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1
FUNDAMENTALS OF PATTERN
RECOGNITION

1.1 BASIC CONCEPTS: CLASS, FEATURE, DATA SET

A wealth of literature in the 1960s and 1970s laid the grounds for modern pattern
recognition [90,106,140,141,282,290,305,340,353,386]. Faced with the formidable
challenges of real-life problems, elegant theories still coexist with ad hoc ideas,
intuition, and guessing.

Pattern recognition is about assigning labels to objects. Objects are described by
features, also called attributes. A classic example is recognition of handwritten digits
for the purpose of automatic mail sorting. Figure 1.1 shows a small data sample. Each
15×15 image is one object. Its class label is the digit it represents, and the features
can be extracted from the binary matrix of pixels.

1.1.1 Classes and Class Labels

Intuitively, a class contains similar objects, whereas objects from different classes
are dissimilar. Some classes have a clear-cut meaning, and in the simplest case are
mutually exclusive. For example, in signature verification, the signature is either
genuine or forged. The true class is one of the two, regardless of what we might
deduce from the observation of a particular signature. In other problems, classes
might be difficult to define, for example, the classes of left-handed and right-handed
people or ordered categories such as “low risk,” “medium risk,” and “high risk.”
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2 FUNDAMENTALS OF PATTERN RECOGNITION

FIGURE 1.1 Example of images of handwritten digits.

We shall assume that there are c possible classes in the problem, labeled from 𝜔1
to 𝜔c, organized as a set of labels Ω = {𝜔1,… ,𝜔c}, and that each object belongs to
one and only one class.

1.1.2 Features

Throughout this book we shall consider numerical features. Such are, for example,
systolic blood pressure, the speed of the wind, a company’s net profit in the past 12
months, the gray-level intensity of a pixel. Real-life problems are invariably more
complex than that. Features can come in the forms of categories, structures, names,
types of entities, hierarchies, so on. Such nonnumerical features can be transformed
into numerical ones. For example, a feature “country of origin” can be encoded as
a binary vector with number of elements equal to the number of possible countries
where each bit corresponds to a country. The vector will contain 1 for a specified
country and zeros elsewhere. In this way one feature gives rise to a collection of
related numerical features. Alternatively, we can keep just the one feature where the
categories are represented by different values. Depending on the classifier model
we choose, the ordering of the categories and the scaling of the values may have
a positive, negative, or neutral effect on the relevance of the feature. Sometimes
the methodologies for quantifying features are highly subjective and heuristic. For
example, sitting an exam is a methodology to quantify a student’s learning progress.
There are also unmeasurable features that we as humans can assess intuitively but
can hardly explain. Examples of such features are sense of humor, intelligence,
and beauty.

Once in a numerical format, the feature values for a given object are arranged as an
n-dimensional vector x = [x1,… , xn]

T ∈ R
n. The real space R

n is called the feature
space, each axis corresponding to a feature.

Sometimes an object can be represented by multiple, disjoint subsets of features.
For example, in identity verification, three different sensing modalities can be used
[207]: frontal face, face profile, and voice. Specific feature subsets are measured
for each modality and then the feature vector is composed of three sub-vectors,
x = [x(1), x(2), x(3)]T . We call this distinct pattern representation after Kittler et al.
[207]. As we shall see later, an ensemble of classifiers can be built using distinct
pattern representation, with one classifier on each feature subset.
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1.1.3 Data Set

The information needed to design a classifier is usually in the form of a labeled
data set Z = {z1,… , zN}, zj ∈ R

n. The class label of zj is denoted by yj ∈ Ω, j =
1,… ,N. A typical data set is organized as a matrix of N rows (objects, also called
examples or instances) by n columns (features), with an extra column with the class
labels

Data set =

⎡
⎢
⎢
⎢
⎢
⎣

z11, z12, ⋯ z1n
z21, z22, ⋯ z2n
⋮

zN1, zN2, ⋯ zNn

⎤
⎥
⎥
⎥
⎥
⎦

Labels =

⎡
⎢
⎢
⎢
⎢
⎣

y1
y2
⋮

yN

⎤
⎥
⎥
⎥
⎥
⎦

.

Entry zj,i is the value of the i-th feature for the j-th object.

◻◼ Example 1.1 A shape–color synthetic data set
Consider a data set with two classes, both containing a collection of the following
objects: ▵, �, ○, ▴, �, and �. Figure 1.2 shows an example of such a data set. The
collections of objects for the two classes are plotted next to one another. Class 𝜔1 is
shaded. The features are only the shape and the color (black or white); the positioning
of the objects within the two dimensions is not relevant. The data set contains 256
objects. Each object is labeled in its true class. We can code the color as 0 for white
and 1 for black, and the shapes as triangle = 1, square = 2, and circle = 3.

FIGURE 1.2 A shape–color data set example. Class 𝜔1 is shaded.
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Based on the two features, the classes are not completely separable. It can be
observed that there are mostly circles in 𝜔1 and mostly squares in 𝜔2. Also, the
proportion of black objects in class𝜔2 is much larger. Thus, if we observe a color and
a shape, we can make a decision about the class label. To evaluate the distribution of
different objects in the two classes, we can count the number of appearances of each
object. The distributions are as follows:

Object ▵ � ◦ ▴ � �

Class 𝜔1 9 22 72 1 4 20
Class 𝜔2 4 25 5 8 79 7

Decision 𝜔1 𝜔2 𝜔1 𝜔2 𝜔2 𝜔1

With the distributions obtained from the given data set, it makes sense to choose
class 𝜔1 if we have a circle (of any color) or a white triangle. For all other possible
combinations of values, we should choose label 𝜔2. Thus using only these two
features for labeling, we will make 43 errors (16.8%).

A couple of questions spring to mind. First, if the objects are not discernible, how
have they been labeled in the first place? Second, how far can we trust the estimated
distributions to generalize over unseen data?

To answer the first question, we should be aware that the features supplied by
the user are not expected to be perfect. Typically there is a way to determine the
true class label, but the procedure may not be available, affordable, or possible at
all. For example, certain medical conditions can be determined only post mortem.
An early diagnosis inferred through pattern recognition may decide the outcome
for the patient. As another example, consider classifying of expensive objects on
a production line as good or defective. Suppose that an object has to be destroyed
in order to determine the true label. It is desirable that the labeling is done using
measurable features that do not require breaking of the object. Labeling may be too
expensive, involving time and expertise which are not available. The problem then
becomes a pattern recognition one, where we try to find the class label as correctly
as possible from the available features.

Returning to the example in Figure 1.2, suppose that there is a third (unavailable)
feature which could be, for example, the horizontal axis in the plot. This feature
would have been used to label the data, but the quest is to find the best possible
labeling method without it.

The second question “How far canwe trust the estimated distributions to generalize
over unseen data?” has inspired decades of research and will be considered later in
this text.

◻◼ Example 1.2 The Iris data set
The Iris data set was collected by the American botanist Edgar Anderson and subse-
quently analyzed by the English geneticist and statistician Sir Ronald Aylmer Fisher
in 1936 [127]. The Iris data set has become one of the iconic hallmarks of pattern
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FIGURE 1.3 Iris flower specimen

recognition and has been used in thousands of publications over the years [39, 348].
This book would be incomplete without a mention of it.

The Iris data still serves as a prime example of a “well-behaved” data set. There
are three balanced classes, each represented with a sample of 50 objects. The classes
are species of the Iris flower (Figure 1.3): setosa, versicolor, and virginica. The four
features describing an Iris flower are sepal length, sepal width, petal length, and petal
width. The classes form neat elliptical clusters in the four-dimensional space. Scatter
plots of the data in the spaces spanned by the six pairs of features are displayed in
Figure 1.4. Class setosa is clearly distinguishable from the other two classes in all
projections.

Sepal length

S
e

p
a

l 
w

id
th

Sepal length

P
e

ta
l 
le

n
g

th

Sepal length

P
e

ta
l 
w

id
th

Sepal width

P
e

ta
l 
le

n
g

th

Sepal width

P
e

ta
l 
w

id
th

Petal length

P
e

ta
l 
w

id
th

Setosa

Versicolor

Virginica

FIGURE 1.4 Scatter plot of the Iris data in the two-dimensional spaces spanned by the six
pairs of features.
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1.1.4 Generate Your Own Data

Trivial as it might be, sometimes you need a piece of code to generate your own data
set with specified characteristics in order to test your own classification method.

1.1.4.1 The Normal Distribution The normal distribution (or also Gaussian dis-
tribution) is widespread in nature and is one of the fundamental models in statistics.
The one-dimensional normal distribution, denotedN(𝜇, 𝜎2), is characterized bymean
𝜇 ∈ R and variance 𝜎

2 ∈ R. In n dimensions, the normal distribution is character-
ized by an n-dimensional vector of the mean, 𝝁 ∈ R

n, and an n × n covariance
matrix Σ. The notation for an n-dimensional normally distributed random variable
is x ∼ N(𝝁,Σ). The normal distribution is the most natural assumption reflecting the
following situation: there is an “ideal prototype” (𝝁) and all the data are distorted
versions of it. Small distortions are more likely to occur than large distortions, caus-
ing more objects to be located in the close vicinity of the ideal prototype than far
away from it. The scatter of the points around the prototype 𝝁 is associated with the
covariance matrix Σi.

The probability density function (pdf) of x ∼ N(𝝁,Σ) is

p(x) = 1

(2𝜋)
n
2
√
|Σ|

exp
{
−1
2
(x − 𝝁)TΣ−1(x − 𝝁)

}
, (1.1)

where |Σ| is the determinant of Σ. For the one-dimensional case, x and 𝜇 are scalars,
and Σ reduces to the variance 𝜎2. Equation 1.1 simplifies to

p(x) = 1
√
2𝜋 𝜎

exp
{

−1
2

(x − 𝜇

𝜎

)2
}

. (1.2)

◻◼ Example 1.3 Cloud shapes and the corresponding covariance matrices
Figure 1.5 shows four two-dimensional data sets generated from the normal distribu-
tion with different covariance matrices shown underneath.
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FIGURE 1.5 Normally distributed data sets with mean [0, 0]T and different covariance
matrices shown underneath.
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Figures 1.5a and 1.5b are generated with independent (noninteracting) features.
Therefore, the data cloud is either spherical (Figure 1.5a), or stretched along one
or more coordinate axes (Figure 1.5b). Notice that for these cases the off-diagonal
entries of the covariance matrix are zeros. Figures 1.5c and 1.5d represent cases
where the features are dependent. The data for this example was generated using the
function samplegaussian in Appendix 1.A.1.

In the case of independent features we can decompose the n-dimensional pdf as a
product of n one-dimensional pdfs. Let 𝜎2k be the diagonal entry of the covariance
matrix Σ for the k-th feature, and 𝜇k be the k-th component of 𝝁. Then

p(x) = 1

(2𝜋)
n
2
√
|Σ|

exp
{
−1
2
(x − 𝝁)TΣ−1(x − 𝝁)

}

=
n∏

k=1

(
1

√
(2𝜋) 𝜎k

exp

{

−1
2

(
xk − 𝜇k

𝜎k

)2
})

. (1.3)

The cumulative distribution function for a random variable X ∈ R with a normal
distribution, Φ(z) = P(X ≤ z), is available in tabulated form from most statistical
textbooks.1

1.1.4.2 NoisyGeometricFigures Sometimes it is useful to generate your own data
set of a desired shape, prevalence of the classes, overlap, and so on. An example of a
challenging classification problem with five Gaussian classes is shown in Figure 1.6
along with the MATLAB code that generates and plots the data.

One possible way to generate data with specific geometric shapes is detailed below.
Suppose that each of the c classes is described by a shape, governed by parameter t.

