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C H A P T E R 1

Introduction to Linear Models

The objective of this book is to present a discussion and a formal definition of a
general class of linear models. The presentation throughout this book will separate
the discussion of regression models and analysis of variance models, though they
are mathematically equivalent and subject to much of the same analysis. In Part I,
the focus is on regression models. The general concepts apply as well to analysis
of variance models that will be discussed in Part II. Matrix algebra is used to give
a compact description of the models and will be used extensively in the chapters
to follow. An elementary knowledge of matrix algebra is assumed but a review of
the basic concepts and more advanced material to be used in this book is given in
Appendix A. This chapter introduces much of the notation and terminology to be
used throughout the book.

1.1 BACKGROUND INFORMATION

In the area of applied statistics, a substantial portion of the analyses comes under the
heading of linear models. This general heading covers the major areas of regression
analysis and the analysis of variance but includes other topics such as time series and
multivariate analysis. The first two topics are the primary focus of this book.

The basis for the computational procedure used in the analysis can be traced
back to the writings of the French mathematicians Gauss and LeGendre in the early
years of the nineteenth century. In their writings, they describe the method of least
squares for determining a line or plane to give an approximate description for a
scatter of points. The method of least squares was given statistical credibility, under
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4 INTRODUCTION TO LINEAR MODELS

the assumption of normally distributed errors, by the likelihood-based methodology
pioneered by R. A. Fisher in the first quarter of the twentieth century. Books such as
Applied Regression Analysis by Draper and Smith (1966), The Analysis of Variance by
Scheffé (1959), and An Introduction to Linear Statistical Models by Graybill (1961)
summarize the methodology that was developed in the first half of this century. These
methods contributed significantly to developments in all areas of research and are still
widely used.

In the early stages of the development of these methods, the applications were
limited by the ability to perform the required calculations, specifically the inversion
of large matrices. The developments in high-speed computing in the two decades
following World War II allowed us to consider regression models with many vari-
ables and the analysis of variance with many factors. The dramatic developments in
computer technology in recent years have prompted new research in linear model
methods. Numerical and graphical procedures have greatly expanded our ability to
extract information from data. In regression analysis, techniques for identifying and
examining the role of unusual observations and for detecting and understanding prob-
lems with collinear predictors enable the analyst to obtain a better understanding of
the system or process being studied.

In the analysis of variance, much of the confusion caused by the mathematical
statement of the model was removed by the revival of what is now called the cell
means model. (We write key words and phrases in boldface.) This form of the model is
especially useful in resolving questions with regard to unbalanced designs. Increased
computer speed and capacity encouraged the application of likelihood-based methods
for the estimation of variance components in mixed models. The search for diagnostic
methods in the analysis of mixed models led to an alternative approach to describing
the model and to a new computational procedure known as AVE that simplifies the
computations and provides insight into the sources of variability.

A fundamental problem in all areas of science, and especially in statistics, is the
gap between the development of new ideas and their implementation in practice. In
the current computing environment, the problem becomes even more serious as new
ideas are introduced into readily available statistical packages but not necessarily
understood by practitioners. The motivation for the presentation in this book is to
bridge the gap between theory and practice. This is done in Part I by providing
an intuitive discussion of the theory and then giving a thorough discussion of the
techniques necessary for applying the theory to the analysis of data. Parts I: Regression
Analysis, can be understood by a student with a first course in statistical methods
who is willing to accept the fundamental concepts and focus on the applications.
The techniques are illustrated by numerical examples from different disciplines with
particular emphasis on the ways in which new methods can provide insight into the
analysis. Part II: The Analysis of Variance, contains a more thorough presentation of
the theory and a discussion of many common models and their analysis.

No attempt is made to evaluate existing computer packages since they are con-
stantly being modified and updated. Most of the graphics and computations in this
book are performed using JMP, a product of the SAS Institute. It is hoped that the
discussions will allow the reader to be a discriminating user of such packages.
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1.2 MATHEMATICAL AND STATISTICAL MODELS

For our purposes, we describe a mathematical model as a functional relation between
variables. In particular, we are interested in models that relate a set of input variables
to a set of output variables. It is convenient to think of this situation in a generic form.
Thus, we think of a response as the output of a process that depends on one or more
inputs. This idea is shown in the schematic below. The box indicates a process in
which the three inputs are transformed into the single output. For much of this book
we will consider a single output but allow for several inputs.

