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   In this chapter, we explore methods for automatically generating game content—and 

games themselves—adapted to individual players in order to improve their playing 

experience or achieve a desired effect. This goes beyond notions of mere replay-

ability and involves modeling player needs to maximize their enjoyment, involve-

ment, and interest in the game being played. We identify three main aspects of this 

process: generation  of new content and rule sets, measurement  of this content andt
the player, and adaptation  of the game to change player experience. This process

forms a feedback loop of constant refi nement, as games are continually improved 

while being played. Framed within this methodology, we present an overview of our 

recent and ongoing research in this area. This is illustrated by a number of case 

studies that demonstrate these ideas in action over a variety of game types, including

3D action games, arcade games, platformers, board games, puzzles, and open-world 

games. We draw together some of the lessons learned from these projects to comment 

on the diffi culties, the benefi ts, and the potential for personalized gaming via adap-

tive game design.  

  1.1       INTRODUCTION

 Personalization of games for individual players is seen as a signifi cant future market-

ing factor for games and is currently a major driving force for improved game design, 
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which will ultimately lead to better games and happier and more engaged, and 

entertained customers. Within this scope, there is a particular nirvana wherein games

automatically adapt before, during, and after being played to take into account the 

style, experience, and personality of each player. Of course, games have always had 

a simplistic adaptive element, whereby stronger players progress to play more dif-

fi cult levels to keep them interested. However, this type of adaptation only takes into 

account their skill level at that particular game and ignores other information such

as their likes, dislikes, temperament, current mood, and overall ability. Such informa-

tion can in principle be gathered through game play, sensors, surveys, and other 

routes and will be used in adaptive gaming technologies of the future to generate

bespoke games that truly change to fi t an individual player, greatly enhancing their 

playing experience. 

The automatic adaptation of games to players is also a major force for applied 

artifi cial intelligence (AI) research. In particular, as a research group, in addition to

the long-term goal of improved games, we are also interested in studying games 

from the perspective of the subfi eld of AI known as computational creativity research 

[17] . In this area, we study how to engineer software which can take on some of the 

creative responsibility  in arts and science projects. In this context, games, video

games in particular, can be seen as a “killer domain” for creativity research. This is 

largely because generating a game requires the generation of all the types of artifact 

we usually produce individually, including audio (sound effects, music), graphics 

(characters, backdrops), text (dialogue, plotlines), and concepts (puzzles, rule sets, 

interaction schema, game mechanics). However, there are many other advantages to

working with games as a medium within which to study computational creativity. 

These include (a) the fact that the output is entirely digital and the audiences are

entirely online, hence requiring no exhibitions, concerts, readings, publications, or 

demonstrations in order to get culturally relevant feedback; (b) a general acceptance 

of automated processes as being valuable, which is not always true in more tradi-

tional artistic circles; (c) a requirement to model and ultimately alter both positive 

and negative emotions; (d) an interesting balance between the entertainment value 

and the intellectual value of games; and (e) explicit requirements to incorporate user 

engagement and interaction in the generated artifacts.

As a group of computational creativity researchers and avid game players, over 

the last fi ve years, we have eagerly investigated the potential for automating pro-

cesses related to game design, with the specifi c long-term goal of adaptive game 

generation in mind. We see adaptive systems in games—also known as AI directors

or game masters—as a form of procedural content generation which aims to enhance 

the players ’  gaming experience by delivering personalized game content. When 

thinking about such adaptive systems, it helps to consider various aspects such as 

the type of player data , the types of decisions to be made about game content (the 
content output space), how the latter is computed from the former ( the adaptive 
mechanism), and the desired effect on player experience ( the adaptation require-
ments). We have studied the potential for adaptive games with a shotgun approach, 

that is, numerous projects involving games of various genres, which address all the 

above aspects. We present here an overview of some of these projects in order to
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highlight the lessons learned, diffi culties encountered, and huge potential for adap-

tive game technology to both help produce next-generation games and stimulate

research in computational creativity. 

In Section  1.2 , we describe an overall methodology within which content gen-

eration for adaptive games can take place. This centers around a cycle of generation, 

measurement, and adaptation, and we expand each of these aspects further. With 

respect to generation, we place this in a context of search-based procedural content 

generation and focus on two types of evolutionary search. With respect to measure-

ment, we split this into measuring the game, measuring the player, and measuring 

the adaptations. Finally, we place adaptation into a broader context of improving 

player experience and cast it as a machine learning problem. In Section  1.3 , we

describe various projects where we have studied aspects related to automating adap-

tive game design, with respect to the methodology given in Section  1.2 . These

projects cover different genres of games with which we have experimented, includ-

ing 3D action games, platformers, arcade games, board games, puzzles, and open-

world games. In the fi nal section of the chapter, we take an overview of these projects

and draw conclusions about the prospects for personalized gaming through adaptive

game design. 

Note that it is beyond the scope of this chapter to cover all the work done in

the area of adaptive content generation, and we only present background material

which is direcly relevant to the projects we describe. Each of those projects is 

covered by various of our research papers which we cite in the chapter and which

can be referenced for further literature reviews.  

1.2       METHODOLOGY

Given the need for the adaptive generation of bespoke game content, this section

describes how  this can be achieved for digital games. We focus on the processes that 

we have used for projects ourselves but which have broader application to other 

domains. In each case, the process involves three fundamental steps, summarized 

below:

1.  Generation of new content and rule sets 

2.  Measurement of the generated content and target players during adaptive t
generation or as part of system design and evaluation 

3.  Adaptation   with the aim of changing a target player ’ s gaming experience   

These steps are summarized diagrammatically in Figure  1.1 , where the arrows indi-

cate the order of operation. In the following sections, we consider each of these steps 

in detail. 

1.2.1       Generation 

The fi rst step in the cyclic adaptive process is the generation of novel game content 

and game rules. This may be achieved through fully automated means, although a
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signifi cant amount of our research also investigates the use of the computer as a 

creative collaborator  that assists the designer by taking on some creative responsi-r
bilities. In this section, we describe the generational methods most commonly used 

in our work. 

1.2.1.1       Procedural Content Generation 

The exponential growth of digital games in recent years means that there are now

hundreds of millions of people playing games every day, wanting new and interesting 

content  [29] . However, the related production costs and requirements for specialized 

manual labor to develop content to satisfy this demand have also increased expo-

nentially, and the industry is now facing serious scalability issues. Games are becom-

ing larger and more complex, with virtual worlds that are open, massive, and

ongoing, which puts impossible demands on designers and artists alike and creates

a content creation bottleneck .k
Procedural content generation  (PCG)—the automatic creation of content 

through algorithmic means—offers a potential solution to this shortfall between 

consumer need and industry output and is becoming an increasingly important fi eld 

of research for digital game design for both the artistic content of games and for 

game play itself.  Content  in the context of digital games may refer to any of thet
following:

• Rules     that govern the gameplay

• Challenges  that defi ne initial states posed to players

• Resources   that defi ne the game ’ s look, theme, feel, and so on   

PCG is a diffi cult task for creative domains such as game design, as the auto-

matically generated content must satisfy the constraints of the designers and artists 

as well as the (often poorly defi ned) needs of the end users. However, it offers the 

promise of handing at least some of the creative responsibility to the computer, and

we are now seeing an increasing amount of procedurally generated content in com-

mercially released games.

Search-based procedural content generation (SB-PCG) is a particular type of 

PCG in which a test function grades the generated content for fi tness and guides the 

Figure 1.1 Overview of adaptive game generation process. 
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search for new content accordingly. As depicted in Figure  1.2 , Togelius et al.  [58]

distinguish SB-PCG from other forms of PCG as follows:

1.  Search Basedd Content is iteratively generated according to a fi tness func-

tion that guides the search. 

2.  Constructive  Content is directly generated according to certain rules with 

strict validation.

3.  Generate and Test (G&T) Content is iteratively generated according to 

certain rules and fi ltered for fi tness.

SB-PCG is an ideal mechanism for adapting games and game content on-the-fl y, in

response to players ’  needs, as the system can learn and improve its output the more

it is used. See  [29]  and  [58]  for further details on PCG and SB-PCG for games. The

two main SB-PCG mechanisms we have used in our projects are evolution and

coevolution, as described below.

1.2.1.2       Evolution 

In traditional evolutionary systems, a population of possible solutions to a particular 

problem are evaluated for “fi tness” (some numerical value indicating how well 

they solve the problem) and recombined to produce hybrid solutions that hopefully

inherit positive traits from the previous population. For a generative task such as 

those in procedural content generation, the task at hand is to produce a piece of 

content to meet certain quality or player-specifi c targets, and a solution is a piece of 

fi nished content that can be evaluated against those targets. The process of iterative

Figure 1.2     Main forms of PCG  (from  [58] ) .
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evaluation and recombination is repeated until some stopping condition is met, 

which may involve measurements of the content produced. 

Evolutionary algorithms are used in a wide variety of applications, including 

across the games industry. Evolution is particularly useful where (a) only general

criteria for a solution can be stated—such as Paul Tozour ’ s  City Conquest  (Intelligencet
Engine Design Systems, forthcoming), which used computational evolution to stress 

test the game for balance issues—or (b) the space of possible solutions is so large

that searching it using other methods is too diffi cult—for instance, the Starcraft II
(Blizzard, 2010) community was upset by a genetic algorithm that could optimize

complex build orders and discovered exploits unknown to even the best human 

players. 

Evolutionary algorithms tend to perform best when the fi tness functions and the 

representation of a solution are relatively simple. For larger problems, where solu-

tions may be very complex and fi tness evaluations include many competing estima-

tions of quality, evolutionary algorithms are harder to design optimally and take

longer to produce good solutions. They also lack a guarantee of robustness: Due to 

the random nature of the generation and recombination processes, even the best 

designed evolutionary systems may produce bad or severely suboptimal solutions. 

This issue is one reason that evolutionary algorithms are more commonly used in 

preproduction to generate content that can be curated before inclusion. This problem 

can often be mitigated by building additional systems to perform quality checks or 

adjust evolutionary parameters, and many applications of content generation come 

with the expectation that the system may occasionally produce curios or eccentric

output. 

