
CHAPTER 1

Introduction

1.1 OBJECTIVES OF LEGGED LOCOMOTION AND CHALLENGES
IN CONTROLLING DYNAMIC WALKING AND RUNNING

The most effective type of locomotion in rough terrains is legged locomotion. During
the past three decades enormous advances have occurred in robot control and mo-
tion planning of dynamic walking and running locomotion. In particular, hundreds of
walking mechanisms have been built in research laboratories and companies through-
out the world. The desire to study legged locomotion has been motivated by the need
to assist people with disabilities to walk and replace humans in hazardous environ-
ments. Underactuation, impulsive nature of the impact between the lower limbs and
the environment, the existence of foot structure and the large number of degrees of
freedom (DOF) are basic problems in controlling legged robots. Underactuation is
naturally associated with dexterity. For example, headstands are considered dexterous
[1]. In this case, the contact point between the body and the ground is acting as a pivot
without actuation. The nature of the impact between the lower limbs of legged robots
and the environment causes the dynamics of the system to be hybrid and impulsive.
The impact between the foot and the ground is one of the main difficulties in design-
ing control laws for walking and running robots. Unlike robotic manipulators, legged
robots are always free to detach from the walking surface, thereby leading to various
types of motions. Finally, the existence of many degrees of freedom in the mecha-
nism of legged robots causes the coordination of the links to be difficult. As a result of
these latter issues, the design of practical controllers for legged robots remains to be
a challenging problem. Also, these features complicate the application of traditional
stability margins. Consequently, the major issues in the control of dynamic walking
and running are as follows:

1. Limb coordination. Legged robots are high degree of freedom mechanisms,
and consequently, coordination of their links to achieve dynamic walking and
running locomotion is complex.
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2 INTRODUCTION

2. Hybrid nature of locomotion due to presence of impact and liftoff. The presence
of impact, foot touchdown, and liftoff leads to models with impulse effects and
hybrid systems consisting of multiple continuous and discrete phases. In par-
ticular, mathematical models describing the evolution of legged robots during
walking and running include both discrete and continuous phenomena. Instan-
taneous discrete phases arise when feet impact the ground or feet liftoff the
ground, whereas ordinary differential equations based on classical Lagrangian
mechanics describe the evolution of legged robots during continuous phases of
locomotion.

3. Underactuation. During certain phases of walking and running such as single
support (one leg on the ground) in walking and flight (no leg on the ground) in
running, legged robots have fewer actuators than degrees of freedom.

4. Overactuation. During double support phase of bipedal walking (both legs on
the ground), biped robots have fewer degrees of freedom than actuators. Due
to overactuation, the control input corresponding to a specific trajectory in the
state space is not unique.

