, in the Design view, select
your form. You’ll see the Properties window adjust to dis-
play the properties of MainWindow (refer to Figure 1-13).
This is the list of properties associated with your window.
If you want to limit how small a user can reduce the dis-
play area of your form, then you can now defi ne this as a
property.

For your sample, go to the Title property and change the
default of MainWindow to “ProVB 2012” Once you have
accepted the property change, the new value is displayed
as the caption of your form. In addition to your window
frame, WPF has by default populated the body of your
window with a Grid control. As you look to custom-
ize your new window, this grid will allow you to defi ne
regions of the page and control the layout of items within
the window.

Tear-Away Tabs

You may have noticed in Figure 1-12 that the Code View and Form Designer windows open in a
tabbed environment. This environment is the default for working with the code windows inside
Visual Studio, but you can change this. As with any other window in Visual Studio, you can mouse
down on the tab and drag it to another location.

What makes this especially useful is that you can drag a tab completely off of the main window and
have it open as a standalone window elsewhere. Thus, you can take the current source fi le you are
editing and drag it to a monitor that is separate from the remainder of Visual Studio—examples
of this are the Project Properties shown earlier in this chapter in Figures 1-4 through 1-11. If you
review those images you’ll see that they are not embedded within the larger Visual Studio frame but
have been pulled out into their own window. This feature can be very useful when you want to have
another source fi le from your application open either for review or reference while working in a pri-
mary fi le.

Running ProVB_VS2012

You’ve looked at the form’s properties, so now is a good time to open the code associated with this
fi le by either double clicking the fi le MainWindow.xaml.vb, or right-clicking MainWindow in the

FIGURE 1-13: Properties for Main Window

c01.indd 29c01.indd 29 11/28/2012 5:17:08 PM11/28/2012 5:17:08 PM

30 x CHAPTER 1 VISUAL STUDIO 2012

Solution Explorer and selecting Code view, or right-clicking the form in the Design view and select-
ing View Code from the pop-up menu. The initial display of the code is simple. There is no imple-
mentation code beyond the class defi nition in the MainWindows.xaml.vb fi le.

So before continuing, let’s test the generated code. To run an application from within Visual Studio,
you have several options; the fi rst is to click the Start button, which looks like the Play button on
any media device. Alternatively, you can go to the Debug menu and select Start. Finally, the most
common way of launching applications is to press F5.

Once the application starts, an empty form is displayed with the standard control buttons (in the
upper-right corner) from which you can control the application. The form name should be ProVB
2012, which you applied earlier. At this point, the sample doesn’t have any custom code to examine,
so the next step is to add some simple elements to this application.

Customizing the Text Editor

In addition to being able to customize the overall environment provided by Visual Studio, you can
customize several specifi c elements related to your development environment. Visual Studio’s user
interface components have been rewritten using WPF so that the entire display provides a much
more graphical environment and better designer support.

Visual Studio provides a rich set of customizations related to a variety of different environment
and developer settings. To leverage Visual Studio’s settings, select Tools Í Options to open the
Options dialog, shown in Figure 1-14. To match the information shown in Figure 1-14 select the
Text Editor folder, and then the All Languages folder. These settings apply to the text editor across
every supported development language. Additionally, you can select the Basic folder, the settings
(not shown) available at that level are specifi c to how the text editor behaves when you edit VB
source code.

FIGURE 1-14: Visual Studio Options dialogue

c01.indd 30c01.indd 30 11/28/2012 5:17:08 PM11/28/2012 5:17:08 PM

Enhancing a Sample Application x 31

From this dialogue, it is possible to modify the number of spaces that each tab will insert into your
source code and to manage several other elements of your editing environment. Within this dialogue
you see settings that are common for all text editing environments, as well as the ability to custom-
ize specifi c settings for specifi c languages. For example, the section specifi c to Visual Basic includes
settings that allow for word wrapping and line numbers. One little-known but useful capability
of the text editor is line numbering. Checking the Line numbers check box will cause the editor to
number all lines, which provides an easy way to unambiguously reference lines of code.

Visual Studio also provides a visual indicator so you can track your changes as you edit. Enabling
the Track changes setting under the Text Editor options causes Visual Studio to provide a colored
indicator in places where you have modifi ed a fi le. This indicator appears as a colored bar at the
left margin of your display. It shows which portions of a source fi le have been recently edited and
whether those changes have been saved to disk.

ENHANCING A SAMPLE APPLICATION

Switch your display to the Design view. Before you drag a control onto the WPF design surface you
are fi rst going to slightly customize the Grid control that is already part of your window. The goal
is to defi ne a row defi nition in the default grid that was generated with your baseline WPF class. As
noted, the default window that was created has a Grid that fi lls the display area. Using your mouse,
click on a spot just to the left of the Grid, but about a fi nger’s width below the top of the Grid. This
should create a thin horizontal line across your window. In your XAML below the design surface
you’ll see some new XML that describe your new row.

Once you have defi ned this row, go over to the properties for your Grid and change the background
color of the Grid to black. To do this fi rst make sure the Grid is selected in the designer. Then move
to the top of the list of property categories where you should fi nd the ‘Brush’ category, and select
it. To change the value of this property from No Brush, which you’ll see is the current selection,
select the next rectangle icon for a solid brush. The display will dynamically change within the
properties window and you’ll see a full color selector. For simplicity, just assign a black brush to the
background.

To add more controls to your application, you are going to use the control Toolbox. The Toolbox
window is available whenever a form is in Design view. By default, the Toolbox (see Figure 1-15)
is docked to the left side of Visual Studio as a tab. When you click this tab, the control window
expands, and you can drag controls onto your form. Alternatively, if you have closed the Toolbox
tab, you can go to the View menu and select Toolbox.

If you haven’t set up the Toolbox to be permanently visible, it will slide out of the way and disappear
whenever focus is moved away from it. This helps maximize the available screen real estate. If you
don’t like this feature (and you won’t while working to add controls) you can make the Toolbox per-
manently visible by clicking the pushpin icon on the Toolbox’s title bar.

By default the Toolbox contains the standard controls. All controls loaded in the Toolbox are cat-
egorized so it’s easier to fi nd them. Before customizing the fi rst control added to this form, take a
closer look at the Visual Studio Toolbox. The tools are broken out by category, but this list of cat-
egories isn’t static. Visual Studio allows you to create your own custom controls. When you create

c01.indd 31c01.indd 31 11/28/2012 5:17:08 PM11/28/2012 5:17:08 PM

32 x CHAPTER 1 VISUAL STUDIO 2012

such controls, the IDE will—after the controls have been compiled—automatically add them to the
display when you are working in the same solution as the controls. These would be local references
to controls that become available within the current solution.