1.2.1.3       Coevolution 

Cooperative coevolution (CCE) is a type of evolutionary algorithm that helps solve 

larger problems by decomposing them into smaller tasks that can be solved individu-

ally. In their paper proposing the algorithm  [47] , Potter and De Jong say that in order 

to evolve more complex structures, explicit notions of modularity need to be intro-

duced in order to provide reasonable opportunities for complex solutions to evolve. 

These modules are called “species” and are structured as self-contained evolutionary 

systems, with a population and a fi tness function of their own. 

The difference between a species and an ordinary evolutionary system is that a

fi tness function evaluates a member of its population in the context of the original 

design problem. That is, if we have a problem  P  decomposed into n evolutionary 

algorithms P1 ,  . . .  , Pn, in order to evaluate a candidate solution  s ∈ population ( Pi), 

we gather the best known members of populations  P1,  . . .  ,  Pi−1 , Pi+1 ,  . . .  , Pn and 

combine them with s  to make a solution to the original problem P. The fi tness func-

tion then evaluates s both on the quality of it as an individual solution and the quality 

of its cooperation with the other  n −  1 subproblems.

Cooperative coevolution offers many benefi ts when building content creation 

tools. Each module can easily encapsulate a particular design task, such as level

design, which helps conceptually separate the different elements of content creation.
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It is also easily amenable to mixed-initiative design, where a human contributes to

the content generation process alongside an AI system. Because fi tness functions 

react to the context provided to them by the other species, we can remove a CCE

species and replace it with a static, human-generated piece of content, and the CCE

system will design and adapt its other species to the content provided. For example,

consider a puzzle game designer that conceives of a rule set in one CCE species and

designs a set of levels with another CCE species. In normal execution, the evolution

of the rule set will interact with the evolution of the level design, and over time the

two will cooperate and complement each other. However, we might want to develop

a particular kind of puzzle game. If we replace the rule set species with a static rule

set that represents the mechanics we want to use, the level-designing species will

design levels tailored to the human-designed rule set. This idea has enormous poten-

tial for improvisational game design tools, where software and designer play off one

another ’ s ideas.

Video game design represents a particularly complex problem, being comprised

of many different components (such as levels, mechanics, artwork, narratives, and

music) all of which have different estimations for their fi tness and depend on each 

other for their defi nitions of quality; a “good” level for a set of mechanics like those

in Pac-Man  (Namco, 1980) is very different from a good level for a game such as

Doom  (id Software, 1993). Standard evolutionary systems would need to take into

account a vast array of quality estimations that would change while the evolution

was still taking place, but CCE allows us to subdivide and specialize these design

tasks to better deal with each individually. For a description of a system employing

CCE for the procedural generation of content, see Section  1.3.3 .   

1.2.2       Measurement

The second step in the adaptive process is the measurement of the generated content.

This involves:

1.   Measuring the quality of the generated artifacts (game content and rules)

according to specifi ed criteria or desired aims. This can be achieved, for 

instance, through automated self-play.

2.   Measuring how the player plays the game, taking external observations

during play, and measuring other contextual factors such as personality or 

stored profi les.

Specifi c applications have often only used one approach, measuring the content 

or  the player. But, in general, both can contribute to bespoke game design. Measure-r
ment can play three distinct roles in adaptive game generation systems as follows:

Adaptive Measurement     The system measures aspects of the generated content t
and target player to deliver content adapted to that player. 

Formative Measurement   The system designers test the quality of generated t
content and player ’ s reaction to content and/or adaptation in order to inform 
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the design of the system. For example, this can include gathering player 

feedback to train a learning algorithm. 

Summative Measurement   The working system is evaluated in terms of the t
quality of generated content and a player ’ s reaction to content and/or 

adaptation. 

Adaptive measurement is  autonomous, carried out by the bespoke game design 

system, whereas formative and summative measurements are human guided. Ind
human-guided measurement, we are often able to exploit information not accessible 

to autonomous measurement by the game during normal adaptive play, for instance,

verbal feedback or physiological measurements. However, it is possible for such data 

to be measured autonomously during play by a suffi ciently sophisticated system. In 

the sections below, we consider some different approaches to measuring content and 

players. 

1.2.2.1       Measuring the Game 

We understand the quality  of a game to mean the potential for the game to engage
players: the capacity of that game to interest players and to keep them in that state. 

Gauging the quality of a generated game or piece of game content can be diffi cult, 

as the notion of quality can depend on the context and vary from player to player. 

One approach is to defi ne  quality metrics which provide a computational assess-

ment of an aspect of game quality. Such metrics can be used to automatically guide

the search during SB-PCG but can also be useful during system design and evalua-

tion. An alternative is to evaluate game quality by  play testing  , where explicit feed-

back is gathered from players. This is typically used as formative or summative 

measurement but could also form part of the adaptive process in systems which 

directly solicit players for feedback to guide adaptation. 

Most research into game quality metrics has been done in the context of board 

games, where games of any signifi cant depth tend to involve mechanisms and strate-

gies that emerge during play and which may not be obvious from their rules alone. 

For this reason, it is generally more reliable to measure board games for quality via 

the playing of games, rather than from the rules alone. This can be achieved by 

conducting series of self-play trials between artifi cial players. Many of the metrics 

can, in principle, be generalized to evaluate the quality of video games. AI players,

called bots , can be used to automatically test generated video game content and 

gather metric data, although for more complex games, creating an AI bot may be a 

very time-consuming task.

Browne  [9]  describes 57 aesthetic criteria for empirically measuring the quality 

of board games, mostly from trends observed during self-play trials. These include

interpretations of the following four key features of abstract games, outlined by 

Thompson  [57] :

Depth   The capacity for a game to be played at different levels of skill and to 

reward continued study 

Clarity   The ease with which players can understand the rules and plan moves 
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Drama     The potential for players to recover from trailing positions to eventu-

ally win the game

Decisiveness     The ease with which players can close the game out once a

winner is certain  

Other useful metrics include uncertainty  [34] ,  balance  [31] , and  game length
[1] . Game length has proven to be a particularly effective indicator of fl awed games,

as it quickly detects trivial games that end within a few moves, as well as strategi-

cally fl awed games in which players can defend indefi nitely with optimal play, and

logically fl awed games in which the goals simply cannot be reached using the speci-

fi ed rules. Player testing with people is preferable if an appropriate quality metric

is diffi cult or impractical to implement. In such scenarios, player testing can be more

reliable, as the player is the end user that the game design process is ultimately trying

to satisfy. Further details of measuring player experience are described in Section

1.2.2.4 .  

1.2.2.2       Autonomous Player Measurement 

To deliver bespoke game content, generation methods need to be based on data about 

a particular target player or players. This player data  can be collected before play,

to generate new content for the next game, or during play itself, in order to adapt 

upcoming content in the current game. Data on multiple players can be collected in

order to generate common content for that group, either because they are playing a

multiplayer game or because they are being collectively targeted with the same

content, for example, as members of the same age group.

The player data most easily gathered by digital games are  game play logs , which

contain a record of in-game states and events, and player actions, from which

summary player features may be computed, for instance, as in  [7, 28, 52] . However,

other forms of player data can be gathered, such as demographic data, motion,

posture, physiological signals  [41] , visual appearance  [3] , retail activity, social media

activity  [49] , and direct player feedback on experience. These data sources are not 

always available, but as mainstream gaming hardware develops (e.g., in the motion-

aware Wii and Kinect consoles) and social media and gaming become more inte-

grated, there is a growing commercial interest in exploiting these resources, as in  [2] . 

Note that even when the available data are restricted, a content generation algorithm

can be still be informed by other kinds of formative player measurement during

design or training, for example, feedback on player experience during testing  [53, 63] . 

Player input data are often reduced to a set of categorical and/or scalar features.

This provides a simplifi ed input to the subsequent content generation stage and 

allows the use of standard machine learning techniques. Given the range of possible

player inputs, this feature data can measure any aspect of the player, his or her activ-

ity, and the context of play. As examples, we can take measurements of current situ-

ational intensity—as in  Left 4 Dead  (Valve, 2008)  [7] —weapon use  [28] , summaryd
statistics for a individual combat  [25] , a single level  [52] , or an entire video game

[23] . An alternative to scalar and categorical features is to use structured player data,

such as paths, sequences, trees, or graphs. To date, structured player data have been
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relatively unexplored, although there has been a growing interest in the research

literature  [22, 27, 49] . 

One consideration when measuring in-game player behavior is whether the 

game play is uniform or divided into several distinct modes of play. Much work on 

adaptive content generation has looked at games where the player is engaged in

roughly the same continuous activity, for example, simple platform games. For such

uniform game play, player features can be given a consistent interpretation. In other 

games, game play is structured as a series of distinct and possibly overlapping activi-

ties. Different player features, such as the rate of weapon fi re, can have very different 

interpretations between activities. For example, Pac-Man (Namco, 1980) involves a 

ghost avoidance and a ghost-hunting phase, and a “distance-to-ghosts” feature has 

a different meaning in each mode. Comparing such features across players may not 

give us a clear picture of individual differences unless the activity context is taken 

into account. One approach is to segment game play logs into distinct activity types

and measure these separately  [25] .  

1.2.2.3       Player Models 

Player input data can be passed directly to a content generation system or instead 

be fi rst converted to a more abstract player model , that is, a representation of thel
player designed to be more appropriate for subsequent content generation. In general, 

any representation (e.g., fi rst-order logic) that raw player data are converted to in a 

preprocessing step could be considered a player model. Typically, this will be a

feature-based model, which describes players in terms of a small number of features

representing signifi cant characteristics. 

A feature-based player model consists of scalar  traits and categorical  types ,

following the terminology of personality psychology. A type-only model is known

as a player typology  [4, 5] . Trait-based models are regarded as a more accurate 

representation of individual differences than discrete typologies, although in some 

cases a typology may be more convenient to work with for a game designer or 

content generation system. 

Providing that they capture the relevant aspects of the player data with respect 

to the game, player models can provide a simpler and more convenient representation

of the player, considerably reducing the dimensionality of the input data for subse-

quent adaptive content generation. Ideally, translating player input to a model will

highlight relevant variations between players and fi lter out irrelevant data. If machine

learning is used to train the content generation system, working with low-dimen-

sional data can increase learning performance. Another advantage of player models 

is that they provide a simple representation of the player that can, in some cases, be 

transferred between gaming contexts, presented to designers and players, or reasoned 

about by AI agents.