FIGURE 1.6 An example of five Gaussian classes generated using the samplegaussian
function from Appendix 1.A.1.

1Φ(z) can be approximated with error at most 0.005 for 0 ≤ z ≤ 2.2 as [150]

Φ(z) = 0.5 + z(4.4 − z)
10

.
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The noise-free data is calculated from t, and then noise is added. Let ti be the parameter
for class 𝜔i, and [ai, bi] be the interval for ti describing the shape of the class. Denote
by pi the desired prevalence of class 𝜔i. Knowing that p1 +⋯ + pc = 1, we can
calculate the approximate number of samples in a data set of N objects. Let Ni be
the desired number of objects from class 𝜔i. The first step is to sample uniformly Ni
values for ti from the interval [ai, bi]. Subsequently, we find the coordinates x1,… , xn
for each element of ti. Finally, noise is added to all values. (We can use the randn
MATLAB function for this purpose.) The noise could be scaled by multiplying the
values by different constants for the different features. Alternatively, the noise could
be scaled with the feature values or the values of ti.

◻◼ Example 1.4 Ellipses data set
The code for producing this data set is given in Appendix 1.A.1. We used the
parametric equations for two-dimensional ellipses:

x(t) = xc + a cos(t) cos(𝜙) − b sin(t) sin(𝜙),

y(t) = yc + a cos(t) sin(𝜙) − b sin(t) cos(𝜙),

where (xc, yc) is the center of the ellipse, a and b are respectively the major and the
minor semi-axes of the ellipse, and 𝜙 is the angle between the x-axis and the major
axis. To traverse the whole ellipse, parameter t varies from 0 to 2𝜋.

Figure 1.7a shows a data set where the random noise is the same across both fea-
tures and all values of t. The classes have equal proportions, with 300 points from each
class. Using a single ellipse with 1000 points, Figure 1.7b demonstrates the effect of
scaling the noisewith the parameter t. TheMATLABcode is given inAppendix 1.A.1.

(a) (b)

FIGURE 1.7 (a) The three-ellipse data set; (b) one ellipse with noise variance proportional
to the parameter t.

1.1.4.3 Rotated Checker Board Data. This is a two-dimensional data set which
spans the unit square [0, 1] × [0, 1]. The classes are placed as the light and the dark
squares of a checker board and then the whole board is rotated at an angle 𝛼. A
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FIGURE 1.8 Rotated checker board data (100,000 points in each plot).

parameter a specifies the side of the individual square. For example, if a = 0.5, there
will be four squares in total before the rotation. Figure 1.8 shows two data sets, each
containing 5,000 points, generated with different input parameters. The MATLAB
function samplecb(N,a,alpha) in Appendix 1.A.1 generates the data.

The properties which make this data set attractive for experimental purposes are:

� The two classes are perfectly separable.
� The classification regions for the same class are disjoint.
� The boundaries are not parallel to the coordinate axes.
� The classification performance will be highly dependent on the sample size.

1.2 CLASSIFIER, DISCRIMINANT FUNCTIONS,
CLASSIFICATION REGIONS

A classifier is any function that will assign a class label to an object x:

D : R
n → Ω. (1.4)

In the “canonical model of a classifier” [106], c discriminant functions are calculated

gi : R
n → R, i = 1,… , c, (1.5)

each one yielding a score for the respective class (Figure 1.9). The object x ∈ R
n is

labeled to the class with the highest score. This labeling choice is called themaximum
membership rule. Ties are broken randomly, meaning that x is assigned randomly to
one of the tied classes.

The discriminant functions partition the feature space R
n into c decision regions

or classification regions denoted 1,… ,c:

i =
{

x
|
|
|
|
x ∈ R

n, gi(x) = max
k=1,…,c

gk(x)
}

, i = 1,… , c. (1.6)
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FIGURE 1.9 Canonical model of a classifier. An n-dimensional feature vector is passed
through c discriminant functions, and the largest function output determines the class label.

The decision region for class 𝜔i is the set of points for which the i-th discriminant
function has the highest score. According to themaximummembership rule, all points
in decision region i are assigned to class 𝜔i. The decision regions are specified by
the classifier D, or equivalently, by the discriminant functions G. The boundaries of
the decision regions are called classification boundaries and contain the points for
which the highest discriminant functions tie. A point on the boundary can be assigned
to any of the bordering classes. If a decision regioni contains data points from the
labeled set Z with true class label 𝜔j, j ≠ i, classes 𝜔i and 𝜔j are called overlapping.
If the classes in Z can be separated completely by a hyperplane (a point in R, a line
in R

2, a plane in R
3), they are called linearly separable.

Note that overlapping classes in a given partition can be nonoverlapping if the
space was partitioned in a different way. If there are no identical points with dif-
ferent class labels in the data set Z, we can always partition the feature space into
pure classification regions. Generally, the smaller the overlapping, the better the clas-
sifier. Figure 1.10 shows an example of a two-dimensional data set and two sets
of classification regions. Figure 1.10a shows the regions produced by the nearest
neighbor classifier, where every point is labeled as its nearest neighbor. According
to these boundaries and the plotted data, the classes are nonoverlapping. However,
Figure 1.10b shows the optimal classification boundary and the optimal classification
regions which guarantee the minimum possible error for unseen data generated from
the same distributions. According to the optimal boundary, the classes are overlap-
ping. This example shows that by striving to build boundaries that give a perfect split
we may over-fit the training data.

Generally, any set of functions g1(x),… , gc(x) is a set of discriminant functions. It
is another matter how successfully these discriminant functions separate the classes.

Let G∗ = {g∗1(x),… , g∗c (x)} be a set of optimal (in some sense) discriminant
functions. We can obtain infinitely many sets of optimal discriminant functions from
G∗ by applying a monotonic transformation f (g∗i (x)) that preserves the order of the
function values for every x ∈ R

n. For example, f (𝜁 ) can be a log(𝜁 ) or a𝜁 , for a > 1.
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(a) (b)

FIGURE 1.10 Classification regions obtained from two different classifiers: (a) the 1-nn
boundary (nonoverlapping classes); (b) the optimal boundary (overlapping classes).

Applying the same f to all discriminant functions in G∗, we obtain an equivalent set
of discriminant functions. Using the maximum membership rule, x will be labeled to
the same class by any of the equivalent sets of discriminant functions.

1.3 CLASSIFICATION ERROR AND CLASSIFICATION ACCURACY

It is important to know how well our classifier performs. The performance of a
classifier is a compound characteristic, whose most important component is the
classification accuracy. If we were able to try the classifier on all possible input
objects, we would know exactly how accurate it is. Unfortunately, this is hardly a
possible scenario, so an estimate of the accuracy has to be used instead.

Classification error is a characteristic dual to the classification accuracy in that the
two values sum up to 1

Classification error = 1 − Classification accuracy.

The quantity of interest is called the generalization error. This is the expected error
of the trained classifier on unseen data drawn from the distribution of the problem.

1.3.1 Where Does the Error Come From? Bias and Variance

Why cannot we design the perfect classifier? Figure 1.11 shows a sketch of the
possible sources of error. Suppose that we have chosen the classifier model. Even
with a perfect training algorithm, our solution (marked as 1 in the figure) may be
away from the best solution with this model (marked as 2). This approximation error
comes from the fact that we have only a finite data set to train the classifier. Sometimes
the training algorithm is not guaranteed to arrive at the optimal classifier with the
given data. For example, the backpropagation training algorithm converges to a local
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4: The “real thing”

FIGURE 1.11 Composition of the generalization error.

minimum of the criterion function. If started from a different initialization point, the
solution may be different. In addition to the approximation error, there may be a
model error. Point 3 in the figure is the best possible solution in the given feature
space. This point may not be achievable with the current classifier model. Finally,
there is an irreducible part of the error, called the Bayes error. This error comes from
insufficient representation. With the available features, two objects with the same
feature values may have different class labels. Such a situation arose in Example 1.1.

Thus the true generalization error PG of a classifier D trained on a given data set
Z can be decomposed as

PG(D,Z) = PA(Z) + PM + PB, (1.7)

where PA(Z) is the approximation error, PM is the model error, and PB is the Bayes
error. The first term in the equation can be thought of as variance due to using different
training data or non-deterministic training algorithms. The second term, PM, can be
taken as the bias of the model from the best possible solution.

The difference between bias and variance is explained in Figure 1.12. We can
liken building the perfect classifier to shooting at a target. Suppose that our training
algorithm generates different solutions owing to different data samples, different
initialisations, or random branching of the training algorithm. If the solutions are
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 Target
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 Target
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FIGURE 1.12 Bias and variance.

grouped together, variance is low. Then the distance to the target will be more due to
the bias. Conversely, widely scattered solutions indicate large variance, and that can
account for the distance between the shot and the target.

1.3.2 Estimation of the Error

Assume that a labeled data set Zts of size Nts × n is available for testing the accuracy
of our classifier, D. The most natural way to calculate an estimate of the error is to
run D on all the objects in Zts and find the proportion of misclassified objects, called
sometimes the apparent error rate

P̂D =
Nerror
Nts

. (1.8)

Dual to this characteristic is the apparent classification accuracy which is calculated
by 1 − P̂D.

To look at the error from a probabilistic point of view, we can adopt the following
model. The classifier commits an error with probability PD on any object x ∈ R

n

(awrong but useful assumption). Then the number of errors has a binomial distribution
with parameters (PD,Nts). An estimate of PD is P̂D. If Nts and PD satisfy the rule
of thumb: Nts > 30, P̂D × Nts > 5, and (1 − P̂D) × Nts > 5, the binomial distribution
can be approximated by a normal distribution. The 95% confidence interval for the
error is

⎡
⎢
⎢
⎣

P̂D − 1.96

√
P̂D(1 − P̂D)

Nts
, P̂D + 1.96

√
P̂D(1 − P̂D)

Nts

⎤
⎥
⎥
⎦

. (1.9)

By calculating the confidence interval we estimate how well this classifier (D) will
fare on unseen data from the same problem. Ideally, wewill have a large representative
testing set, which will make the estimate precise.
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1.3.3 Confusion Matrices and Loss Matrices

To find out how the errors are distributed across the classes we construct a confusion
matrix using the testing data set, Zts. The entry aij of such a matrix denotes the
number of elements from Zts whose true class is 𝜔i, and which are assigned by D
to class 𝜔j. The estimate of the classification accuracy can be calculated as the trace
of the matrix divided by the total sum of the entries. The additional information that
the confusion matrix provides is where the misclassifications have occurred. This is
important for problemswith a large number of classes where a high off-diagonal entry
of the matrix might indicate a difficult two-class problem that needs to be tackled
separately.

◻◼ Example 1.5 Confusion matrix for the Letter data
The Letters data set, available from the UCI Machine Learning Repository Database,
contains data extracted from 20,000 black-and-white images of capital English letters.
Sixteen numerical features describe each image (N = 20,000, c = 26, n = 16). For the
purpose of this illustration we used the hold-out method. The data set was randomly
split into halves. One half was used for training a linear classifier, and the other half
was used for testing. The labels of the testing data were matched to the labels obtained
from the classifier, and the 26 × 26 confusion matrix was constructed. If the classifier
was ideal, and all assigned and true labels were matched, the confusion matrix would
be diagonal.

Table 1.1 shows the row in the confusion matrix corresponding to class “H.”
The entries show the number of times that true “H” is mistaken for the letter in the
respective column. The boldface number is the diagonal entry showing how many
times “H” has been correctly recognized. Thus, from the total of 350 examples of “H”
in the testing set, only 159 have been labeled correctly by the classifier. Curiously,
the largest number of mistakes, 33, are for the letter “O.” Figure 1.13 visualizes
the confusion matrix for the letter data set. Darker color signifies a higher value.
The diagonal shows the darkest color, which indicates the high correct classification
rate (over 69%). Three common misclassifications are indicated with arrows in
the figure.