FIGURE 1-15: Visual Studio with sample ProVB_VS2012 in the designer

Additionally, depending on whether you are working on a Web or a Windows Forms application,
your list of controls in the Toolbox will vary. Windows Forms has a set of controls that leverages
the power of the Windows operating system. Web applications, conversely, tend to have controls ori-
ented to working in a disconnected environment.

It’s also possible to have third-party controls in your environment. Such controls can be registered
with Visual Studio and are then displayed within every project you work on. When controls are
added to the Toolbox they typically appear in their own custom categories so that they are grouped
together and therefore easy to fi nd.

Next, go to the Toolbox and drag a button onto the top row of the display that you created earlier.
Now take a scroll viewer and deposit it within the bottom section of the grid. For the next step
you’re going to go to the XAML, which is below your Design view. The design will have assigned
a group of properties, and your fi rst task is to remove most of these. Your XAML should include a
line similar to the following:

<ScrollViewer HorizontalAlignment="Left" Height="100" Margin="138,80,0,0"
 Grid.Row="1" VerticalAlignment="Top" Width="100"/>

c01.indd 32c01.indd 32 11/28/2012 5:17:08 PM11/28/2012 5:17:08 PM

Enhancing a Sample Application x 33

You want to transform that line into one that looks like the following:

<ScrollViewer Margin="0,0,0,0" Grid.Row="1"></ScrollViewer>

Notice that you’ve modifi ed the values for the Margin to be all zero. Additionally, instead of the
XML being a self-terminating declaration, you’ve separated out the termination of the XML.

You’ll see that the border of the control now fi lls the lower section of your display. That means
the scroll view control is now ready to have a textbox placed on it. Drag and drop one from the
Toolbox, and you’ll see your XAML transform to include the following line—and it should have
appeared before the start and end tags for the scroll viewer you just added.

<TextBox Height="23" TextWrapping="Wrap" Text="TextBox" Width="120"/>

Once again you are going to edit this line of XML to simplify it. In this case you want to remove the
size attributes and default contents and provide a name for your textbox control so you can refer-
ence it from code. The result should be something similar to the following line of XML.

<TextBox Name="TextBoxResult" TextWrapping="Wrap" />

Finally, select the button you originally dropped on the form. Go to the Properties window and
select the Common category. The fi rst property in that category should be Content, and you want to
set the label to “Run Sample.” Once you’ve done this, resize the button to display your text. At this
point your form should look similar to what is seen in Figure 1-15, introduced earlier in this chapter.

Return to the button you’ve dragged onto the form. It’s ready to go in all respects—however,
Visual Studio has no way of knowing what you want to happen when it is used. Having made these
changes, double-click the button in the Display view. Double-clicking tells Visual Studio that you
want to add an event handler to this control, and by default Visual Studio adds an On_Click event
handler for buttons. The IDE then shifts the display to the Code view so that you can customize this
handler. Notice that you never provided a name for the button. It doesn’t need one—the hook to
this handler is defi ned in the XAML, and as such there is no reason to clutter the code with an extra
control name.

Customizing the Code

With the code window open to the newly added event handler for the Button control, you can start
to customize this handler. Although the event handler can be added through the designer, it’s also
possible to add event handlers from Code view. After you double-clicked the button, Visual Studio
transferred you to Code view and displayed your new event handler. Notice that in Code view there
are drop-down lists on the top of the edit window. The boxes indicate the current “named” object
on the left—in this case, your main window—and the current method on the right—in this case, the
click event handler. You can add new handlers for other events for the selected object using these
drop-down lists.

The drop-down list on the left side contains only those objects which have been named. Thus, your
button isn’t listed, but the fi rst named parent for that control is selected: MainWindow. While you
can create events for unnamed controls, you can only create handlers in code for named objects.
The drop-down list on the right side contains all the events for the selected object only. For now,
you have created a new handler for your button’s click event, so now you can customize the code

c01.indd 33c01.indd 33 11/28/2012 5:17:09 PM11/28/2012 5:17:09 PM

34 x CHAPTER 1 VISUAL STUDIO 2012

associated with this event. Figure 1-16 shows the code for this event handler with generated XML
Comments.

FIGURE 1-16: Button_Click_1 event handler

Adding XML Comments

One of Visual Studio’s features is the capability to generate an XML comments template for Visual
Basic. XML comments are a much more powerful feature than you might realize, because they are
also recognized by Visual Studio for use in IntelliSense. To add a new XML comment to your han-
dler, go to the line before the handler and type three single quotation marks: '''. This triggers Visual
Studio to replace your single quotation marks with the following block of comments. You can trig-
ger these comments in front of any method, class, or property in your code.

 ''' <summary>
 '''
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>

Visual Studio provides a template that offers a place to include a summary of what this method
does. It also provides placeholders to describe each parameter that is part of this method. Not only
are the comments entered in these sections available within the source code, when it’s compiled
you’ll also fi nd an XML fi le in the project directory, which summarizes all your XML comments
and can be used to generate documentation and help fi les for the said source code. By the way, if you
refactor a method and add new parameters, the XML comments also support IntelliSense for the
XML tags that represent your parameters.

c01.indd 34c01.indd 34 11/28/2012 5:17:09 PM11/28/2012 5:17:09 PM

Enhancing a Sample Application x 35

IntelliSense, Code Expansion, and Code Snippets

One of the reasons why Microsoft Visual Studio is such a popular development environment is
because it was designed to support developer productivity. People who are unfamiliar with Visual
Studio might just assume that “productivity” refers to organizing and starting projects. Certainly, as
shown by the project templates and project settings discussed so far, this is true, but those features
don’t speed your development after you’ve created the project.

This section covers three features that target your productivity while writing code. They are of
differing value and are specifi c to Visual Studio. The fi rst, IntelliSense, has always been a popular
feature of Microsoft tools and applications. The second feature, code expansion, is another popular
feature available since Visual Studio 2005. It enables you to type a keyword, such as “select,” and
then press the Tab key to automatically insert a generic select-case code block which you can then
customize. Finally, going beyond this, you can use the right mouse button and insert a code snippet
at the location of your mouse click. As you can tell, each of these builds on the developer productiv-
ity capabilities of Visual Studio.

