
Gaming Techniques
and Tools

Part I
CO

PYRIG
HTED

 M
ATERIA

L

Toward the Adaptive
Generation of Bespoke
Game Content
Cameron Browne , Simon Colton , Michael Cook ,
 Jeremy Gow , and Robin Baumgarten
Computational Creativity Group, Department of Computing, Imperial
College , London , United Kingdom

 In this chapter, we explore methods for automatically generating game content—and

games themselves—adapted to individual players in order to improve their playing

experience or achieve a desired effect. This goes beyond notions of mere replay-

ability and involves modeling player needs to maximize their enjoyment, involve-

ment, and interest in the game being played. We identify three main aspects of this

process: generation of new content and rule sets, measurement of this content andt
the player, and adaptation of the game to change player experience. This process

forms a feedback loop of constant refi nement, as games are continually improved

while being played. Framed within this methodology, we present an overview of our

recent and ongoing research in this area. This is illustrated by a number of case

studies that demonstrate these ideas in action over a variety of game types, including

3D action games, arcade games, platformers, board games, puzzles, and open-world

games. We draw together some of the lessons learned from these projects to comment

on the diffi culties, the benefi ts, and the potential for personalized gaming via adap-

tive game design.

 1.1 INTRODUCTION

 Personalization of games for individual players is seen as a signifi cant future market-

ing factor for games and is currently a major driving force for improved game design,

 Chapter 1

Handbook of Digital Games, First Edition. Edited by Marios C. Angelides and Harry Agius.

© 2014 the Institute of Electrical and Electronics Engineers, Inc. Published 2014 by

John Wiley & Sons, Inc.

17

18 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

which will ultimately lead to better games and happier and more engaged, and

entertained customers. Within this scope, there is a particular nirvana wherein games

automatically adapt before, during, and after being played to take into account the

style, experience, and personality of each player. Of course, games have always had

a simplistic adaptive element, whereby stronger players progress to play more dif-

fi cult levels to keep them interested. However, this type of adaptation only takes into

account their skill level at that particular game and ignores other information such

as their likes, dislikes, temperament, current mood, and overall ability. Such informa-

tion can in principle be gathered through game play, sensors, surveys, and other

routes and will be used in adaptive gaming technologies of the future to generate

bespoke games that truly change to fi t an individual player, greatly enhancing their

playing experience.

The automatic adaptation of games to players is also a major force for applied

artifi cial intelligence (AI) research. In particular, as a research group, in addition to

the long-term goal of improved games, we are also interested in studying games

from the perspective of the subfi eld of AI known as computational creativity research

[17] . In this area, we study how to engineer software which can take on some of the

creative responsibility in arts and science projects. In this context, games, video

games in particular, can be seen as a “killer domain” for creativity research. This is

largely because generating a game requires the generation of all the types of artifact

we usually produce individually, including audio (sound effects, music), graphics

(characters, backdrops), text (dialogue, plotlines), and concepts (puzzles, rule sets,

interaction schema, game mechanics). However, there are many other advantages to

working with games as a medium within which to study computational creativity.

These include (a) the fact that the output is entirely digital and the audiences are

entirely online, hence requiring no exhibitions, concerts, readings, publications, or

demonstrations in order to get culturally relevant feedback; (b) a general acceptance

of automated processes as being valuable, which is not always true in more tradi-

tional artistic circles; (c) a requirement to model and ultimately alter both positive

and negative emotions; (d) an interesting balance between the entertainment value

and the intellectual value of games; and (e) explicit requirements to incorporate user

engagement and interaction in the generated artifacts.

As a group of computational creativity researchers and avid game players, over

the last fi ve years, we have eagerly investigated the potential for automating pro-

cesses related to game design, with the specifi c long-term goal of adaptive game

generation in mind. We see adaptive systems in games—also known as AI directors

or game masters—as a form of procedural content generation which aims to enhance

the players ’ gaming experience by delivering personalized game content. When

thinking about such adaptive systems, it helps to consider various aspects such as

the type of player data , the types of decisions to be made about game content (the
content output space), how the latter is computed from the former (the adaptive
mechanism), and the desired effect on player experience (the adaptation require-
ments). We have studied the potential for adaptive games with a shotgun approach,

that is, numerous projects involving games of various genres, which address all the

above aspects. We present here an overview of some of these projects in order to

Methodology 19

highlight the lessons learned, diffi culties encountered, and huge potential for adap-

tive game technology to both help produce next-generation games and stimulate

research in computational creativity.

In Section 1.2 , we describe an overall methodology within which content gen-

eration for adaptive games can take place. This centers around a cycle of generation,

measurement, and adaptation, and we expand each of these aspects further. With

respect to generation, we place this in a context of search-based procedural content

generation and focus on two types of evolutionary search. With respect to measure-

ment, we split this into measuring the game, measuring the player, and measuring

the adaptations. Finally, we place adaptation into a broader context of improving

player experience and cast it as a machine learning problem. In Section 1.3 , we

describe various projects where we have studied aspects related to automating adap-

tive game design, with respect to the methodology given in Section 1.2 . These

projects cover different genres of games with which we have experimented, includ-

ing 3D action games, platformers, arcade games, board games, puzzles, and open-

world games. In the fi nal section of the chapter, we take an overview of these projects

and draw conclusions about the prospects for personalized gaming through adaptive

game design.

Note that it is beyond the scope of this chapter to cover all the work done in

the area of adaptive content generation, and we only present background material

which is direcly relevant to the projects we describe. Each of those projects is

covered by various of our research papers which we cite in the chapter and which

can be referenced for further literature reviews.

1.2 METHODOLOGY

Given the need for the adaptive generation of bespoke game content, this section

describes how this can be achieved for digital games. We focus on the processes that

we have used for projects ourselves but which have broader application to other

domains. In each case, the process involves three fundamental steps, summarized

below:

1. Generation of new content and rule sets

2. Measurement of the generated content and target players during adaptive t
generation or as part of system design and evaluation

3. Adaptation with the aim of changing a target player ’ s gaming experience

These steps are summarized diagrammatically in Figure 1.1 , where the arrows indi-

cate the order of operation. In the following sections, we consider each of these steps

in detail.

1.2.1 Generation

The fi rst step in the cyclic adaptive process is the generation of novel game content

and game rules. This may be achieved through fully automated means, although a

20 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

signifi cant amount of our research also investigates the use of the computer as a

creative collaborator that assists the designer by taking on some creative responsi-r
bilities. In this section, we describe the generational methods most commonly used

in our work.

1.2.1.1 Procedural Content Generation

The exponential growth of digital games in recent years means that there are now

hundreds of millions of people playing games every day, wanting new and interesting

content [29] . However, the related production costs and requirements for specialized

manual labor to develop content to satisfy this demand have also increased expo-

nentially, and the industry is now facing serious scalability issues. Games are becom-

ing larger and more complex, with virtual worlds that are open, massive, and

ongoing, which puts impossible demands on designers and artists alike and creates

a content creation bottleneck .k
Procedural content generation (PCG)—the automatic creation of content

through algorithmic means—offers a potential solution to this shortfall between

consumer need and industry output and is becoming an increasingly important fi eld

of research for digital game design for both the artistic content of games and for

game play itself. Content in the context of digital games may refer to any of thet
following:

• Rules that govern the gameplay

• Challenges that defi ne initial states posed to players

• Resources that defi ne the game ’ s look, theme, feel, and so on

PCG is a diffi cult task for creative domains such as game design, as the auto-

matically generated content must satisfy the constraints of the designers and artists

as well as the (often poorly defi ned) needs of the end users. However, it offers the

promise of handing at least some of the creative responsibility to the computer, and

we are now seeing an increasing amount of procedurally generated content in com-

mercially released games.

Search-based procedural content generation (SB-PCG) is a particular type of

PCG in which a test function grades the generated content for fi tness and guides the

Figure 1.1 Overview of adaptive game generation process.

Measure

Generate

Adapt
Content

Player

Personality

Behavior

Experience

Methodology 21

search for new content accordingly. As depicted in Figure 1.2 , Togelius et al. [58]

distinguish SB-PCG from other forms of PCG as follows:

1. Search Basedd Content is iteratively generated according to a fi tness func-

tion that guides the search.

2. Constructive Content is directly generated according to certain rules with

strict validation.

3. Generate and Test (G&T) Content is iteratively generated according to

certain rules and fi ltered for fi tness.

SB-PCG is an ideal mechanism for adapting games and game content on-the-fl y, in

response to players ’ needs, as the system can learn and improve its output the more

it is used. See [29] and [58] for further details on PCG and SB-PCG for games. The

two main SB-PCG mechanisms we have used in our projects are evolution and

coevolution, as described below.

1.2.1.2 Evolution

In traditional evolutionary systems, a population of possible solutions to a particular

problem are evaluated for “fi tness” (some numerical value indicating how well

they solve the problem) and recombined to produce hybrid solutions that hopefully

inherit positive traits from the previous population. For a generative task such as

those in procedural content generation, the task at hand is to produce a piece of

content to meet certain quality or player-specifi c targets, and a solution is a piece of

fi nished content that can be evaluated against those targets. The process of iterative

Figure 1.2 Main forms of PCG (from [58]) .

Search based

Constructive

Simple G&T

Initial Rules Construct

Rules Construct Done?
Y

N

Population
Fitness

function
Done?

Y

N

SelectionVariation

Result

22 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

evaluation and recombination is repeated until some stopping condition is met,

which may involve measurements of the content produced.

Evolutionary algorithms are used in a wide variety of applications, including

across the games industry. Evolution is particularly useful where (a) only general

criteria for a solution can be stated—such as Paul Tozour ’ s City Conquest (Intelligencet
Engine Design Systems, forthcoming), which used computational evolution to stress

test the game for balance issues—or (b) the space of possible solutions is so large

that searching it using other methods is too diffi cult—for instance, the Starcraft II
(Blizzard, 2010) community was upset by a genetic algorithm that could optimize

complex build orders and discovered exploits unknown to even the best human

players.

Evolutionary algorithms tend to perform best when the fi tness functions and the

representation of a solution are relatively simple. For larger problems, where solu-

tions may be very complex and fi tness evaluations include many competing estima-

tions of quality, evolutionary algorithms are harder to design optimally and take

longer to produce good solutions. They also lack a guarantee of robustness: Due to

the random nature of the generation and recombination processes, even the best

designed evolutionary systems may produce bad or severely suboptimal solutions.

This issue is one reason that evolutionary algorithms are more commonly used in

preproduction to generate content that can be curated before inclusion. This problem

can often be mitigated by building additional systems to perform quality checks or

adjust evolutionary parameters, and many applications of content generation come

with the expectation that the system may occasionally produce curios or eccentric

output.

1.2.1.3 Coevolution

Cooperative coevolution (CCE) is a type of evolutionary algorithm that helps solve

larger problems by decomposing them into smaller tasks that can be solved individu-

ally. In their paper proposing the algorithm [47] , Potter and De Jong say that in order

to evolve more complex structures, explicit notions of modularity need to be intro-

duced in order to provide reasonable opportunities for complex solutions to evolve.

These modules are called “species” and are structured as self-contained evolutionary

systems, with a population and a fi tness function of their own.

The difference between a species and an ordinary evolutionary system is that a

fi tness function evaluates a member of its population in the context of the original

design problem. That is, if we have a problem P decomposed into n evolutionary

algorithms P1 , . . . , Pn, in order to evaluate a candidate solution s ∈ population (Pi),

we gather the best known members of populations P1, . . . , Pi−1 , Pi+1 , . . . , Pn and

combine them with s to make a solution to the original problem P. The fi tness func-

tion then evaluates s both on the quality of it as an individual solution and the quality

of its cooperation with the other n − 1 subproblems.

Cooperative coevolution offers many benefi ts when building content creation

tools. Each module can easily encapsulate a particular design task, such as level

design, which helps conceptually separate the different elements of content creation.