TABLE 1.1 The “H”-row in the Confusion Matrix for the Letter Data Set Obtained
from a Linear Classifier Trained on 10,000 Points

“H” labeled as: A B C D E F G H I J K L M

Times: 1 6 1 18 0 1 2 159 0 0 30 0 1

“H” labeled as: N O P Q R S T U V W X Y Z

Times: 27 33 2 9 21 0 0 11 4 3 20 1 0
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FIGURE 1.13 Graphical representation of the confusion matrix for the letter data set. Darker
color signifies a higher value.

The errors in classification are not equally costly. To account for the different costs
of mistakes, we introduce the loss matrix. We define a loss matrix with entries 𝜆i j
denoting the loss incurred by assigning label 𝜔i, given that the true label of the object
is 𝜔j. If the classifier is “unsure” about the label, it may refuse to make a decision.
An extra class called “refuse-to-decide” can be added to the set of classes. Choosing
the extra class should be less costly than choosing a wrong class. For a problem
with c original classes and a refuse option, the loss matrix is of size (c + 1) × c. Loss
matrices are usually specified by the user. A zero–one loss matrix is defined as 𝜆ij = 0
for i = j and 𝜆ij = 1 for i ≠ j; that is, all errors are equally costly.

1.3.4 Training and Testing Protocols

The estimate P̂D in Equation 1.8 is valid only for the given classifierD and the testing
set fromwhich it was calculated. It is possible to train a better classifier from different
training data sampled from the distribution of the problem.What if we seek to answer
the question “How well can this classifier model solve the problem?”

Suppose that we have a data set Z of size N × n, containing n-dimensional feature
vectors describing N objects. We would like to use as much as possible of the data
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to build the classifier (training), and also as much as possible unseen data to test its
performance (testing). However, if we use all data for training and the same data for
testing, we might overtrain the classifier. It could learn perfectly the available data
but its performance on unseen data cannot be predicted. That is why it is important
to have a separate data set on which to examine the final product. The most widely
used training/testing protocols can be summarized as follows [216]:

� Resubstitution. Design classifier D on Z and test it on Z. P̂D is likely optimisti-
cally biased.

� Hold-out. Traditionally, split Z randomly into halves; use one half for training
and the other half for calculating P̂D. Splits in other proportions are also used.

� Repeated hold-out (Data shuffle). This is a version of the hold-out methodwhere
we do L random splits of Z into training and testing parts and average all L
estimates of PD calculated on the respective testing parts. The usual proportions
are 90% for training and 10% for testing.

� Cross-validation. We choose an integer K (preferably a factor of N) and ran-
domly divide Z into K subsets of size N∕K. Then we use one subset to test the
performance of D trained on the union of the remaining K − 1 subsets. This
procedure is repeated K times choosing a different part for testing each time.
To get the final value of P̂D we average the K estimates.
To reduce the effect of the single split into K folds, we can carry out repeated

cross-validation. In anM × K-fold cross validation, the data is splitM times into
K folds, and a cross-validation is performed on each such split. This procedure
results inM × K estimates of P̂D, whose average produces the desired estimate.
A 10 × 10-fold cross-validation is a typical choice of such a protocol.

� Leave-one-out. This is the cross-validation protocol where K = N, that is, one
object is left aside, the classifier is trained on the remaining N − 1 objects, and
the left out object is classified. P̂D is the proportion of theN objects misclassified
in their respective cross-validation fold.

� Bootstrap. This method is designed to correct for the optimistic bias of resubsti-
tution. This is done by randomly sampling with replacement L sets of cardinality
N from the original set Z. Approximately 37% (1∕e) of the data will not be
chosen in a bootstrap replica. This part of the data is called the “out-of-bag”
data. The classifier is built on the bootstrap replica and assessed on the out-
of-bag data (testing data). L such classifiers are trained, and the error rates on
the respective testing data are averaged. Sometimes the resubstitution and the
out-of-bag error rates are taken together with different weights [216].

Hold-out, repeated hold-out and cross-validation can be carried out with stratified
sampling. This means that the proportions of the classes are preserved as close as
possible in all folds.

Pattern recognition has now outgrown the stage where the computation resource
(or lack thereof) was the decisive factor as to which method to use. However, even
with the modern computing technology, the problem has not disappeared. The ever
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growing sizes of the data sets collected in different fields of science and practice pose
a new challenge. We are back to using the good old hold-out method, first because the
others might be too time-consuming, and second, because the amount of data might
be so excessive that small parts of it will suffice for training and testing. For example,
consider a data set obtained from retail analysis,which involves hundreds of thousands
of transactions. Using an estimate of the error over, say, 10,000 data points, can
conveniently shrink the confidence interval andmake the estimate sufficiently reliable.

It is now becoming common practice to use three instead of two data sets: one for
training, one for validation, and one for testing. As before, the testing set remains
unseen during the training process. The validation data set acts as pseudo-testing. We
continue the training process until the performance improvement on the training set
is no longer matched by a performance improvement on the validation set. At this
point the training should be stopped so as to avoid overtraining. Not all data sets are
large enough to allow for a validation part to be cut out. Many of the data sets from
the UCI Machine Learning Repository Database2 [22], often used as benchmarks in
pattern recognition and machine learning, may be unsuitable for a three-way split
into training/validation/testing. The reason is that the data subsets will be too small
and the estimates of the error on these subsets would be unreliable. Then stopping the
training at the point suggested by the validation set might be inadequate, the estimate
of the testing accuracy might be inaccurate, and the classifier might be poor because
of the insufficient training data.

When multiple training and testing sessions are carried out, there is the question
of which of the classifiers built during this process we should use in the end. For
example, in a 10-fold cross-validation, we build 10 different classifiers using different
data subsets. The above methods are only meant to give us an estimate of the accuracy
of a certain model built for the problem at hand. We rely on the assumption that the
classification accuracy will change smoothly with the changes in the size of the
training data [99]. Therefore, if we are happy with the accuracy and its variability
across different training subsets, we should finally train a our chosen classifier on the
whole data set.

1.3.5 Overtraining and Peeking

Testing should be done on previously unseen data. All parameters should be tuned on
the training data. A commonmistake in classification experiments is to select a feature
set using the given data, and then run experiments with one of the above protocols to
evaluate the accuracy of that set. This problem is widespread in bioinformatics and
neurosciences, aptly termed “peeking” [308, 346, 348, 370]. Using the same data is
likely to lead to an optimistic bias of the error.

◻◼ Example 1.6 Tuning a parameter on the testing set is wrong
LetD(r) be a classifier with a parameter r such that varying r leads to different training
accuracies. To demonstrate this effect, here we took a random training sample of

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
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FIGURE 1.14 Example of overtraining: letter data set.

1000 objects from the letters data set. The remaining 19,000 objects were used for
testing. A quadratic discriminant classifier (QDC) was used.3 We vary a parameter
r, r ∈ [0, 1], called the regularization parameter, which determines to what extent we
sacrifice adjustment to the given data in favor of robustness. For r = 0 there is no
regularization; we have more accuracy on the training data and less certainty that
the classifier will perform well on unseen data. For r = 1, the classifier might be
less accurate on the training data but can be expected to perform at the same rate
on unseen data. This dilemma can be translated into everyday language as “specific
expertise” versus “common sense.” If the classifier is trained to expertly recognize
a certain data set, it might have this data-specific expertise and little common sense.
This will show as high testing error. Conversely, if the classifier is trained to have
good common sense, even if not overly successful on the training data, we might
expect it to have common sense with any data set drawn from the same distribution.

In the experiment, r was decreased for 20 steps, starting with r0 = 0.4 and taking
rk+1 to be 0.8 × rk. Figure 1.14 shows the training and the testing errors for the
20 steps.

This example is intended to demonstrate the overtraining phenomenon in the
process of varying a parameter, therefore we will look at the tendencies in the error
curves. While the training error decreases steadily with r, the testing error decreases
to a certain point, and then increases again. This increase indicates overtraining,
where the classifier becomes too much of a data-specific expert and loses common
sense. A common mistake in this case is to declare that the QDC has a testing error
of 21.37% (the minimum in the bottom plot). The mistake is in that the testing set
was used to find the best value of r.

3Discussed in Chapter 2.
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The problem of peeking, largely due to unawareness of its caveats, is alarmingly
common in application studies on feature selection. In view of this, we discuss this
issue further in Chapter 9.

1.4 EXPERIMENTAL COMPARISON OF CLASSIFIERS

There is no single “best” classifier. Classifiers applied to different problems and
trained by different algorithms perform differently [107,110,173,196]. Comparative
studies are usually based on extensive experiments using a number of simulated and
real data sets. When talking about experiment design, I cannot refrain from quoting
again and again a masterpiece of advice by George Nagy titled Candide’s practical
principles of experimental pattern recognition [287] (Just a note—this is a joke! DO
NOT DO THIS!)

� Comparison of classification accuracies. Comparisons against algorithms pro-
posed by others are distasteful and should be avoided. When this is not possible,
the following Theorem of Ethical Data Selection may prove useful.

� Theorem. There exists a set of data for which a candidate algorithm is superior
to any given rival algorithm. This set may be constructed by omitting from the
test set any pattern which is misclassified by the candidate algorithm.

� Replication of experiments. Since pattern recognition is a mature discipline, the
replication of experiments on new data by independent research groups, a fetish
in the physical and biological sciences, is unnecessary. Concentrate instead on
the accumulation of novel, universally applicable algorithms.

� Casey’s caution. Do not ever make your experimental data available to others;
someone may find an obvious solution that you missed.

Albeit meant to be satirical, the above principles are surprisingly widespread and
closely followed! Speaking seriously now, the rest of this section gives some practical
tips and recommendations.

A point raised by Duin [110] is that the performance of a classifier depends upon
the expertise and the willingness of the designer. There is not much to be done for
classifiers with fixed structures and training procedures (called “automatic” classifiers
in [110]). For classifiers with many training parameters however, we can make them
work or fail. Keeping in mind that there are no rules defining a fair comparison of
classifiers, here are a few (non-Candide’s) guidelines:

1. Pick the training procedures in advance and keep them fixed during training.
When publishing, give enough detail so that the experiment is reproducible by
other researchers.

2. Compare modified versions of classifiers with the original (nonmodified) clas-
sifier. For example, a distance-based modification of k-nearest neighbors (k-nn)
should be compared with the standard k-nn first, and then with other classifier
models. If a slight modification of a certain model is being compared with
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TABLE 1.2 The 2 × 2 Relationship Table with Counts

D2 correct (1) D2 wrong (0)

D1 correct (1) N11 N10

D1 wrong (0) N01 N00

Total, N11 + N10 + N01 + N00 = Nts

a totally different classifier, then it is not clear who deserves the credit—the
modification or the original model itself.

3. Make sure that all the information about the data is utilized by all classifiers to
the largest extent possible. For example, a clever initialization of a method can
make it favorite among a group of equivalent but randomly initialized methods.

4. Make sure that the testing set has not been seen at any stage of the training.

5. If possible, give also the complexity of the classifier: training and running
times, memory requirements, and so on.

1.4.1 Two Trained Classifiers and a Fixed Testing Set

Suppose that we have two trained classifiers which have been run on the same testing
data giving testing accuracies of 98% and 96%, respectively. Can we claim that the
first classifier is significantly better than the second one?

McNemar test. The testing results for two classifiers D1 and D2 on a testing set with
Nts objects can be organized as shown in Table 1.2. We consider two output values:
0 for incorrect classification and 1 for correct classification. Thus Npq is the number
of objects in the testing set with output p from the first classifier and output q from
the second classifier, p, q ∈ {0, 1}.