IntelliSense

Early versions of IntelliSense required you to fi rst identify a class or property in order to make uses
of the IntelliSense feature. Now IntelliSense is activated with the fi rst letter you type, so you can
quickly identify classes, commands, and keywords that you need.

Once you’ve selected a class or keyword, IntelliSense continues, enabling you to not only work with
the methods of a class, but also automatically display the list of possible values associated with an
enumerated list of properties when one has been defi ned. IntelliSense also provides a tooltip-like list
of parameter defi nitions when you are making a method call.

Figure 1-17 illustrates how IntelliSense becomes available with the fi rst character you type. Also
note that the drop-down window has two tabs on the bottom: one is optimized for the items
that you are likely to want, while the other shows you everything that is available. In addi-
tion, IntelliSense works with multiword commands. For example, if you type Exit and a space,
IntelliSense displays a drop-down list of keywords that could follow Exit. Other keywords that offer
drop-down lists to present available options include Goto, Implements, Option, and Declare. In
most cases, IntelliSense displays more tooltip information in the environment than in past versions
of Visual Studio, and helps developers match up pairs of parentheses, braces, and brackets.

Finally, note that IntelliSense is based on your editing context. While editing a fi le, you may reach a
point where you are looking for a specifi c item to show up in IntelliSense, but when you repeatedly
type slightly different versions, nothing appears. IntelliSense recognizes that you aren’t in a method
or you are outside of the scope of a class, so it removes items that are inappropriate for the current
location in your source code from the list of items available from IntelliSense.

Code Expansion

Going beyond IntelliSense is code expansion. Code expansion recognizes that certain keywords
are consistently associated with other lines of code. At the most basic level, this occurs when you
declare a new Function or Sub: Visual Studio automatically inserts the End Sub or End Function

c01.indd 35c01.indd 35 11/28/2012 5:17:09 PM11/28/2012 5:17:09 PM

36 x CHAPTER 1 VISUAL STUDIO 2012

line once you press Enter. Essentially, Visual Studio is expanding the declaration line to include its
matching endpoint.

FIGURE 1-17: IntelliSense in action

However, true code expansion goes further than this. With true code expansion, you can type a
keyword such as For, ForEach, Select, or any of a number of Visual Basic keywords. If you then
use the Tab key, Visual Studio will attempt to recognize that keyword and insert the block of code
that you would otherwise need to remember and type yourself. For example, instead of needing to
remember how to format the control values of a Select statement, you can just type the fi rst part of
the command Select and then press Tab to get the following code block:

Select Case VariableName
 Case 1
 Case 2
 Case Else
End Select

Unfortunately, this is a case where just showing you the code isn’t enough. That’s because the
code that is inserted has active regions within it that represent key items you will customize. Thus,
Figure 1-18 provides a better representation of what is inserted when you expand the Select
keyword into a full Select Case statement.

When the block is inserted, the editor automatically positions your cursor in the fi rst highlighted
block—VariableName. When you start typing the name of the variable that applies, the editor

c01.indd 36c01.indd 36 11/28/2012 5:17:09 PM11/28/2012 5:17:09 PM

Enhancing a Sample Application x 37

automatically clears that static VariableName string, which is acting as a placeholder. Once you
have entered the variable name you want, you can just press Tab. At that point the editor automati-
cally jumps to the next highlighted item. This capability to insert a block of boilerplate code and
have it automatically respond to your customization is extremely useful. However, this code isn’t
needed in the sample. Rather than delete, it use the Ctrl+Z key combination to undo the addition of
this Select statement in your code.

FIGURE 1-18: Expanded Select Case statement

Code expansion enables you to quickly shift between the values that need to be customized, but
these values are also linked where appropriate, as in the next example. Another code expansion
shortcut creates a new property in a class. Position the cursor above your generated event handler
to add a custom property to this form. Working at the class level, when you type the letters prop
and then press the Tab key twice, code expansion takes over. After the fi rst tab you’ll fi nd that
your letters become the word “Property,” and after the second tab the code shown in Figure 1-19
will be added to your existing code. On the surface this code is similar to what you see when you
expand the Select statement. Note that although you type prop, even the internal value is part of
this code expansion. Furthermore, Visual Basic implemented a property syntax that is dependent
on an explicit backing fi eld. For simplicity, you may not use a backing fi eld on every property, but
it’s good to see how this expansion provides the more robust backing-fi eld-supported syntax for a
property.

c01.indd 37c01.indd 37 11/28/2012 5:17:09 PM11/28/2012 5:17:09 PM

38 x CHAPTER 1 VISUAL STUDIO 2012

FIGURE 1-19: Editing a newly created property in Visual Studio

Notice how the same value String in Figure 1-19 is repeated for the property. The value you see is
the default. However, when you change the fi rst such entry from String to Integer, Visual Studio
automatically updates all three locations because it knows they are linked. Using the code shown in
Figure 1-19, update the property value to be m_Count. Press Tab and change the type to Integer;
press Tab again and label the new property Count. Keep in mind this is a temporary state—once
you’ve accepted this template, the connections provided by the template are lost. Once you are done
editing, you now have a simple property on this form for use later when debugging.

The completed code should look like the following block:

 Private m_Count As Integer
 Public Property Count() As Integer
 Get
 Return m_Count
 End Get
 Set(ByVal value As Integer)
 m_Count = value
 End Set
 End Property

This capability to fully integrate the template supporting the expanded code with the highlighted
elements, helping you navigate to the items you need to edit, makes code expansion such a valuable
tool.

c01.indd 38c01.indd 38 11/28/2012 5:17:09 PM11/28/2012 5:17:09 PM

Enhancing a Sample Application x 39

Code Snippets

With a click of your mouse you can browse a library of code blocks, which, as with code expansion,
you can insert into your source fi le. However, unlike code expansion, these snippets aren’t triggered
by a keyword. Instead, you right-click and—as shown in Figure 1-20—select Insert Snippet from the
context menu. This starts the selection process for whatever code you want to insert.

FIGURE 1-20: Preparing to insert a snippet

The snippet library, which is installed with Visual Studio, is fully expandable, as discussed later in
this chapter. Snippets are categorized by the function on which each is focused. For example, all the
code you can reach via code expansion is also available as snippets, but snippets go well beyond that
list. There are snippet blocks for XML-related actions, for operating system interface code, for items
related to Windows Forms, and, of course, a lot of data-access-related blocks. Unlike code expan-
sion, which enhances the language in a way similar to IntelliSense, code snippets are blocks of code
focused on functions that developers often write from scratch.