Methodology 23

It is also easily amenable to mixed-initiative design, where a human contributes to

the content generation process alongside an AI system. Because fi tness functions

react to the context provided to them by the other species, we can remove a CCE

species and replace it with a static, human-generated piece of content, and the CCE

system will design and adapt its other species to the content provided. For example,

consider a puzzle game designer that conceives of a rule set in one CCE species and

designs a set of levels with another CCE species. In normal execution, the evolution

of the rule set will interact with the evolution of the level design, and over time the

two will cooperate and complement each other. However, we might want to develop

a particular kind of puzzle game. If we replace the rule set species with a static rule

set that represents the mechanics we want to use, the level-designing species will

design levels tailored to the human-designed rule set. This idea has enormous poten-

tial for improvisational game design tools, where software and designer play off one

another ’ s ideas.

Video game design represents a particularly complex problem, being comprised

of many different components (such as levels, mechanics, artwork, narratives, and

music) all of which have different estimations for their fi tness and depend on each

other for their defi nitions of quality; a “good” level for a set of mechanics like those

in Pac-Man (Namco, 1980) is very different from a good level for a game such as

Doom (id Software, 1993). Standard evolutionary systems would need to take into

account a vast array of quality estimations that would change while the evolution

was still taking place, but CCE allows us to subdivide and specialize these design

tasks to better deal with each individually. For a description of a system employing

CCE for the procedural generation of content, see Section 1.3.3 .

1.2.2 Measurement

The second step in the adaptive process is the measurement of the generated content.

This involves:

1. Measuring the quality of the generated artifacts (game content and rules)

according to specifi ed criteria or desired aims. This can be achieved, for

instance, through automated self-play.

2. Measuring how the player plays the game, taking external observations

during play, and measuring other contextual factors such as personality or

stored profi les.

Specifi c applications have often only used one approach, measuring the content

or the player. But, in general, both can contribute to bespoke game design. Measure-r
ment can play three distinct roles in adaptive game generation systems as follows:

Adaptive Measurement The system measures aspects of the generated content t
and target player to deliver content adapted to that player.

Formative Measurement The system designers test the quality of generated t
content and player ’ s reaction to content and/or adaptation in order to inform

24 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

the design of the system. For example, this can include gathering player

feedback to train a learning algorithm.

Summative Measurement The working system is evaluated in terms of the t
quality of generated content and a player ’ s reaction to content and/or

adaptation.

Adaptive measurement is autonomous, carried out by the bespoke game design

system, whereas formative and summative measurements are human guided. Ind
human-guided measurement, we are often able to exploit information not accessible

to autonomous measurement by the game during normal adaptive play, for instance,

verbal feedback or physiological measurements. However, it is possible for such data

to be measured autonomously during play by a suffi ciently sophisticated system. In

the sections below, we consider some different approaches to measuring content and

players.

1.2.2.1 Measuring the Game

We understand the quality of a game to mean the potential for the game to engage
players: the capacity of that game to interest players and to keep them in that state.

Gauging the quality of a generated game or piece of game content can be diffi cult,

as the notion of quality can depend on the context and vary from player to player.

One approach is to defi ne quality metrics which provide a computational assess-

ment of an aspect of game quality. Such metrics can be used to automatically guide

the search during SB-PCG but can also be useful during system design and evalua-

tion. An alternative is to evaluate game quality by play testing , where explicit feed-

back is gathered from players. This is typically used as formative or summative

measurement but could also form part of the adaptive process in systems which

directly solicit players for feedback to guide adaptation.

Most research into game quality metrics has been done in the context of board

games, where games of any signifi cant depth tend to involve mechanisms and strate-

gies that emerge during play and which may not be obvious from their rules alone.

For this reason, it is generally more reliable to measure board games for quality via

the playing of games, rather than from the rules alone. This can be achieved by

conducting series of self-play trials between artifi cial players. Many of the metrics

can, in principle, be generalized to evaluate the quality of video games. AI players,

called bots , can be used to automatically test generated video game content and

gather metric data, although for more complex games, creating an AI bot may be a

very time-consuming task.

Browne [9] describes 57 aesthetic criteria for empirically measuring the quality

of board games, mostly from trends observed during self-play trials. These include

interpretations of the following four key features of abstract games, outlined by

Thompson [57] :

Depth The capacity for a game to be played at different levels of skill and to

reward continued study

Clarity The ease with which players can understand the rules and plan moves

Methodology 25

Drama The potential for players to recover from trailing positions to eventu-

ally win the game

Decisiveness The ease with which players can close the game out once a

winner is certain

Other useful metrics include uncertainty [34] , balance [31] , and game length
[1] . Game length has proven to be a particularly effective indicator of fl awed games,

as it quickly detects trivial games that end within a few moves, as well as strategi-

cally fl awed games in which players can defend indefi nitely with optimal play, and

logically fl awed games in which the goals simply cannot be reached using the speci-

fi ed rules. Player testing with people is preferable if an appropriate quality metric

is diffi cult or impractical to implement. In such scenarios, player testing can be more

reliable, as the player is the end user that the game design process is ultimately trying

to satisfy. Further details of measuring player experience are described in Section

1.2.2.4 .

1.2.2.2 Autonomous Player Measurement

To deliver bespoke game content, generation methods need to be based on data about

a particular target player or players. This player data can be collected before play,

to generate new content for the next game, or during play itself, in order to adapt

upcoming content in the current game. Data on multiple players can be collected in

order to generate common content for that group, either because they are playing a

multiplayer game or because they are being collectively targeted with the same

content, for example, as members of the same age group.

The player data most easily gathered by digital games are game play logs , which

contain a record of in-game states and events, and player actions, from which

summary player features may be computed, for instance, as in [7, 28, 52] . However,

other forms of player data can be gathered, such as demographic data, motion,

posture, physiological signals [41] , visual appearance [3] , retail activity, social media

activity [49] , and direct player feedback on experience. These data sources are not

always available, but as mainstream gaming hardware develops (e.g., in the motion-

aware Wii and Kinect consoles) and social media and gaming become more inte-

grated, there is a growing commercial interest in exploiting these resources, as in [2] .

Note that even when the available data are restricted, a content generation algorithm

can be still be informed by other kinds of formative player measurement during

design or training, for example, feedback on player experience during testing [53, 63] .

Player input data are often reduced to a set of categorical and/or scalar features.

This provides a simplifi ed input to the subsequent content generation stage and

allows the use of standard machine learning techniques. Given the range of possible

player inputs, this feature data can measure any aspect of the player, his or her activ-

ity, and the context of play. As examples, we can take measurements of current situ-

ational intensity—as in Left 4 Dead (Valve, 2008) [7] —weapon use [28] , summaryd
statistics for a individual combat [25] , a single level [52] , or an entire video game

[23] . An alternative to scalar and categorical features is to use structured player data,

such as paths, sequences, trees, or graphs. To date, structured player data have been

26 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

relatively unexplored, although there has been a growing interest in the research

literature [22, 27, 49] .

One consideration when measuring in-game player behavior is whether the

game play is uniform or divided into several distinct modes of play. Much work on

adaptive content generation has looked at games where the player is engaged in

roughly the same continuous activity, for example, simple platform games. For such

uniform game play, player features can be given a consistent interpretation. In other

games, game play is structured as a series of distinct and possibly overlapping activi-

ties. Different player features, such as the rate of weapon fi re, can have very different

interpretations between activities. For example, Pac-Man (Namco, 1980) involves a

ghost avoidance and a ghost-hunting phase, and a “distance-to-ghosts” feature has

a different meaning in each mode. Comparing such features across players may not

give us a clear picture of individual differences unless the activity context is taken

into account. One approach is to segment game play logs into distinct activity types

and measure these separately [25] .

1.2.2.3 Player Models

Player input data can be passed directly to a content generation system or instead

be fi rst converted to a more abstract player model , that is, a representation of thel
player designed to be more appropriate for subsequent content generation. In general,

any representation (e.g., fi rst-order logic) that raw player data are converted to in a

preprocessing step could be considered a player model. Typically, this will be a

feature-based model, which describes players in terms of a small number of features

representing signifi cant characteristics.

A feature-based player model consists of scalar traits and categorical types ,

following the terminology of personality psychology. A type-only model is known

as a player typology [4, 5] . Trait-based models are regarded as a more accurate

representation of individual differences than discrete typologies, although in some

cases a typology may be more convenient to work with for a game designer or

content generation system.

Providing that they capture the relevant aspects of the player data with respect

to the game, player models can provide a simpler and more convenient representation

of the player, considerably reducing the dimensionality of the input data for subse-

quent adaptive content generation. Ideally, translating player input to a model will

highlight relevant variations between players and fi lter out irrelevant data. If machine

learning is used to train the content generation system, working with low-dimen-

sional data can increase learning performance. Another advantage of player models

is that they provide a simple representation of the player that can, in some cases, be

transferred between gaming contexts, presented to designers and players, or reasoned

about by AI agents.

To employ a player model, one must fi rst be created or selected from a set of

existing models. Second, a mapping from the player input data to the model must

be defi ned. Finally, the use of the model will need to be evaluated in the current

gaming context. Using the wrong player model may lead to useful information about

Methodology 27

the player being discarded, which will harm performance. Hence questions about

the accurate representation of players and the demonstrable benefi ts for adaptive

content generation have to be raised, and the model should be compared to a direct

use of player data.

We distinguish between the following three broad types of player models: per-

sonality models, experience models, and behavioral models, as detailed below. These

describe different approaches taken in the player modeling literature but are not

intended to be mutually exclusive or exhaustive.

Personality Player personality models describe the player in terms of some

general theory of individual psychological differences. Models can be drawn directly

from mainstream personality theory, such as the fi ve-factor OCEAN trait model

(e.g., [60, 64]) or emotional valence and arousal traits. Alternatively, they can be

applied theories of personality tailored to the gaming domain, such as Bateman ’ s

demographic game design typology [5] (e.g., [20]) or Lazzaro ’ s model of emotional

motivation [39] . Modern personality models are likely to be supported by evidence

for their validity. Data on test player personalities are required to establish the

mapping between player data and personality, which could perhaps be carried out

using a machine learning approach. In some cases, it may be possible to directly

assess players beforehand, for example, as part of the game [45] . Personality models

have the advantage of being transferable between gaming contexts, so information

about players can be reused. Conversely, they are somewhat abstracted from players ’

interaction with a specifi c game. Adaptive systems can respond to personality models

by providing content tailored to the player ’ s estimated personality.

Experience Player experience models describe what the player is experiencing

during a specifi ed period of play, as estimated from the player input data [63] . Models

here tend to be more ad hoc and game specifi c (e.g., combat intensity [7]) due to

the lack of a generally accepted theory on player experience. However, player experi-

ence traits such as engagement and challenge are often used (e.g., [46]). Qualitative

research into a particular game or genre may provide insight into the experiences to

include in a model [26] . As with personality models, data on player experience allow

a relationship between player input and experience to be learned. Experience models

have the advantage of being highly relevant to adaptation of game content—where

the ultimate aim is to improve the player experience—and such models are key to

experience-driven procedural content generation [63] . On the other hand, it can be

diffi cult to accurately predict player experience from the available player data, and

more indirect methods may better support adaptive content generation.

Behavior Player behavior models describe what the player has actually done,

both within the game and in other domains, for example, social or physical behavior.

Unlike personality or experience models, behavioral descriptions tend to be closer

to the player input data and, as such, there is potential for a much greater variety of

models. Conversely, they are further removed from the player experience that—in

an adaptive gaming scenario—the generated content is supposed to enhance. A key

28 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

advantage is that behavioral models for a specifi c game can be generated from game

play data using unsupervised learning. One approach is to synthesize a a low-

dimensional behavioral model by applying a dimension reduction technique to a

sample of high-dimensional player input (e.g., principle component analysis [PCA]

[49]), multidimensional scaling [49, 56] , expanding self-organizing map (ESOM)

[23] , or player-per-class linear discriminant analysis (LDA) [25] .