The null hypothesis H0 is that there is no difference between the accuracies of
the two classifiers. If the null hypothesis is correct, then the expected counts for
both off-diagonal entries in Table 1.2 are 1

2
(N01 + N10). The discrepancy between the

expected and the observed counts is measured by the following statistic:

s =
(
|N01 − N10| − 1

)2

N01 + N10
, (1.10)

which is approximately distributed as 𝜒
2 with 1 degree of freedom. The “−1” in

the numerator is a continuity correction [99]. The simplest way to carry out the
test is to calculate s and compare it with the tabulated 𝜒

2 value for, say, level of
significance4 𝛼 = 0.05. If s > 3.841, we reject the null hypothesis and accept that the

4The level of significance of a statistical test is the probability of rejecting H0 when it is true, in other
words, the probability to “convict the innocent.” This error is called Type I error. The alternative error,
when we do not reject H0 when it is in fact incorrect, is called Type II error. The corresponding name for
it would be “free the guilty.” Both errors are needed in order to characterize a statistical test. For example,
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two classifiers have significantly different accuracies. A MATLAB function for this
test, called mcnemar, is given in Appendix 1.A.2.

◻◼ Example 1.7 A comparison on the Iris data
We took the first two features of the Iris data (Example 1.2) and classes “versicolor”
and “virginica.” The datawas split into 50% training and 50% testing parts. The testing
data is plotted in Figure 1.15. The linear and the quadratic discriminant classifiers

Sepal length

S
e
p
a
l 
w

id
th

linear

quadratic

versicolor

virginica

FIGURE 1.15 Testing data from the Iris data set and the decision boundaries of the linear
and the quadratic discriminant classifiers.

(LDC and QDC, both detailed later) were trained on the training data. Their decision
boundaries are plotted in Figure 1.15.

The confusion matrices of the two classifiers are as follows:

LDC QDC
Versicolor Virginica Versicolor Virginica

Versicolor 20 5 Versicolor 20 5
Virginica 8 17 Virginica 14 11

Taking LDC to be classifier 1 and QDC, classifier 2, the values in Table 1.2 are as
follows: N11 = 31, N10 = 0, N01 = 6, and N00 = 13. The difference is due to the six
virginica objects in the “loop.” These are correctly labeled by QDC and mislabeled
by LDC. From Equation 1.10,

s = (|0 − 6| − 1)2

0 + 6
= 25

6
≈ 4.1667. (1.11)

if we always accept H0, there will be no Type I error at all. However, in this case the Type II error might
be large. Ideally, both errors should be small.
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Since the calculated s is greater than the tabulated value of 3.841, we reject the null
hypothesis and accept that LDC and QDC are significantly different. Note that the
Iris data is hardly large enough to be suitable for the hold-out protocol. It was used
here for the purpose of the illustration only.

1.4.2 Two Classifier Models and a Single Data Set

Dietterich [99] details four important sources of variation that have to be taken into
account when comparing classifier models.

1. The choice of the testing set. Different testing sets may rank differently clas-
sifiers which otherwise have the same accuracy across the whole population.
Therefore, it is dangerous to draw conclusions from a single testing experiment,
especially when the data size is small.

2. The choice of the training set. Some classifier models are called unstable [47]
because small changes in the training set can cause substantial changes of
the classifier trained on this set. Examples of unstable classifiers are decision
tree classifiers and some neural networks.5 Unstable classifiers are versatile
models which are capable of adapting, so that most or all training examples are
correctly classified. The instability of such classifiers is, in a way, the pay-off
for their versatility. As we shall see later, unstable classifiers play a major role
in classifier ensembles. Here we note that the variability with respect to the
training data has to be accounted for.

3. The internal randomness of the training algorithm. Some training algorithms
have a random component. This might be the initialization of the parameters
of the classifier which are then fine-tuned (e.g., the backpropagation algorithm
for training neural networks) or a stochastic procedure for tuning the classifier.
Thus the trained classifier might be different for the same training set and even
for the same initialization of the parameters.

4. The random classification error. Dietterich [99] considers the possibility of
having mislabeled objects in the testing data as the fourth source of variability.

The above list suggests that multiple training and testing sets should be used,
and multiple training runs should be carried out. Consider the task of comparing
two classifier models (methods) over the same data set using one of the multi-test
protocols. Let Ei, j be the error of classifier i, i ∈ {1, 2}, for the j-th testing set,
j = 1,… ,K. We can apply the traditional paired t-test for comparing the errors where
E1, j are paired with E2, j. However, this test may be inadequate because it does not
take into account the fact that the training data used to build the classifier models are
dependent [12, 89, 99, 286]. For example, in a K-fold cross-validation experiment,
fold 1 will be used once for testing and K − 1 times for training the classifier. This
may lead to overly liberal outcome of the statistical test, allowing the discovery of
nonexisting significant differences between the two models. To avoid that, Nadeau
and Bengio propose an amendment to the calculation of the variance of the error
obtained as the average of T testing errors [286].

5All classifier models mentioned will be discussed later.
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In the paired t-test, we calculate the differences d1,… , dT , where dj = E1, j − E2, j
for all j, and check the hypothesis that the mean of these differences is 0. Let 𝜎d
be the empirical standard deviation of the differences. If the training data sets were
independent, the standard deviation of the mean difference would be 𝜎d′ =

𝜎d√
T
. To

account for the fact that the training data sets are not independent, we use instead

𝜎d′ = 𝜎d

√
1
T
+

Ntesting

Ntraining
, (1.12)

where Ntraining and Ntesting are the sizes of the training and the testing sets, respec-
tively. For a K-fold cross-validation,

𝜎d′ = 𝜎d

√
1
K

+ 1
K − 1

= 𝜎d

√
2K − 1
K(K − 1)

. (1.13)

This amendment holds for cross-validation, repeated cross-validation, data shuffle,
and the bootstrap methods.

◻◼ Example 1.8 Correction of the variance for multiple testing sets
This example presents aMonte Carlo simulation to illustrate the need for the variance
correction. Consider two Gaussian classes as shown in Figure 1.16. The classes have
means (−1, 0) and (1, 0), and identity covariance matrices. We generated 200 data
sets from this distribution; 20 points from class 1 and 20 points from class 2 in each
data set. An example of such a set is circled in Figure 1.16. With each data set, we
carried out 30 data shuffle runs by splitting the data into 90% training (36 data points)
and 10% testing (4 data points). The LDC (detailed later) was trained on the training
part and tested on the testing part.

FIGURE 1.16 Scatter plot of the twoGaussian classes. One of the 40-point data sets sampled
from these classes is marked with circles.

Let e1,… , e200 be the estimates of the classification error in the data shuffle
experiment. Value ei is the average of 30 testing errors with data set i (the data shuffle



JWST492-c01 JWST492-Kuncheva July 23, 2014 11:11 Printer Name: Trim: 6.125in × 9.25in

24 FUNDAMENTALS OF PATTERN RECOGNITION

0 0.1 0.2 0.3 0.4
0

10

20

30

40

50 Shuffle test data

Independent test data

FIGURE 1.17 Histograms of the classification error for the two experiments.

protocol). Denote the mean and the standard deviation of these errors by 𝜇e and
𝜎e, respectively.

Consider now a matching experiment where we sample independently 200 × 30 =
6000 training sets of 36 objects and testing sets of 4 objects, storing the results as 200
batches of 30 runs. Denote the errors from the 200 batches by q1,… , q200. Denote the
mean and the standard deviation of these errors by 𝜇q and 𝜎q, respectively. Figure 1.17
shows the histograms for e and q. While the means of both errors are about 15.9%
(the theoretical error), the spreads of the two histograms are different. In this example
we obtained 𝜎e = 0.0711 and 𝜎q = 0.0347.

For each data shuffle experiment, we calculated not only the error ei but also the
standard deviation si. If the training and testing data were independently drawn, the
standard error of the mean would be s̄i =

si√
30
. The average of s̄i across i would be

close to 𝜎e. However, this calculation gives a value of 0.0320, which is closer to 𝜎q
than to 𝜎e, and does not properly reflect the larger spread seen in the histogram. Now

we apply the correction and use s∗i = si

√
1
30

+ 1
9
. The average of s∗i across i is 0.0667,

which is much closer to the observed 𝜎e.

Consider two models A and B, and T estimates of the classification error obtained
through cross-validation or data shuffle. Denote these estimates by a1, a2,… , aT and
b1, b2,… , bT , respectively. The null hypothesis of the test, H0, is that there is no
difference between the mean errors of A and B for the given data set. The alternative
hypothesis, H1, is that there is difference. The step-by-step procedure for carrying
out the amended paired t-test (two-tailed) is as follows:

1. Calculate the differences di = ai − bi, i = 1,… ,T . Calculate the mean and the
standard deviation of di

md =
1
T

T∑

i=1
di, sd =

√
√
√
√ 1

T − 1

T∑

i=1
(di − md)2 .
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2. Calculate the amended standard error of the mean

s′d = sd

√
1
T
+
Ntesting

Ntraining
.

3. Calculate the test statistic td =
md
s′d

and the degrees of freedom df = T − 1.

4. For a two-tailed t-test, find the p-value as

p = 2 Ft(−|td|, df),

where Ft is the Student’s t cumulative distribution function.

If we set the alternative hypothesisH1 to be “A has lower error than B” (one-tailed
test), the p-value should be calculated as

p = Ft(td, df).

Comparing the obtained p-value with the chosen level of significance 𝛼, we reject
H0 if p < 𝛼 and accept it otherwise. Function tvariance in Appendix 1.A.2 can be
used for this calculation.

◻◼ Example 1.9 Paired t-test with corrected variance
Suppose that the values of the error (in %) in a 10-fold cross-validation experiment
were as follows:

Model A: 7.4 18.1 13.7 17.5 13.0 12.5 8.9 12.1 12.4 7.4

Model B: 9.9 11.0 5.7 12.5 2.7 6.6 10.6 6.4 12.5 7.8

The mean of the difference between the errors of models A and B is m = 3.73
and the standard deviation is s = 4.5090. The standard error of the mean is therefore
s̄ = s∕

√
10 ≈ 1.4259. The p-value for the (traditional) two-tailed paired t-test (10−

1 = 9 degrees of freedom) is

p = 2 × Ft
(

− |m|
s̄
, df

)

= 2 × Ft
(
− 3.73
1.4259

, 9
)
≈ 0.0280 .

According to this test, at 𝛼 = 0.05, we can accept the alternative hypothesis that
there is significant difference between the two classifier models. Knowing that the
training and testing data were not independent, the amended standard deviation is

s̄′ = s

(√
1
10

+ 1
9

)

≈ 2.0717. The corrected p-value is

p′ = 2 × Ft
(

− |m|
s̄′

, df

)

= 2 × Ft
(
− 3.73
2.0717

, 9
)
≈ 0.1053.

This result does not give us ground to reject the null hypothesis and declare that there
is difference between the two means.

The two examples highlight the importance of the variance correction when the
training and testing data are dependent.
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1.4.3 Two Classifier Models and Multiple Data Sets

Over the years, researchers have developed affinity for using extensively the UCI
Machine Learning Repository [22] for drawing a sample of data sets and running
comparative experiments on these [347]. We tend to over-tune our classification
algorithms to these data sets and may ignore in the process data sets that present a
real-life challenge [347]. If the claim is that algorithm A is better than algorithm B in
general, then a large and diverse collection of data sets should be used.