5. Inability to apply the Zero Moment Point criterion. Most past work in the
literature of legged robots emphasizes the quasi-static stability criteria and
flat-footed walking based on the Zero Moment Point (ZMP) [2–16] and the Foot
Rotation Indicator (FRI) point [17]. The ZMP is defined as the point on the
ground where the net moment generated from ground reaction forces has zero
moment about two axes that lie in the plane of ground [3]. The ZMP is contained
in the robot’s support polygon, where the support polygon is defined as the
convex hull formed by all contact points with the ground. The ZMP criterion
states that when the ZMP is contained within the interior of the support polygon,
the robot is stable so that it will not topple. Thus, in this kind of stability, as long
as the ZMP lies strictly inside the support polygon of the foot the trajectories
are feasible. If the ZMP lies on the edge of the support polygon, then the
trajectories may not be feasible. The center of pressure (COP) is a standard
notion in mechanics which was renamed as the ZMP by Vukobratovic [3]. The
FRI point is a concept defined when the foot is in rotation with respect to the
ground [17]. The FRI is the point on the ground where the net ground reaction
force would have to act to keep the foot stationary. Thus, if FRI is within the
convex hull of the stance foot, the robot can walk and it does not roll over its
extremities, such as the heel or the toe. This type of walking is called as fully
actuated walking. If the FRI is not in the projection of the foot on the ground,
the stance foot rotates about the extremities. Such an event is also known as
underactuated walking. As long as the foot does not rotate about its extremities,
the ZMP, COP, and FRI points are equivalent [15] (see Fig. 1.1). In the literature
of legged locomotion, a statically stable gait is a periodic locomotion in which
the robot’s center of mass (COM) does not leave the support polygon. A quasi-
statically stable gait is a periodic locomotion in which the COP of the robot
is within the interior of the support polygon. Moreover, a dynamically stable
gait is a periodic locomotion where the robot’s COP is on the boundary of
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Figure 1.1 Two planar bipedal models to compare the COP, ZMP, and FRI points. The FRI
point is a point on the ground contact surface, within or outside the convex hull of the foot
support area, at which the resultant moment of the force/torque impressed on the foot is normal
to the surface [17]. In the left figure, the foot does not rotate about its extremities, thus, the
ZMP, COP, and FRI points are equivalent. At the right figure, the foot is starting to rotate since
the FRI point is outside the convex hull of the stance foot. We note that the COP is at the tip of
the stance foot about which the foot rotates.

the support polygon for at least part of the walking cycle [18]. Thus, during
dynamic walking and running cycles, the location of the robot’s COP is on the
boundary of the support polygon and, as a result, this will prohibit the use of
the ZMP criterion. To make this notion more precise, the ZMP criterion is a
sufficient and necessary condition for the stance foot not to rotate. However,
this does not imply that the walking motion is asymptotically stable in the sense
of Lyapunov [18, Chapter 11].

6. Lack of algorithms to achieve feasible period-one orbits and limit cycles. The
main problem in control of legged locomotion is how to design a feedback
law that guarantees the existence of a stable limit cycle for the closed-loop
system. Underactuation and unilateral constraints must be included in order to
design a feasible periodic orbit for legged locomotion. Unilateral constraints
are constraints on the state and control inputs of the mechanical system that
represent feasible contact conditions between the leg ends and the ground.
In particular, leg ends, whether they are terminated with feet or points, are
not attached to the ground. Hence, the ground reaction forces must lie in the
friction cone to prevent slippage and foot liftoff. Thus, normal forces at the leg
ends can only act in one direction, and are unilateral. In addition, if the foot
is to remain flat on the ground and not rotate about its extremities, then the
FRI must be between the heel and toe, a condition that can be expressed as a
pair of unilateral constraints. These facts combined with underactuation during
the single support and flight phases complicate the design of motion planning
algorithms to generate feasible periodic locomotion.
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7. Conservation of angular momentum about the robot’s COM during flight
phases. During flight phases of running, conservation of angular momentum
about the robot’s COM is a nonintegrable Pfaffian constraint which compli-
cates the path planning and control of the robot’s configuration during landing
(flight to stance phase).