1.2.2.4 Measuring Adaptation

During the design or evaluation of adaptive gaming systems, measurement of content

and players can also be used to evaluate the effectiveness of adaptation. The adapta-

tion requirements describe how player experience should be infl uenced by changes

in game content, and these are generally expressed in terms such as player satisfac-

tion, fun, and immersion—although negative experiences may also form part of the

requirements, for instance, as part of an engaging and dramatic gaming experience,

such as frustration, despair, and fear.

We can distinguish between subjective and objective experience measures [62] .

Subjective measures ask the player to report their internal experience and are often

categorized as being (i) either quantitative or qualitative and (ii) either concurrent
or retrospective . Quantitative subjective methods (e.g., questionnaires) provide

precise, narrowly defi ned data that are open to statistical analysis. Qualitative subjec-

tive methods (e.g., interviews, think alouds) generate richer data which are typically

harder to interpret. Concurrent methods collect player reports during play, whereas

retrospective methods are used after play.

Methods for subjective measurement can be informed by psychological theories

about engaging player experiences, such as:

Challenge, curiosity, and fantasy, which are the three main categories in a

classic model of fun in instructional computer games by T. Mallone [40]

GameFlow, which comprises eight metrics: challenge, concentration, control,

clear goals, skills, feedback, immersion, and social interaction to form a

model of player fun [55]

Player experience of need satisfaction model, which attributes motivational l
energy in a player to the satisfaction of three basic psychological needs: game

competence, autonomy, and relatedness [48]

Objective experience measurement attempts to test the adaptation requirements

through unconscious player responses known to correlate with experience.

Physiological measurement involves recording body metrics such as heart rate, skin

conductivity, breathing rate, posture, jaw muscle tension, or even brain activity. In

particular, Mandryk et al. [41] have found that heart rate and jaw electromyography

(EMG) correlate to arousal and positive valence in interactive play environments.

This approach can be time consuming and expensive to conduct, and measurements

can be diffi cult to interpret in terms of conscious experience. However, they elimi-

nate the danger of bias in player reports, such as biases in memorization and recall

of experiences.

Methodology 29

Adaptive generation runs the risk of producing entirely unplayable games. This

can be limited by a careful selection of the constraints on adaptation and by employ-

ing human or automatic play testing. Alternatively, player expectations can be

managed so that occasional low-quality experiences are tolerated. Another danger

is that players perceive adaptation and react negatively, especially if it is performed

on the fl y or frequently. Changing game content has the potential to introduce con-

fusing or annoying inconsistencies. Such effects can be mitigated by explicitly

indicating to the player what has changed and why.

1.2.3 Adaptation

The third step in the game adaption process is to deliver generated content that is

personalized to the player. Adaptation can use generated content, measurements of

content quality, and assessment of the target player to select appropriate content. In

some systems, the process ends when an artifact is delivered, such as a complete

game. In others, adaptation is an ongoing process, with the player ’ s reaction to the

new content continually measured and further changes made accordingly. Below we

consider some general principles for adaptation based on our work.

Adaptation aims to improve player experience. The kinds of experience we want

players to have, and the kinds of content an adaptive game provide to provoke those

experiences, can vary as much as they do in nonadaptive games. Indeed, adaptive

game design faces the same challenges as game design in general. But, by handing

over responsibility for certain design decisions to adaptive systems, we can delay

them until the system can take advantage of new data about a particular target player

or group of players. The system can make decisions both before play, using preexist-

ing player data, or during play, where data about the current game are also available.

Designing an adaptation mechanism can be cast as a machine learning problem,

where we need to learn a mechanism that maps player data to game content that

satisfi es the requirements. Typically, the input and output spaces are categorical and/

or scalar features, but in general these can be arbitrarily complex data structures.

Player models can be used to simplify player input into a less complex feature set

(see Section 1.2.2.3). The most common form of adaptation is dynamic diffi culty
adjustment (DDA) (e.g., [33, 35, 65]), where features of the current player perfor-t
mance (player input) are deterministically mapped (mechanism) to a set of game

parameters (content output) that affect the level of challenge—for example, enemy

numbers and health in a fi rst-person shooter—so that the game is neither too hard

nor too easy (requirements). The option to set a diffi culty level can be seen as a

simple form of DDA, where the only input is the player ’ s selection from a list and

output is a predetermined set of parameters.

The design of the adaptive mechanism is constrained by the nature of the player

input and content output and the desired relationship between them. If these are

relatively simple, as with basic forms of DDA, it may be possible to hand code a

mapping. However, more complex forms of adaptation require automated approaches.

It is possible to learn direct mappings using techniques such as multidimensional

30 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

regression or structured learning. Adaptive rule sets can be generated using rein-

forcement learning [54, 44] . In some applications, it is easier to recognize suitable

generated content than it is to construct one directly—for instance, when designing

an adaptation that needs to engage or scare the player. This suggests a generate-and-

test approach, where candidate content is created using a generative method, such

as a design grammar or evolutionary computation (e.g., [53]) and then assessed

against the adaptation requirements using an evaluation method, such as a fi tness

function over a set of player and and content features (see Section 1.2.2.3). One such

approach that has been successfully applied in several domains is experience-driven
procedural content generation (EDPCG) [63] , where the evaluation step is informed

by a player experience model (PEM; see Section 1.2.2.3). The PEM predicts player

experience from player and content features, and the generated content can be evalu-

ated in terms of how well the predicted experience satisfi es the adaptation require-

ments. See [63] for a defi nition of EDPCG and an extensive survey of work in this

area. An advantage of EDPCG is that the PEM can be learned from play test data

relating player and content features to player experience [46] .

1.3 APPLICATIONS

In this section, we describe some of the projects related to digital games conducted

by members of the Computational Creativity Group (CCG) to demonstrate the prac-

tical application of the principles described in the previous sections. These include

both previously completed projects and ongoing projects still in development to give

an indication of future directions that we may follow; our research itself is constantly

adapting to new discoveries to suit the changing needs of the fi eld. While we are

interested in raising and answering generic questions related to adaptive game

design, our individual projects have tended to work with games of one genre. We

cover six types of games, and it seemed sensible to break down our work below into

the types of games with which we have experimented. In Section 1.3.1 , we look at

3D action games, with an emphasis on player modeling, followed in Section 1.3.2

by an investigation of arcade games, with an emphasis on all aspects of the adaptive

game generation process: generation, measurement, and adaptation. In Section 1.3.3 ,

we concentrate on generative processes in games of the platformer genre, and we

look at generative and measurement aspects of the adaptation cycle in Sections 1.3.4

and 1.3.5 in the context of board games and puzzles, respectively. Finally, in the

context of open-world games, we look at adaptation of games before they are played

in Section 1.3.6 . Table 1.1 summarizes these applications and the approaches used

for each.

1.3.1 3D Action Games

First- and third-person action games allow the player to explore complex 3D envi-

ronments and engage in activities such as exploration, combat, acrobatics, and

problem solving. Players are typically free to move around the environment and

Applications 31

engage in different activities as they choose, limited by factors such as their location

and the behavior of other in-game entities. This high level of nonuniformity of

behavior and experience in both space and time presents challenges for player mea-

surement: How should we compare players who have chosen different paths and

activity schedules? This is particularly challenging in open-world games, where

player behavior is relatively unconstrained. We look below at two attempts to gener-

ate player behavior models from game play logs (see Section 1.2.2.3) which account

for such large variations in game play.

1.3.1.1 Modeling Player Exploration

In 3D environments where the player is free to move around, analyzing how they

have explored their environment could be a useful component of a player model and

used to inform subsequent content generation. Ramirez-Cano et al. [49] generated

a behavioral player model for The Hunter (Expansive Worlds, 2009), a realistic fi rst-r
person hunting game, based on game play logs from approximately 50,000 players.

Their model combines measures of in-game actions and performance, level explora-

tion, and use of a game-related proprietary social network—here we look at their

analysis of player movement.

Table 1.1 Approaches Used per Application

Application Generation

Measurement

AdaptationContent

Player

Personality Behavior Experience

3D Action

The Hunter — — — Yes — —

Rogue
Trooper

— — — Yes — —

Arcade

Pac-Man — Yes — Yes — —

Super Mario Yes — — Yes — Yes

Platform

ANGELINA Yes Yes — — — —

Board

LUDI Yes Yes — — Yes —

Shibumi Yes Yes Yesa — Yes a Yes a

Puzzle

Hour Maze Yes Yes — — Yes —

Open World

Subversion Yes Yes — — Yes Yes

a Denotes upcoming work.

32 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

The Hunter allows players to move around a large rural environment, tracking r
simulated wild animals, then shooting or photographing them. The game periodically

logged each player ’ s location, recording their path through the level as a sequence

of coordinates. In the level studied, players explored a large island. The level map

was divided by a 2D grid, and a 2D location heat map could be generated for each

player by summing the time they spent in each grid square. Figure 1.3 shows some

examples of player heat maps. Heat maps were compared between players using the

earth mover ’ s distance (EMD): This assumes a fi xed cost for moving one unit of

distribution mass from one grid square to an adjacent nondiagonal grid square; the

distance between two heat maps is then the minimal cost for a set of moves that

transforms one map to the other. Optimal EMDs were calculated using Rubner ’ s

algorithm. The heat map EMD provides a measure of dissimilarity between two

players ’ exploration paths.

To generate a low-dimensional model of how player exploration varied, a dis-

similarity matrix was computed for a random sample of 20 players, giving the EMD

between each pair of players. Multidimensional scaling was used to reduce this

matrix to a 2D representation [8] , shown in Figure 1.3 . The fi gure illustrates that

players who are located near each other in 2D space have similar exploration paths.

This gives a two-trait model of player movement within this level, which allows an

easy comparison of players ’ exploration activity. Although interpreting the traits is

diffi cult, players who score highly on the vertical trait spend a lot of time on the

right of the map, whereas those who score high on the horizontal spend time at the

Figure 1.3 A 2D representation of 25 players ’ heat maps generated from Earth Mover ’ s distances

between heat maps using multidimensional scaling. Examples are shown for some nearby pairs of

players. (Reproduced from [49] .)

6

4

2

0

–2

–4

–6
6 8 10420–2–4–6

C
o
m

p
o
n
e
n
t
2

Component 1

1

5

3

19

8
6

10

117 2

20

15

9

12
18

13
4

16

17

14

Applications 33

bottom of the map. Irrespective of interpretation, it provides a convenient representa-

tion of exploration on which to base further content generation. For this type of

player model to be used for adaptation, new players need to be assigned trait scores.

Methods exist for defi ning multidimensional scaling (MDS) axes in terms of known

features, but a simpler approach is to treat the player sample as a set of prototypes:

For a new heat map we fi nd the nearest prototype heat map by EMD and use its trait

scores. Alternatively, a typology of exploration types can be generated by clustering

players in the MDS space, and new players are assigned the type of the prototype

with the nearest heat map.

In general, using a player sample to construct this kind of model is justifi ed by

the high complexity of MDS, although modern variants have lower complexity and

should be able to cope with a larger numbers of players. The choice of the number

of MDS dimensions (traits) is also critical, and scree and stress plots can be used to

compare low-dimensional representations [8] .

This use of EMD and MDS allowed us to fi nd a simple representation of

complex player exploration paths and hence compare players ’ exploration behavior.

This could be valuable information for an adaptive game, as it could refl ect players ’

style and exposure to level content. In [49] , we combined these data with measure-

ments of the in-game actions of players and related social media activity to create

a rounded player model for The Hunter. r

1.3.1.2 Modeling Player Combat

Player behavior in complex games can involve multiple activities, and player model-

ing can be improved by segmenting game play into separate activity phases and

analyzing these individually. Gow et al. [25] present a trait-based behavior model

of player combat activity in Rogue Trooper (Eidos, 2006), a third-person shooter, r
generated from game play logs from 32 players. Each log recorded a playthrough

of the game ’ s fi rst level, until they completed it or quit, with a mean play time of

18 minutes—in total, over 10 hours of logged game play. Players were observed

engaging in a variety of activities: preparing for and engaging in combat, checking

areas for remaining enemies, fl eeing and avoiding enemies, navigating to and explor-

ing locations, getting lost, retracing their steps, investigating the controls and game

mechanics, even admiring the scenery.