The Wilcoxon signed rank test. Demšar proposes that the data sets chosen for the
comparison of models A and Bmay be thought of as independent trials, but dissuades
the reader from using a paired t-test [89]. The classification errors of different data
sets are hardly commensurable. To bypass this problem, theWilcoxon signed rank test
was deemed more suitable. Let a1, a2,… , aN and b1, b2,… , bN in this context denote
the error estimates of models A and B for the N data sets chosen for the experiment.
These estimates can be obtained through any of the protocols, for example a 10-fold
cross-validation. Again let di = ai − bi, i = 1,… ,N be the differences of the errors.
The Wilcoxon signed rank test does not take into account the exact value of di,
only its relative magnitude. The null hypothesis of the test is that the data in vector
di come from a continuous, symmetric distribution with zero median, against the
alternative that the distribution does not have zero median. The test is applied in the
following steps:6

1. Rank the absolute values of the distances |di| so that the smallest distance
receives rank 1 and the largest distance receives rank N. If there is a tie, all
the ranks are shared so that the total sum stays 1 + 2 +⋯ + N. For example,
if there are four equal smallest distances, each will be assigned rank (1 + 2 +
3 + 4)∕4 = 2.5. Thus each data set receives a rank ri.

2. Split the ranks into positive and negative depending on the sign of di and
calculate the sums:

R+ =
∑

di>0

ri +
1
2

∑

di=0
ri, R− =

∑

di<0

ri +
1
2

∑

di=0
ri.

3. Take as the test statistic T = min(R+,R−) and compare it with the critical value
for the respective number of data sets N and the chosen level of significance.
Table 1.A.1(a) in Appendix 1.A.2 gives the critical values for this test for
6 ≤ N ≤ 25. For values N > 25, the following statistic is approximately nor-
mally distributed [89]:

z =
T − 1

4
N(N + 1)

√
1
24
N(N + 1)(2N + 1)

.

6Function signrank from the Statistics Toolbox of MATLAB can be used to calculate the p-value for
this test.
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The sign test. A simpler but less powerful alternative to this test is the sign test. This
time we do not take into account the magnitude of the differences, only their sign. By
doing so, we further avoid the problem of noncommensurable errors or differences
thereof. For example, an error difference of 2% for a given data set may be more
relevant than a difference of 4% on another data set. It is common practice to count
WINS, DRAWS, and LOSSES, with or without statistical significance attached to
these. The sign test is based on the intuition that if modelsA andB are equivalent, each
one will score better than the other on approximately N∕2 of the N data sets. Demšar
[89] gives a useful table for checking the significance of the difference between
models A and B tested on N data sets based on the sign test. We reproduce the table
(with a small correction) as Table 1.A.1(b) and explain the calculation of the critical
values in Appendix 1.A.2.

The table contains the required number of wins of A over B in order to reject H0
and claim that model A is better than model B. The ties are split equally between A
and B. For N > 25 data sets, we can use the normal approximation of the binomial
distribution (mean N∕2 and standard deviation

√
N∕2). If the number of wins for A is

greater than N∕2 + 1.96
√
N∕2, A is significantly better than B at 𝛼 = 0.05 (see [89]

for more details).

1.4.4 Multiple Classifier Models and Multiple Data Sets

Demšar [89] recommends the Friedman test followed by the pairwise Nemenyi test
for this task.

Friedman test with Iman and Davenport amendment. This is a nonparametric
alternative of the analysis-of-variance (ANOVA) test. The classifiermodels are ranked
on each of the N data sets. The best classifier receives rank 1 and the worst receives
rankN. Tied ranks are shared equally as explained above. Let rji be the rank of classifier
model j on data set i, where i = 1,… ,N and j = 1,… ,M. Let Rj =

1
N

∑N
i=1 r

j
i be the

average rank of model j. The test statistic is

x2F = 12N
M(M + 1)

(
M∑

j=1
R2j −

M(M + 1)2

4

)

. (1.14)

The null hypothesis of the test H0 is that all classifier models are equivalent. Under
the null hypothesis, x2F follows the 𝜒

2 distribution with M − 1 degrees of freedom
(for N > 10 and M > 5 [89]).7 Demšar advocates an amendment of the test statistic
proposed by Iman and Davenport:

FF =
(N − 1)x2F

N(M − 1) − x2F
, (1.15)

7Function friedman from the Statistics Toolbox of MATLAB can be used to calculate the p-value
for this test. Note that the MATLAB implementation contains an additional correction for tied ranks.
This gives a slightly different test statistic compared to Equation 1.14 if there are tied ranks. See
http://www.unistat.com/.
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which follows the F-distribution with (M − 1) and (M − 1)(N − 1) degrees of free-
dom. The statistic’s value is compared with the tabled critical values for the
F-distribution (available in standard statistics textbooks), and if FF is larger, we
reject H0 and accept that there is difference between the classifier models. Instead
of using pre-tabulated critical values, a MATLAB function imandavenport for
calculating the p-value of this test is given in Appendix 1.A.2.

◻◼ Example 1.10 Comparison of 11 classifier models on 20 data sets
This is a fictional example which demonstrates the calculation of the test statistic for
the Friedman test and its modification. Table 1.3 displays the classification errors of
the 11 classifier models for the 20 data sets. The data sets were arbitrarily named,
just for fun, as the first 20 chemical elements of the periodic table. The “classification
errors” were generated independently, as the absolute values of a normally distributed
random variable with mean 0 and standard deviation 10, subsequently rounded to
one decimal place. Thus, we do not expect to find significant differences between
the models.

The corresponding ranks are shown in Table 1.4. Notice the shared ranks: both
models C6 and C11 have the minimum error rate of 0.1 for data set “Nitrogen”
and therefore equally share ranks 1 and 2, both models receiving rank 1.5. The
average ranks are given in the bottom row. The Friedman statistic calculated as in

TABLE 1.3 Classification Errors of 11 Classifier Models on 20 Data Sets (A Fictional
Example)

Data set C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Hydrogen 4.1 14.1 5.8 2.3 22.5 1.4 21.8 8.0 9.1 15.5 5.4
Helium 5.0 1.4 6.2 2.6 11.7 6.7 12.0 4.7 2.4 8.7 5.6
Lithium 0.8 12.9 5.4 9.0 12.0 8.5 3.7 0.5 6.5 1.5 19.8
Beryllium 1.6 4.9 4.8 21.6 6.6 0.6 24.1 3.5 12.7 3.9 5.4
Boron 5.3 6.2 1.1 0.9 3.3 2.9 7.4 12.6 5.5 13.2 1.4
Carbon 7.2 9.3 3.4 9.5 15.1 6.1 3.1 10.4 0.9 8.0 6.2
Nitrogen 8.5 2.8 9.3 11.7 8.9 0.1 5.4 4.3 3.5 1.4 0.1
Oxygen 8.0 2.0 0.1 17.4 9.6 4.1 1.2 0.8 9.9 4.2 11.1
Fluorine 7.3 1.4 11.4 3.7 4.9 9.4 9.6 17.9 4.3 8.2 1.9
Neon 16.9 8.8 4.3 11.9 4.4 8.4 2.5 8.0 10.0 8.5 11.2
Sodium 3.9 0.8 1.8 9.5 2.0 10.9 18.9 4.4 6.3 3.6 2.5
Magnesium 5.1 6.0 6.6 14.2 9.8 3.2 12.2 6.3 10.5 27.5 15.6
Aluminum 4.1 3.7 5.8 0.3 15.7 0.2 3.8 15.3 5.1 15.1 12.0
Silicon 10.7 8.4 16.2 2.6 3.7 11.6 0.5 27.3 3.3 4.3 2.4
Phosphorus 9.7 2.8 0.2 5.2 2.2 4.9 19.5 1.7 16.4 2.3 10.0
Sulfur 2.7 35.7 4.3 6.8 5.4 12.2 5.7 4.8 19.1 8.3 19.2
Chlorine 6.3 34.1 20.3 6.7 2.6 15.9 0.8 14.1 0.4 8.3 6.3
Argon 6.3 11.5 13.3 6.8 11.0 5.3 0.8 9.7 7.0 5.0 7.5
Potassium 0.8 7.9 3.2 3.1 5.5 2.6 7.9 2.9 1.7 23.2 2.1
Calcium 13.8 12.8 8.3 3.8 21.7 3.9 10.4 11.7 15.4 7.9 7.7
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TABLE 1.4 Ranks of the 11 Classifier Models on the 20 Data Sets (Fictional Example)

Data set C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Hydrogen 3.0 8.0 5.0 2.0 11.0 1.0 10.0 6.0 7.0 9.0 4.0
Helium 5.0 1.0 7.0 3.0 10.0 8.0 11.0 4.0 2.0 9.0 6.0
Lithium 2.0 10.0 5.0 8.0 9.0 7.0 4.0 1.0 6.0 3.0 11.0
Beryllium 2.0 6.0 5.0 10.0 8.0 1.0 11.0 3.0 9.0 4.0 7.0
Boron 6.0 8.0 2.0 1.0 5.0 4.0 9.0 10.0 7.0 11.0 3.0
Carbon 6.0 8.0 3.0 9.0 11.0 4.0 2.0 10.0 1.0 7.0 5.0
Nitrogen 8.0 4.0 10.0 11.0 9.0 1.5 7.0 6.0 5.0 3.0 1.5
Oxygen 7.0 4.0 1.0 11.0 8.0 5.0 3.0 2.0 9.0 6.0 10.0
Fluorine 6.0 1.0 10.0 3.0 5.0 8.0 9.0 11.0 4.0 7.0 2.0
Neon 11.0 7.0 2.0 10.0 3.0 5.0 1.0 4.0 8.0 6.0 9.0
Sodium 6.0 1.0 2.0 9.0 3.0 10.0 11.0 7.0 8.0 5.0 4.0
Magnesium 2.0 3.0 5.0 9.0 6.0 1.0 8.0 4.0 7.0 11.0 10.0
Aluminum 5.0 3.0 7.0 2.0 11.0 1.0 4.0 10.0 6.0 9.0 8.0
Silicon 8.0 7.0 10.0 3.0 5.0 9.0 1.0 11.0 4.0 6.0 2.0
Phosphorus 8.0 5.0 1.0 7.0 3.0 6.0 11.0 2.0 10.0 4.0 9.0
Sulfur 1.0 11.0 2.0 6.0 4.0 8.0 5.0 3.0 9.0 7.0 10.0
Chlorine 4.5 11.0 10.0 6.0 3.0 9.0 2.0 8.0 1.0 7.0 4.5
Argon 4.0 10.0 11.0 5.0 9.0 3.0 1.0 8.0 6.0 2.0 7.0
Potassium 1.0 9.5 7.0 6.0 8.0 4.0 9.5 5.0 2.0 11.0 3.0
Calcium 9.0 8.0 5.0 1.0 11.0 2.0 6.0 7.0 10.0 4.0 3.0

Rj 5.22 6.28 5.50 6.10 7.10 4.88 6.28 6.10 6.05 6.55 5.95

Equation 1.14 is 6.9182. The p-value for the 𝜒2 distribution withM − 1 = 10 degrees
of freedom is 0.7331. This value supports H0: equal classifier models.

Applying the amendment from Equation 1.15, we arrive at FF = 0.6808. The
p-value of the F-test with (M − 1) and (M − 1)(N − 1) degrees of freedom is 0.7415,
again supporting H0.