1.2 LITERATURE OVERVIEW

1.2.1 Tracking of Time Trajectories

Most existing control algorithms in the literature of legged robots are time-dependent
approaches based on tracking of predetermined time trajectories generated by the
ZMP criterion, inverted pendulum model and nonlinear oscillators as central pattern
generators of the spinal cord. The ZMP criterion [2–16] has been used for trajectory
tracking in ASIMO [2] and WABIAN [5, 6]. The Linear Inverted Pendulum Model
(LIPM) [19, 20] and ZMP criterion-based approaches for stable walking reference
generation have been reported in the literature. In these techniques, generally, the
ZMP reference during a stepping motion is kept fixed in the middle of the supporting
foot. Erbatur and Kurt [9] proposed a reference generation algorithm based on the
LIPM and moving support foot ZMP. In addition, they made use of a simple inverse
kinematics-based joint space controller to test the reference trajectory for simulation
of a 3D, 12-DOF biped robot model. By allowing a variation of ZMP over the convex
hull of foot polygon, Bum-Joo et al. [10] proposed an algorithm to modify the walk-
ing period and the step length in both the sagittal and lateral planes of the humanoid
robot HanSaRam-VII. Motoi et al. [11] presented a real-time gait planning algorithm
based on ZMP for pushing motion of humanoid robots to deal with an object with
unknown mass. Kajita et al. [12] presented a ZMP-based running pattern generation
algorithm for running of the humanoid robot HRP-2LR. ZMP-based online jumping
pattern generation for running of a monopedal robot has also been reported in Ref.
[13]. Sato et al. [14] proposed walking trajectory planning on stairs for biped robots
using the method of virtual slope and the ZMP criterion. Sardain and Bessonnet [15]
proved the coincidence of COP and ZMP and they examined related control aspects.
In this latter reference, the virtual COP–ZMP was also defined to extend the concept
for walking on uneven terrain. Ref. [21] approximated the biped model as an inverted
pendulum and made use of trajectory tracking to control dynamic walking locomo-
tion in Biper-3. Katoh and Mori used PID controllers to track reference trajectories
generated by a van der Pol oscillator in the control of BIPMAN [22]. To control
walking in Kenkyaku, Furusho and Masubuchi applied PID controllers for tracking
joint reference trajectories [23]. Furusho and Sano also applied a decoupled control
approach for control of motions in the frontal and sagittal planes during walking of
the three-dimensional bipedal prototype BLR-G2 [24, 25]. PID controllers were em-
ployed to track the time trajectories generated by a length-varying inverted pendulum
during walking of Meltran II by Kajita et al. [26, 27]. In these latter references, to
maintain the biped’s COM at a constant height, the pendulum’s length is assumed to
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vary in a proper manner. In Ref. [28], PID control was also used to track predeter-
mined trajectories to improve the stability behavior. A computed torque method was
used to control a planar, 5-DOF bipedal robot in Ref. [29]. The performance of three
control techniques including PID, computed torque, and sliding mode control in the
tracking of joint trajectories during walking by a planar, 5-DOF biped was compared
by Raibert et al. [30]. Tracking of time trajectories, based on computed torque with
gravity compensation and a length-varying inverted pendulum model, has also been
applied during walking by a three-dimensional bipedal robot in Refs. [8, 31, 32]. Tra-
jectories generated by an inverted pendulum was also used by Kajita et al., to control
walking of HRP-2 [33, 34].

The ZMP criterion has become a very powerful tool for trajectory generation in
walking of legged robots. However, it needs a stiff joint control of the prerecorded tra-
jectories that leads to poor robustness in unknown rough terrains whereas humans and
animals show exceptional robustness when walking on irregular terrains. It is well
known in biology that there are Central Pattern Generators (CPG) in spinal cord
coupling with the musculoskeletal system [35–37]. The CPG and feedback networks
can coordinate the body links of the vertebrates during locomotion. There are several
mathematical models that have been proposed for a CPG. Among them, Matsuoka
[38–41] has studied an approach in which a CPG is modeled by a Neural Oscilla-
tor consisting of two mutually inhibiting neurons. Each neuron is represented by a
nonlinear differential equation. Matsuoka’s approach has been used by Taga [36, 37]
and Miyakoshi et al. [42] for biped robots. Kimura has also used this approach at
the hip joints of quadruped robots [43, 44]. Ref. [45] presented a hybrid CPG–ZMP
controller for the real-time balance of a simulated flexible spine humanoid robot. The
CPG component of the controller allows the mechanical spine and feet to exhibit
rhythmic motions using two control parameters. By monitoring the measured ZMP
location, the control scheme modulates the neural activity of the CPG to allow the
robot to maintain balance on the sagittal and frontal planes in real time.