To compare players, we decided to focus on combat, the central activity in the

game. A player combat behavior model was automatically synthesized from the

game play logs, consisting of three traits: dynamism, cautiousness , and ammunition
management . As a further abstraction from the data, a player typology was generatedt
from these two traits consisting of four combat behavior types: hyperactive (high

dynamism), normal (medium dynamism), l naive (low dynamism, low cautiousness),

and timid (low dynamism, high cautiousness). Figure 1.4 shows the 32 players ’d
dynamism and cautiousness scores and player types. The trait-based model was

computed in a four-stage process as follows:

Segment Activities Identify sections of combat activity in log data and extract

individual combat instances. Each instance was defi ned as starting whenever

34 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

a distinct group of enemy nonplayer characters (NPCs) fi red on the player

or were shot by her and ended when either the player or the NPCs were dead.

Only successful combat instances were used to construct the model.

Defi ne Features Calculate 21 scalar features for each combat instance, for

example, proportion of time using each weapon in addition to taking cover,

rate of fi re, movement, rotation, mean ammunition, and health.

Compute Player Discriminants Partition combat instances into classes, one

per player, then use LDA to compute a series of linear discriminants (linear

combinations of features), that is, directions within the 21-dimension feature

space which maximize between-player variance and minimize within-player

variance [43] .

Select and Interpret Traits Choose a small n such that the fi rst n discriminants

account for much of the variance between players and can be interpreted as

meaningful traits. For this analysis of Rogue Trooper combat, the fi rst three r
discriminants were selected.

Calculate Trait Scores Each player ’ s trait scores are defi ned as the centroid

(mean position) of their combat instances in the trait space.

Finally, the player typology was generated by applying K -means clustering to theKK
players based on the dimensions of the fi rst two discriminants.

Segmenting game play into distinct combat and noncombat phases allowed us

to identify meaningful player combat traits which refl ect their style of play. Similar

features of their behavior over the entire level would have obscured their playing

Figure 1.4 Two-trait player combat behavior model for Rogue Trooper . Individual players are r
shown with their combat behavior type. (Adapted from [25] .)

−3 −2 −1 0 1 2

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

Dynamism

C
a
u
ti
o
u
s
n
e
s
s

Hyperactive
Naive
Normal
Timid

Applications 35

style, due to huge differences in activity phases between players. The work also

demonstrated the utility of using one-player-per-class LDA as an unsupervised learn-

ing technique to fi nd interesting behavioral differences between players. In related

work, we have looked at how variations in game play during combat activity infl u-

ences player experience [26] . Other activities, such as problem solving and explora-

tion, could also be extracted and compared using a similar approach. One future

direction for research is to investigate improved techniques for reliably segmenting

game logs into activity phases and identifying activity types. As a fi nal point, we

note that it would be straightforward to use either the trait model or typology in an

adaptive context: Once a new player has completed a combat task, their trait scores

can be calculated as a linear combination of a few simple combat features.

1.3.2 Arcade Games

Arcade-style action games are descendants of early examples of video games

originally installed in coin-operated entertainment machines in amusement arcades.

The genre, which had its so-called Golden Age in the early 1980s with games such

as Pac-Man (Namco, 1980), Space Invaders (Taito, 1978), and Donkey Kong

(Nintendo, 1981), enjoys a recent resurgence with newly released games styled to

emulate the visuals and game play of the arcade classics. This renewed interest

mainly stems from factors such as the simple and easy-to-learn game play suitable

for mobile devices and a relative ease of development, especially for very small

development teams, which have found increasing support and foothold in online

distribution markets for consoles, PCs, and mobile platforms. The relative simplicity

both in visual style and game rules encourages quick prototyping of game mechan-

ics and style and makes it an interesting target for player profi ling and game adapta-

tion. We discuss below a trait-based adaptation mechanism with which we have

experimented.

1.3.2.1 Trait-Based Adaptation

Arcade games, with their limited size of game environments and game rules that are

often based on very simple mechanics, feature a relatively homogeneous game play,

especially when compared to story-driven or exploration-based games. This homo-

geneity allows for a simpler trait-based player behavior model that does not need to

segment game play into (many) different phases or concern itself with breaking down

behavior to match certain plot sequences as it might have to in a story-driven game.

Additionally, a homogeneous model is benefi cial for game adaptation, as there is no

need for a mapping of game phases or action sequences to measured traits.

Conversely, the complexity of game adaptation according to traits can be reduced

in a game with such sequences if each game sequence is handled as a separate

optimization instance. However, traits that are affected by multiple such sequences

or are a result of the order of sequences cannot be adequately handled in such a

separation. For example, an action sequence might be followed by a puzzle sequence

36 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

in shooter games such as the Half-Life (Valve, 1998, 2004) and Tomb Raider (Eidos r
Interactive, 1996–2010) games, giving the player time to recover and relax, which

slows down the pace of the game. Simply handling these sequences separately would

lead to an inability to recognize a player ’ s reaction to this pacing. More advanced

techniques such as observing changes in traits over sequences and cross-validating

adaptations in each sequence can be used to alleviate these diffi culties.

To create a trait-based adaptive game, we propose the following structure and

outline experiments we have conducted following these steps. Note that the fi rst

three steps have also been outlined in Section 1.3.1.2 in a different context.

Defi ne Features Select player metrics such as input rates, actions, and events.

Optimally, these metrics would be time-independent rates to allow for record-

ings of different lengths, for example, by recording actions per time, such as

pill per minute in Pac-Man (Namco, 1980). Due to the nature of the discrimi-

nant analysis (see below), which automatically identifi es signifi cant features,

a large amount of metrics can be recorded.

Compute Player Discriminants Use LDA to compute a series of discriminants

(linear combinations of features)—directions within the feature space which

maximize between-player variance and minimize within-player variance.

Interpret Traits LDA-generated feature vectors are sorted by importance, that

is, how much of the variance between players can be explained by them. This

property is effectively compressing the data and allows for a dimensionality

reduction of the LDA-transformed feature space with low information loss.

Furthermore, it allows the researcher to quickly assess the most infl uential

metrics on player separation, as they will appear in the fi rst LDA vectors.

Correlate Traits with Preferences Once important traits have been identifi ed,

they need to be correlated to player preferences. This can be done explicitly

through surveys that evaluate player preferences on a series of selected rule

sets, or by manually connecting traits with game features by the game

designer, or by using some model that associates traits with preferences

through psychological models. In our experiments, we have focused on the

former two approaches.

Trait-Based Adaptation Finally, the game is adapted for a player by fi rst mea-

suring their traits, followed by generating a matching rule set through retriev-

ing preferences of similar players, compared by traits. This can be done in a

variety of ways, for example by using a K-nearest-neighbour search in the KK
LDA-transformed feature space, effectively measuring a trait distance.

1.3.2.2 Results from LDA Analyses

Several experiments have been conducted to record and interpret player traits in

arcade games. Using a reimplementation of Pac-Man (Namco, 1980), Baumgarten

[6] applied multiclass LDA to a data set of 245 players, each of which played fi ve

or more rounds of the game. Features recorded in the game include player actions:

Applications 37

eating a pill, eating a power-pill, eating a ghost, getting eaten by a ghost, eating a

fruit, fi nishing a level, and changing the movement direction; rate of player actions:

pills per minute, ghosts eaten per power pill, ghosts eaten per minute, power pills

per minute, key strokes per pill, changes in movement directions per pill. A projec-

tion of the fi rst two dimensions of the resulting player discriminant space is shown

in Figure 1.5 .

The most insightful tool to interpret the traits generated by the LDA algorithm

is analyzing the weights of the base vectors defi ning the LDA-transformed space.

These vectors defi ne the mapping of player metrics into the LDA space, where each

weight associated with a player feature indicates its infl uence in separating players

in that dimension. In the Pac-Man survey, the single largest weight for the fi rst LDA

vector was given by the keystrokes per pill metric, which indicates the effi ciency of l
a player to navigate the game with respect to the physical interaction with the com-

puter. The second dimension was dominated by negative weights on the number and

speed of power pills eaten and positive weights on ghosts eaten and number of turns.

This relationship models a game concept of Pac-Man : chasing ghosts with a high

Figure 1.5 LDA-transformed space of metrics recorded in Pac-Man. Each number represents a

player, and each number will appear fi ve times, its position marking the coordinates of the feature

vector defi ned by one session of that player. Some player sessions have been highlighted by shaded

circles. (Reproduced from [6] .)

6

4

2

0

–2

–4

–5 0 5 10

LD1

L
D

2

38 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

effi ciency by eating many ghosts while not using up many power pills. In short, the

most distinguishing feature of the game was physical interaction followed by skill

at playing the game well.

We have followed up this research with a new arcadelike game called Snakeotron
that is inspired by a light-cycle race in the movie Tron (Disney, 1982), as described

in [25] . We have found comparable results with the LDA highlighting metrics related

to physical interaction being found to be the most distinguishing traits in the game,

followed by traits describing skill—in Snakeotron this relates mainly to avoiding

walls in the level. Snakeotron has been designed to adapt to individual players, as

they progress, in response to feedback. The adaptations include aspects of diffi culty

and aspects of game play, for example, the ability to jump over lines, rather than

just avoiding them. We have carried out a fi rst set of experiments with Snakeotron
which has included a questionnaire after each round with a different rule set. Players

were asked to rate their enjoyment relative to the previous level. Such pairwise

comparison is more accurate and robust than absolute measurement [61] . In future

work, we plan to use a machine learning algorithm such as reinforcement learning

or a neural network to predict player preference values for new rule set combinations.

This approach can be further augmented by taking into account other players with

similar traits to increase prediction accuracy and to eventually generate preference

values with only trait data available. Ultimately, we plan to show that dynamic adap-

tive personalization is possible, albeit with a simple arcade game.

A machine learning approach may not strictly be required here, as hand-crafted

adaptation according to measured traits is often more practical in commercial game

development. One such hand-crafted adaptation approach has been implemented in

an adaptive Super Mario (originally Nintendo, 1985) level generator. As part of a

level generation competition by Shaker et al. [52] , which asked participants to submit

programs that take metrics of a single test run of players and generate a level for a

variant of Super Mario, we developed a small level generator implementing trait-

based adaptation as described above. LDA has been used to analyze the data from

play-throughs collected during a pilot study. The fi rst LDA vector emphasized

metrics relating to the time required to complete a level and the number of jumps,

which can be interpreted as the ability to complete levels quickly and effi ciently.

This dimension was thus used to judge the player skill and to adjust the subsequent

levels by generating a level made out of a selection of hand-crafted building blocks.

These building blocks were previously annotated with a diffi culty rating and picked

according to the relative skill of the player—the more skilled the player is, the more

diffi cult building blocks were chosen.

1.3.3 Platformers

Two-dimensional platformers have surged in popularity over the last fi ve years

thanks to many open game libraries tailored toward making them1 as well as the

relative breadth of subgenres, from puzzle-based platformers like Offspring Fling

1 For instance, see Flixel (http://www.fl ixel.org) or FlashPunk (http://www.usefl ashpunk.net).

Applications 39

(KPULV, 2012) to large-scale Metroidvania games like Saira (Niffl as Games, 2009)

or Knytt Stories (Niffl as Games, 2007). The constrained two-dimensional space

simplifi es almost all aspects of implementation and design, making it highly ame-

nable to AI techniques. We describe here an evolutionary approach to generating

fully formed platformer games.

ANGELINA is a CCE system for automatically designing simple Metroidvania-

style platform games. This subgenre of the 2D platformer puts an emphasis on

exploration, where new areas of the game world are made available as the player

gains abilities and collects various items. As described in Section 1.2.1.3 , CCE

systems are composed of several evolutionary subsystems that are brought together

in order to evaluate the quality of their populations. This section briefl y describes

the composition of A NGELINA ’ s subsystems and how the fi tness functions evaluate

each component, in addition to how ANGELINA integrates sound and images mined

from the Internet in response to topical social media. For a more detailed description

of the evolutionary system, see [18] , and for more details of the social media sub-

system, see [19] .