As shown in Figure 1-21, the insertion of a snippet triggers the creation of a placeholder tag and a
context window showing the categories of snippets. Each of the folders can contain a combination

c01.indd 39c01.indd 39 11/28/2012 5:17:09 PM11/28/2012 5:17:09 PM

40 x CHAPTER 1 VISUAL STUDIO 2012

of snippet fi les or subdirectories containing still more snippet fi les. In addition, Visual Studio
includes the folder My Code Snippets, to which you can add your own custom snippet fi les.

FIGURE 1-21: Selecting the category of snippet

Selecting a folder enables you to select from one of its subfolders or a snippet fi le. Once you select
the snippet of interest, Visual Studio inserts the associated code into your source fi le. Figure 1-22
shows the result of adding an operating system snippet to some sample code. The selected snip-
pet was Windows System—Logging, Processes, Registry, Services Í Windows—Event Logs Í Read
Entries Created by a Particular Application from the Event Log.

As you can see, this code snippet is specifi c to reading the Application Log. This snippet is use-
ful because many applications log their errors to the Event Log so that they can be reviewed either
locally or from another machine in the local domain. The key, however, is that the snippet has pulled
in the necessary class references, many of which might not be familiar to you, and has placed them
in context. This reduces not only the time spent typing this code, but also the time spent recalling
exactly which classes need to be referenced and which methods need to be called and customized.

Finally, it is also possible to shortcut the menu tree. Specifi cally, if you know the shortcut for a
snippet, you can type that and then press Tab to have Visual Studio insert the snippet. For example,
typing evReadApp followed by pressing Tab will insert the same snippet shown in Figure 1-22.

Tools such as code snippets and especially code expansion are even more valuable when you work in
multiple languages. Keep in mind, however, that Visual Studio isn’t limited to the features that come

c01.indd 40c01.indd 40 11/28/2012 5:17:09 PM11/28/2012 5:17:09 PM

Enhancing a Sample Application x 41

in the box. It’s possible to extend Visual Studio not only with additional controls and project tem-
plates, but also with additional editing features. Once again this code was merely for demonstration,
and you shouldn’t keep this snippet within your event handler.

FIGURE 1-22: Viewing the snippet code

Code Regions

Source fi les in Visual Studio allow you to collapse blocks of code. The idea is that in most cases
you can reduce the amount of onscreen code, which seems to separate other modules within a given
class, by collapsing the code so it isn’t visible; this feature is known as outlining. For example, if you
are comparing the load and save methods and you have several other blocks of code, then you can
effectively “hide” this code, which isn’t part of your current focus.

By default, there is a minus sign next to every method (sub or function). This makes it easy to hide
or show code on a per-method basis. If the code for a method is hidden, the method declaration is
still shown and has a plus sign next to it indicating that the body code is hidden. This feature is very
useful when you are working on a few key methods in a module and you want to avoid scrolling
through many screens of code that are not relevant to the current task.

It is also possible to create custom regions of code so you can hide and show portions of your source
fi les. For example, it is common to see code where all of the properties are placed in one region,
and all of the public methods are placed in another. The #Region directive is used for this within
the IDE, though it has no effect on the actual application. A region of code is demarcated by the
#Region directive at the beginning and the #End Region directive at the end. The #Region directive

c01.indd 41c01.indd 41 11/28/2012 5:17:10 PM11/28/2012 5:17:10 PM

42 x CHAPTER 1 VISUAL STUDIO 2012

that is used to begin a region should include a description that appears next to the plus sign shown
when the code is minimized.

The outlining enhancement was in part inspired by the fact that the original Visual Studio designers
generated a lot of code and placed all of this code in the main .vb fi le for that form. It wasn’t until
Visual Studio 2005 and partial classes that this generated code was placed in a separate fi le. Thus,
the region allowed the generated code section to be hidden when a source fi le was opened.

Being able to see the underpinnings of your generated UI does make it is easier to understand what
is happening, and possibly to manipulate the process in special cases. However, as you can imagine,
it can become problematic; hence the #Region directive, which can be used to organize groups of
common code and then visually minimize them.

Visual Studio developers can also control outlining throughout a source fi le. Outlining can be
turned off by selecting Edit Í Outlining Í Stop Outlining from the Visual Studio menu. This menu
also contains some other useful functions. A section of code can be temporarily hidden by highlight-
ing it and selecting Edit Í Outlining Í Hide Selection. The selected code will be replaced by ellipses
with a plus sign next to it, as if you had dynamically identifi ed a region within the source code.
Clicking the plus sign displays the code again.

Customizing the Event Handler

At this point you should customize the code for the button handler, as this method doesn’t actually
do anything yet. Start by adding a new line of code to increment the property Count you added to the
form earlier. Next, use the System.Windows.MessageBox class to open a message box and show the
message indicating the number of times the Hello World button has been pressed. Fortunately, because
that namespace is automatically imported into every source fi le in your project, thanks to your project
references, you can reference the MessageBox.Show method directly. The Show method has several dif-
ferent parameters and, as shown in Figure 1-23, not only does the IDE provide a tooltip for the list of
parameters, it also provides help regarding the appropriate value for individual parameters.

FIGURE 1-23: Using IntelliSense to the fullest

c01.indd 42c01.indd 42 11/28/2012 5:17:10 PM11/28/2012 5:17:10 PM

Enhancing a Sample Application x 43

The completed call to MessageBox.Show should look similar to the following code block. Note that
the underscore character is used to continue the command across multiple lines. In addition, unlike
previous versions of Visual Basic, for which parentheses were sometimes unnecessary, in .NET the
syntax best practice is to use parentheses for every method call:

 Private Sub Button_Click_1(sender As Object, e As RoutedEventArgs)
 Count += 1
 MessageBox.Show("Hello World shown " + Count.ToString() + " times.",
 "Hello World Message Box",
 MessageBoxButton.OK,
 MessageBoxImage.Information)

 End Sub

Once you have entered this line of code, you may notice a squiggly line underneath some portions
of your text. This occurs when there is an error in the line you have typed. The Visual Studio IDE
works more like the latest version of Word—it highlights compiler issues while allowing you to
continue working on your code. Visual Basic is constantly reviewing your code to ensure that it will
compile, and when it encounters a problem it immediately notifi es you of the location without inter-
rupting your work.

Reviewing the Code

The custom code for this project resides in two source fi les. The fi rst is the defi nition of the window,
MainWindows.xaml. Listing 1-1 displays the fi nal XAML for this fi le. Note your Grid
.RowDefinition probably varies from what you’ll see in the fi nal listing.