1.2.2 Poincaré Return Map and Hybrid Zero Dynamics

As stated in Section 1.1, the main problem in controlling legged locomotion is how
to design a controller that guarantees the existence of an asymptotically stable limit
cycle for the closed-loop mechanical system. A classical technique for analyzing
stability of periodic orbits for time-invariant dynamical systems described by or-
dinary differential equations is the method of Poincaré sections. This method es-
tablishes an equivalence between the stability analysis of the periodic orbit for an
nth-order continuous-time system and that of the corresponding equilibrium point
for an (n − 1)th-order discrete-time system. Grizzle et al. [46] extended the method
of Poincaré sections to systems with impulse effects. A system with impulse effects
consists of a continuous phase described by an ordinary differential equation and a
discrete phase described by an instantaneous reinitialization rule for the differential
equation. To simplify the application of the Poincaré sections method in the design
of time-invariant controllers for walking by an underactuated three-link biped robot
and instantaneous double support phase, Grizzle et al. [46] created zero dynamics
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manifolds that are forward invariant under the flow of the continuous phase of walk-
ing (i.e., single support phase). However, since the zero dynamics manifolds are not
invariant under the flow of the discrete phase (i.e., impact model), the approach of
Ref. [46] resulted in a restricted Poincaré return map (i.e., the Poincaré return map
restricted to the zero dynamics manifolds) that cannot be expressed in a closed-form.
The outputs in Ref. [46], corresponding to the zero dynamics manifolds, were se-
lected as holonomic functions referred to as virtual constraints. Virtual constraints
are a set of holonomic output functions defined on the configuration space of the me-
chanical system. They are forced to be zero by within-stride feedback laws to reduce
the dimension of the Poincaré return map and to coordinate the links of biped robots
during walking [47]. The method of virtual constraints for designing time-invariant
controllers in walking of planar biped robots with one degree of underactuation, point
feet and instantaneous double support has been studied in Refs. [18, Chapter 6, 46–
52]. Westervelt et al. [52] created virtual constraints to ensure that the corresponding
zero dynamics manifold is hybrid invariant under the closed-loop hybrid model of
walking and introduced the notion of hybrid zero dynamics (HZD). The zero dy-
namics manifolds are said to be hybrid invariant if they are both forward invariant
(i.e., invariant under the flow of the continuous phase) and impact invariant (i.e.,
invariant under the flow of the discrete phase). During walking of a planar biped
robot with an underactuated cyclic variable [1, 53], HZD results in a two-dimensional
zero dynamics manifold, and consequently, a one-dimensional restricted Poincaré
return map that can be expressed in closed form. This approach was also extended by
Choi and Grizzle [54] for creating a two-dimensional zero dynamics manifold during
walking of a planar fully actuated biped robot in fully actuated and underactuated
phases. To reduce the dimension of the full-order hybrid model of running, which
in turn simplifies the stabilization problem of the desired orbit, Ref. [55] proposed
that the configuration of the mechanical system should be transferred from a speci-
fied initial pose (immediately after the takeoff) to a specified final pose (immediately
before the landing) during flight phases. This problem is referred to as landing in a
fixed configuration or configuration determinism at landing [18, p. 252]. By using
the virtual constraints approach and the configuration determinism at landing, Ref.
[55] obtained a closed-form expression for the one-dimensional restricted Poincaré
return map of running by the five-link, four-actuator planar bipedal robot, RABBIT
[47]. Moreover, to ensure that the stance phase zero dynamics manifold is hybrid
invariant under the closed-loop hybrid model of running, an additional constraint was
imposed on the vector of generalized velocities at the end of flight phases. To satisfy
the configuration determinism at landing and hybrid invariance, Ref. [55] utilized the
approach of parameterized HZD. In particular, using the Implicit Function Theorem
and a numerical nonlinear optimization problem with an equality constraint, the pa-
rameters of the virtual constraints of the flight phase were updated in a step-by-step
fashion during the discrete transition from stance to flight (i.e., takeoff). However,
the stance phase controller was assumed to be fixed. For running of RABBIT, an
alternative parameterized control law was proposed by Morris et al. [56]. However,
their approach did not create HZD. The use of event-based control laws to update the
parameters of time-invariant controllers for stabilization of periodic orbits in systems
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with impulse effects was presented in Refs. [57–59]. When the amount of underac-
tuation during locomotion of biped robots is increased, it becomes difficult to create
hybrid invariant manifolds. Morris and Grizzle [60] proposed a method to generate
an open-loop augmented system with impulse effects, a new holonomic output func-
tion for the resultant system and an event-based update law for the parameters of
the output such that the zero dynamics manifold associated with this output is hybrid
invariant under the closed-loop augmented system. This latter approach has been used
in design of time-invariant controllers for walking of a 3D biped robot in Refs. [61,
62] and also for walking and running of planar bipedal robots with springs, MABEL
[63–65] and ATRIAS [66]. Hürmüzlü also applied the method of Poincaré sections
to a planar, five-link bipedal robot and imposed a mix of holonomic and nonholo-
nomic constraints on the mechanical system to obtain a closed-form expression for
the robot’s trajectory [67].