To employ a player model, one must fi rst be created or selected from a set of 

existing models. Second, a mapping from the player input data to the model must 

be defi ned. Finally, the use of the model will need to be evaluated in the current 

gaming context. Using the wrong player model may lead to useful information about 
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the player being discarded, which will harm performance. Hence questions about 

the accurate representation of players and the demonstrable benefi ts for adaptive

content generation have to be raised, and the model should be compared to a direct 

use of player data. 

We distinguish between the following three broad types of player models: per-

sonality models, experience models, and behavioral models, as detailed below. These 

describe different approaches taken in the player modeling literature but are not 

intended to be mutually exclusive or exhaustive. 

Personality   Player personality models  describe the player in terms of some

general theory of individual psychological differences. Models can be drawn directly 

from mainstream personality theory, such as the fi ve-factor OCEAN trait model

(e.g.,  [60, 64] ) or emotional valence and arousal traits. Alternatively, they can be

applied theories of personality tailored to the gaming domain, such as Bateman ’ s

demographic game design typology  [5]  (e.g.,  [20] ) or Lazzaro ’ s model of emotional

motivation  [39] . Modern personality models are likely to be supported by evidence

for their validity. Data on test player personalities are required to establish the

mapping between player data and personality, which could perhaps be carried out 

using a machine learning approach. In some cases, it may be possible to directly

assess players beforehand, for example, as part of the game  [45] . Personality models 

have the advantage of being transferable between gaming contexts, so information

about players can be reused. Conversely, they are somewhat abstracted from players ’  

interaction with a specifi c game. Adaptive systems can respond to personality models 

by providing content tailored to the player ’ s estimated personality.

Experience  Player experience models describe what the player is experiencing

during a specifi ed period of play, as estimated from the player input data  [63] . Models

here tend to be more ad hoc and game specifi c (e.g., combat intensity  [7] ) due to

the lack of a generally accepted theory on player experience. However, player experi-

ence traits such as engagement and challenge are often used (e.g.,  [46] ). Qualitative 

research into a particular game or genre may provide insight into the experiences to 

include in a model  [26] . As with personality models, data on player experience allow

a relationship between player input and experience to be learned. Experience models

have the advantage of being highly relevant to adaptation of game content—where

the ultimate aim is to improve the player experience—and such models are key to

experience-driven procedural content generation  [63] . On the other hand, it can be

diffi cult to accurately predict player experience from the available player data, and

more indirect methods may better support adaptive content generation.  

Behavior   Player behavior models describe what the player has actually done,

both within the game and in other domains, for example, social or physical behavior. 

Unlike personality or experience models, behavioral descriptions tend to be closer 

to the player input data and, as such, there is potential for a much greater variety of 

models. Conversely, they are further removed from the player experience that—in 

an adaptive gaming scenario—the generated content is supposed to enhance. A key 
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advantage is that behavioral models for a specifi c game can be generated from game 

play data using unsupervised learning. One approach is to synthesize a a low-

dimensional behavioral model by applying a dimension reduction technique to a 

sample of high-dimensional player input (e.g., principle component analysis [PCA] 

[49] ), multidimensional scaling  [49, 56] , expanding self-organizing map (ESOM) 

[23] , or player-per-class linear discriminant analysis (LDA)  [25] .   

1.2.2.4       Measuring Adaptation 

During the design or evaluation of adaptive gaming systems, measurement of content 

and players can also be used to evaluate the effectiveness of adaptation. The adapta-

tion requirements describe how player experience should be infl uenced by changes

in game content, and these are generally expressed in terms such as player satisfac-

tion, fun, and immersion—although negative experiences may also form part of the 

requirements, for instance, as part of an engaging and dramatic gaming experience,

such as frustration, despair, and fear.

We can distinguish between subjective and objective experience measures  [62] . 

Subjective measures ask the player to report their internal experience and are often

categorized as being (i) either quantitative or  qualitative  and (ii) either concurrent
or retrospective . Quantitative subjective methods (e.g., questionnaires) provide 

precise, narrowly defi ned data that are open to statistical analysis. Qualitative subjec-

tive methods (e.g., interviews, think alouds) generate richer data which are typically 

harder to interpret. Concurrent methods collect player reports during play, whereas 

retrospective methods are used after play.

Methods for subjective measurement can be informed by psychological theories 

about engaging player experiences, such as:

Challenge, curiosity, and fantasy, which are the three main categories in a 

classic model of fun in instructional computer games by T. Mallone  [40]  

GameFlow, which comprises eight metrics: challenge, concentration, control, 

clear goals, skills, feedback, immersion, and social interaction to form a 

model of player fun  [55]  

Player experience of need satisfaction model, which attributes motivational l
energy in a player to the satisfaction of three basic psychological needs: game

competence, autonomy, and relatedness  [48]    

Objective experience measurement attempts to test the adaptation requirements 

through unconscious player responses known to correlate with experience.

Physiological measurement involves recording body metrics such as heart rate, skin

conductivity, breathing rate, posture, jaw muscle tension, or even brain activity. In

particular, Mandryk et al.  [41]  have found that heart rate and jaw electromyography

(EMG) correlate to arousal and positive valence in interactive play environments.

This approach can be time consuming and expensive to conduct, and measurements 

can be diffi cult to interpret in terms of conscious experience. However, they elimi-

nate the danger of bias in player reports, such as biases in memorization and recall

of experiences. 
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Adaptive generation runs the risk of producing entirely unplayable games. This

can be limited by a careful selection of the constraints on adaptation and by employ-

ing human or automatic play testing. Alternatively, player expectations can be 

managed so that occasional low-quality experiences are tolerated. Another danger 

is that players perceive adaptation and react negatively, especially if it is performed

on the fl y or frequently. Changing game content has the potential to introduce con-

fusing or annoying inconsistencies. Such effects can be mitigated by explicitly 

indicating to the player what has changed and why.   

1.2.3       Adaptation 

The third step in the game adaption process is to deliver generated content that is

personalized to the player. Adaptation can use generated content, measurements of 

content quality, and assessment of the target player to select appropriate content. In

some systems, the process ends when an artifact is delivered, such as a complete

game. In others, adaptation is an ongoing process, with the player ’ s reaction to the

new content continually measured and further changes made accordingly. Below we

consider some general principles for adaptation based on our work. 

Adaptation aims to improve player experience. The kinds of experience we want 

players to have, and the kinds of content an adaptive game provide to provoke those

experiences, can vary as much as they do in nonadaptive games. Indeed, adaptive

game design faces the same challenges as game design in general. But, by handing

over responsibility for certain design decisions to adaptive systems, we can delay

them until the system can take advantage of new data about a particular target player 

or group of players. The system can make decisions both before play, using preexist-

ing player data, or during play, where data about the current game are also available. 

Designing an adaptation mechanism can be cast as a machine learning problem, 

where we need to learn a mechanism that maps player data to game content that 

satisfi es the requirements. Typically, the input and output spaces are categorical and/

or scalar features, but in general these can be arbitrarily complex data structures.

Player models can be used to simplify player input into a less complex feature set 

(see Section  1.2.2.3 ). The most common form of adaptation is  dynamic diffi culty 
adjustment (DDA) (e.g.,  [33, 35, 65] ), where features of the current player perfor-t
mance (player input) are deterministically mapped (mechanism) to a set of game

parameters (content output) that affect the level of challenge—for example, enemy 

numbers and health in a fi rst-person shooter—so that the game is neither too hard 

nor too easy (requirements). The option to set a diffi culty level can be seen as a

simple form of DDA, where the only input is the player ’ s selection from a list and 

output is a predetermined set of parameters.

The design of the adaptive mechanism is constrained by the nature of the player 

input and content output and the desired relationship between them. If these are 

relatively simple, as with basic forms of DDA, it may be possible to hand code a

mapping. However, more complex forms of adaptation require automated approaches.

It is possible to learn direct mappings using techniques such as multidimensional 
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regression or structured learning. Adaptive rule sets can be generated using rein-

forcement learning  [54, 44] . In some applications, it is easier to recognize suitable 

generated content than it is to construct one directly—for instance, when designing 

an adaptation that needs to engage or scare the player. This suggests a generate-and-

test approach, where candidate content is created using a generative method, such 

as a design grammar or evolutionary computation (e.g.,  [53] ) and then assessed 

against the adaptation requirements using an  evaluation  method, such as a fi tness

function over a set of player and and content features (see Section  1.2.2.3 ). One such 

approach that has been successfully applied in several domains is experience-driven 
procedural content generation  (EDPCG)  [63] , where the evaluation step is informed

by a player experience model (PEM; see Section  1.2.2.3 ). The PEM predicts player 

experience from player and content features, and the generated content can be evalu-

ated in terms of how well the predicted experience satisfi es the adaptation require-

ments. See  [63]  for a defi nition of EDPCG and an extensive survey of work in this

area. An advantage of EDPCG is that the PEM can be learned from play test data 

relating player and content features to player experience  [46] .

1.3       APPLICATIONS 

In this section, we describe some of the projects related to digital games conducted 

by members of the Computational Creativity Group (CCG) to demonstrate the prac-

tical application of the principles described in the previous sections. These include 

both previously completed projects and ongoing projects still in development to give

an indication of future directions that we may follow; our research itself is constantly 

adapting to new discoveries to suit the changing needs of the fi eld. While we are 

interested in raising and answering generic questions related to adaptive game

design, our individual projects have tended to work with games of one genre. We 

cover six types of games, and it seemed sensible to break down our work below into 

the types of games with which we have experimented. In Section  1.3.1 , we look at 

3D action games, with an emphasis on player modeling, followed in Section  1.3.2

by an investigation of arcade games, with an emphasis on all aspects of the adaptive 

game generation process: generation, measurement, and adaptation. In Section  1.3.3 , 

we concentrate on generative processes in games of the platformer genre, and we

look at generative and measurement aspects of the adaptation cycle in Sections  1.3.4  

and  1.3.5  in the context of board games and puzzles, respectively. Finally, in the

context of open-world games, we look at adaptation of games before they are played 

in Section  1.3.6 . Table  1.1  summarizes these applications and the approaches used

for each.