LISTING 1-1: XAML for main window—MainWindow.xaml

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Pro VB 2012" Height="350" Width="525">
 <Grid Background="Black">
 <Grid.RowDefinitions>
 <RowDefinition Height="42"/>
 <RowDefinition Height="139*"/>
 </Grid.RowDefinitions>
 <Button Content="Run Sample" HorizontalAlignment="Left"
Margin="37,10,0,0" VerticalAlignment="Top"
Width="100" Height="22" Click="Button_Click_1"/>
 <ScrollViewer Margin="0,0,0,0" Grid.Row="1">
 <TextBox Name="TextBoxResult" TextWrapping="Wrap" />
 </ScrollViewer>
 </Grid>
</Window>

This XAML refl ects the event handler added for the button. The handler itself is implemented in the
accompanying code-behind fi le MainWindow.xaml.vb. That code is shown in Listing 1-2 and con-
tains the custom property and the click event handler for your button.

c01.indd 43c01.indd 43 11/28/2012 5:17:10 PM11/28/2012 5:17:10 PM

44 x CHAPTER 1 VISUAL STUDIO 2012

LISTING 1-2: Visual Basic code for main window—MainWindow.xaml.vb

Class MainWindow
 Private m_Count As Integer
 Public Property Count() As Integer
 Get
 Return m_Count
 End Get
 Set(ByVal value As Integer)
 m_Count = value
 End Set
 End Property

 ''' <summary>
 '''
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
 Private Sub Button_Click_1(sender As Object, e As RoutedEventArgs)
 Count += 1
 MessageBox.Show("Hello World shown " + Count.ToString() + " times.",
 "Hello World Message Box",
 MessageBoxButton.OK,
 MessageBoxImage.Information)
 End Sub
End Class

At this point, you can test the application, but to do so let’s fi rst look at your build options.

Building Applications

For this example, it is best to build your sample application using the Debug build confi guration.
The fi rst step is to ensure that Debug is selected as the active confi guration. As noted earlier in
this chapter around Figure 1-7, you’ll fi nd the setting available on your project properties. It’s also
available from the main Visual Studio display as a drop-down list box that’s part of the Standard
Toolbar. Visual Studio provides an entire Build menu with the various options available for building
an application. There are essentially three options for building applications:

 1. Build—This option uses the currently active build confi guration to build the project or solu-
tion, depending upon what is available.

 2. Rebuild—By default for performance, Visual Studio attempts to leave components that
haven’t changed in place. However, in the past developers learned that sometimes Visual
Studio wasn’t always accurate about what needed to be built. As a result this menu item
allows you to tell Visual Studio to do a full build on all of the assemblies that are part of
your solution.

 3. Clean—This does what it implies—it removes all of the fi les associated with building your
solution.

c01.indd 44c01.indd 44 11/28/2012 5:17:10 PM11/28/2012 5:17:10 PM

Enhancing a Sample Application x 45

The Build menu supports building for either the current project or the entire solution. Thus, you can
choose to build only a single project in your solution or all of the projects that have been defi ned as
part of the current confi guration. Of course, anytime you choose to test-run your application, the
compiler will automatically perform a compilation check to ensure that you run the most recent ver-
sion of your code.

You can either select Build from the menu or use the Ctrl+Shift+B keyboard combination to initiate
a build. When you build your application, the Output window along the bottom edge of the devel-
opment environment will open. As shown in Figure 1-24, it displays status messages associated with
the build process. This window should indicate your success in building the application.

FIGURE 1-24: Build window

If problems are encountered while building your application, Visual Studio provides a separate win-
dow to help track them. If an error occurs, the Task List window will open as a tabbed window in
the same region occupied by the Output window (refer to Figure 1-24). Each error triggers a sepa-
rate item in the Task List. If you double-click an error, Visual Studio automatically repositions you
on the line with the error. Once your application has been built successfully, you can run it, and you
will fi nd the executable fi le located in the targeted directory. By default, for .NET applications this is
the \bin subdirectory of your project directory.

Running an Application in the Debugger

As discussed earlier, there are several ways to start your application. Starting the application
launches a series of events. First, Visual Studio looks for any modifi ed fi les and saves those fi les
automatically. It then verifi es the build status of your solution and rebuilds any project that does not
have an updated binary, including dependencies. Finally, it initiates a separate process space and
starts your application with the Visual Studio debugger attached to that process.

When your application is running, the look and feel of Visual Studio’s IDE changes, with different
windows and button bars becoming visible (see Figure 1-25). Most important, and new to Visual
Studio 2012, the bottom status bar goes from blue to orange to help provide a visual indicator of the
change in status.

While your code remains visible, the IDE displays additional windows—by default, the Immediate
Window appears as a new tabbed window in the same location as the Output Window. Others, such
as the Call Stack, Locals, and Watch windows, may also be displayed over time as you work with
the debugger. These windows are used by you, the real debugger, for reviewing the current value of
variables within your code.

c01.indd 45c01.indd 45 11/28/2012 5:17:10 PM11/28/2012 5:17:10 PM

46 x CHAPTER 1 VISUAL STUDIO 2012

FIGURE 1-25: Stopped at a breakpoint while debugging

The true power of the Visual Studio debugger is its interactive
debugging. To demonstrate this, with your application running,
select Visual Studio as the active window. Change your display to
the MainWindow.xaml.vb Code view (not Design view) and click
in the border alongside the line of code you added to increment the
count when the button is clicked. Doing this creates a breakpoint
on the selected line (refer to Figure 1-25). Return to your applica-
tion and then click the “Run Sample” button. Visual Studio takes
the active focus, returning you to the code window, and the line
with your breakpoint is now selected.

Visual Studio 2010 introduced a new window that is located in the
same set of tabs as the Solution Explorer. As shown in Figure 1-25,
the IntelliTrace window tracks your actions as you work with the
application in Debug mode. Figure 1-26 focuses on this new fea-
ture available to the Ultimate edition of Visual Studio. Sometimes
referred to as historical debugging, the IntelliTrace window pro-
vides a history of how you got to a given state.

When an error occurs during debugging, your fi rst thought is
likely to be “What just happened?” But how do you reproduce that
error? As indicated in Figure 1-26, the IntelliTrace window tracks
the steps you have taken—in this case showing that you had used the Run Code button a second
time since the steps shown in Figure 1-26. By providing a historical trail, IntelliTrace enables you

FIGURE 1-26: IntelliTrace display

at a breakpoint

c01.indd 46c01.indd 46 11/28/2012 5:17:10 PM11/28/2012 5:17:10 PM

Enhancing a Sample Application x 47

to reproduce a given set of steps through your application. You can also fi lter the various messages
either by message type or by thread.