1.3 THE OBJECTIVE OF THE BOOK

In this book we provide a comprehensive overview of hybrid models describing the
evolution of planar and 3D legged robots during dynamical legged locomotion and
also propose hybrid control schemes to asymptotically stabilize desired periodic orbits
for the closed-loop systems. The topics include (i) hybrid systems, (ii) systems with
impulse effects, (iii) offline and online motion planning algorithms to generate de-
sired feasible periodic walking and running motions, (iv) two-level control schemes,
including within-stride feedback laws to reduce the dimension of the hybrid systems,
(v) continuous-time update laws to minimize a general cost function online, and
(vi) event-based update laws to asymptotically stabilize the desired periodic orbits.
This book also provides a comprehensive presentation of issues and challenges faced
by researchers and practicing engineers in motion planning and hybrid control of dy-
namical legged locomotion. Furthermore, we describe the current state of the art and
future directions across all domains of dynamical legged locomotion so that readers
can extend the proposed motion planning algorithms and hybrid control methodolo-
gies to other planar and 3D legged robots. The main objectives of this book are as
follows.

1.3.1 Hybrid Zero Dynamics in Walking with Double Support Phase

There has been little attention given to control of biped robots during the double
support phase with unilateral constraints. Such constraints present challenges for the
design of controllers. The objective of Chapter 3 is to develop an analytical approach
for designing a continuous feedback law that realizes a desired period-one trajectory
as an asymptotically stable orbit for a planar biped robot. The robot is assumed to be
a five-link, four-actuator planar mechanism in the sagittal plane with point feet. The
fundamental assumption is that the double support phase is not instantaneous. Hence,
bipedal walking can be represented by a hybrid model with two continuous phases,
including a single support phase and a double support phase, and discrete transitions
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between the continuous phases. In the single support phase, the mechanical system
has one degree of underactuation, whereas it is overactuated in the double support
phase. Chapter 3 shows how to design a continuous time-invariant feedback law that
asymptotically stabilizes a feasible periodic trajectory using an extension of HZD for
a hybrid model of walking [68, 69]. The main contribution is to develop a continuous
time-invariant control law for walking of a planar biped robot during the double
support phase. Since the mechanical system in the double support phase has three
degrees of freedom and four actuators, a constrained dynamics approach [70, p.
157] is used to describe the reduced-order dynamics of the system. Then, two virtual
constraints are proposed as holonomic outputs for the constrained system and an
output zeroing problem with two control inputs is solved. This results in a nontrivial
two-dimensional zero dynamics manifold corresponding to the virtual constraints
in the state manifold of the constrained system. Moreover, the corresponding zero
dynamics has two control inputs that are not employed for output zeroing. Instead, they
are used to satisfy the unilateral constraints. Furthermore, these inputs are obtained
such that the control has minimum norm on the desired periodic trajectory. It can
be shown that the constrained dynamics of the double support phase is completely
feedback linearizable on an open subset of the state manifold. However, since our
objective is to design a continuous time-invariant controller based on nontrivial HZD,
in contrast to Ref. [71] we do not use input-state linearization nor a discontinuous time
optimal control for tracking trajectories. An analogous approach is used in Refs. [54,
72] for creating a two-dimensional zero dynamics manifold in the state space of a fully
actuated phase of walking where the fully actuated dynamics is completely feedback
linearizable. The control strategy is presented at the following two levels. At the first
level, we employ within-stride controllers including single and double support phase
controllers. These are continuous time-invariant and parameterized feedback laws that
create a family of two-dimensional finite-time attractive and invariant submanifolds
on which the dynamics of the mechanical system is restricted. At the second level, the
parameters of the within-stride controllers are updated at the end of the single support
phase (in a stride-to-stride manner) by an event-based update law to achieve hybrid
invariance and stabilization. As a consequence, the stability properties of the desired
periodic orbit can be analyzed using a one-dimensional restricted Poincaré return map.