1.3.1        3D  Action Games 

First- and third-person action games allow the player to explore complex 3D envi-

ronments and engage in activities such as exploration, combat, acrobatics, and

problem solving. Players are typically free to move around the environment and 
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engage in different activities as they choose, limited by factors such as their location

and the behavior of other in-game entities. This high level of nonuniformity of 

behavior and experience in both space and time presents challenges for player mea-

surement: How should we compare players who have chosen different paths and

activity schedules? This is particularly challenging in open-world games, where 

player behavior is relatively unconstrained. We look below at two attempts to gener-

ate player behavior models from game play logs (see Section  1.2.2.3 ) which account 

for such large variations in game play. 

1.3.1.1       Modeling Player Exploration 

In 3D environments where the player is free to move around, analyzing how they

have explored their environment could be a useful component of a player model and

used to inform subsequent content generation. Ramirez-Cano et al.  [49]  generated 

a behavioral player model for The Hunter  (Expansive Worlds, 2009), a realistic fi rst-r
person hunting game, based on game play logs from approximately 50,000 players.

Their model combines measures of in-game actions and performance, level explora-

tion, and use of a game-related proprietary social network—here we look at their 

analysis of player movement. 

Table 1.1  Approaches Used per Application 

Application Generation

Measurement

AdaptationContent

Player

Personality Behavior Experience

3D Action

The Hunter — — — Yes — —

Rogue 
Trooper

— — — Yes — —

Arcade

Pac-Man — Yes — Yes — —

Super Mario Yes — — Yes — Yes

Platform

ANGELINA Yes Yes — — — —

Board

LUDI Yes Yes — — Yes —

Shibumi Yes Yes Yesa — Yes a Yes a

Puzzle

Hour Maze Yes Yes — — Yes —

Open World

Subversion Yes Yes — — Yes Yes

a   Denotes upcoming work.  
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The Hunter allows players to move around a large rural environment, tracking r
simulated wild animals, then shooting or photographing them. The game periodically 

logged each player ’ s location, recording their path through the level as a sequence

of coordinates. In the level studied, players explored a large island. The level map

was divided by a 2D grid, and a 2D location heat map could be generated for each

player by summing the time they spent in each grid square. Figure  1.3  shows some 

examples of player heat maps. Heat maps were compared between players using the

earth mover ’ s distance (EMD): This assumes a fi xed cost for moving one unit of 

distribution mass from one grid square to an adjacent nondiagonal grid square; the 

distance between two heat maps is then the minimal cost for a set of moves that 

transforms one map to the other. Optimal EMDs were calculated using Rubner ’ s

algorithm. The heat map EMD provides a measure of dissimilarity between two 

players ’  exploration paths. 

To generate a low-dimensional model of how player exploration varied, a dis-

similarity matrix was computed for a random sample of 20 players, giving the EMD

between each pair of players. Multidimensional scaling was used to reduce this

matrix to a 2D representation  [8] , shown in Figure  1.3 . The fi gure illustrates that 

players who are located near each other in 2D space have similar exploration paths. 

This gives a two-trait model of player movement within this level, which allows an 

easy comparison of players ’  exploration activity. Although interpreting the traits is

diffi cult, players who score highly on the vertical trait spend a lot of time on the 

right of the map, whereas those who score high on the horizontal spend time at the 

Figure 1.3 A 2D representation of 25 players ’  heat maps generated from Earth Mover ’ s distances 

between heat maps using multidimensional scaling. Examples are shown for some nearby pairs of 

players.  (Reproduced from  [49] .)  
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bottom of the map. Irrespective of interpretation, it provides a convenient representa-

tion of exploration on which to base further content generation. For this type of 

player model to be used for adaptation, new players need to be assigned trait scores. 

Methods exist for defi ning multidimensional scaling (MDS) axes in terms of known

features, but a simpler approach is to treat the player sample as a set of prototypes:

For a new heat map we fi nd the nearest prototype heat map by EMD and use its trait 

scores. Alternatively, a typology of exploration types can be generated by clustering 

players in the MDS space, and new players are assigned the type of the prototype

with the nearest heat map.

In general, using a player sample to construct this kind of model is justifi ed by

the high complexity of MDS, although modern variants have lower complexity and 

should be able to cope with a larger numbers of players. The choice of the number 

of MDS dimensions (traits) is also critical, and scree and stress plots can be used to 

compare low-dimensional representations  [8] .

This use of EMD and MDS allowed us to fi nd a simple representation of 

complex player exploration paths and hence compare players ’  exploration behavior.

This could be valuable information for an adaptive game, as it could refl ect players ’

style and exposure to level content. In  [49] , we combined these data with measure-

ments of the in-game actions of players and related social media activity to create

a rounded player model for The Hunter.  r

1.3.1.2       Modeling Player Combat 

Player behavior in complex games can involve multiple activities, and player model-

ing can be improved by segmenting game play into separate activity phases and

analyzing these individually. Gow et al.  [25]  present a trait-based behavior model 

of player combat activity in  Rogue Trooper  (Eidos, 2006), a third-person shooter, r
generated from game play logs from 32 players. Each log recorded a playthrough

of the game ’ s fi rst level, until they completed it or quit, with a mean play time of 

18 minutes—in total, over 10 hours of logged game play. Players were observed

engaging in a variety of activities: preparing for and engaging in combat, checking

areas for remaining enemies, fl eeing and avoiding enemies, navigating to and explor-

ing locations, getting lost, retracing their steps, investigating the controls and game

mechanics, even admiring the scenery. 

To compare players, we decided to focus on combat, the central activity in the

game. A player combat behavior model was automatically synthesized from the

game play logs, consisting of three traits: dynamism,  cautiousness , and ammunition 
management . As a further abstraction from the data, a player typology was generatedt
from these two traits consisting of four combat behavior types: hyperactive  (high

dynamism), normal  (medium dynamism), l naive  (low dynamism, low cautiousness),

and  timid  (low dynamism, high cautiousness). Figure  1.4  shows the 32 players ’d
dynamism and cautiousness scores and player types. The trait-based model was 

computed in a four-stage process as follows:

Segment Activities   Identify sections of combat activity in log data and extract 

individual combat instances. Each instance was defi ned as starting whenever 
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a distinct group of enemy nonplayer characters (NPCs) fi red on the player 

or were shot by her and ended when either the player or the NPCs were dead. 

Only successful combat instances were used to construct the model.

Defi ne Features     Calculate 21 scalar features for each combat instance, for 

example, proportion of time using each weapon in addition to taking cover, 

rate of fi re, movement, rotation, mean ammunition, and health.

Compute Player Discriminants   Partition combat instances into classes, one 

per player, then use LDA to compute a series of linear discriminants (linear 

combinations of features), that is, directions within the 21-dimension feature

space which maximize between-player variance and minimize within-player 

variance  [43] .

Select and Interpret Traits   Choose a small  n  such that the fi rst n discriminants 

account for much of the variance between players and can be interpreted as 

meaningful traits. For this analysis of Rogue Trooper combat, the fi rst three r
discriminants were selected.

Calculate Trait Scores   Each player ’ s trait scores are defi ned as the centroid 

(mean position) of their combat instances in the trait space.  

Finally, the player typology was generated by applying  K -means clustering to theKK
players based on the dimensions of the fi rst two discriminants. 

Segmenting game play into distinct combat and noncombat phases allowed us 

to identify meaningful player combat traits which refl ect their style of play. Similar 

features of their behavior over the entire level would have obscured their playing 

Figure 1.4 Two-trait player combat behavior model for  Rogue Trooper . Individual players are r
shown with their combat behavior type.  (Adapted from  [25] .)
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style, due to huge differences in activity phases between players. The work also 

demonstrated the utility of using one-player-per-class LDA as an unsupervised learn-

ing technique to fi nd interesting behavioral differences between players. In related

work, we have looked at how variations in game play during combat activity infl u-

ences player experience  [26] . Other activities, such as problem solving and explora-

tion, could also be extracted and compared using a similar approach. One future 

direction for research is to investigate improved techniques for reliably segmenting 

game logs into activity phases and identifying activity types. As a fi nal point, we

note that it would be straightforward to use either the trait model or typology in an 

adaptive context: Once a new player has completed a combat task, their trait scores

can be calculated as a linear combination of a few simple combat features.

1.3.2       Arcade Games 

Arcade-style action games are descendants of early examples of video games

originally installed in coin-operated entertainment machines in amusement arcades.

The genre, which had its so-called Golden Age in the early 1980s with games such

as  Pac-Man (Namco, 1980),  Space Invaders  (Taito, 1978), and Donkey Kong 

(Nintendo, 1981), enjoys a recent resurgence with newly released games styled to

emulate the visuals and game play of the arcade classics. This renewed interest 

mainly stems from factors such as the simple and easy-to-learn game play suitable 

for mobile devices and a relative ease of development, especially for very small

development teams, which have found increasing support and foothold in online

distribution markets for consoles, PCs, and mobile platforms. The relative simplicity 

both in visual style and game rules encourages quick prototyping of game mechan-

ics and style and makes it an interesting target for player profi ling and game adapta-

tion. We discuss below a trait-based adaptation mechanism with which we have

experimented.

1.3.2.1       Trait-Based Adaptation 

Arcade games, with their limited size of game environments and game rules that are

often based on very simple mechanics, feature a relatively homogeneous game play,

especially when compared to story-driven or exploration-based games. This homo-

geneity allows for a simpler trait-based player behavior model that does not need to

segment game play into (many) different phases or concern itself with breaking down

behavior to match certain plot sequences as it might have to in a story-driven game.

Additionally, a homogeneous model is benefi cial for game adaptation, as there is no

need for a mapping of game phases or action sequences to measured traits. 