The post-hoc test. If H0 is rejected, Demšar [89] proposes the use of Nemenyi
post-hoc test to find exactly where the differences are. All pairs of classifiers are
examined. Two classifiers are declared different if their average ranks differ by more
than a given critical value. For instance, for a pair of classifiers i and j, a test statistic
is calculated using the average ranks Ri and Rj:

z =
Ri − Rj
√

M(M+1)
6N

. (1.16)

The number of pairwise comparisonsM(M − 1)∕2 determines the level of significance
for this z-value. If the desired level of significance is 𝛼, the difference will be flagged
as significant if the obtained p-value is smaller than 2𝛼

M(M−1) . When a classifier model
is singled out and compared with the remaining M − 1 models, the scaling constant
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is just (M − 1) (Bonferroni-Dunn correction of the family-wise error). Garcı́a and
Herrera [147] explain in detail further step-wise procedures for post-hoc comparing
of pairs of classifiers. The MATLAB code for both Nemenyi and Bonferroni-Dunn
post-hoc tests is given in Appendix 1.A.2.

◻◼ Example 1.11 Post-hoc tests
The fictional comparison example was slightly modified. A constant of 0.8 was
subtracted from the first column of Table 1.3, and all values in this column were
multiplied by 0.5. This made classifier C1 better than all other classifier models. The
ranks changed correspondingly, leading to the following average ranks:

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Rj 3.10 6.47 5.65 6.35 7.25 5.28 6.42 6.30 6.20 6.80 6.17

Nemenyi ■ ■

Bonferroni ■ ■ ■ ■ ■ ■ ■ ■

The Friedman test statistic is 21.7273, giving a p-value of 0.0166. The Iman and
Davenport amendment gives FF = 2.3157 and a p-value of 0.0136. According to both
tests, there is a difference among the 11 classifier models. The Nemenyi post-hoc test
found significant differences at 𝛼 < 0.05 between C1 and C5 and also between C1
and C10 (two-tailed test). Nominating C1 as the classifier of interest, the Bonferroni–
Dunn post-hoc test found C1 to be better (smaller error) than all classifiers except C3
and C6 (one-tailed test). The results from the post-hoc tests are shown underneath the
average ranks above. A black square indicates that significant difference was found
at 𝛼 < 0.05.

1.5 BAYES DECISION THEORY

1.5.1 Probabilistic Framework

Although many types of uncertainty exist, the probabilistic model fits surprisingly
well in most pattern recognition problems. We assume that the class label 𝜔 is a
random variable taking values in the set Ω = {𝜔1,… ,𝜔c}. The prior probabilities,
P(𝜔i), i = 1,… , c, constitute the probability mass function (pmf) of the variable 𝜔:

0 ≤ P(𝜔i) ≤ 1, and
c∑

i=1
P(𝜔i) = 1. (1.17)

We can construct a classifier based on this information only. To make the smallest
possible number of mislabelings, we should always label an object with the class of
the highest prior probability.

However, by measuring the relevant characteristics of the objects organized as
the vector x ∈ R

n, we should be able to make a more accurate decision about this
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particular object. Assume that the objects from class𝜔i are distributed inR
n according

to the class-conditional pdf p(x|𝜔i), where p(x|𝜔i) ≥ 0, ∀x ∈ R
n, and

∫R
n
p(x|𝜔i) dx = 1, i = 1,… , c. (1.18)

The likelihood of x ∈ R
n is given by the unconditional pdf:

p(x) =
c∑

i=1
P(𝜔i) p(x|𝜔i). (1.19)

Given the prior probabilities and the class-conditional pdfs, we can calculate the
posterior probability that the true class label of the measured x is 𝜔i using the Bayes
formula

P(𝜔i|x) =
P(𝜔i) p(x|𝜔i)

p(x)
=

P(𝜔i) p(x|𝜔i)
∑c
j=1 P(𝜔j) p(x|𝜔j)

. (1.20)

Equation 1.20 gives the probability mass function of the class label variable 𝜔

for the observed x. The classification decision for that particular x should be made
with respect to the posterior probability. Choosing the class with the highest posterior
probability will lead to the smallest possible error when classifying any object with
feature vector x.

The probability model described above is valid for the discrete case as well. Let x
be a discrete variable with possible values in V = {v1,… , vs}. The only difference
from the continuous-valued case is that instead of class-conditional pdf, we use class-
conditional pmf, P(x|𝜔i), giving the probability that a particular value from V occurs
if we draw at random an object from class 𝜔i. For all pmfs,

0 ≤ P(x|𝜔i) ≤ 1, ∀x ∈ V, and
s∑

j=1
P(vj|𝜔i) = 1. (1.21)

1.5.2 Discriminant Functions and Decision Boundaries

The posterior probabilities can be used directly as the discriminant functions, that is,

gi(x) = P(𝜔i|x), i = 1,… , c. (1.22)

Hence we can rewrite the maximum membership rule as

D(x) = 𝜔i∗ ∈ Ω ⟺ P(𝜔i∗ |x) = max
i=1,…,c

{P(𝜔i|x)}. (1.23)

In fact, a set of discriminant functions leading to the same classification regions
would be

gi(x) = P(𝜔i) p(x|𝜔i), i = 1,… , c, (1.24)
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because the denominator of Equation 1.20 is the same for all i, and so will not change
the ranking order of gis. Another useful set of discriminant functions derived from
the posterior probabilities is

gi(x) = log(P(𝜔i) p(x|𝜔i)), i = 1,… , c. (1.25)

◻◼ Example 1.12 Decision/classification boundaries
Let x ∈ R. Figure 1.18 shows two sets of discriminant functions for three normally
distributed classes with

P(𝜔1) = 0.45, p(x|𝜔1) ∼ N
(
4, (2.0)2

)

P(𝜔2) = 0.35, p(x|𝜔2) ∼ N
(
5, (1.2)2

)

P(𝜔3) = 0.20, p(x|𝜔3) ∼ N
(
7, (1.0)2

)
.

Figure 1.18a depicts the first set of discriminant functions (Equation 1.24),
obtained as P(𝜔i) p(x|𝜔i), i = 1, 2, 3. The classification boundaries are marked with
bullets on the x-axis. The posterior probabilities (Equation 1.22) are depicted as the
second set of discriminant functions in Figure 1.18b. The classification regions speci-
fied by the boundaries are displayed with different shades of gray. Note that the same
regions are found for both sets of discriminant functions.
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FIGURE 1.18 Plot of two equivalent sets of discriminant functions: (a) P(𝜔1)p(x|𝜔1) (the
thin line), P(𝜔2)p(x|𝜔2) (the dashed line), and P(𝜔3)p(x|𝜔3) (the thick line); (b) P(𝜔1|x) (the
thin line), P(𝜔2|x) (the dashed line), and P(𝜔3|x) (the thick line).
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Sometimes more than two discriminant functions might tie at the boundaries. Ties
are resolved randomly.

1.5.3 Bayes Error

Let D∗ be a classifier which always assigns the class label with the largest posterior
probability. Since for every x we can only be correct with probability

P(𝜔i∗ |x) = max
i=1,…,c

{P(𝜔i|x)}, (1.26)

there is some inevitable error. The overall probability of error of D∗ is the sum of the
errors of each individual x weighted by its likelihood value, p(x), that is,

Pe(D
∗) =

∫R
n
(1 − P(𝜔i∗ |x))p(x) dx. (1.27)

It is convenient to split the integral into c integrals, one on each classification
region. In this case, x will be given label 𝜔i∗ corresponding to the region’s tag where
x belongs. Then

Pe(D
∗) =

c∑

i=1
∫


∗
i

(1 − P(𝜔i|x))p(x) dx, (1.28)

where ∗
i is the classification region for class 𝜔i, 

∗
i ∩

∗
j = ∅ for any j ≠ i and

∪ci=1
∗
i = R

n. Substituting Equation 1.20 into Equation 1.28 and taking into account
that
∑c
i=1 ∫∗

i
= ∫

R
n ,

Pe(D
∗) =

c∑

i=1
∫


∗
i

(

1 −
P(𝜔i)p(x|𝜔i)

p(x)

)

p(x) dx (1.29)

=
∫R

n
p(x) dx −

c∑

i=1
∫


∗
i

P(𝜔i)p(x|𝜔i) dx (1.30)

= 1 −
c∑

i=1
∫


∗
i

P(𝜔i)p(x|𝜔i) dx. (1.31)

Note that Pe(D
∗) = 1 − Pc(D

∗), where Pc(D
∗) is the overall probability of correct

classification of D∗, or the classification accuracy.
Consider a different classifier, D, which produces classification regions 1,… ,

c, i ∩j = ∅ for any j ≠ i and ∪ci=1i = R
n. Regardless of the way the regions

are formed, the error of D is

Pe(D) =
c∑

i=1
∫
i

(1 − P(𝜔i|x))p(x) dx . (1.32)

The error of D∗ is the smallest possible error, called the Bayes error. The example
below illustrates this concept.
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◻◼ Example 1.13 Bayes error
Consider the simple case of x ∈ R and Ω = {𝜔1,𝜔2}. Figure 1.19 displays the dis-
criminant functions in the form gi(x) = P(𝜔i)p(x|𝜔i), i = 1, 2, x ∈ [0, 10].

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

Added error

Bayes error

Optimal

boundary
‘Real’

boundary

FIGURE1.19 Plot of two discriminant functionsP(𝜔1)p(x|𝜔1) (left curve) andP(𝜔2)p(x|𝜔2)
(right curve) for x ∈ [0, 10]. The light-gray area corresponds to the Bayes error, incurred if
the optimal decision boundary (denoted by ∙) is used. The dark-gray area corresponds to the
additional error when another boundary (denoted by ◦) is used.

For two classes,

P(𝜔1|x) = 1 − P(𝜔2|x), (1.33)

and Pe(D
∗) in Equation 1.28 becomes

Pe(D
∗) =

∫


∗
1

(1 − P(𝜔1|x))p(x) dx +
∫


∗
2

(1 − P(𝜔2|x))p(x) dx (1.34)

=
∫


∗
1

P(𝜔2|x)p(x) dx +
∫


∗
2

P(𝜔1|x)p(x) dx (1.35)

=
∫


∗
1

P(𝜔2)p(x|𝜔2) dx +
∫


∗
2

P(𝜔1)p(x|𝜔1) dx. (1.36)

By design, the classification regions ofD∗ correspond to the true highest posterior
probabilities. The bullet on the x-axis in Figure 1.19 splits R into 

∗
1 (to the left)

and 
∗
2 (to the right). According to Equation 1.36, the Bayes error will be the

area under P(𝜔2)p(x|𝜔2) in 
∗
1 plus the area under P(𝜔1)p(x|𝜔1) in 

∗
2. The total

area corresponding to the Bayes error is marked in light gray. If the boundary is
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shifted to the left or right, additional error will be incurred. We can think of this
boundary as coming from classifier D which is an imperfect approximation of D∗.
The shifted boundary, depicted by an open circle, is called in this example the “real”
boundary. Region 1 is therefore 

∗
1 extended to the right. The error calculated

through Equation 1.36 is the area under P(𝜔2)p(x|𝜔2) in the whole of 1, and extra
error will be incurred, measured by the area shaded in dark gray. Therefore, using the
true posterior probabilities or an equivalent set of discriminant functions guarantees
the smallest possible error rate, called the Bayes error.

Since the true probabilities are never available in practice, it is impossible to calculate
the exact Bayes error or design the perfect Bayes classifier. Even if the probabilities
were given, it will be difficult to find the classification regions in R

n and calculate
the integrals. Therefore, we rely on estimates of the error as discussed in Section 1.3.

1.6 CLUSTERING AND FEATURE SELECTION

Pattern recognition developed historically as a union of three distinct but intrinsically
related components: classification, clustering, and feature selection.

1.6.1 Clustering

Clustering aims to find groups in data. “Cluster” is an intuitive concept and does not
have a mathematically rigorous definition. The members of one cluster should be
similar to one another and dissimilar to the members of other clusters. A clustering
algorithm operates on an unlabeled data set Z and produces a partition on it, denoted
P = (Z(1),… ,Z(c)), where Z(i)

⊆ Z and

Z(i) ∩ Z(j) = ∅, i, j = 1,… , c, i ≠ j, (1.37)
c⋃

i=1
Z(i) = Z. (1.38)

There is a vast amount of literature on clustering [18, 38, 126, 158, 195] looking
for answers to the main questions, among which are:

� Is there really a structure in the data or are we imposing one by our clustering
algorithms?