1.3.2 Hybrid Zero Dynamics in Running with an Online Motion
Planning Algorithm

Chapter 4 presents an analytical approach for designing a two-level control law to
asymptotically stabilize a desired period-one orbit during running by a planar monope-
dal robot. The monopedal robot is a three-link, two-actuator planar mechanism in the
sagittal plane with point foot. The desired periodic orbit is generated by the method
developed in Ref. [73]. It is assumed that the model of monopedal running can be
expressed by a hybrid system with two continuous phases, including stance phase and
flight phase, and discrete transitions between the continuous phases, including takeoff
and landing (impact). The configuration of the mechanical system is specified by the
absolute orientation with respect to an inertial world frame and by the joint angles
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determining the shape of the robot. During the flight phase, the angular momentum of
the mechanical system about its COM is conserved. To reduce the dimension of the
full-order hybrid model of running, which in turn simplifies the stabilization problem
of the desired orbit, as proposed in Ref. [55], the configuration determinism at landing
should be solved. However, the flight time and angular momentum about the COM
may differ during consecutive steps. Consequently, the reconfiguration problem must
be solved online. A number of control problems for reconfiguration of a planar mul-
tilink robot with zero angular momentum have been considered in the literature, for
example, Refs. [74–78]. For the case that the angular momentum is not necessarily
zero, a method based on the Averaging Theorem [79, Theorem 2.1] was presented in
Ref. [80] such that for any value of the angular momentum, joint motions can reorient
the multilink arbitrarily over an arbitrary time interval. However, when the angular
momentum is not zero, this method cannot be employed online for solving the re-
configuration problem for monopedal running. For this reason, Chapter 4 presents an
online reconfiguration algorithm that solves this problem for given flight times and
angular momenta [81, 82]. The algorithm proposed in Chapter 4 is expressed using
the methodology of reachability and optimal control for time-varying linear systems
with input and state constraints. The main contribution of this chapter is to present an
analytical approach for online generation of twice continuously differentiable (C2)
modified reference trajectories during flight phases of running to satisfy the configura-
tion determinism at landing [81]. Moreover, by relaxing the constraint of Ref. [55] on
the vector of generalized velocities at the end of the flight phases, Chapter 4 presents
a two-level control scheme based on the reconfiguration algorithm to asymptotically
stabilize a desired periodic orbit. In this scheme, within-stride controllers, including
stance and flight phase controllers, are employed at the first level. The stance phase
controller is chosen as a time-invariant and parameterized feedback law to generate
a family of finite-time attractive zero dynamics manifolds. An alternative approach
based on continuous feedback law is employed here to track the modified reference
trajectories generated by the reconfiguration algorithm during the flight phases. To
generate a family of hybrid invariant manifolds, an event-based controller updates the
parameters of the stance phase controller during the transition from flight to stance
(i.e., impact) [81]. Consequently, the stability properties of the desired periodic orbit
can be analyzed and modified by a one-dimensional discrete-time system defined on
the basis of a restricted Poincaré return map.