Conversely, the complexity of game adaptation according to traits can be reduced

in a game with such sequences if each game sequence is handled as a separate

optimization instance. However, traits that are affected by multiple such sequences

or are a result of the order of sequences cannot be adequately handled in such a

separation. For example, an action sequence might be followed by a puzzle sequence
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in shooter games such as the  Half-Life    (Valve, 1998, 2004) and Tomb Raider (Eidos r
Interactive, 1996–2010) games, giving the player time to recover and relax, which

slows down the pace of the game. Simply handling these sequences separately would

lead to an inability to recognize a player ’ s reaction to this pacing. More advanced

techniques such as observing changes in traits over sequences and cross-validating

adaptations in each sequence can be used to alleviate these diffi culties.

To create a trait-based adaptive game, we propose the following structure and 

outline experiments we have conducted following these steps. Note that the fi rst 

three steps have also been outlined in Section  1.3.1.2  in a different context.

Defi ne Features     Select player metrics such as input rates, actions, and events.

Optimally, these metrics would be time-independent rates to allow for record-

ings of different lengths, for example, by recording actions per time, such as

pill per minute in Pac-Man  (Namco, 1980). Due to the nature of the discrimi-

nant analysis (see below), which automatically identifi es signifi cant features,

a large amount of metrics can be recorded. 

Compute Player Discriminants     Use LDA to compute a series of discriminants

(linear combinations of features)—directions within the feature space which 

maximize between-player variance and minimize within-player variance.

Interpret Traits     LDA-generated feature vectors are sorted by importance, that 

is, how much of the variance between players can be explained by them. This

property is effectively compressing the data and allows for a dimensionality 

reduction of the LDA-transformed feature space with low information loss. 

Furthermore, it allows the researcher to quickly assess the most infl uential 

metrics on player separation, as they will appear in the fi rst LDA vectors. 

Correlate Traits with Preferences     Once important traits have been identifi ed,

they need to be correlated to player preferences. This can be done explicitly

through surveys that evaluate player preferences on a series of selected rule 

sets, or by manually connecting traits with game features by the game 

designer, or by using some model that associates traits with preferences

through psychological models. In our experiments, we have focused on the 

former two approaches.

Trait-Based Adaptation   Finally, the game is adapted for a player by fi rst mea-

suring their traits, followed by generating a matching rule set through retriev-

ing preferences of similar players, compared by traits. This can be done in a 

variety of ways, for example by using a  K-nearest-neighbour search in the KK
LDA-transformed feature space, effectively measuring a trait distance.

1.3.2.2       Results from  LDA  Analyses 

Several experiments have been conducted to record and interpret player traits in 

arcade games. Using a reimplementation of  Pac-Man  (Namco, 1980), Baumgarten

[6]  applied multiclass LDA to a data set of 245 players, each of which played fi ve 

or more rounds of the game. Features recorded in the game include player actions: 
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eating a pill, eating a power-pill, eating a ghost, getting eaten by a ghost, eating a

fruit, fi nishing a level, and changing the movement direction; rate of player actions:

pills per minute, ghosts eaten per power pill, ghosts eaten per minute, power pills

per minute, key strokes per pill, changes in movement directions per pill. A projec-

tion of the fi rst two dimensions of the resulting player discriminant space is shown

in Figure  1.5 .

The most insightful tool to interpret the traits generated by the LDA algorithm

is analyzing the weights of the base vectors defi ning the LDA-transformed space.

These vectors defi ne the mapping of player metrics into the LDA space, where each

weight associated with a player feature indicates its infl uence in separating players 

in that dimension. In the Pac-Man survey, the single largest weight for the fi rst LDA 

vector was given by the keystrokes per pill metric, which indicates the effi ciency of l
a player to navigate the game with respect to the physical interaction with the com-

puter. The second dimension was dominated by negative weights on the number and

speed of power pills eaten and positive weights on ghosts eaten and number of turns.

This relationship models a game concept of  Pac-Man : chasing ghosts with a high

Figure 1.5       LDA-transformed space of metrics recorded in Pac-Man. Each number represents a 

player, and each number will appear fi ve times, its position marking the coordinates of the feature 

vector defi ned by one session of that player. Some player sessions have been highlighted by shaded

circles.  (Reproduced from  [6] .)  
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effi ciency by eating many ghosts while not using up many power pills. In short, the

most distinguishing feature of the game was physical interaction followed by skill 

at playing the game well.

We have followed up this research with a new arcadelike game called  Snakeotron
that is inspired by a light-cycle race in the movie Tron (Disney, 1982), as described 

in  [25] . We have found comparable results with the LDA highlighting metrics related 

to physical interaction being found to be the most distinguishing traits in the game, 

followed by traits describing skill—in  Snakeotron  this relates mainly to avoiding

walls in the level. Snakeotron has been designed to adapt to individual players, as 

they progress, in response to feedback. The adaptations include aspects of diffi culty 

and aspects of game play, for example, the ability to jump over lines, rather than

just avoiding them. We have carried out a fi rst set of experiments with  Snakeotron
which has included a questionnaire after each round with a different rule set. Players

were asked to rate their enjoyment relative to the previous level. Such pairwise

comparison is more accurate and robust than absolute measurement  [61] . In future 

work, we plan to use a machine learning algorithm such as reinforcement learning 

or a neural network to predict player preference values for new rule set combinations.

This approach can be further augmented by taking into account other players with 

similar traits to increase prediction accuracy and to eventually generate preference

values with only trait data available. Ultimately, we plan to show that dynamic adap-

tive personalization is possible, albeit with a simple arcade game.

A machine learning approach may not strictly be required here, as hand-crafted 

adaptation according to measured traits is often more practical in commercial game 

development. One such hand-crafted adaptation approach has been implemented in 

an adaptive  Super Mario (originally Nintendo, 1985) level generator. As part of a 

level generation competition by Shaker et al.  [52] , which asked participants to submit 

programs that take metrics of a single test run of players and generate a level for a 

variant of  Super Mario, we developed a small level generator implementing trait-

based adaptation as described above. LDA has been used to analyze the data from

play-throughs collected during a pilot study. The fi rst LDA vector emphasized

metrics relating to the time required to complete a level and the number of jumps, 

which can be interpreted as the ability to complete levels quickly and effi ciently. 

This dimension was thus used to judge the player skill and to adjust the subsequent 

levels by generating a level made out of a selection of hand-crafted building blocks. 

These building blocks were previously annotated with a diffi culty rating and picked 

according to the relative skill of the player—the more skilled the player is, the more

diffi cult building blocks were chosen.

1.3.3       Platformers 

Two-dimensional platformers have surged in popularity over the last fi ve years 

thanks to many open game libraries tailored toward making them1  as well as the

relative breadth of subgenres, from puzzle-based platformers like  Offspring Fling

1 For instance, see Flixel ( http://www.fl ixel.org ) or FlashPunk ( http://www.usefl ashpunk.net ).
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(KPULV, 2012) to large-scale Metroidvania games like Saira (Niffl as Games, 2009)

or  Knytt Stories (Niffl as Games, 2007). The constrained two-dimensional space 

simplifi es almost all aspects of implementation and design, making it highly ame-

nable to AI techniques. We describe here an evolutionary approach to generating 

fully formed platformer games. 

ANGELINA is a CCE system for automatically designing simple Metroidvania-

style platform games. This subgenre of the 2D platformer puts an emphasis on

exploration, where new areas of the game world are made available as the player 

gains abilities and collects various items. As described in Section  1.2.1.3 , CCE

systems are composed of several evolutionary subsystems that are brought together 

in order to evaluate the quality of their populations. This section briefl y describes 

the composition of A NGELINA  ’ s subsystems and how the fi tness functions evaluate

each component, in addition to how ANGELINA  integrates sound and images mined

from the Internet in response to topical social media. For a more detailed description

of the evolutionary system, see  [18] , and for more details of the social media sub-

system, see  [19] . 

1.3.3.1       Evolutionary Design Subsystems 

The evolutionary subsystem for level design maintains a population of  levels, which l
contain two-dimensional integer arrays that represent the tiles that make up the game

world, and a  collision indexx c  such that any tiles with an integer value ≥c are initially 

solid and not passable by the player. Rather than placing every tile individually,

levels are built out of screen-size groups of tiles, by default 20 tiles wide by 15 tiles

high, called chunks. Chunks are generated by combining an  outer template (defi ning 

which edges of the chunk are passable), an  inner template (defi ning what tiles are 

in the core of the chunk), and one or more  masks  which add extra blocking tiles to

the chunk to allow for features like locked doors. Figure  1.6 , Figure  1.7 , Figure  1.8 , 

and Figure  1.9  show an example of each of the three components that make up a

map chunk. ANGELINA uses all permutations of outer templates and masks and has 

16 hand-designed inner templates. Chunks are randomly generated by combining 

Figure 1.6     Outer template blocking left,

right, and down exits. 

Figure 1.7     Mask blocking top exit with

special blocks. 
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these together and arranged in a grid layout to create a map. The fi tness function for 

the level design subsystem prioritizes high reachability maps (using a simulation of 

the game physics in order to estimate which areas are accessible in a given map) as 

well as scoring highly those levels which increase the travel distance between pow-

erups, the exit, and the player starting point (which change during evolution and are 

supplied as part of the CCE process during evaluation). 

The layout design subsystem creates mappings that defi ne the placement of the 

player starting point, the game exit, and the enemy types into the game world. 

ANGELINA’ s evaluation techniques do not calculate the diffi culty of combat, which

means that enemy placement and design are relatively simple and underused—

enemies are designed by combining predefi ned behaviors and then associating that 

design with a set of coordinates that state where enemies of that type exist in the

world. The fi tness function is weighted to discourage overcrowding of enemy place-

ments, but better combat simulations could take into account the change in diffi culty 

as the player progresses through the level. More important is the placement of the 

player start and the game exit, as they defi ne the fl ow of the game. As with level

design, reachability maps are supplied to the fi tness function when evaluating 

layouts, which give information on shortest paths and the percentage of the game 

level that is explored. The fi tness function assigns higher scores to longer paths. 

A power set is a set of powerup items, along with their defi ned placements in

the game world. Powerups are items that change the abilities of a player, enabling 

them to access new areas of the map. A powerup is defi ned by a game variable it is 

attached to, and a value it sets that variable to when the powerup is collected. In the 

power set evolutionary subsystem, for simplicity, A NGELINA can assign a powerup 

to one of three variables—the in-game collision index (defi ning which tiles are

solid), the world gravity (affecting the player and all enemies and their reachability), 

and the player ’ s jump power. Values are assigned randomly within wide, but reason-

able, boundaries. The specifi c values a powerup has are fi ne tuned as part of the

evolutionary process, meaning A NGELINA can give the player precise bonuses to 

their jump height that allow them to reach some new parts of the map while leaving

others out of reach. This often happens as part of the evolutionary search, as it 

Figure 1.8 Inner template with blocks 

providing chunk ’ s content.