� How many clusters should we be looking for?
� How do we define similarity between objects in the feature space?
� How do we know whether our clustering results are good?

Two main groups of clustering algorithms are hierarchical clustering (agglom-
erative and divisive) and nonhierarchical clustering. The nearest neighbor (single
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SINGLE LINKAGE CLUSTERING

1. Pick the number of clusters c and a similarity measure (a, b) between two objects
a and b. Initialize the procedure by defining an individual cluster for each point in Z.

2. Identify the two most similar clusters and join them as a new cluster, replacing the
initial two clusters. The similarity between clusters A and B is measured as

min
a∈A,b∈B

(a, b).

3. Repeat step 2 until c clusters are found.

FIGURE 1.20 The single linkage clustering algorithm.

c-MEANS CLUSTERING

1. Pick the number of clusters c and a similarity measure (a, b) between two objects a
and b. Initialize the c cluster centers (i.e., by randomly selecting c points from Z to be
these centers).

2. Label all points in Z with respect to their similarity to the cluster centers: each point is
assigned to the cluster with the most similar center.

3. Calculate the new cluster centers using the points in the respective cluster.
4. Repeat steps 2 and 3 until no change in the centers occurs.

FIGURE 1.21 The c-means (k-means) clustering algorithm.

linkage) clustering algorithm shown in Figure 1.20 is an example of the hierarchical
group whereas the c-means clustering algorithm (also called k-means) shown in Fig-
ure 1.21 is an example of the nonhierarchical group. Both algorithms are famous for
their simplicity and elegance.8

◻◼ Example 1.14 Clustering: there is no “best” algorithm
Consider a two-dimensional data set where 50 points are sampled from each of
two normal distributions with means at (0,0) and (3,3), and identity covariance
matrices (Figure 1.22a). The single linkage clustering algorithm is known for the
“chain effect.” An outlier would often present itself as a separate cluster, thereby
preventing the algorithm from discovering meaningful balanced clusters. This is
illustrated in Figure 1.22b where the two clusters found by the algorithm are plotted
with different markers. The c-means algorithm, on the other hand, identifies the two
clusters successfully (Figure 1.22c).

8Both single-linkage and c-means algorithms are available in many statistical software packages, including
the Statistics Toolbox of MATLAB.
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(a) Data (b) Single-linkage

Two string-type clusters

(c) c-means

(d) Data (e) Single-linkage (f) k-means

Two Gaussians

FIGURE 1.22 Examples of single linkage and k-means clustering on two synthetic data sets.
The two clusters found by the algorithms are plotted with different markers: circles and gray
crosses.

The second data set (Figure 1.22d) consists of two string-shaped clusters. This
configuration is correctly identified by the single linkage but fools k-means into
cutting both strings and finding nonexistent clusters.

Neither of the two algorithms is perfect, nor are the multitude of existing clustering
algorithms. It may prove difficult to pick a suitable clustering algorithm for multi-
dimensional data. Ensembles of “clusterers” are deemed to be more robust in that
respect.

1.6.2 Feature Selection

Feature selection is the process of reducing the dimensionality of the feature space.
Its aim is not only computational convenience but elimination of noise in the data so
that it is easier to train an accurate and robust classifier. A myriad of insightful and
comprehensive surveys, practitioners’ guides, journal special issues, and conference
tracks have been devoted to feature selection over the years [3, 42, 83, 164, 196, 214,
263,284,346]. Different methods and approaches have been recommended depending
on the data types and sizes.
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The two major questions that a feature selection method must address, separately
or simultaneously, are:

1. Are the features evaluated individually? If not, how do we traverse the class of
all subset-candidates?

2. What criterion do we apply to evaluate the merit of a given subset of features?

Consider for now question 1. The simplest way of selecting features is to rank them
according to a certain test criterion and cut the list. Starting with key publications
in the 1970s [77, 387], it is now well understood that features should be evaluated
as a group rather than individually. By selecting the features individually, important
dependencies may be overlooked. But evaluating subsets of features raises the ques-
tion of computational complexity. If unlimited resources were available, exhaustive
search could be carried out checking each and every possible subset. Sequential
methods such as forward and backward selection, as well as floating search [315]
have been found to be the best compromise between computation speed and accuracy.
Figure 1.23 shows the sequential forward selection algorithm (SFS).

The output of SFS can be taken as the feature ranking determined by the order in
which the features enter the set S in the algorithm.

The two basic approaches to question 2 are termed “wrapper” and “filter” [214].
The wrapper approach requires that a classifier model is chosen and trained on a given
feature set. Its classification accuracy, evaluated on a validation set, is the measure
of quality of that feature set. In the filter approach, some measure of separation
between the classes in the space spanned by the feature set is used as a proxy for the
classification accuracy. While the wrapper approach has been found to be generally
more accurate, the filter approach is faster and easier to apply, which makes it a
convenient compromise if a large number of feature subsets must be probed.

The MATLAB function sfs_filter(a,laba,d) in Appendix 1.A.3 carries out
sequential forward selection of the features of data set a (columns of a) and returns
the indices of the d features in order of selection. The criterion for evaluating the
feature subset f is the Euclidean distance between the centroids of the classes in the
space spanned by f but there are many alternatives offered by the pdist MATLAB
function used within the code.

SEQUENTIAL FORWARD SELECTION (SFS)

1. Given is a feature set F. Choose a test criterion for a feature subset f ⊆ F and a
stopping criterion (e.g., a number of features d ≤ |F|). Initialize the set of selected
features S = ∅.

2. Taking all features in F that are not yet in S, add temporarily one feature at a time and
measure the quality of the new set S′ = S ∪ {x}, x ∈ F, x ∉ S.

3. Choose the feature with the highest criterion value and add it permanently to S.
4. Repeat steps 2 and 3 until the stopping criterion is met.

FIGURE 1.23 The sequential forward selection algorithm.
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◻◼ Example 1.15 Feature selection: the peak effect
The data set “sonar” from the UCI ML Repository has 60 features and 2 classes.
SFS was applied for feature selection with a filter approach. The quality of a feature
subset was measured by the Euclidean distance between the two class centroids in
the respective feature space (as in theMATLAB function sfs_ filter(a,laba,d)
in Appendix 1.A.3). One hundred runs were carried out where a randomly sampled
half of the data set was used for training and the other half, for testing. The nearest
neighbor classifier was applied for evaluating the selected feature subsets. Each split
of the data produced a ranking of the 60 features. As an example, suppose that SFS
on split j arranged the features as {32, 11, 6, 28,…}. For this split, feature 32 was the
single best, {32, 11} was the best pair containing feature 32, {32, 11, 6} was the best
set of three features containing features 32 and 11, and so on.

Consider plotting the classification accuracy, evaluated on the testing half of the
data, when using feature sets {32}, {32, 11}, {32, 11, 6}, {32, 11, 6, 28}, and so
on. It can be expected that the more features we include, the higher the accuracy
will be, leading to the best accuracy with all features. The curves for the 100 data
splits are shown in Figure 1.24 in gray. The average curve is depicted with a solid
black line. The peak and the end points are marked and annotated. It can be seen
that SFS reaches better accuracy with fewer features, called the “peak effect.” For
comparison, 100 random permutations of the features were generated, and an average
curve was calculated in the same way as with the SFS rankings. As expected, the
average random curve progresses gradually toward the same end point but without the
peak effect.
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FIGURE 1.24 Illustration of the peak effect in feature selection on the “sonar” data, SFS
filter and the nearest neighbor classifier.
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This example demonstrates that feature selection could be beneficial not just for
reducing computational complexity but also for increasing the classification accuracy.
This problem is especially acute for very high-dimensional data where the number of
features exceeds by orders of magnitude the number of samples, the so-called “wide”
data sets.

The long-lasting and proliferate research on feature selection has delivered a
refined collection of excellent feature selection algorithms such as the floating search
[315], fast correlation-based filters (FCBF) [428], RELIEF [205], and SVM-RFE
[165]. Yet, with the new challenges posed by the very high dimensionality of modern
data, there is room for development. Saeys et al. [346] highlight the potential of
ensemble feature selection methods to improve the stability and accuracy of the
individual methods. We will touch upon feature selection for ensembles and by
ensembles further in the book.

1.7 CHALLENGES OF REAL-LIFE DATA

Finally, pattern recognition branched out tremendously in the past couple of decades,
taking what were curious little niches in the past into powerful independent research
streams in their own right. Real-life data pose challenges such as

� Unbalanced classes. Many times the class of interest is like a “needle in a
haystack.” An example is detecting a face in an image. Suppose that the gray
image has 500 rows and 600 columns of pixels, and a face is expected to bewithin
a 50-by-50 square of pixels. Then there are (500 − 49) × (600 − 49) = 248, 501
candidate squares. If the image is a photograph of a person, the class “face” will
contain a handful of objects (squares containing predominantly the face), and
class “nonface” will contain all remaining squares. Thus class “face” will be a
minute fraction of the data.

� Uncertain labels. Sometimes the labels of the objects cannot be assigned pre-
cisely. Take, for example, emotion recognition. Affective computing is gain-
ing importance in psychological research, entertainment, and gaming indus-
tries. However, it is hardly possible to pinpoint and label the experienced
emotion.

� Massive volumes. Computational costs, algorithmic tractability, and statistical
validity of the results are only a few of the problems with very high-dimensional
data and massive sample sizes.

� Nonstationary distributions.The data set collected at a certain timemay become
obsolete if the circumstances or the problem characteristic change. Adaptive
classification is needed for such cases.

Standard and custom-tailored classifier ensemble methods are quickly turning into
one of the most favorite tools in all these areas.
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APPENDIX

1.A.1 DATA GENERATION

1 %-------------------------------------------------------------------%
2 function x = samplegaussian(N,mu,Sigma)
3 mu = mu(:); R = chol(Sigma);
4 for i = 1:N
5 x(i,:) = mu' + (R'*randn(size(mu)))';
6 end
7 %-------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 % Subplot (a) ---
3 % Introduce the ellipse function
4 elx = @(t,xc,a,b,phi) xc+a*cos(t)*cos(phi)-b*sin(t)*sin(phi) ;
5 ely = @(t,yc,a,b,phi) yc+a*cos(t)*sin(phi)+b*sin(t)*cos(phi) ;
6

7 % Calculate the ellipse equations
8 N = 500;
9 t = rand(1,N)*2*pi; % sample random points from the figure

10 el1x = elx(t,-6,2,6,-2); el1y = ely(t,0,2,6,-2); % ellipse 1
11 el2x = elx(t,-2,4,3,-1); el2y = ely(t,-2,4,3,-1); % ellipse 2
12 el3x = elx(t,2,4,1,0.9); el3y = ely(t,4,4,1,0.9); % ellipse 3
13

14 % Add noise
15 edata = [el1x(:), el1y(:); el2x(:), el2y(:); el3x(:), el3y(:)];
16 edata = edata + randn(size(edata))*0.5;
17 w = ones(numel(el1x),1);
18 elabels = [w;w*2;w*3];
19

20 % Plot the data
21 figure, hold on
22 scatter(edata(:,1),edata(:,2),[],elabels,'linewidth',2.5)
23 axis equal off
24

25 % Subplot (b) ---
26 t = rand(1,1000)*2*pi; % sample random points from the figure
27 el1x = elx(t,0,3,9,-1); el1y = ely(t,0,3,9,-1);
28 el1x = el1x + randn(size(el1x)).*t*.2;
29 el1y = el1y + randn(size(el1y)).*t*.2;
30 figure
31 plot(el1x,el1y,'k.','markersize',15);
32 axis equal off
33 %-------------------------------------------------------------------%



JWST492-c01 JWST492-Kuncheva July 23, 2014 11:11 Printer Name: Trim: 6.125in × 9.25in

42 FUNDAMENTALS OF PATTERN RECOGNITION

1 %-------------------------------------------------------------------%
2 function [d, labd] = samplecb(N,a,alpha)
3 d = rand(N,2);
4 d_transformed = [d(:,1)*cos(alpha)-d(:,2)*sin(alpha),…
5 d(:,1)*sin(alpha)+d(:,2)*cos(alpha)];
6 s = ceil(d_transformed(:,1)/a)+floor(d_transformed(:,2)/a);
7 labd = 2 - mod(s,2);
8 %-------------------------------------------------------------------%

1.A.2 COMPARISON OF CLASSIFIERS

1.A.2.1 MATLAB Functions for Comparing Classifiers

The output of all hypothesis-testing functions is in the form [H,p], where H is 0 if
the null hypothesis is accepted, and 1 if the null hypothesis is rejected at significance
level 0.05. The output p is the test p-value.