The ability to select these past breakpoints and review the state of variables and classes in your run-
ning application can be a powerful tool for tracking down runtime issues. The historical debugging
capabilities are unfortunately only available in Visual Studio Ultimate, but they take the power of
the Visual Studio debugger to a new level.

However, even if you don’t have the power of historical debugging, the Visual Studio debugger is a
powerful development ally. It is, arguably, more important than any of the other developer produc-
tivity features of Visual Studio. With the execution sitting on this breakpoint, it is possible to con-
trol every aspect of your running code. Hovering over the property Count, as shown in Figure 1-27,
Visual Studio provides a debug tooltip showing you the current value of this property. This “hover
over” feature works on any variable in your local environment and is a great way to get a feel for the
different values without needing to go to another window.

FIGURE 1-27: Using a debug tooltip to display the current value of a variable

Windows such as Locals and Autos display similar information about your variables, and you can
use these to update those properties while the application is running. However, you’ll note that the
image in Figure 1-27 includes a small pin symbol. Using this, you can keep the status window for
this variable open in your Code view. Using this will allow you to see the information in the debug
window update to show the new value of Count every time the breakpoint is reached.

This isn’t the end of it. By clicking on the down arrows you see on the right-hand side of your new
custom watch window, just below the pin, you can add one or more comments to your custom
watch window for this value. You also have the option to unpin the initial placement of this window

c01.indd 47c01.indd 47 11/28/2012 5:17:11 PM11/28/2012 5:17:11 PM

48 x CHAPTER 1 VISUAL STUDIO 2012

and move it off of your Code view display. Not only that, but the custom watch window is persis-
tent in Debug mode. If you stop debugging and restart, the window is automatically restored and
remains available until you choose to close it using the close button.

Next, move your mouse and hover over the parameter sender. This will open a window similar to
the one for Count and you can review the reference to this object. However, note the small plus sign
on the right-hand side, which if clicked expands the pop-up to show details about the properties of
this object. As shown in Figure 1-28, this capability is available even for parameters like sender,
which you didn’t defi ne. Figure 1-28 also illustrates a key point about looking at variable data.
Notice that by expanding the top-level objects you can eventually get to the properties inside those
objects. Within some of those properties on the right-hand side is a little magnifying glass icon.
That icon tells you that Visual Studio will open the potentially complex value in any one of up to
four visualization tool windows. When working with complex XML or other complex data, these
visualizers offer signifi cant productivity benefi ts by enabling you to review data.

FIGURE 1-28: Delving into sender and selecting a visualizer

Once you are at a breakpoint, you can control your application by leveraging the Debug buttons on
the Standard toolbar. These buttons, shown in Figure 1-29, provide several options for managing
the fl ow of your application. One of the main changes to Visual Studio 2012 is in fact the layout
of the buttons and options visible within the IDE. This is one of those situations: in the past the
debug buttons were grouped, but now there are several other buttons that sit between the various
actions. From the left you see the Start/Continue button. Then a little further over in about the
center of the image is the square that represents stop. It’s colored red, and next to it is the icon to
restart debugging. Finally, on the far right the last three buttons that use arrows represent Step-In,
Step Over, and Step Out, respectively.

c01.indd 48c01.indd 48 11/28/2012 5:17:11 PM11/28/2012 5:17:11 PM

Enhancing a Sample Application x 49

FIGURE 1-29: Toolbar buttons used in debugging

Step-In tells the debugger to jump to whatever line of code is fi rst within the next method or prop-
erty you call. Keep in mind that if you pass a property value as a parameter to a method, then the
fi rst such line of code is in the Get method of the parameter. Once there, you may want to step out.
Stepping out of a method tells the debugger to execute the code in the current method and return
you to the line that called the method. Thus, you could step out of the property and then step in
again to get into the method you are actually interested in debugging.

Of course, sometimes you don’t want to step into a method; this is where the Step-Over button
comes in. It enables you to call whatever method(s) are on the current line and step to the next
sequential line of code in the method you are currently debugging. The fi nal button, Step-Out, is
useful if you know what the code in a method is going to do, but you want to determine which code
called the current method. Stepping out takes you directly to the calling code block.

Each of the buttons shown on the debugging toolbar in Figure 1-29 has an accompanying shortcut
key for experienced developers who want to move quickly through a series of breakpoints.

Of course, the ability to leverage breakpoints goes beyond what you can do with them at runtime.
You can also disable breakpoints that you don’t currently want to stop your application fl ow, and
you can move a breakpoint, although it’s usually easier to just click and delete the current location,
and then click and create a new breakpoint at the new location.

Visual Studio provides additional properties for managing and customizing breakpoints. As shown
in Figure 1-30, it’s also possible to add specifi c properties to your breakpoints. The context menu
shows several possible options.

FIGURE 1-30: Customizing a breakpoint

c01.indd 49c01.indd 49 11/28/2012 5:17:11 PM11/28/2012 5:17:11 PM

50 x CHAPTER 1 VISUAL STUDIO 2012

More important, it’s possible to specify that a given breakpoint should execute only if a certain
value is defi ned (or undefi ned). In other words, you can make a given breakpoint conditional, and
a pop-up window enables you to defi ne this condition. Similarly, if you’ve ever wanted to stop, for
example, on the thirty-seventh iteration of a loop, then you know the pain of repeatedly stopping at
a breakpoint inside a loop. Visual Studio enables you to specify that a given breakpoint should stop
your application only after a specifi ed number of hits.

The next option is one of the more interesting options if you need to carry out a debug session in
a live environment. You can create a breakpoint on the debug version of code and then add a fi lter
that ensures you are the only user to stop on that breakpoint. For example, if you are in an environ-
ment where multiple people are working against the same executable, then you can add a breakpoint
that won’t affect the other users of the application.

Similarly, instead of just stopping at a breakpoint, you can also have the breakpoint execute some
other code, possibly even a Visual Studio macro, when the given breakpoint is reached. These
actions are rather limited and are not frequently used, but in some situations this capability can be
used to your advantage.

Note that breakpoints are saved when a solution is saved by the IDE. There is also a Breakpoints
window, which provides a common location for managing breakpoints that you may have set across
several different source fi les.