Figure 1.9     Completed block, composed of 

masks and inner and outer templates. 
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increases the paths through the level, which results in higher fi tnesses for layouts

and maps. 

The fi tness function for power sets considers the placement and proximity of 

powerups to each other (again rewarding power sets which increase the travel for 

the player) as well as looking at possible traces through a game. In some cases,

powerups can only be collected in a single linear order. For instance, Figure  1.10

shows a linear progression where the player starts (1), then collects a jump powerup

(2), which enables the collection of a key (3) to unlock the path to the game exit. 

Note how the powerups encourage movement across the map; 3 is on the other side

of the game world to the exit (4), for instance. 

In other cases, powerups may be partially ordered instead and multiple paths

may exist to the exit. A NGELINA  penalizes power sets that are very nonlinear, and in

doing so encourages a stricter path through the game which makes other elements

of design (such as the optimization of shortest routes) easier. It also rewards power 

sets that provide the player with a steady sense of progress, rather than power sets

where initial gains are very large, and then the rest of the game is spent collecting 

very small increases in ability.

1.3.3.2       Social Media 

When we talk about generating adaptive or bespoke game content, we often think 

of content that is generated as a result of examining a specifi c person ’ s preferences

and behavior. An alternative is to adapt to specifi c cultures, countries, periods of 

modern history, or groups of people. Adapting content on a broader scale is another 

way to make games more reactive, more interesting, and more meaningful for 

players. To explore such possibilities, we augmented A NGELINA  with the ability

to make simple platform games about topical news stories. In particular, in this

Figure 1.10     Full game map showing player progression.
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modality, A NGELINA starts from a single piece of source data, namely, a newspaper 

article from  The Guardian  (UK newspaper) website, and expands the data to produce 

enough information to form the theme of a game.

The Internet currently contains a wealth of open data of all types, including 

music, sound clips, video, photographs, poetry, and many other resources. However, 

automatic downloading and usage of these resources are diffi cult due to a lack meta-

information about what is currently being looking at and what data are actually 

required. The fi rst problem—that of understanding the data you are working from—

should be solved with as little reliance on unknown information as possible. 

A NGELINA’ s starting point, The Guardian article, is often full of complex linguistic 

information, turns of phrase, and oblique references to other news articles that may 

not be linked or understood by ANGELINA. While techniques do exist to extract 

information from bodies of text like this, we opted for a simpler approach that takes 

advantage of the richness of data the Web contains. ANGELINA  takes words from the

headline and the tags The Guardian writers associate with the article and uses them 

to build a list of keywords for the news article. These keywords are then used to

search for more content from the Web. 

While we could use the keywords as they are, we have found it useful to fi rst 

classify them as referring to a person, referring to a country, or neither. Tools like

WordNet 2  and ConceptNet 3 are open platforms that can help connect one word with 

other words and phrases that are related as well as giving information on what it is

that relates them. Wikipedia is also useful for collecting large amounts of viable data

and keeping it regularly maintained. While large portions of the site may be unreli-

able and open to vandalism, many pages are well curated and closely updated, 

providing useful contextual information that may not be available anywhere else.

A NGELINA uses the  list of sovereign states  to confi rm whether a keyword describes

a country or not and checks to see if Wikipedia has a page about a keyword to

determine if it refers to a person. If a page exists, A NGELINA  simply checks for 

information that confi rms that the page refers to a person—data fi elds like birth year 

or nationality. These checks are not completely robust—victims in a murder inquiry, 

for instance, may not have Wikipedia pages—but they provide a useful shorthand 

that guides ANGELINA in the next step—fi nding usable and relevant content online. 

Given the partially classifi ed keywords, A NGELINA  searches Flickr and Google

Images for general photographs using them as search terms and uses these images 

throughout the fi nished game. It also uses the Incompetech 4 website, which hosts a 

large collection of Creative Commons music, tagged with moods and genres. The

tags allowed A NGELINA  to select music based on the feeling it might convey and is

reliably curated by the composer. Using the AFINN database 5  of emotionally tagged

words allowed A NGELINA to guess at the tone of the article and choose sad or happy 

music accordingly. A NGELINA  also uses the sound effect database FreeSound6  to

2 http://wordnet.princeton.edu/ . 
3 http://conceptnet5.media.mit.edu .
4 http://www.incompetech.org .
5 http://fnielsen.posterous.com/tag/afi nn .
6 http://www.freesound.org . 
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search for sound effects using article tags. This can have mixed results, because the

submissions are described and categorized by the individual submitter, and only

rough metrics (like number of downloads) exist to tell recordings apart. This can

produce powerful results—like gunfi re and historical speeches being returned for 

searches about war—but can just as easily return offbeat or inappropriate results too. 

Often, the rewards outweigh the risk, particularly when the potential for surprise or 

unexpectedness can be woven into part of the adaptive system ’ s appeal.

Figure  1.11  shows screenshots from games created using this system, utilizing

photographs and images from Google and Flickr, backed with a soundtrack and an

array of sound effects. Note that the title of each game is also created automatically

using a keyword search through online rhyming dictionaries for potential puns. The

resulting games are currently a little rough around the edges, but they do demon-

strates the strength of the approach described above. We are currently adding more 

Figure 1.11     (a ) Screenshot from The Conservation of Emily, a game based on a news article about 

illegal logging in South America. The background image is obtained from Flickr searches and inset 

image from Google Image searches. ( b) Screenshot from  Sex, Lies and Rape, a game based on a news 

article about a child abuse ring. The game features a sad musical track and includes a sound recording 

of a woman singing a children ’ s song in Greenlandic, retrieved from a FreeSound search. Both games 

are available to play online at  www.gamesbyangelina.org/games .

(a)

(b)
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sophistication to the game generation process, in particular to use game play ele-

ments to further illustrate the news story, for instance, interacting (e.g., shooting) 

characters from the story, solving puzzles to illicit further information about the 

newspaper article, and so on. Following this, we plan extensive experimentation to 

determine player reactions to such games, ultimately aiming to improve the genera-

tive process to a stage where people take their daily news through ludic interaction 

rather than passive reading. We also plan to enable users to adapt the game genera-

tion process, for instance, by providing links to the newspaper articles themselves or 

supplying their own keywords. We further plan to investigate the potential for per-

sonalized games to be generated from social media assets, such as Facebook pages. 

1.3.4       Board Games 

A defi ning distinction between video games and board games is that rule sets in

video games are fl uid and may be updated on the fl y, whereas rule sets for board 

games are typically fi xed once the game is published and released. There are of 

course exceptions, such as the games Eleusis 7 and  Zendo  ,8 in which one player 

invents a set of rules while the other players must deduce them through play, and 

there is also the tendency for players to extend the shelf life of board games by

inventing variants to play  [51] . However, in each of these cases, the scope of varia-

tion is governed by the resources at hand, and these games are still played within a 

defi ning framework. Adaptation in the context of board games can involve the opti-

mization of rule sets to achieve a desired behavior within a given system or the 

invention of completely new games and even game systems. 

1.3.4.1       L UDI

LUDI is a system for playing, evaluating, and generating new combinatorial board 

games  [10] . Each game is modeled as a LISP-like  symbolic expression  or s-expres-
sion  that defi nes its rule tree, and new games are generated using standard  genetic 
programming  (GP) operators of crossover and mutation  [38] . Games are evaluated

according to certain aesthetic criteria measured over self-play trials, as outlined in 

Section  1.2.2.1 . The weighting of each criterion—indicating how relevant it is to the 

game ’ s quality—was determined by correlating aesthetic measurements for a set of 

source games with human player rankings for those games, giving an aesthetic policy
for that set of players. 

The game creation process used by L UDI  is very much an example of search-

based procedural content generation and is summarized in Figure  1.12 . It is adaptive

in the sense that it biases its search for new games toward those games that score 

more highly on the aesthetic policy obtained for the target set of players. This value 

was fi xed in the L UDI experiment but could easily be modifi ed to respond to players ’  

7 http://www.boardgamegeek.com/boardgame/5217/eleusis . 
8 http://www.boardgamegeek.com/boardgame/6830/zendo . 
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reactions to new games on a game-by-game basis, hence redirecting the search as

new games are invented and played. The games invented by L UDI  could not be said

to be truly  bespoke, beyond the fact that they were invented specifi cally to maximize 

the level of interest in that specifi c set of test players. L UDI  proved successful in this

task, producing several new games that interested human players, two of which have

gone on to be commercially published. 

Yavalath  is the most popular game designed by LUDI  (which also names its

games). It proved popular with the test players and has been received well in the

broader game-playing community following its publication by Nestorgames,9  for 

whom it remains a fl agship product (Figure  1.13 ). Yavalath  appears to have captured

some general principles of game design that go beyond the group of test players, as 

it has since been ranked in the top 100 (or top 2.5%) of abstract board games ever 

invented, according to the BoardGameGeek (BGG) database, the world ’ s foremost 

online board game community  [12] .

The rules devised by L UDI  for Yavalath  are as follows:

(game Yavalath  
          (players White Black)  
          (board (tiling hex) (shape hex) (size 5))  
             (end
                            (All win (in–a–row 4))  
                            (All lose (in–a–row 3))
             )  

)

Figure 1.12     Game life cycle  (from  [10] ) .
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Two players, White and Black, take turns placing a piece of their color on the 

board. A player wins by making 4-in-a-row of their color but loses by making 3-in-

a-row beforehand. The simplicity of the rules makes the game easy to teach to new

players and immediately accessible, but the “win with 4 but lose with 3” rule com-

bination hides an emergent twist that keeps players interested as sequences of forced

moves can be perpetuated using 4-in-a-row threats to manipulate the opponent into

a losing position with clever play. 