1.3.3.1 Evolutionary Design Subsystems

The evolutionary subsystem for level design maintains a population of levels, which l
contain two-dimensional integer arrays that represent the tiles that make up the game

world, and a collision indexx c such that any tiles with an integer value ≥c are initially

solid and not passable by the player. Rather than placing every tile individually,

levels are built out of screen-size groups of tiles, by default 20 tiles wide by 15 tiles

high, called chunks. Chunks are generated by combining an outer template (defi ning

which edges of the chunk are passable), an inner template (defi ning what tiles are

in the core of the chunk), and one or more masks which add extra blocking tiles to

the chunk to allow for features like locked doors. Figure 1.6 , Figure 1.7 , Figure 1.8 ,

and Figure 1.9 show an example of each of the three components that make up a

map chunk. ANGELINA uses all permutations of outer templates and masks and has

16 hand-designed inner templates. Chunks are randomly generated by combining

Figure 1.6 Outer template blocking left,

right, and down exits.

Figure 1.7 Mask blocking top exit with

special blocks.

40 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

these together and arranged in a grid layout to create a map. The fi tness function for

the level design subsystem prioritizes high reachability maps (using a simulation of

the game physics in order to estimate which areas are accessible in a given map) as

well as scoring highly those levels which increase the travel distance between pow-

erups, the exit, and the player starting point (which change during evolution and are

supplied as part of the CCE process during evaluation).

The layout design subsystem creates mappings that defi ne the placement of the

player starting point, the game exit, and the enemy types into the game world.

ANGELINA’ s evaluation techniques do not calculate the diffi culty of combat, which

means that enemy placement and design are relatively simple and underused—

enemies are designed by combining predefi ned behaviors and then associating that

design with a set of coordinates that state where enemies of that type exist in the

world. The fi tness function is weighted to discourage overcrowding of enemy place-

ments, but better combat simulations could take into account the change in diffi culty

as the player progresses through the level. More important is the placement of the

player start and the game exit, as they defi ne the fl ow of the game. As with level

design, reachability maps are supplied to the fi tness function when evaluating

layouts, which give information on shortest paths and the percentage of the game

level that is explored. The fi tness function assigns higher scores to longer paths.

A power set is a set of powerup items, along with their defi ned placements in

the game world. Powerups are items that change the abilities of a player, enabling

them to access new areas of the map. A powerup is defi ned by a game variable it is

attached to, and a value it sets that variable to when the powerup is collected. In the

power set evolutionary subsystem, for simplicity, A NGELINA can assign a powerup

to one of three variables—the in-game collision index (defi ning which tiles are

solid), the world gravity (affecting the player and all enemies and their reachability),

and the player ’ s jump power. Values are assigned randomly within wide, but reason-

able, boundaries. The specifi c values a powerup has are fi ne tuned as part of the

evolutionary process, meaning A NGELINA can give the player precise bonuses to

their jump height that allow them to reach some new parts of the map while leaving

others out of reach. This often happens as part of the evolutionary search, as it

Figure 1.8 Inner template with blocks

providing chunk ’ s content.

Figure 1.9 Completed block, composed of

masks and inner and outer templates.

Applications 41

increases the paths through the level, which results in higher fi tnesses for layouts

and maps.

The fi tness function for power sets considers the placement and proximity of

powerups to each other (again rewarding power sets which increase the travel for

the player) as well as looking at possible traces through a game. In some cases,

powerups can only be collected in a single linear order. For instance, Figure 1.10

shows a linear progression where the player starts (1), then collects a jump powerup

(2), which enables the collection of a key (3) to unlock the path to the game exit.

Note how the powerups encourage movement across the map; 3 is on the other side

of the game world to the exit (4), for instance.

In other cases, powerups may be partially ordered instead and multiple paths

may exist to the exit. A NGELINA penalizes power sets that are very nonlinear, and in

doing so encourages a stricter path through the game which makes other elements

of design (such as the optimization of shortest routes) easier. It also rewards power

sets that provide the player with a steady sense of progress, rather than power sets

where initial gains are very large, and then the rest of the game is spent collecting

very small increases in ability.

1.3.3.2 Social Media

When we talk about generating adaptive or bespoke game content, we often think

of content that is generated as a result of examining a specifi c person ’ s preferences

and behavior. An alternative is to adapt to specifi c cultures, countries, periods of

modern history, or groups of people. Adapting content on a broader scale is another

way to make games more reactive, more interesting, and more meaningful for

players. To explore such possibilities, we augmented A NGELINA with the ability

to make simple platform games about topical news stories. In particular, in this

Figure 1.10 Full game map showing player progression.

42 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

modality, A NGELINA starts from a single piece of source data, namely, a newspaper

article from The Guardian (UK newspaper) website, and expands the data to produce

enough information to form the theme of a game.

The Internet currently contains a wealth of open data of all types, including

music, sound clips, video, photographs, poetry, and many other resources. However,

automatic downloading and usage of these resources are diffi cult due to a lack meta-

information about what is currently being looking at and what data are actually

required. The fi rst problem—that of understanding the data you are working from—

should be solved with as little reliance on unknown information as possible.

A NGELINA’ s starting point, The Guardian article, is often full of complex linguistic

information, turns of phrase, and oblique references to other news articles that may

not be linked or understood by ANGELINA. While techniques do exist to extract

information from bodies of text like this, we opted for a simpler approach that takes

advantage of the richness of data the Web contains. ANGELINA takes words from the

headline and the tags The Guardian writers associate with the article and uses them

to build a list of keywords for the news article. These keywords are then used to

search for more content from the Web.

While we could use the keywords as they are, we have found it useful to fi rst

classify them as referring to a person, referring to a country, or neither. Tools like

WordNet 2 and ConceptNet 3 are open platforms that can help connect one word with

other words and phrases that are related as well as giving information on what it is

that relates them. Wikipedia is also useful for collecting large amounts of viable data

and keeping it regularly maintained. While large portions of the site may be unreli-

able and open to vandalism, many pages are well curated and closely updated,

providing useful contextual information that may not be available anywhere else.

A NGELINA uses the list of sovereign states to confi rm whether a keyword describes

a country or not and checks to see if Wikipedia has a page about a keyword to

determine if it refers to a person. If a page exists, A NGELINA simply checks for

information that confi rms that the page refers to a person—data fi elds like birth year

or nationality. These checks are not completely robust—victims in a murder inquiry,

for instance, may not have Wikipedia pages—but they provide a useful shorthand

that guides ANGELINA in the next step—fi nding usable and relevant content online.

Given the partially classifi ed keywords, A NGELINA searches Flickr and Google

Images for general photographs using them as search terms and uses these images

throughout the fi nished game. It also uses the Incompetech 4 website, which hosts a

large collection of Creative Commons music, tagged with moods and genres. The

tags allowed A NGELINA to select music based on the feeling it might convey and is

reliably curated by the composer. Using the AFINN database 5 of emotionally tagged

words allowed A NGELINA to guess at the tone of the article and choose sad or happy

music accordingly. A NGELINA also uses the sound effect database FreeSound6 to

2 http://wordnet.princeton.edu/ .
3 http://conceptnet5.media.mit.edu .
4 http://www.incompetech.org .
5 http://fnielsen.posterous.com/tag/afi nn .
6 http://www.freesound.org .

Applications 43

search for sound effects using article tags. This can have mixed results, because the

submissions are described and categorized by the individual submitter, and only

rough metrics (like number of downloads) exist to tell recordings apart. This can

produce powerful results—like gunfi re and historical speeches being returned for

searches about war—but can just as easily return offbeat or inappropriate results too.

Often, the rewards outweigh the risk, particularly when the potential for surprise or

unexpectedness can be woven into part of the adaptive system ’ s appeal.

Figure 1.11 shows screenshots from games created using this system, utilizing

photographs and images from Google and Flickr, backed with a soundtrack and an

array of sound effects. Note that the title of each game is also created automatically

using a keyword search through online rhyming dictionaries for potential puns. The

resulting games are currently a little rough around the edges, but they do demon-

strates the strength of the approach described above. We are currently adding more

Figure 1.11 (a) Screenshot from The Conservation of Emily, a game based on a news article about

illegal logging in South America. The background image is obtained from Flickr searches and inset

image from Google Image searches. (b) Screenshot from Sex, Lies and Rape, a game based on a news

article about a child abuse ring. The game features a sad musical track and includes a sound recording

of a woman singing a children ’ s song in Greenlandic, retrieved from a FreeSound search. Both games

are available to play online at www.gamesbyangelina.org/games .

(a)

(b)

44 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

sophistication to the game generation process, in particular to use game play ele-

ments to further illustrate the news story, for instance, interacting (e.g., shooting)

characters from the story, solving puzzles to illicit further information about the

newspaper article, and so on. Following this, we plan extensive experimentation to

determine player reactions to such games, ultimately aiming to improve the genera-

tive process to a stage where people take their daily news through ludic interaction

rather than passive reading. We also plan to enable users to adapt the game genera-

tion process, for instance, by providing links to the newspaper articles themselves or

supplying their own keywords. We further plan to investigate the potential for per-

sonalized games to be generated from social media assets, such as Facebook pages.

1.3.4 Board Games

A defi ning distinction between video games and board games is that rule sets in

video games are fl uid and may be updated on the fl y, whereas rule sets for board

games are typically fi xed once the game is published and released. There are of

course exceptions, such as the games Eleusis 7 and Zendo ,8 in which one player

invents a set of rules while the other players must deduce them through play, and

there is also the tendency for players to extend the shelf life of board games by

inventing variants to play [51] . However, in each of these cases, the scope of varia-

tion is governed by the resources at hand, and these games are still played within a

defi ning framework. Adaptation in the context of board games can involve the opti-

mization of rule sets to achieve a desired behavior within a given system or the

invention of completely new games and even game systems.

1.3.4.1 L UDI

LUDI is a system for playing, evaluating, and generating new combinatorial board

games [10] . Each game is modeled as a LISP-like symbolic expression or s-expres-
sion that defi nes its rule tree, and new games are generated using standard genetic
programming (GP) operators of crossover and mutation [38] . Games are evaluated

according to certain aesthetic criteria measured over self-play trials, as outlined in

Section 1.2.2.1 . The weighting of each criterion—indicating how relevant it is to the

game ’ s quality—was determined by correlating aesthetic measurements for a set of

source games with human player rankings for those games, giving an aesthetic policy
for that set of players.

The game creation process used by L UDI is very much an example of search-

based procedural content generation and is summarized in Figure 1.12 . It is adaptive

in the sense that it biases its search for new games toward those games that score

more highly on the aesthetic policy obtained for the target set of players. This value

was fi xed in the L UDI experiment but could easily be modifi ed to respond to players ’

7 http://www.boardgamegeek.com/boardgame/5217/eleusis .
8 http://www.boardgamegeek.com/boardgame/6830/zendo .

Applications 45

reactions to new games on a game-by-game basis, hence redirecting the search as

new games are invented and played. The games invented by L UDI could not be said

to be truly bespoke, beyond the fact that they were invented specifi cally to maximize

the level of interest in that specifi c set of test players. L UDI proved successful in this

task, producing several new games that interested human players, two of which have

gone on to be commercially published.

Yavalath is the most popular game designed by LUDI (which also names its

games). It proved popular with the test players and has been received well in the

broader game-playing community following its publication by Nestorgames,9 for

whom it remains a fl agship product (Figure 1.13). Yavalath appears to have captured

some general principles of game design that go beyond the group of test players, as

it has since been ranked in the top 100 (or top 2.5%) of abstract board games ever

invented, according to the BoardGameGeek (BGG) database, the world ’ s foremost

online board game community [12] .