Finally, at some point you are going to want to debug a process that isn’t being started from Visual
Studio—for example, if you have an existing website that is hosting a DLL you are interested in
debugging. In this case, you can leverage Visual Studio’s capability to attach to a running process
and debug that DLL. At or near the top (depending on your settings) of the Tools menu in Visual
Studio is the Attach to Process option. This menu option opens a dialog showing all of your pro-
cesses. You could then select the process and have the DLL project you want to debug loaded in
Visual Studio. The next time your DLL is called by that process, Visual Studio will recognize the
call and hit a breakpoint set in your code. This is covered in more detail in Chapter 16.

Other Debug-Related Windows

As noted earlier, when you run an application in Debug mode, Visual Studio can open a series of
windows related to debugging. Each of these windows provides a view of a limited set of the overall
environment in which your application is running. From these windows, it is possible to fi nd things
such as the list of calls (stack) used to get to the current line of code or the present value of all the
variables currently available. Visual Studio has a powerful debugger that is fully supported with
IntelliSense, and these windows extend the debugger.

Output

Recall that the build process puts progress messages in this window. Similarly, your program can
also place messages in it. Several options for accessing this window are discussed in later chapters,
but at the simplest level the Console object echoes its output to this window during a debug session.
For example, the following line of code can be added to your sample application:

Console.WriteLine("This is printed in the Output Window")

This line of code will cause the string “This is printed in the Output Window” to appear in the
Output window when your application is running. You can verify this by adding this line in front of

c01.indd 50c01.indd 50 11/28/2012 5:17:12 PM11/28/2012 5:17:12 PM

Enhancing a Sample Application x 51

the command to open the message box. Then, run your application and have the debugger stop
on the line where the message box is opened. If you check the contents of the Output window, you
will fi nd that your string is displayed.

Anything written to the Output window is shown only while running a program from the
environment. During execution of the compiled module, no Output window is present, so nothing
can be written to it. This is the basic concept behind other objects such as Debug and Trace, which
are covered in more detail in Chapter 6.

Call Stack

The Call Stack window lists the procedures that are currently calling other procedures and waiting for
their return. The call stack represents the path through your code that leads to the currently executing
command. This can be a valuable tool when you are trying to determine what code is executing a line
of code that you didn’t expect to execute.

Locals

The Locals window is used to monitor the value of all variables currently in scope. This is a fairly
self-explanatory window that shows a list of the current local variables, with the value next to each
item. As in previous versions of Visual Studio, this display enables you to examine the contents of
objects and arrays via a tree-control interface. It also supports the editing of those values, so if you
want to change a string from empty to what you thought it would be, just to see what else might be
broken, then feel free to do so from here.

Watch Windows

There are four Watch windows, numbered Watch 1 to Watch 4. Each window can hold a set of
variables or expressions for which you want to monitor the values. It is also possible to modify the
value of a variable from within a Watch window. The display can be set to show variable values in
decimal or hexadecimal format. To add a variable to a Watch window, you can either right-click the
variable in the Code Editor and then select Add Watch from the pop-up menu, or drag and drop
the variable into the watch window.

Immediate Window

The Immediate window, as its name implies, enables you to evaluate expressions. It becomes
available while you are in Debug mode. This is a powerful window, one that can save or ruin a
debug session. For example, using the sample from earlier in this chapter, you can start the appli-
cation and press the button to stop on the breakpoint. Go to the Immediate window and enter
?TextBoxResult.Text = "Hello World" and press Enter. You should get a response of false as the
Immediate window evaluates this statement.

Notice the preceding ?, which tells the debugger to evaluate your statement, rather than execute it.
Repeat the preceding text but omit the question mark: TextBoxResult.Text = "Hello World".
Press F5 or click the Run button to return control to your application, and notice the text now
shown in the window. From the Immediate window you have updated this value. This window can
be very useful if you are working in Debug mode and need to modify a value that is part of a run-
ning application.

c01.indd 51c01.indd 51 11/28/2012 5:17:12 PM11/28/2012 5:17:12 PM

52 x CHAPTER 1 VISUAL STUDIO 2012

Autos

Finally, there is the Autos window. The Autos window displays variables used in the statement
currently being executed and the statement just before it. These variables are identifi ed and listed
for you automatically, hence the window’s name. This window shows more than just your local
variables. For example, if you are in Debug mode on the line to open the MessageBox in the ProVB_
VS2012 sample, then the MessageBox constants referenced on this line are shown in this window.
This window enables you to see the content of every variable involved in the currently executing
command. As with the Locals window, you can edit the value of a variable during a debug session.

Reusing Your First Windows Form

As you proceed through the book and delve further into the features of Visual Basic, you’ll want a
way to test sample code. Chapter 2 in particular has snippets of code which you’ll want to test.
One way to do this is to enhance the ProVB_VS2012 application. Its current use of a MessageBox
isn’t exactly the most useful method of testing code snippets. So let’s update this application so it
can be reused in other chapters and at random by you when you are interested in testing a snippet.

At the core you’ll continue to access code to test where it can be executed from the ButtonTest Click
event. However, instead of using a message box, you can use the resulting text box to hold the out-
put from the code being tested.

USEFUL FEATURES OF VISUAL STUDIO 2012

The focus of most of this chapter has been on using Visual Studio to create a simple application. It’s
now time to look at some of the less commonly recognized features of Visual Studio. These features
include, but are not limited to, the following items.

When Visual Studio 2012 is fi rst started, you confi gure your custom IDE profi le. Visual Studio
enables you to select either a language-specifi c or task-specifi c profi le and then change that profi le
whenever you desire.

Confi guration settings are managed through the Tools Í Import and Export Settings menu option.
This menu option opens a simple wizard, which fi rst saves your current settings and then allows you
to select an alternate set of settings. By default, Visual Studio ships with settings for Visual Basic,
Web development, and C#, to name a few, but by exporting your settings you can create and share
your own custom settings fi les.

The Visual Studio settings fi le is an XML fi le that enables you to capture all your Visual Studio con-
fi guration settings. This might sound trivial, but it is not. This feature enables the standardization of
Visual Studio across different team members. The advantages of a team sharing settings go beyond
just a common look and feel.

The Task List

The Task List is a great productivity tool that tracks not only errors but also pending changes and
additions. It’s also a good way for the Visual Studio environment to communicate information that

c01.indd 52c01.indd 52 11/28/2012 5:17:12 PM11/28/2012 5:17:12 PM

Useful Features of Visual Studio 2012 x 53

the developer needs to know, such as any current errors. The Task List is displayed by selecting
Task List from the View menu. It offers two views, Comments and User Tasks, and it displays either
group of tasks based on the selection in the drop-down box that is part of this window.