For example, Figure  1.14  shows a Yavalath  puzzle with White to play and force

a win ( hint: if Black is allowed to play at either point X, then White is forced to 

play at the other  X and therefore lose, hence White  must  play a sequence of forcingt
moves starting at point  a , b, or  c). The discovery of this forcing move mechanism 

provides a satisfying “aha!” moment for each individual player and is exactly the

sort of emergence that we had hoped would develop from simple rules in the evo-

lutionary search.

1.3.4.2       Shibumi 

The  Shibumi project continues the work pioneered with L UDI , but in this case the

design space is constrained to a  closed  game system with a fully defi ned rule set ind
order to compare the search dynamics of human and computer game designers. The 

Shibumi set was designed specifi cally for this purpose and consists of a 4  t × 4 square 

grid of holes and 16 balls in each of three colors (Figure  1.15 ). Thirty balls may be

stacked on this board to form a  square pyramidal packing , as shown in Figure  1.16 .

This system has the computational advantage that each game state can be bit packed

into a single 64-bit long.

The term shibumi comes from Japanese aesthetics and means  tasteful elegance
or simplicity hiding complexity , a very apt notion for abstract board games  [11] . We

seek the simplest rule sets that produce the most interesting games for this minimal

system. The  Shibumi project is currently a work in progress. A game design contest 

called the  Shibumi Challenge  has been run, with 45 entries solicited from 22 human

Figure 1.13 Yavalatah Deluxe from 

Nestorgames (for three players). Figure 1.14 Puzzle with White to play. 

x x
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game designers. The results, presented in  [16] , provide an inspiring set of source

games for automated search, and ensure that the rule set for this system is fully

defi ned. The next step will be to conduct an automated search for new games using 

both evolutionary and  Monte Carlo tree search (MCTS) methods  [15]  and to compare

the dynamics of the search between these approaches and the approaches used by 

the human designers. We are particularly interested in whether the automated search 

will fi nd hidden gems missed by human designers, the frequency with which these

occur, and the margin by which they were missed. 

The ultimate aim is to produce a software tool that is a creative collaborator in

the game design process, which will adaptively help the player fi nd the ideal  Shibumi
game for them. For example, the player might specify what rules or features they

like or dislike in a game or simply rank some test games and let the system deduce

these preferences. The system will then use this information to search its database

of known games and to create new bespoke games for this player in accordance with

these preferences. The player ’ s reactions to these bespoke games can then be used

to adaptively modify the search for further games.

We are particularly interested in questions of computational creativity, and the

closed and fully defi ned—yet largely unexplored— Shibumi search space provides 

an ideal test bed for this  [14] . It is obvious from observing human designers that the 

constraints imposed by such a closed system have a signifi cant impact on the creative 

process (the search is necessarily more  combinatorial  within the design space rather l
than  transformational between this space and others), but that creativity can still be l
achieved through unexpected and serendipitous rule combinations. It is important to

maximize the creativity in the process, both from the designer ’ s perspective (so that 

novel, high-quality artifacts are produced) and from the player ’ s perspective (to

increase their appreciation of the generated artifacts). 

1.3.5       Puzzles 

Solitaire (single-player) puzzles can be described as a form of play that is fun and

has a right answer  [37] , or as rule-based systems, like games, in which the goal is

Figure 1.15 Shibumi  set.
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to fi nd a solution rather than beat an opponent  [21] . A defi ning feature of puzzles is 

their  non-replayability , as once a challenge is solved, then it is no longer interesting 

to the player until they forget that solution  [59] . PCG offers a way to quickly and 

cheaply generate a large amount of new and interesting challenges to keep puzzles

replayable. Solitaire puzzles can also be viewed from a combinatorial game perspec-

tive as two-player games that provide a contest between the  designer who creates r
the puzzle and the solver who attempts to solve it. The designer constitutes a  r null
player who may not be physically present for the contest but whose wit and person-

ality can be evident in the challenges that they set the solver. It is this feeling of 

intelligence and playfulness that distinguishes human-designed puzzle content from 

computer-generated content and is what we would ideally like to capture using PCG.

Japanese logic puzzles are a popular type of solitaire puzzle, following the 

meteoric rise of Sudoku  in the western printed media over the last decade. This rise

to prominence coincided with the advent of the smart phone as an everyday item, 

cementing the popularity of such logic puzzles. They are self-contained, can be

effectively played on small screens, and do not require an excessive investment of 

attention or time; they are in many ways the ideal application for hand-held devices 

and commuters seeking distraction. Japanese logic puzzles are characterized by the 

following traits: (i) single player, (ii) simple rules, (iii) unique solution, (iv) can be

solved by deduction, and (v) context free, that is, universal symbols such as numbers, 

not letters or words. 

The appearance of Sudoku  on a mass scale as a regular feature in U.K. news-

papers starting in 2004 was made possible by Wayne Gould ’ s computer program 

POPPACOM  SUDOKU , which was designed specifi cally to generate mass Sudoku
content for the global market. Gould reported earnings of over a million dollars in 

less than a year from POPPACOM S UDOKU  and went on to become named one of the

“World ’ s Most Infl uential People” by Time Magazine in 2006. 

However, Japanese publisher Nikoli—the primary source of Japanese logic 

puzzles such as Sudoku , Kakuro , and Slitherlink—remain adamant that human-kk
generated puzzle designs are superior to those generated algorithmically  [30, 36]

and that a true puzzle affi cianado can easily distinguish the two. Nikoli remains 

distinct from most other publishers in the world by preferring not to release com-

puter-generated content, despite the proven convenience and cost-effectiveness of 

doing so. We describe below ways in which design features of human-designed 

puzzles may be incorporated into procedurally generated content in an effort to 

reduce the perceived quality gap.

1.3.5.1       Hour Maze 

Hour Maze is a solitaire logic puzzle game devised by Mike Reilly and released for 

the iOS platform in 2011  [13] . Figure  1.17  shows the iPad version in use. Players 

solve each challenge by fi lling the given maze with contiguous runs of colored hour 
sets  {1,  . . .  , 12} such that each color set is connected and the difference between

each pair of adjacent numbers is exactly 1. One number of each color is revealed at 

the start of each challenge as a hint . As the puzzle was newly invented in its current t
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form, there did not yet exist a database of challenges, or any human experts on hand

to design such levels, so PCG methods were an obvious choice for generating content 

for release.

Computer-generated puzzle challenges generally tend to be random in layout 

and to have a “mechanical” feel to their solution, rewarding exhaustive search rather 

than intuition. In order to incorporate some aspects of human design into our auto-

matically generated content, to increase its value—or even just perceived value—in

the players ’  eyes, we identifi ed the following areas for improvement, based on our 

experience with similar logic puzzles:

Wall Symmetry   Symmetry in the wall layout may increase the impression of 

intelligent design.

Hint Symmetry   Symmetry in the hint layout may increase the impression of 

intelligent design.

Strategic Depth     The more strategies required to solve a challenge, the more

interesting it is likely to be for the solver.

Over 100,000 challenges ranging in size from 6 × 6 to 12  × 12 were automati-

cally generated using heuristics to maximize wall symmetry, hint symmetry, and

strategic depth, then a portion of these were visually inspected and manually tested

to arrive at the fi nal 120 levels for release. A separate set of 80 7  ×  7 challenges was

randomly selected to populate a user survey, shown in Figure  1.18 , in which subjects 

were asked to play a number of challenges and after each one asked whether they

thought it was human or computer designed and how interesting they found it com-

pared to other challenges they had seen.

Figure 1.17 Hour Maze for iPad. 

Figure 1.18      Java-based survey application

for Hour Maze. 
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We found it interesting that subjects deemed around 50% of the challenges to 

be human designed, even though every single one was computer designed . It appearsd
that the mere suggestion that a puzzle might be human designed can be enough to

infl uence players ’  perception of it. This experiment did not provide any signifi cant 

correlation between the players ’  perception of a challenge and their enjoyment of 

it, but it demonstrates axes along which procedural methods for puzzle generation 

may be adjusted to make the resulting output appear more “human” in players ’  eyes

for future application. For example, Figure  1.19  shows the noticeable difference 

between random hint placement (left) and symmetrical hint placement (right).

1.3.6       Open-World Games

Subversion  was a commercial game prototype its being developed by Introversion 

Software,10  which has sinced morphed into its latest release: Prison Architect. The t
espionage and crime game play planned for  Subversion took place in a virtual world 

featuring procedurally generated landscapes and cityscapes produced by a custom 

3D generation engine. Moreover, the Subversion  engine generated the terrain and

cities on the fl y in a bespoke way at the start of each game. In this context, we took 

the opportunity to work with the prototype to test the hypothesis that evolutionary

techniques could be employed to customize the city environment in an effi cient 

manner which adds value to the game, that is, looking at pre-game-play user-driven 

adaptation. 

 In  [32] , we looked at ways in which the user could change the overall look of 

the city by specifying some parameters for a fi tness function which drove the auto-

matic evolution of a pixel shader  [24] . We employed the well-known OpenGL 

Shading Language (GLSL), which is described in  [50] , and fi rst abstracted the code 

for the shaders to a tree representation, where the 3D coordinates of a pixel to be

Figure 1.19     Effect of hint symmetry  (from  [13] ) .
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10 www.introversion.co.uk . 



Applications 51

rendered are passed through the tree, with the output from the tree being the color 

to render the pixel in the user ’ s viewport. The nodes of the tree performed arithmetic 

manipulations, Boolean checks, calculated norms, and worked with the pixel ’ s

diffuse and specular lighting components. An example tree is presented in Figure

1.20 , along with the fl attened GLSL version of it which was compiled for the shader,

the results of which can also be seen rendered on an example city in Figure  1.21 . 

The user-specifi ed fi tness function for the evolutionary search involved the hue,

saturation, and luminance of the shader and the relative importance of these aspects.

Given the nature of the proposed application, which involves the player waiting

while a pixel shader is evolved at the start of a game, we restricted our experimenta-

tion to short sessions, in particular of only 10 generations. In a series of 21 sessions,

varying over six fi tness functions, we showed that, on average, the fi tness of the best 

individual raised to 92.0 from 69.7, which was the fi tness of a randomly generated

individual. Details of the experimentation and results are given in  [32] , and in Figure

1.22 , we present four evolved pixel shaders. 