The rules devised by L UDI for Yavalath are as follows:

(game Yavalath
 (players White Black)
 (board (tiling hex) (shape hex) (size 5))
 (end
 (All win (in–a–row 4))
 (All lose (in–a–row 3))
)

)

Figure 1.12 Game life cycle (from [10]) .

Crossover

Mutate

Rule Check
Well

Formed?

N

Y
Baptise

Too
Slow?

Y

NChoose
Policy

Drawish?

N

Y

Inbred?

N

Y

Evaluate

Bin

Population

Select

9 http://www.nestorgames.com .

46 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

Two players, White and Black, take turns placing a piece of their color on the

board. A player wins by making 4-in-a-row of their color but loses by making 3-in-

a-row beforehand. The simplicity of the rules makes the game easy to teach to new

players and immediately accessible, but the “win with 4 but lose with 3” rule com-

bination hides an emergent twist that keeps players interested as sequences of forced

moves can be perpetuated using 4-in-a-row threats to manipulate the opponent into

a losing position with clever play.

For example, Figure 1.14 shows a Yavalath puzzle with White to play and force

a win (hint: if Black is allowed to play at either point X, then White is forced to

play at the other X and therefore lose, hence White must play a sequence of forcingt
moves starting at point a , b, or c). The discovery of this forcing move mechanism

provides a satisfying “aha!” moment for each individual player and is exactly the

sort of emergence that we had hoped would develop from simple rules in the evo-

lutionary search.

1.3.4.2 Shibumi

The Shibumi project continues the work pioneered with L UDI , but in this case the

design space is constrained to a closed game system with a fully defi ned rule set ind
order to compare the search dynamics of human and computer game designers. The

Shibumi set was designed specifi cally for this purpose and consists of a 4 t × 4 square

grid of holes and 16 balls in each of three colors (Figure 1.15). Thirty balls may be

stacked on this board to form a square pyramidal packing , as shown in Figure 1.16 .

This system has the computational advantage that each game state can be bit packed

into a single 64-bit long.

The term shibumi comes from Japanese aesthetics and means tasteful elegance
or simplicity hiding complexity , a very apt notion for abstract board games [11] . We

seek the simplest rule sets that produce the most interesting games for this minimal

system. The Shibumi project is currently a work in progress. A game design contest

called the Shibumi Challenge has been run, with 45 entries solicited from 22 human

Figure 1.13 Yavalatah Deluxe from

Nestorgames (for three players). Figure 1.14 Puzzle with White to play.

x x

Applications 47

game designers. The results, presented in [16] , provide an inspiring set of source

games for automated search, and ensure that the rule set for this system is fully

defi ned. The next step will be to conduct an automated search for new games using

both evolutionary and Monte Carlo tree search (MCTS) methods [15] and to compare

the dynamics of the search between these approaches and the approaches used by

the human designers. We are particularly interested in whether the automated search

will fi nd hidden gems missed by human designers, the frequency with which these

occur, and the margin by which they were missed.

The ultimate aim is to produce a software tool that is a creative collaborator in

the game design process, which will adaptively help the player fi nd the ideal Shibumi
game for them. For example, the player might specify what rules or features they

like or dislike in a game or simply rank some test games and let the system deduce

these preferences. The system will then use this information to search its database

of known games and to create new bespoke games for this player in accordance with

these preferences. The player ’ s reactions to these bespoke games can then be used

to adaptively modify the search for further games.

We are particularly interested in questions of computational creativity, and the

closed and fully defi ned—yet largely unexplored— Shibumi search space provides

an ideal test bed for this [14] . It is obvious from observing human designers that the

constraints imposed by such a closed system have a signifi cant impact on the creative

process (the search is necessarily more combinatorial within the design space rather l
than transformational between this space and others), but that creativity can still be l
achieved through unexpected and serendipitous rule combinations. It is important to

maximize the creativity in the process, both from the designer ’ s perspective (so that

novel, high-quality artifacts are produced) and from the player ’ s perspective (to

increase their appreciation of the generated artifacts).

1.3.5 Puzzles

Solitaire (single-player) puzzles can be described as a form of play that is fun and

has a right answer [37] , or as rule-based systems, like games, in which the goal is

Figure 1.15 Shibumi set.

a b c d

1

2

3

4

e f g

5

6

7

x 16

x 16

x 16

Figure 1.16 Nestorgames edition.

48 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

to fi nd a solution rather than beat an opponent [21] . A defi ning feature of puzzles is

their non-replayability , as once a challenge is solved, then it is no longer interesting

to the player until they forget that solution [59] . PCG offers a way to quickly and

cheaply generate a large amount of new and interesting challenges to keep puzzles

replayable. Solitaire puzzles can also be viewed from a combinatorial game perspec-

tive as two-player games that provide a contest between the designer who creates r
the puzzle and the solver who attempts to solve it. The designer constitutes a r null
player who may not be physically present for the contest but whose wit and person-

ality can be evident in the challenges that they set the solver. It is this feeling of

intelligence and playfulness that distinguishes human-designed puzzle content from

computer-generated content and is what we would ideally like to capture using PCG.

Japanese logic puzzles are a popular type of solitaire puzzle, following the

meteoric rise of Sudoku in the western printed media over the last decade. This rise

to prominence coincided with the advent of the smart phone as an everyday item,

cementing the popularity of such logic puzzles. They are self-contained, can be

effectively played on small screens, and do not require an excessive investment of

attention or time; they are in many ways the ideal application for hand-held devices

and commuters seeking distraction. Japanese logic puzzles are characterized by the

following traits: (i) single player, (ii) simple rules, (iii) unique solution, (iv) can be

solved by deduction, and (v) context free, that is, universal symbols such as numbers,

not letters or words.

The appearance of Sudoku on a mass scale as a regular feature in U.K. news-

papers starting in 2004 was made possible by Wayne Gould ’ s computer program

POPPACOM SUDOKU , which was designed specifi cally to generate mass Sudoku
content for the global market. Gould reported earnings of over a million dollars in

less than a year from POPPACOM S UDOKU and went on to become named one of the

“World ’ s Most Infl uential People” by Time Magazine in 2006.

However, Japanese publisher Nikoli—the primary source of Japanese logic

puzzles such as Sudoku , Kakuro , and Slitherlink—remain adamant that human-kk
generated puzzle designs are superior to those generated algorithmically [30, 36]

and that a true puzzle affi cianado can easily distinguish the two. Nikoli remains

distinct from most other publishers in the world by preferring not to release com-

puter-generated content, despite the proven convenience and cost-effectiveness of

doing so. We describe below ways in which design features of human-designed

puzzles may be incorporated into procedurally generated content in an effort to

reduce the perceived quality gap.

1.3.5.1 Hour Maze

Hour Maze is a solitaire logic puzzle game devised by Mike Reilly and released for

the iOS platform in 2011 [13] . Figure 1.17 shows the iPad version in use. Players

solve each challenge by fi lling the given maze with contiguous runs of colored hour
sets {1, . . . , 12} such that each color set is connected and the difference between

each pair of adjacent numbers is exactly 1. One number of each color is revealed at

the start of each challenge as a hint . As the puzzle was newly invented in its current t

Applications 49

form, there did not yet exist a database of challenges, or any human experts on hand

to design such levels, so PCG methods were an obvious choice for generating content

for release.

Computer-generated puzzle challenges generally tend to be random in layout

and to have a “mechanical” feel to their solution, rewarding exhaustive search rather

than intuition. In order to incorporate some aspects of human design into our auto-

matically generated content, to increase its value—or even just perceived value—in

the players ’ eyes, we identifi ed the following areas for improvement, based on our

experience with similar logic puzzles:

Wall Symmetry Symmetry in the wall layout may increase the impression of

intelligent design.

Hint Symmetry Symmetry in the hint layout may increase the impression of

intelligent design.

Strategic Depth The more strategies required to solve a challenge, the more

interesting it is likely to be for the solver.

Over 100,000 challenges ranging in size from 6 × 6 to 12 × 12 were automati-

cally generated using heuristics to maximize wall symmetry, hint symmetry, and

strategic depth, then a portion of these were visually inspected and manually tested

to arrive at the fi nal 120 levels for release. A separate set of 80 7 × 7 challenges was

randomly selected to populate a user survey, shown in Figure 1.18 , in which subjects

were asked to play a number of challenges and after each one asked whether they

thought it was human or computer designed and how interesting they found it com-

pared to other challenges they had seen.

Figure 1.17 Hour Maze for iPad.

Figure 1.18 Java-based survey application

for Hour Maze.

50 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

We found it interesting that subjects deemed around 50% of the challenges to

be human designed, even though every single one was computer designed . It appearsd
that the mere suggestion that a puzzle might be human designed can be enough to

infl uence players ’ perception of it. This experiment did not provide any signifi cant

correlation between the players ’ perception of a challenge and their enjoyment of

it, but it demonstrates axes along which procedural methods for puzzle generation

may be adjusted to make the resulting output appear more “human” in players ’ eyes

for future application. For example, Figure 1.19 shows the noticeable difference

between random hint placement (left) and symmetrical hint placement (right).

1.3.6 Open-World Games

Subversion was a commercial game prototype its being developed by Introversion

Software,10 which has sinced morphed into its latest release: Prison Architect. The t
espionage and crime game play planned for Subversion took place in a virtual world

featuring procedurally generated landscapes and cityscapes produced by a custom

3D generation engine. Moreover, the Subversion engine generated the terrain and

cities on the fl y in a bespoke way at the start of each game. In this context, we took

the opportunity to work with the prototype to test the hypothesis that evolutionary

techniques could be employed to customize the city environment in an effi cient

manner which adds value to the game, that is, looking at pre-game-play user-driven

adaptation.

 In [32] , we looked at ways in which the user could change the overall look of

the city by specifying some parameters for a fi tness function which drove the auto-

matic evolution of a pixel shader [24] . We employed the well-known OpenGL

Shading Language (GLSL), which is described in [50] , and fi rst abstracted the code

for the shaders to a tree representation, where the 3D coordinates of a pixel to be

Figure 1.19 Effect of hint symmetry (from [13]) .

1212
77

99
1010

55

77 99

33

10 www.introversion.co.uk .

Applications 51

rendered are passed through the tree, with the output from the tree being the color

to render the pixel in the user ’ s viewport. The nodes of the tree performed arithmetic

manipulations, Boolean checks, calculated norms, and worked with the pixel ’ s

diffuse and specular lighting components. An example tree is presented in Figure

1.20 , along with the fl attened GLSL version of it which was compiled for the shader,

the results of which can also be seen rendered on an example city in Figure 1.21 .

The user-specifi ed fi tness function for the evolutionary search involved the hue,

saturation, and luminance of the shader and the relative importance of these aspects.

Given the nature of the proposed application, which involves the player waiting

while a pixel shader is evolved at the start of a game, we restricted our experimenta-

tion to short sessions, in particular of only 10 generations. In a series of 21 sessions,

varying over six fi tness functions, we showed that, on average, the fi tness of the best

individual raised to 92.0 from 69.7, which was the fi tness of a randomly generated

individual. Details of the experimentation and results are given in [32] , and in Figure

1.22 , we present four evolved pixel shaders.

In our second application with Subversion, we investigated a more interactive

approach to evolving game assets, as described in [42] . Individual buildings in the

Subversion cities are represented with a plain text markup language that describes

how the buildings are built from the ground up as a stack of three-dimensional

objects. A simple example script, along with the building it generates, is given in

Figure 1.20 An (incomplete) example shader tree and compiled script.

52 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

Figure 1.22 Four examples of evolved pixel shaders.

Figure 1.21 Resulting rendering by pixel shader.

Applications 53

Figure 1.23a. The building descriptions are amenable to random generation, cross-

over, and mutation, which enabled us to implement and test a user-driven evolution-

ary approach to building generation.

Interpreting the building description fi les as trees, we enabled crossover by fi rst

tagging all the branches of two parent trees, so that only branches of the same type

could be swapped. We defi ned the strength of a crossover action as the number of

branches that were swapped. In addition, we implemented two versions of mutation,

namely, structural and parametric. With the fi rst of these, a subtree of a given build-

ing representation is swapped for a randomly generated subtree, while in the second

case, certain numerical parameters in the description are randomly varied. As for

crossover, we defi ned the strength of the mutation as the number of subtrees replaced

Figure 1.23 (a) Example building along with script responsible for its generation.