1.3.3 Online Motion Planning Algorithms for Flight Phases
of Running

Following the results of Chapter 4, to asymptotically stabilize the desired periodic
orbit for the hybrid model of running using a one-dimensional restricted Poincaré
return map and HZD approach, the configuration of the mechanical system should be
transferred from a predetermined initial pose (immediately after takeoff) to a prede-
termined final pose (immediately before landing) during the flight phases of running.
The objective of Chapter 5 is to present modified online motion planning algorithms
for generation of continuous (C0) and continuously differentiable (C1) open-loop
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trajectories in the body configuration space of the mechanical system such that the
reconfiguration problem is solved [82, 83]. The algorithms presented in Chapter 5
are extensions of that presented in Chapter 4. In particular, the generated trajecto-
ries in Chapter 4 were C2 while the reachable sets associated with the algorithms of
Chapter 5 are larger than that of Chapter 4. We address the motion planning problem
for general planar open kinematic chains composed of N ≥ 3 rigid links intercon-
nected with frictionless and rotational joints. The main contribution of Chapter 5 is
to present online motion planning algorithms based on virtual time for generation of
joint motions to satisfy configuration determinism at transitions. In particular, it is
assumed that the time trajectory of a desired joint motion, precomputed offline, solves
the reconfiguration problem. By replacing the time argument of the desired motion
by a strictly increasing function of time called the virtual time, Chapter 5 shows how
to determine continuous and continuously differentiable joint motions in an online
manner during consecutive steps of running so that they solve the reconfiguration
problem.

1.3.4 Hybrid Zero Dynamics in 3D Running

Chapter 6 presents a motion planning algorithm to generate periodic time trajectories
for running by a 3D monopedal robot. In order to obtain a symmetric gait along a
straight line, the overall open-loop model of running can be expressed as a hybrid
system with four continuous phases consisting of two stance phases and two flight
phases and discrete transitions among them (takeoff and impact). The robot is assumed
to be a 3D, three-link, three-actuator, monopedal mechanism with a point foot. During
the stance phases, the robot has three degrees of underactuation, whereas it has six
degrees of underactuation in the flight phases. The motion planning algorithm is
developed on the basis of a finite-dimensional nonlinear optimization problem with
equality and inequality constraints and extends the results of Refs. [73, 84] for planar
bipedal robots. The main objective of Chapter 6 is to develop time-invariant feedback
scheme to exponentially stabilize a desired periodic orbit generated by the motion
planning algorithm for the hybrid model of running.

Chapter 6 shows how to create hybrid invariant manifolds during 3D running [85].
By assuming that the control inputs of the mechanical system have discontinuities
during discrete transitions between continuous phases, the takeoff switching hyper-
surface can be expressed as a zero level set of a scalar holonomic function. In other
words, takeoff occurs when a scalar quantity, a strictly increasing function of time
on the desired gait, passes through a threshold value. The virtual constraints during
stance phases are defined as the summation of two terms including a nominal holo-
nomic output function vanishing on the periodic orbit and an additive parameterized
Bézier polynomial, both in terms of the latter strictly increasing scalar. By properties
of Bézier polynomials, an update law for the parameters of the stance phase virtual
constraints is developed, which in turn results in a common intersection of the parame-
terized stance phase zero dynamics manifolds and the takeoff switching hypersurface.
By this approach, creation of hybrid invariance can be easily achieved by updating the
other parameters of the Bézier polynomial. Consequently, a parameterized restricted
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Poincaré return map can be defined on the common intersection for studying the
stabilization problem. Thus, the overall feedback scheme can be considered at two
levels. At the first level, within-stride controllers including stance and flight phase
controllers, which are continuous time-invariant and parameterized feedback laws,
are employed to create a family of attractive zero dynamics manifolds in each of the
continuous phases. At the second level, the parameters of the within-stride controllers
are updated by event-based update laws during discrete transitions between continu-
ous phases to achieve hybrid invariance and stabilization. By this means, the stability
analysis of the periodic orbit for the full-order hybrid system can be treated in terms
of a reduced-order hybrid system with a five-dimensional Poincaré return map.