1 %-------------------------------------------------------------------%
2 function [H,p] = mcnemar(labels1, labels2, true_labels)
3 % --- McNemar test for two classifiers
4 % Needs Statistics Toolbox
5 % (all labels are integers 1,2,…)
6 v1 = labels1(:) == true_labels(:);
7 v2 = labels2(:) == true_labels(:);
8 t2(1,1) = sum(˜v1&˜v2);t2(1,2) = sum(˜v1&v2);
9 t2(2,1) = sum(v1&˜v2);t2(2,2) = sum(v1&v2);

10 % the two-way table [N00,N01;N10,N11]
11 % calculate the test statistic
12 if any([t2(1,2),t2(2,1)])
13 if t2(1,2) + t2(2,1) > 25
14 x2 = (abs(t2(1,2)-t2(2,1))-1)ˆ2/(t2(1,2)+t2(2,1));
15 % find the p-value
16 p = 1 - chi2cdf(x2,1);
17 else % exact test using binomial distribution
18 % t2(1,2) is compared to a binomial distribution
19 % with size parameter equal to t2(1,2) + t2(2,1)
20 % and "probability of success" = 0.5,
21 p=binocdf(min(t2(1,2),t2(2,1)),t2(1,2)+t2(2,1),0.5)…
22 + 1 - binocdf(max(t2(1,2),t2(2,1))-1,t2(1,2)+…

t2(2,1),0.5);
23 end
24 else % identical classifiers
25 p = 1;
26 end
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27 % calculate the hypothesis outcome at significance level 0.05
28 % H = 0 if the null hypothesis holds; H = 1 otherwise.
29 H = p < 0.05;
30 %-------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 function [H,p] = tvariance(x,y,ts_tr_ratio)
3 % --- paired t-test with corrected variance
4 % Needs Statistics Toolbox
5 d = x - y;
6 md = mean(d); stdd = std(d);
7 se_corrected = stdd * sqrt(1/numel(x) + ts_tr_ratio);
8 t = md / se_corrected; % the test statistic
9 % two-tailed test

10 p = 2 * tcdf(-abs(t),numel(x)-1);
11 % calculate the hypothesis outcome at significance level 0.05
12 % H = 0 if the null hypothesis holds; H = 1 otherwise.
13 H = p < 0.05;
14 %-------------------------------------------------------------------%

1 %----------------------------------------------------------------------------%
2 function [H,p] = imandavenport(a)
3 % --- Iman and Davenport test for N classifiers on M data sets
4 % Needs Statistics Toolbox
5 % a_ji is the error of model j on data set i
6 % N rows, M columns
7 [N,M] = size(a);
8
9 r = ranks(a')'; R = mean(r);

10 x2F =12*N/(M*(M+1))*(sum(R.ˆ2) - M*(M+1)ˆ2/4);
11
12 % ===
13 % MATLAB Stats Toolbox variant with additional correction
14 % for tied ranks:
15 % [˜,t] = friedman(a,1,'off');
16 % x2F = t{2,5} % Friedman chiˆ2 statistic
17 % ===
18
19 FF = (N-1) * x2F / (N*(M-1) - x2F); % amended
20 p = 1 - fcdf(FF,(M-1),(M-1)*(N-1)); % p-value from the F-distribution
21 % calculate the hypothesis outcome at significance level 0.05
22 % H = 0 if the null hypothesis holds; H = 1 otherwise.
23 H = p < 0.05;
24 end
25
26 function ran = ranks(a)
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27 [maxr,maxcol] = size(a);
28 ran = zeros(size(a));
29 for i = 1:maxcol
30 [˜, rr] = sort(a(:,i)); [˜, b2] = sort(rr);
31 for j = 1 : maxr % check for ties
32 inr = a(:,i) == a(j,i);
33 b2(inr) = mean(b2(inr));
34 end
35 ran(:,i) = b2;
36 end
37 end
38 %----------------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 function [H,p] = nemenyiposthoc(a)
3 % --- Nemenyi post-hoc test
4 % Needs Statistics Toolbox & function RANKS
5 % a_ji is the error of model j on data set i
6 % N rows, M columns
7 [N,M] = size(a);
8 r = ranks(a')'; R = mean(r);
9 const = M * (M-1) / 2;

10 for i = 1:M-1
11 for j = i+1:M
12 z = (R(i)-R(j))/sqrt(M*(M+1)/(6*N));
13 p(i,j) = 2*normcdf(-abs(z)); % two-tailed test
14 p(j,i) = p(i,j);
15 end
16 p(i,i) = 1;
17 end
18 p(M,M) = 1;
19 p = min(1,p*const);
20

21 % calculate the hypothesis outcome at significance level 0.05
22 % H = 0 if the null hypothesis holds; H = 1 otherwise.
23 H = p < 0.05;
24 end
25 %-------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 function [H,p] = bonferroniposthoc(a)
3 % --- Bonferroni-Dunn post-hoc test
4 % Needs Statistics Toolbox & function RANKS
5 % a_ji is the error of model j on data set i
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6 % N rows, M columns
7 % The classifier of interest is in column 1 of a.
8 % The output contains M-1 results from the
9 % comparisons of columns 2:M with column 1

10

11 [N,M] = size(a);
12

13 r = ranks(a')'; R = mean(r);
14 const = M - 1;
15

16 for i = 2:M
17 z = (R(1)-R(i))/sqrt(M*(M+1)/(6*N));
18 % p(i-1) = 2*normcdf(-abs(z)); % two-tailed test
19 p(i-1) = normcdf(z); % one-tailed test
20 end
21 p = min(1,p*const);
22

23 % calculate the hypothesis outcome at significance level 0.05
24 % H = 0 if the null hypothesis holds; H = 1 otherwise.
25 H = p < 0.05;
26 end
27 %-------------------------------------------------------------------%

1.A.2.2 Critical Values for Wilcoxon and Sign Test

Table 1.A.1 shows the critical values for comparing two classifier models on N data
sets. Sub-table (a) gives the values for the Wilcoxon signed rank test (two-tailed),
and sub-table (b), the values for the sign test (one-tailed). For sub-table (b), classifier
model A is better than B if it wins on w

𝛼
or more data sets. Here we explain the

calculation of the critical values for the sign test.
Suppose that in comparing classifier models A and B, both were tested on N data

sets. Model A was found to be better on K out of the N sets. Can we claim that A
is better than B? The null hypothesis of our test, H0, is that there is no difference
between A and B. Then the probability that A wins over B on a randomly chosen
data set is 1∕2. The number of data sets where A wins over B in N attempts follows
a binomial distribution with parameters N and 1∕2. Under the null hypothesis, the
probability that A wins on K or fewer data sets is

Fb(K,N, 0.5) = 0.5N
K∑

i=0

N!
i!(N − i)!

, (1.A.1)

where Fb is the cumulative distribution function of the binomial distribution. The
alternative hypothesis, H1, is that A is better than B (one-tailed test). To reject the
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TABLE 1.A.1 Table of the Critical Values for Comparing Two Classifier Models on N
Data Sets. (a) Wilcoxon Signed Rank Test (Two Tailed), (b) Sign Test (One Tailed). For
Sub-table (b), Classifier Model A Is Better Than B if It Wins on w

𝛼
or More Data Sets

(a) (b)
𝛼 𝛼

N 0.1 0.05 0.01 N w0.10 w0.05

5 5 5
6 0 – – 6 6 6
7 2 0 – 7 6 7
8 4 2 0 8 7 7
9 6 3 2 9 7 8

10 8 5 3 10 8 9
11 11 7 5 11 9 9
12 14 10 7 12 9 10
13 17 13 10 13 10 10
14 21 16 13 14 10 11
15 25 20 16 15 11 12
16 30 24 20 16 12 12
17 35 28 23 17 12 13
18 40 33 28 18 13 13
19 46 38 32 19 13 14
20 52 43 38 20 14 15
21 59 49 43 21 14 15
22 66 56 49 22 15 16
23 73 62 55 23 16 16
24 81 69 61 24 16 17
25 89 77 68 25 17 18

null hypothesis and accept H1 at level of significance 𝛼, K must be large enough. For
example, let N = 5. Then Fb(K,N, 0.5) is

K 0 1 2 3 4 5

Fb(K, 5, 0.5) 0.0313 0.1875 0.5000 0.8125 0.9688 1.0000

Because of the discrete nature of the problem, we cannot achieve the desired level
of significance exactly. If the null hypothesis is correct, the probability of observing
K or more wins (A better than B) is

1 − Fb(K − 1, 5, 0.5). (1.A.2)

We must set the critical value of K so that this probability is smaller or equal to 𝛼.
Any number of wins greater than or equal to this critical value will allow us to reject
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the null hypothesis at the desired level of significance 𝛼 or better. Let 𝛼 = 0.05. We
have

1 − Fb(4, 5, 0.5) = 0.0313 (1.A.3)

and

1 − Fb(3, 5, 0.5) = 0.1875. (1.A.4)

Then the critical value K∗ is obtained from K∗ − 1 = 4, hence K∗ = 5.
Therefore, to construct the table with the critical values, we find

K′ = arg min
0≤K≤N−1

{
Fb(K,N, 0.5) ≥ 1 − 𝛼

}
, (1.A.5)

and set K∗ = K′ + 1 as the critical value.

1.A.3 FEATURE SELECTION

1 %-------------------------------------------------------------------%
2 function S = sfs_filter(a,laba,d)
3 % --- Sequential Forward Selection - filter approach
4 % a - data set
5 % laba - labels 1,2,3,…,
6 % d - desired number of features
7 % S - indices of the selected features
8 % (in order of selection)
9

10 c = max(laba); % number of classes
11 n = size(a,2); % number of features
12 F = ones(1,n); % features to choose from
13 S = []; % chosen subset (empty)
14

15 % calculate class means
16 x = zeros(c,n);
17 for k = 1:c
18 x(k,:) = mean(a(laba == k,:),1);
19 end
20

21 for i = 1:d
22 Remaining = find(F); % features not selected yet
23 for j = 1:numel(Remaining)
24 Sdash = S;
25 % temporarily add one feature
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26 Sdash = [Sdash Remaining(j)];
27 % calculate the criterion
28 crit(j) = mean(pdist(x(:,Sdash)));
29 end
30 % choose the best feature to add
31 [˜,best] = max(crit);
32 S = [S Remaining(best)]; % add the best feature
33 F(Remaining(best)) = 0; % remove from F
34 end
35 %-------------------------------------------------------------------%