(a)

(Continued)

54 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

(b)

(b) (top row) Two example buildings and their Subversion

command code descriptions; (middle row) two children produced by crossing over parents above;

(bottom row) structural mutant (left) and parametric mutant (right).

Figure 1.23 (Continued)

Applications 55

and the number of parameters varied respectively for the two approaches. Example

crossover and mutation actions are depicted in Figure 1.23 b .

In general, during user-driven evolutionary art and design projects, the user

chooses artifacts such as pictures or 3D objects based on their phenotypes, that is,

their visual properties, and then the software crosses over and mutates their geno-

types, that is, their underlying data structure and/or the programs that were used

to produce them. One issue that often arises in such projects is how satsifying

the process feels to the user. In particular, if the children of chosen parents con-

sistently look too similar to the parents, then the user is likely to feel that they

are making too slow progress. Conversely, however, if the children look too dissimi-

lar to their parents, then the user is likely to feel that their choices are not really

driving the evolution. Hence a middle ground has to be sought and often initial

experimentation is required to fi ne tune the evolutionary parameters to fi nd this

happy medium.

In our case, we performed initial experimentation to help determine the optimal

strength of the crossover and mutation operators when the evolutionary process was

driven by the user making phenotype choices. For 20 pairs of parent buildings, we

asked 10 participants to comment on whether each of 16 generated children were

(a) too similar, (b) too dissimilar, or (c) neither with respect to their parents. Some

of the children were generated via crossover of material from both parents, some

were generated via a mutation of a single parent, and some were randomly generated

with no reference to either parent as a control set. Moreover, the strengths of the

operations were varied across the 16 children.

In summary, we found the results very encouraging, as evidenced by (i) only

31.9% of the randomly generated control set were deemed satisfactory, that is, as

neither too similar nor dissimilar, whereas 50% of those generated from parents were

deemed satisfactory, and (ii) it was generally observed that weaker crossover and

mutation operators more often produced children rated as too similar than stronger

operators, which more often produced too dissimilar children. Of most interest, we

found that the weak form of both crossover and mutation operators more often led

to satsifactory buildings than the stronger forms. We used these fi ndings to choose

the settings for crossover and mutation in a user-driven graphical user interface

(GUI) which we found to be very useful in designing buildings which, when used

in cities, gave them a bespoke and interesting look and feel. Further details of the

experimentation and results are given in [42] .

In addition to the two projects described above, we also experimented with

evolutionary approaches to controlling the overall building composition of the cities,

for example, fl ow of residential (small) buildings into areas of commercial (tall)

buildings. We further experimented with traffi c fl ow in the cities, but rather than

looking at the usual question of increasing traffi c fl ow, we concentrated on setting

up situations for car crashes and other entertainment-based scenarios. In both cases,

we found the (unpublished) results very encouraging, further highlighting the poten-

tial for evolutionary approaches to both increase/enhance/personalize the game

content and increase user enjoyment in the game.

56 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

1.3.7 Summary

The applications described above demonstrate the components of an adaptive system

in action.

The Rogue Trooper and r The Hunter results demonstrate that complex, hetero-r
geneous player behaviors of the kind found in open-world games can be successfully

captured in simple trait models. These models can be learned in an unsupervised

way from game log data. They allow meaningful comparisons to be made between

players in complex gaming environments, which is crucial for adaptation.

The Pac-Man results show that player behavior and relevant game metrics to

distinguish playing style can be automatically captured in small-scale action games

using linear analysis methods. In particular, the dimensionality reduction property

of LDA is very useful in representing player behavior in very few variables and also

automatically weighing metrics by importance. The Super Mario results demonstrate

the viability of using player traits that were obtained in an initial survey using unsu-

pervised analysis methods to automatically generate a level tailored to the (esti-

mated) skill of a player.

A NGELINA demonstrates adaptation of content to the output of other generative

content systems and how such relationships can be carefully managed to encourage

cooperation between the output of such systems, producing content that is generated

independently but designed with a shared goal.

The board game applications (L UDI and Shibumi) and puzzle application (Hour

Maze) demonstrate that the measurement of game content, validated by user surveys

that gauge the users ’ playing experience, is suffi cient to guide the automated search

for interesting new content. The Shibumi project, in particular, will comprise a com-

plete system for the automated generation and adaptation of bespoke board games,

according to the user ’ s playing style and preferences, when completed.

The Subversion application further demonstrates the benefi t of a user-driven

evolutionary process, based on the users ’ experience, for generating game environ-

ment—as opposed to game play—content.

1.4 CONCLUSIONS

In the last fi ve years, we have worked directly with fi ve commercial video game

companies: Introversion Software, Rebellion Developments, Emote Games, Lionhead

Studios, and Nestorgames. Some of the results of these interactions have been

described in this chapter, and in each case, there has been overall (long-term) goals

of (i) helping industry practitioners to build better, adaptive games and

(ii) studying the potential for creative software to generate game content and even

entire games from a computational creativity perspective. As a result of the indi-

vidual projects presented here, our main contribution has been to propose a cycle

of generation, measurement, and adaptation within an overall methodology for

adaptive game design in a context of procedural content generation, as detailed in

Section 1.2 .

Conclusions 57

From the perspective of designing commercial games that are able to adapt to

personalize the gaming experience, there are major obstacles in each part of the

cycle. In particular, simply recording game play and sensor data about a player may

slow down the game so much that it is impractical. If it is possible to record and

massage such data into a usable form, then reliably estimating the user experience

from these data are very diffi cult indeed and will require massive amounts of user

play-testing and the machine learning of classifi ers to be used in-game. Building a

game which can alter itself at run time in the various ways necessary for the altera-

tions to be perceivable, not disorientating and to have the potential to improve

matters is a serious engineering challenge. Finally, putting all these aspects together

into an automated game director able to alter the game at run time in such a way

that there is a good chance of improving user experience is a serious research

problem for the industry. The individual projects described in Section 1.3 each

addresses one or more of these diffi culties. Moreover, they have helped us to fl esh

out the benefi ts of employing the cyclic methodology via experimental results arising

from the study of both commercial and experimental games.

In particular, with respect to generative aspects, we have shown that board game

rule sets can be automatically developed with commercial success and that other

game assets, such as buildings, levels, and pixel shaders, can be similarly generated.

Moreover, we have shown that entire platformer games can be evolved not only to

be entertaining through game play but also to refl ect current issues expressed in

newspaper articles. With respect to measurement aspects, we have performed exten-

sive analysis of data arising from the playing of games, talking about the experience

in interviews, and messaging other players through social networking. This has

enabled us to pioneer new ways to capture low-level game play data and high-level

user experience data and to show the value of statistical techniques such as linear

discriminant analysis for summarizing important aspects of how people play games.

With respect to adaptive aspects, we have shown how simple games such as

Snakeotron can adapt as players progress and how levels for Super Mario can be

built in response to user data. We have further shown how automatically generated

puzzles can be given aspects of a human touch and the potential for players to evolve

the look and feel of a game environment such as the cityscape in Subversion before

they play the game.

From the perspective of computational creativity, we have learned a great deal

about the potential for software to be creative in the game design process. In particu-

lar, we have looked at how Web resources such as newspaper articles, multimedia

assets, and social network data can drive generative processes, often leading to

interesting and surprising results. We have also looked at how individual generative

processes can be integrated so that the whole is more than a sum of the parts and

how software can add value to its creations by providing information about how/

why it operated and framing its work in various cultural contexts, such as news

reporting. We have studied how best to enable users to guide evolutionary processes

for content creation, so that they feel satisfi ed with the level of progress they are

making. We have also studied responses from the game-playing public to informa-

tion about the computational genesis of games and game content. Interestingly, we

58 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

have noticed a lesser effect of so-called carbon fascism (i.e., default prejudice against

the intelligence/creativity of software) in gaming circles than in other artistic cul-

tures. From a broader AI perspective, we note that game play data are becoming

more available for machine learning applications, which is an exciting prospect—the

availability of such data in other domains such as bioinformatics has revolutionized

those areas.

Commercial games with mild aspects of adaptation, such as Left 4 Dead , ared
already making an impact. Moreover, players now demand huge game worlds, large

numbers of nonplayer characters and other players to interact with, and to be regu-

larly given new missions. This naturally increases their impression of having a

bespoke gaming experience each time they play, which in turn keeps their interest

in the game for longer periods. An interesting question for the future is whether

players want more direct personalization of their experience and, if so, how to bring

this about. We believe that the investigations presented here, developed with aca-

demic and industrial collaboration, are indicative of the kind of fundamental research

required to bring about a new wave of personalized games which adapt to individual

players. The majority of the work described above is very much ongoing, and we

intend to fi nd new and interesting projects which raise and answer new questions in

adaptive gaming and computational creativity research in order to contribute to this

exciting fi eld in the future.

 ACKNOWLEDGMENTS

 We would like to thank all the game industry professionals and academic researchers

who have worked with us on game projects of all types. We would like to particularly

thank Paul Cairns, Paul Miller, Daniel Ramirez-Cano, Néstor Romeral Andrés,

Stephen Tavener, Andrew Howlett, Andrew Lim, and Andrew Martin, whose work

contributed directly to the projects described above. This work has been supported

by EPSRC grants TS/G002835, EP/I001964, EP/J004049/1, and TS/G002886 and

TSB grant AL318J.

 REFERENCES

 1. I. Althöfer , “ Computer-aided game inventing ,” Technical report, Friedrich-Schiller Univ., Faculty

Math. Comp. Sci., Jena, available: http://www.minet.uni-jena.de/preprints/althoefer_03/CAGI.pdf ,

 2003 .

 2. M. Ambinder , “ Biofeedback in gameplay: How valve measure physiology to enhance gaming experi-

ence ,” online slides: http://www.valvesoftware.com/publications/2011/ValveBiofeedback-Ambinder

.pdf , 2011 .

 3. S. Asteriadis , N. Shaker , K. Karpouzis , and G. Yannakakis , “ Towards player ’ s affective and behav-

ioral visual cues as drives to game adaptation ,” in Proceedings of Workshop on Multimodal Corpora
2012, 2012 , pp. 6 – 9 .

 4. R. Bartle , “ Hearts, clubs, diamonds, spades: Players who suit MUDs ,” Journal of MUD Research ,

vol. 1 , no. 1 , 1996 .

 5. C. Bateman , R. Lowenhaupt , and L. E. Nacke , “ Player typology in theory and practice ,” in Think
Design Play: International Conference of the Digital Games Research Association (DIGRA) ,
Hilversum, The Netherlands, September 2011 .

References 59

 6. R. Baumgarten , “ Towards automatic player behaviour characterisation using multiclass LDA ,” in

Proc. AISB Symp. on AI & Games , 2010 , pp. 63 – 66 .

 7. M. Booth , “ The AI systems of Left 4 Dead ,” online slides: http://www.valvesoftware.com/d
publications/2009/ai_systems_of_l4d_mike_booth.pdf , 2009 .

 8. I. Borg and P. Groenen , Modern Multidimensional Scaling: Theory and Applications , 2nd ed .

 Springer , Berlin , 2005 .

 9. C. Browne , “ Automatic generation and evaluation of recombination games ,” Ph.D. dissertation,

Queensland University of Technology, 2008 .

10. C. Browne , Evolutionary Game Design , Springer , Berlin , 2011 .

11. C. Browne , “ Elegance in game design ,” IEEE Trans. on Computational Intelligence & AI in Games ,

vol. 4 , pp. 229 – 240 , 2012 .

12. C. Browne , “ Evolutionary game design: 2012 ‘Humies’ winner ,” SIGEVO Newsletter , vol. 6 , no. 2 ,r
 2012 .

 13. C. Browne , “ Metrics for better puzzles ,” in M. Seif El-Nasr , A. Drachen , and A. Canossa (Eds.),

Game Analytics: Maximizing the Value of Player Data, Springer , New York , 2012 .