1.3.5 Hybrid Zero Dynamics in Walking with Passive Knees

In Chapter 7, a motion planning algorithm to generate time trajectories of a periodic
walking motion by a five-link, two-actuator planar bipedal robot is presented. In order
to reduce the number of actuated joints for walking on a flat ground and restore the
walking motion in the disabled, it is assumed that the robot has passive point feet and
unactuated knee joints. In other words, only the hip joints of the robot are assumed
to be actuated. The motion planning algorithm is developed on the basis of a finite-
dimensional nonlinear optimization problem with equality and inequality constraints.
The equality constraints are necessary and sufficient conditions by which the impul-
sive model of walking has a period-one orbit. Whereas the inequality constraints are
introduced to guarantee (i) the feasibility of the periodic motion and (ii) capability of
applying the proposed two-level control scheme for stabilization of the orbit. The main
objective of Chapter 7 is to present a time-invariant two-level feedback law based on
the notion of virtual constraints and HZD to exponentially stabilize a desired periodic
motion generated by the motion planning algorithm [86]. The studied mechanical
system has three degrees of underactuation during single support. Chapter 7 presents
a control methodology for creation of hybrid invariant manifolds and stabilization of
a desired periodic orbit for the impulsive model of walking. In particular, for a given
integer number M ≥ 2, we introduce M − 1 within-stride switching hypersurfaces
and thereby split the single support phase into M within-stride phases. The within-
stride switching hypersurfaces are defined as level sets of a scaler holonomic quantity
that is strictly increasing function of time on the desired walking motion. To stabilize
the desired orbit, the overall controller is chosen as a two-level feedback law. At the
first level, during a within-stride phase, a parameterized holonomic output function is
defined for the dynamical system and imposed to be zero by using a continuous-time
feedback law. The output function is expressed as the difference between the actual
values of the angle of hip joints and their desired evolutions, in terms of the latter in-
creasing holonomic quantity. At the second level, the parameters of continuous-time
feedback laws are updated during within-stride transitions by event-based update
laws. The purpose of updating the parameters is (i) achieving hybrid invariance, (ii)
continuity of continuous-time feedback laws during within-stride transitions, and (iii)
stabilization of the desired orbit. From the construction procedure of the parameter-
ized output functions and event-based update laws, it is shown that the intersections
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of the corresponding zero dynamics manifolds and within-stride switching hyper-
surfaces are independent of the parameters. Consequently, by choosing one of these
common intersections as the Poincaré section, stabilization can be addressed on the
basis of a five-dimensional restricted Poincaré return map.

1.3.6 Hybrid Zero Dynamics with Continuous-Time Update Laws

To improve the convergence rate, the idea of updating the parameters of time-invariant
stabilizing controllers by event-based update laws has been described in Refs. [57–
59]. The contribution of Chapter 8 is to develop a method for designing a class of
continuous-time update laws to update the parameters of stabilizing controllers during
continuous phases of locomotion such that (i) a general cost function (such as the
energy of the control input over single support) can be minimized in an online manner,
and (ii) the exponential stability behavior of the limit cycle for the closed-loop system
is not affected [87]. In addition, Chapter 8 introduces a class of continuous-time update
laws with radial basis step length to minimize a desired cost function in terms of the
controller parameters and initial states.