The Comment option is used for tasks embedded in code comments. This is done by creating a
standard comment with the apostrophe and then starting the comment with the Visual Studio key-
word TODO. The keyword can be followed with any text that describes what needs to be done. Once
entered, the text of these comments shows up in the Task List. Note that users can create their own
comment tokens in the options for Visual Studio via Tools Í Options Í Environment Í Task List.
Other predefi ned keywords include HACK and UNDONE.

Besides helping developers track these pending coding issues as tasks, leveraging comments embed-
ded in code results in another benefi t. Just as with errors, clicking a task in the Task List causes the
Code Editor to jump to the location of the task without hunting through the code for it. Also of note
is that the Task List is integrated with Team Foundation Server if you are using this for your col-
laboration and source control.

The second type of tasks is user tasks. These may not be related to a specifi c item within a single
fi le. Examples are tasks associated with resolving a bug, or a new feature. It is possible to enter tasks
into the Task List manually. Within the Task List is an image button showing a red check mark.
Pressing this button creates a new task in the Task List, where you can edit the description of your
new task.

Server Explorer

As development has become more server-centric, developers have a greater need to discover and
manipulate services on the network. The Server Explorer feature in Visual Studio makes working
with servers easier. The Server Explorer enables you to explore and alter your application’s database
or your local registry values. For example, it’s possible to fully explore and alter an SQL Server
database.

If the Server Explorer hasn’t been opened, it can be opened from the View menu. Alternatively it
should be located near the control Toolbox. It has behavior similar to the Toolbox in that if you
hover over or click the Server Explorer’s tab, the window expands from the left-hand side of the
IDE. Once it is open, you will see a display similar to the one shown in Figure 1-31. Note that this
display has three top-level entries. The fi rst, Data Connections, is the starting point for setting up
and confi guring the database connection. You can right-click on the top-level Data Connections
node and defi ne new SQL Server connection settings that will be used in your application to connect
to the database. The Server Explorer window provides a way to manage and view project-specifi c
database connections such as those used in data binding.

The second top-level entry, Servers, focuses on other server data that may be of interest to you and
your application. When you expand the list of available servers, you have access to several server
resources. The Server Explorer even provides the capability to stop and restart services on the server.
Note the wide variety of server resources that are available for inspection or use in the project.
Having the Server Explorer available means you don’t have to go to an outside resource to fi nd, for
example, what message queues are available.

c01.indd 53c01.indd 53 11/28/2012 5:17:12 PM11/28/2012 5:17:12 PM

54 x CHAPTER 1 VISUAL STUDIO 2012

FIGURE 1-31: Server Explorer window

By default, you have access to the resources on your local machine; but if you are in a domain, it is
possible to add other machines, such as your Web server, to your display. Use the Add Server option
to select and inspect a new server. To explore the Event Logs and registry of a server, you need
to add this server to your display. Use the Add Server button in the button bar to open the dialog
and identify the server to which you would like to connect. Once the connection is made, you can
explore the properties of that server.

The third top-level node, SharePoint Connections, enables you to defi ne and reference elements asso-
ciated with one or more SharePoint servers for which you might be creating solutions.

Class Diagrams

One of the features introduced with Visual Studio 2005 was the capability to generate class dia-
grams. A class diagram is a graphical representation of your application’s objects. By right-clicking
on your project in the Solution Explorer, you can select View Class Diagram from the context menu.
Alternatively, you can choose to Add a New Item to your project. In the same window where you
can add a new class, you have the option to add a new class diagram. The class diagram uses a .cd
fi le extension for its source fi les. It is a graphical display, as shown in Figure 1-32.

Adding such a fi le to your project creates a dynamically updated representation of your project’s
classes. As shown in Figure 1-32, the current class structures for even a simple project are immedi-
ately represented when you create the diagram. It is possible to add multiple class diagrams to your

c01.indd 54c01.indd 54 11/28/2012 5:17:12 PM11/28/2012 5:17:12 PM

Useful Features of Visual Studio 2012 x 55

project. The class diagram graphically displays the relationships between objects—for example,
when one object contains another object or even object inheritance. When you change your source
code the diagram is also updated. In other words, the diagram isn’t something static that you cre-
ate once at the start of your project and then becomes out-of-date as your actual implementation
changes the class relationships.

FIGURE 1-32: A class diagram

More important, you can at any time open the class diagram, make changes to one or more of your
existing objects, or create new objects and defi ne their relationship to your existing objects, and

c01.indd 55c01.indd 55 11/28/2012 5:17:12 PM11/28/2012 5:17:12 PM

56 x CHAPTER 1 VISUAL STUDIO 2012

when done, Visual Studio will automatically update your existing source fi les and create new source
fi les as necessary for the newly defi ned objects.

As shown in Figure 1-32, the class diagram fi les (*.cd) open in the same main display area used
for the Visual Studio UI designer and viewing code. They are, however, a graphical design surface
that behaves more like Visio than the User Interface designer. You can compress individual objects
or expose their property and method details. Additionally, items such as the relationships between
classes can be shown graphically instead of being represented as properties.

In addition to the editing surface, when working with the Class Designer a second window is dis-
played. As shown at the bottom of Figure 1-32, the Class Details window is generally located in the
same space as your Output, Tasks, and other windows. The Class Details window provides detailed
information about each of the properties and methods of the classes you are working with in the
Class Designer. You can add and edit methods, properties, fi elds, and even events associated with
your classes. While you can’t write code from this window, you can update parameter lists and
property types. The Class Diagram tool is an excellent tool for reviewing your application structure.

SUMMARY

In this chapter, you have taken a dive into the versions and features of Visual Studio. This chapter
was intended to help you explore the new Visual Studio IDE. It demonstrated the powerful features
of the IDE.

You’ve seen that Visual Studio is highly customizable and comes in a variety of fl avors. As you
worked within Visual Studio, you’ve seen how numerous windows can be hidden, docked, or
undocked. They can be layered in tabs and moved both within and beyond the IDE. Visual Studio
also contains many tools, including some that extend its core capabilities.

In the next chapter you will learn more about the runtime environment for .NET, which provides
a layer of abstraction above the operating system. Your application runs within this runtime envi-
ronment. The next chapter looks at how functions like memory management and operating system
compatibility are handled in .NET.

c01.indd 56c01.indd 56 11/28/2012 5:17:13 PM11/28/2012 5:17:13 PM