In our second application with Subversion, we investigated a more interactive

approach to evolving game assets, as described in  [42] . Individual buildings in the

Subversion cities are represented with a plain text markup language that describes

how the buildings are built from the ground up as a stack of three-dimensional

objects. A simple example script, along with the building it generates, is given in

Figure 1.20     An (incomplete) example shader tree and compiled script.
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Figure 1.22     Four examples of evolved pixel shaders.

Figure 1.21     Resulting rendering by pixel shader.
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Figure  1.23a. The building descriptions are amenable to random generation, cross-

over, and mutation, which enabled us to implement and test a user-driven evolution-

ary approach to building generation. 

Interpreting the building description fi les as trees, we enabled crossover by fi rst 

tagging all the branches of two parent trees, so that only branches of the same type 

could be swapped. We defi ned the  strength of a crossover action as the number of 

branches that were swapped. In addition, we implemented two versions of mutation,

namely, structural and parametric. With the fi rst of these, a subtree of a given build-

ing representation is swapped for a randomly generated subtree, while in the second 

case, certain numerical parameters in the description are randomly varied. As for 

crossover, we defi ned the strength of the mutation as the number of subtrees replaced

Figure 1.23          (a ) Example building along with script responsible for its generation.

(a)

(Continued)
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(b)

( b) (top row) Two example buildings and their Subversion 

command code descriptions; (middle row) two children produced by crossing over parents above;

(bottom row) structural mutant (left) and parametric mutant (right). 

Figure 1.23 (Continued)
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and the number of parameters varied respectively for the two approaches. Example 

crossover and mutation actions are depicted in Figure  1.23  b .

In general, during user-driven evolutionary art and design projects, the user 

chooses artifacts such as pictures or 3D objects based on their phenotypes, that is, 

their visual properties, and then the software crosses over and mutates their geno-

types, that is, their underlying data structure and/or the programs that were used 

to produce them. One issue that often arises in such projects is how satsifying

the process feels to the user. In particular, if the children of chosen parents con-

sistently look too similar to the parents, then the user is likely to feel that they

are making too slow progress. Conversely, however, if the children look too dissimi-

lar to their parents, then the user is likely to feel that their choices are not really 

driving the evolution. Hence a middle ground has to be sought and often initial 

experimentation is required to fi ne tune the evolutionary parameters to fi nd this

happy medium.

In our case, we performed initial experimentation to help determine the optimal

strength of the crossover and mutation operators when the evolutionary process was

driven by the user making phenotype choices. For 20 pairs of parent buildings, we

asked 10 participants to comment on whether each of 16 generated children were

(a) too similar, (b) too dissimilar, or (c) neither with respect to their parents. Some 

of the children were generated via crossover of material from both parents, some

were generated via a mutation of a single parent, and some were randomly generated

with no reference to either parent as a control set. Moreover, the strengths of the

operations were varied across the 16 children.

In summary, we found the results very encouraging, as evidenced by (i) only

31.9% of the randomly generated control set were deemed satisfactory, that is, as

neither too similar nor dissimilar, whereas 50% of those generated from parents were

deemed satisfactory, and (ii) it was generally observed that weaker crossover and

mutation operators more often produced children rated as too similar than stronger 

operators, which more often produced too dissimilar children. Of most interest, we 

found that the weak form of both crossover and mutation operators more often led 

to satsifactory buildings than the stronger forms. We used these fi ndings to choose

the settings for crossover and mutation in a user-driven graphical user interface

(GUI) which we found to be very useful in designing buildings which, when used

in cities, gave them a bespoke and interesting look and feel. Further details of the

experimentation and results are given in  [42] .

In addition to the two projects described above, we also experimented with

evolutionary approaches to controlling the overall building composition of the cities,

for example, fl ow of residential (small) buildings into areas of commercial (tall)

buildings. We further experimented with traffi c fl ow in the cities, but rather than

looking at the usual question of increasing traffi c fl ow, we concentrated on setting

up situations for car crashes and other entertainment-based scenarios. In both cases,

we found the (unpublished) results very encouraging, further highlighting the poten-

tial for evolutionary approaches to both increase/enhance/personalize the game

content and increase user enjoyment in the game.  
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1.3.7       Summary 

The applications described above demonstrate the components of an adaptive system

in action. 

The  Rogue Trooper  and  r The Hunter results demonstrate that complex, hetero-r
geneous player behaviors of the kind found in open-world games can be successfully

captured in simple trait models. These models can be learned in an unsupervised

way from game log data. They allow meaningful comparisons to be made between 

players in complex gaming environments, which is crucial for adaptation. 

The  Pac-Man results show that player behavior and relevant game metrics to 

distinguish playing style can be automatically captured in small-scale action games 

using linear analysis methods. In particular, the dimensionality reduction property 

of LDA is very useful in representing player behavior in very few variables and also

automatically weighing metrics by importance. The  Super Mario results demonstrate 

the viability of using player traits that were obtained in an initial survey using unsu-

pervised analysis methods to automatically generate a level tailored to the (esti-

mated) skill of a player. 

A NGELINA demonstrates adaptation of content to the output of other generative 

content systems and how such relationships can be carefully managed to encourage 

cooperation between the output of such systems, producing content that is generated

independently but designed with a shared goal.

The board game applications (L UDI and  Shibumi ) and puzzle application (Hour  

Maze) demonstrate that the measurement of game content, validated by user surveys 

that gauge the users ’  playing experience, is suffi cient to guide the automated search

for interesting new content. The  Shibumi project, in particular, will comprise a com-

plete system for the automated generation and adaptation of bespoke board games,

according to the user ’ s playing style and preferences, when completed. 

The  Subversion  application further demonstrates the benefi t of a user-driven

evolutionary process, based on the users ’  experience, for generating game environ-

ment—as opposed to game play—content.   

1.4       CONCLUSIONS 

In the last fi ve years, we have worked directly with fi ve commercial video game 

companies: Introversion Software, Rebellion Developments, Emote Games, Lionhead 

Studios, and Nestorgames. Some of the results of these interactions have been 

described in this chapter, and in each case, there has been overall (long-term) goals

of (i) helping industry practitioners to build better, adaptive games and 

(ii) studying the potential for creative software to generate game content and even 

entire games from a computational creativity perspective. As a result of the indi-

vidual projects presented here, our main contribution has been to propose a cycle

of generation, measurement, and adaptation within an overall methodology for 

adaptive game design in a context of procedural content generation, as detailed in

Section  1.2 . 
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From the perspective of designing commercial games that are able to adapt to

personalize the gaming experience, there are major obstacles in each part of the

cycle. In particular, simply recording game play and sensor data about a player may

slow down the game so much that it is impractical. If it is possible to record and

massage such data into a usable form, then reliably estimating the user experience 

from these data are very diffi cult indeed and will require massive amounts of user 

play-testing and the machine learning of classifi ers to be used in-game. Building a

game which can alter itself at run time in the various ways necessary for the altera-

tions to be perceivable, not disorientating and to have the potential to improve

matters is a serious engineering challenge. Finally, putting all these aspects together 

into an automated game director able to alter the game at run time in such a way

that there is a good chance of improving user experience is a serious research

problem for the industry. The individual projects described in Section  1.3  each 

addresses one or more of these diffi culties. Moreover, they have helped us to fl esh 

out the benefi ts of employing the cyclic methodology via experimental results arising 

from the study of both commercial and experimental games.

In particular, with respect to generative aspects, we have shown that board game

rule sets can be automatically developed with commercial success and that other 

game assets, such as buildings, levels, and pixel shaders, can be similarly generated.

Moreover, we have shown that entire platformer games can be evolved not only to

be entertaining through game play but also to refl ect current issues expressed in

newspaper articles. With respect to measurement aspects, we have performed exten-

sive analysis of data arising from the playing of games, talking about the experience

in interviews, and messaging other players through social networking. This has 

enabled us to pioneer new ways to capture low-level game play data and high-level

user experience data and to show the value of statistical techniques such as linear 

discriminant analysis for summarizing important aspects of how people play games.

With respect to adaptive aspects, we have shown how simple games such as

Snakeotron  can adapt as players progress and how levels for Super Mario can be 

built in response to user data. We have further shown how automatically generated 

puzzles can be given aspects of a human touch and the potential for players to evolve

the look and feel of a game environment such as the cityscape in Subversion before 

they play the game. 

From the perspective of computational creativity, we have learned a great deal

about the potential for software to be creative in the game design process. In particu-

lar, we have looked at how Web resources such as newspaper articles, multimedia 

assets, and social network data can drive generative processes, often leading to

interesting and surprising results. We have also looked at how individual generative 

processes can be integrated so that the whole is more than a sum of the parts and 

how software can add value to its creations by providing information about how/

why it operated and framing its work in various cultural contexts, such as news 

reporting. We have studied how best to enable users to guide evolutionary processes 

for content creation, so that they feel satisfi ed with the level of progress they are 

making. We have also studied responses from the game-playing public to informa-

tion about the computational genesis of games and game content. Interestingly, we 
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have noticed a lesser effect of so-called carbon fascism  (i.e., default prejudice against 

the intelligence/creativity of software) in gaming circles than in other artistic cul-

tures. From a broader AI perspective, we note that game play data are becoming 

more available for machine learning applications, which is an exciting prospect—the 

availability of such data in other domains such as bioinformatics has revolutionized 

those areas.

Commercial games with mild aspects of adaptation, such as  Left 4 Dead  , ared
already making an impact. Moreover, players now demand huge game worlds, large

numbers of nonplayer characters and other players to interact with, and to be regu-

larly given new missions. This naturally increases their impression of having a 

bespoke gaming experience each time they play, which in turn keeps their interest 

in the game for longer periods. An interesting question for the future is whether 

players want more direct personalization of their experience and, if so, how to bring 

this about. We believe that the investigations presented here, developed with aca-

demic and industrial collaboration, are indicative of the kind of fundamental research

required to bring about a new wave of personalized games which adapt to individual

players. The majority of the work described above is very much ongoing, and we 

intend to fi nd new and interesting projects which raise and answer new questions in 

adaptive gaming and computational creativity research in order to contribute to this 

exciting fi eld in the future.  
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