 14. C. Browne and S. Colton , “ Computational creativity in a closed game system ,” in Proc. Comput.
Intell. Games (CIG), 2012 .

 15. C. Browne , E. Powley , D. Whitehouse , S. Lucas , P. I. Cowling , P. Rohlfshagen , S. Tavener , D. Perez ,

 S. Samothrakis , and S. Colton , “ A survey of Monte Carlo tree search methods ,” IEEE Trans. on

Computational Intelligence & AI in Games , vol. 4 , no. 1 , pp. 1 – 43 , 2012 .

 16. C. Browne and N. R. Andrés , Shibumi Rule Book , Lulu , Raleigh , 2012 .k
 17. S. Colton and G. A. Wiggins , “ Computational creativity: The fi nal frontier ,” in Proceedings of the

European Conference on Artifi cial Intelligence , 2012 .

 18. M. Cook and S. Colton , “ Initial results from co-operative co-evolution for automated platformer

design ,” in Volume 7248 of Applications of Evolutionary Computationf , Springer , Berlin , 2012 .

 19. M. Cook , S. Colton , and A. Pease , “ Aesthetic considerations for automated platformer design ,” in

Proceedings of the 8th AAAI Conference on Artifi cial Intelligence and Interactive Digital
Entertainment, 2012 . t

 20. B. Cowley , “ Player profi ling and modelling in computer and video games ,” Ph.D. dissertation,

University of Ulster, 2009 .

 21. C. Crawford , The Art of Computer Game Design, McGraw-Hill , Berkeley , 1984 .

 22. E. Dereszynski , J. Hostetler , A. Fern , T. Dietterich T.-T. Hoang , and M. Udarbe , “ Learning probabi-

listic behavior models in real-time strategy games ,” in Proceedings of the Seventh AAAI Conference
on Artifi cial Intelligence and Interactive Digital Entertainment, 2012 . t

 23. A. Drachen , A. Canossa , and G. Yannakakis , “ Player modeling using self-organization in Tomb
Raider: Underworld,” in d Proc. IEEE Symp. on Comp. Intelligence & Games (CIG) , pp. 1 – 8 ,

2009 .

 24. W. Engel , Programming Vertex and Pixel Shaders , Charles River Media , Milan , 2009 .

 25. J. Gow , R. Baumgarten , P. Cairns , S. Colton , and P. Miller , “ Unsupervised modelling of player style

with LDA ,” IEEE Trans. on Computational Intelligence & AI in Games , vol. 4 , no. 3 , 2012 .

 26. J. Gow , S. Colton , P. Cairns , and P. Miller , “ Mining rules from player experience and activity data ,”

in Proceedings of the Eighth Annual AAAI Conference on Artifi cial Intelligence and Interactive
Digital Entertainment, AAAI Press , Stanford, CA , 2012 . t

 27. E. Y. Ha , J. P. Rowe , B. W. Mott , and J. C. Lester , “ Goal recognition with markov logic networks

for player-adaptive games ,” in Proceedings of the Seventh AAAI Conference on Artifi cial Intelligence
and Interactive Digital Entertainment, 2012 .t

 28. E. J. Hastings , R. K. Guha , and K. O. Stanley , “Evolving content in the galactic arms race video

game ,” in Proc. IEEE Symp. on Comp. Intelligence & Games (CIG) , 2009 .

 29. M. Hendrikx , S. Meijer , J. van der Velden , and A. Iosup , “ Procedural content generation for games:

A survey ,” ACM Trans. Multimed. Comput. Commun. Applic. , 2011 .

 30. H. Higashida , “ Machine-made puzzles and hand-made puzzles ,” in R. Nakatsu et al. (Eds.), IFIP

Adv. Inform. Commun. Technol., vol. 333 , pp. 214 – 222 , 2010 .

31. V. Hom and J. Marks , “ Automatic design of balanced board games ,” in Proc. 3rd Artif. Intell. Interact.
Digital Entert. Conf. , pp. 25 – 30 , 2007 .

60 Chapter 1 Toward the Adaptive Generation of Bespoke Game Content

32. A. Howlett , S. Colton , and C. Browne , “ Evolving pixel shaders for the prototype video game subver-

sion ,” in Proceedings of the AISB Symposium on AI and Games, 2010 .

33. R. Hunicke , “ The case for dynamic diffi culty adjustment in games ,” in Proceedings of the International
Conference on Advances in Computer Entertainment Technology, ACE 2005, Valencia, Spain, June
15, 2005 , ACM , 2005 , pp. 429 – 433 .

34. H. Iida , K. Takahara , J. Nagashima , Y. Kajihara , and T. Hashimoto , “ An application of game-

refi nement theory to mah jong ,” Lecture Notes in Computer Science , vol. 3166 , pp. 333 – 338 ,

2004 .

35. M. Jennings-Teats , G. Smith , and N. Wardrip-Fruin , “ Polymorph: Dynamic diffi culty adjustment

through level generation ,” in Proceedings of the 2010 Workshop on Procedural Content Generation
in Games, PCGames 2010 , ACM , New York , 2010 .

36. N. Kanamoto , “ A well-made Sudoku is a pleasure to solve, 2001 ,” available at http://www.nikoli

.co.jp/en/puzzles/sudoku/hand_made_sudoku.htm .

37. S. Kim , “ What is a puzzle? ” available at http://scottkim.com/thinkinggames/whatisapuzzle/index

.html , 2008 .

38. J. Koza , Genetic Programming , MIT Press , Cambridge, MA , 1992 .

39. N. Lazzaro , “ Why we play: Affect and the fun of games ,” in The Human–Computer Interaction
Handbook: Fundamentals, Evolving Technologies, and Emerging Applications, Lawrence Eribaum ,

New York , 2003 , pp. 679 – 700 .

40. T. W. Malone , “ What makes things fun to learn? Heuristics for designing instructional computer

games ,” in Proceedings of the 3rd ACM SIGSMALL Symposium and the First SIGPC Symposium on
Small Systems, ACM , 1980 , pp. 162 – 169 .

41. R. L. Mandryk and M. Stella Atkins , “ A fuzzy physiological approach for continuously modeling

emotion during interaction with play technologies ,” International Journal of Human-Computer

Studies, vol. 65 , no. 4 , pp. 329 – 347 , 2007 .

42. A. Martin , A. Lim , S. Colton , and C. Browne , “ Evolving 3d buildings for the prototype video game

subversion ,” in Proceedings of the EvoGames Workshop, 2010 .

43. G. J. McLachlan , Discriminant Analysis and Statistical Pattern Recognition , Wiley Interscience ,

Hoboken, NJ , 2004 .

44. M. McPartland and M. Gallagher , “ Reinforcement learning in fi rst person shooter games ,” IEEE

Trans. on Computational Intelligence & AI in Games , vol. 3 , no. 1 , 2011 .

45. G. Mountain , “ Psychology profi ling in Silent Hill: Shattered memories ,” Invited talk at Paris Game/

AI Conference, 2010 , available: http://gameaiconf.com/?p = 141 .

46. C. Pedersen , J. Togelius , and G. Yannakakis , “ Modeling player experience for content creation ,” IEEE
Trans. on Computational Intelligence & AI in Games , vol. 2 , no. 1 , pp. 54 – 67 , 2010 .

47. M. Potter and K. De Jong , “ A cooperative coevolutionary approach to function optimization ,” in

Yuval Davidor , Hans-Paul Schwefel , and Reinhard Männer (Eds.), Parallel Problem Solving from
Nature—PPSN III , vol. 866 of Lecture Notes in Computer Science, Springer , Berlin / Heidelberg ,

1994 , pp. 249 – 257 .

48. A. K. Przybylski , C. Scott Rigby , and R. M. Ryan , “ A motivational model of video game engage-

ment ,” Review of General Psychology , vol. 14 , no. 2 , p. 154 , 2010 .

49. D. Ramirez-Cano , S. Colton , and R. Baumgarten , “ Player classifi cation using a meta-clustering

approach ,” in Proceedings of the 3rd International Conference on Computer Games, Multimedia and
Allied Technology, CGAT 2010, Singapore, April 2010 , 2010.

50. R. Rost , B. Licea-Kane , D. Ginsburg , J. Kessenich , B. Lichtenbelt , H. Malon , and M. Weiblen ,

OpenGL Shading Language , 3rd ed . Addison Wesley , Reading, MA , 2009 .

51. R. Wayne Schmittberger , New Rules for Classic Games , Wiley , New York , 1992 .

52. N. Shaker , J. Togelius , G. N. Yannakakis , B. Weber , T. Shimizu , T. Hashiyama , N. Sorenson , P.

Pasquier , P. Mawhorter , G. Takahashi , G. Smith , and R. Baumgarten , “ The 2010 Mario AI champion-

ship: Level generation track ,” IEEE Trans. on Computational Intelligence & AI in Games , vol. 3 , no.

4 , pp. 332 – 347 , 2011 .

53. N. Shaker , G. Yannakakis , J. Togelius , M. Nicolau , and M. O ’ Neill , “ Evolving personalized content

for Super Mario Bros using grammatical evolution ,” in Proceedings of the Seventh AAAI Conference
on Artifi cial Intelligence and Interactive Digital Entertainment, 2012 . t

References 61

54. P. Spronck , M. Ponsen , I. Sprinkhuizen-Kuyper , and E. Postma , “ Adaptive game AI with dynamic

scripting ,” Machine Learning , vol. 63 , no. 3 , pp. 217 – 248 , 2006 .

55. P. Sweetser and P. Wyeth , “ Gamefl ow: A model for evaluating player enjoyment in games ,” Computers
in Entertainment (CIE), vol. 3 , no. 3 , p. 3 , 2005 .

56. R. Thawonmas and K. Iizuka , “ Visualization of online-game players based on their action behaviors ,”

 International Journal of Computer Games Technology , 2008 .

57. M. J. Thompson , “ Defi ning the abstract ,” The Games Journal , 2000 . l
58. J. Togelius , G. Yannakakis , K. O. Stanley , and C. Browne , “ Search-based procedural content genera-

tion: A taxonomy and survey ,” IEEE Trans. on Computational Intelligence & AI in Games , vol. 3 ,

no. 3 , pp. 172 – 186 , 2011 .

59. G. Trefay , Casual Game Design: Designing Play for the Gamer in All of Us , Morgan Kaufmann ,

Burlington , 2010 .

60. G. van Lankveld , P. Spronck , J. van den Herik , and A. Arntz , “ Games as personality profi ling tools ,”

in Proc. IEEE Symp. on Comp. Intelligence & Games (CIG) , pp. 197 – 202 , 2011 .

61. G. Yannakakis , M. Maragoudakis , and J. Hallam , “ Preference learning for cognitive modeling: A

case study on entertainment preferences ,” IEEE Transactions on Systems, Man and Cybernetics, Part

A: Systems and Humans, vol. 39 , no. 6 , pp. 1165 – 1175 , 2009 .

62. G. N. Yannakakis , “ How to model and augment player satisfaction: A review ,” in Proceedings of the
1st Workshop on Child, Computer and Interaction, Chania, Crete , ACM Press , New York , 2008 .

63. G. N. Yannakakis and J. Togelius , “ Experience-driven procedural content generation ,” IEEE Trans.

on Affective Computing, vol. 2 , no. 3 , pp. 147 – 161 , 2011 .

64. N. Yee , N. Ducheneaut , L. Nelson , and P. Likarish , “ Introverted elves & conscientious gnomes: The

expression of personality in world of warcraft ,” in Proc. Int. Conf. on Human Factors in Computing
Systems (CHI), pp. 753 – 762 , 2011 .

65. A. E. Zook and M. O. Riedl , “ A temporal data-driven player model for dynamic diffi culty adjust-

ment ,” in Proceedings of the Seventh AAAI Conference on Artifi cial Intelligence and Interactive
Digital Entertainment, 2012 . t

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