Inputs
→
→
→

Process → Output

Schematic for mathematical models.

Mathematically, we describe the relation as

y = g(x1, x2, x3), (1.1)

where y denotes the output, x1, x2, and x3 denote the inputs, and g(x1, x2, x3) denotes
the functional relation by which the inputs are converted into the output. We will
refer to this as the response function.

The search for the functional relation in (1.1) is often one of the primary objectives
of the analysis. With only one input variable this may be aided by a plot of the data.
These plots are known as scatter-plots. The plot might suggest that the relation is
nearly a straight line, but that there are departures from that linear relation. Polyno-
mials or more complex functions of one variable may be suggested. With more than
one input variable, three-dimensional plots may be informative and recent advances
in plotting software that allow for rotations may be helpful.

The data are usually presented in column format as shown in Table 1.1. Here,
y represents the response and x the input or predictor variable. The column labeled
Obs. is not generally a part of the analysis but is used to refer to specific observations
or cases.

Table 1.1 Format for the data

Obs. y x

1 y1 x1

2 y2 x2

3 y3 x3

...
...

...
n yn xn
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Figure 1.1 Scatter-plot of the data.

A typical scatter-plot of such data is shown in Figure 1.1. In Figure 1.1, a line
has been superimposed on the data to give a general indication of the pattern. We
note that this line provides a reasonable approximation to the data but that there is
considerable scatter about this line. For example, several observations have x = 35
but have different responses. This suggests that for a given input, the response is
subject to variability about some common value.

To include such variability in the model, we introduce the concept of a statistical
model. To do this, we extend the mathematical model by adding a random variable
to the input side of equation (1.1). Thus, we write the model as

y = g(x1, x2, x3) + e. (1.2)

Here, e denotes the added random variable, often called the error term. The properties
of this random variable will depend on the situation, but it is often assumed to follow
a univariate normal distribution with mean zero and variance σ 2. (A discussion of the
normal distribution is given in Appendix B.I.1.) We shall elaborate on this definition
in Section 1.3. Implicit in this assumption is the fact that the output, y, can be viewed
as a random variable with mean (expected value), g(x1, x2, x3), and variance, σ 2.
Thus, we may write the deterministic part of the model, using E[y] to denote the
expected value, as

E[y] = g(x1, x2, x3). (1.3)

For example, in a simple linear model, the response function is written as

E[y] = β0 + β1x . (1.4)

To illustrate the concept of an added error term that follows a normal distribution,
refer to Figure 1.2. In this figure, the line denotes the expected value function,
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Figure 1.2 Indication of the normal error assumption.

β0 + β1x. The normal density plots indicate that for a given input, x, the response is
given by a random variable added to that mean function.

In most situations, the functional form of the mathematical model may be specified
apart from the values of certain parameters. Thus, it may be known that the relation is
a straight line, but the slope and intercept are not known. This is the case in equation
(1.4). In general, letting β denote the parameters and x the inputs, we write the mean
function in (1.3) as

E[y] = g(x,β). (1.5)

If we add the assumption of independence to the random variables associated with the
individual responses, the data can be viewed as a random sample from a population
with mean given by (1.5) and variance σ 2.

In some cases, the population is only defined conceptually as the collection of pos-
sible observations that could be made. In other cases, it may be possible to enumerate
the population, such as the population of students in the college of engineering at
a given university. In that case we might sample the population rather than observe
all students or, alternatively, we might view this group of students as a sample from
the collection of all possible students at this university. The data could have been
collected to develop a model for the relation between the score on a qualifying exam
and the student’s grade point average.

The concept of an input variable is quite general. For example, when modeling
the daily amount of water used by an oil refinery, the inputs may include the size
of the refinery, the amount of crude oil processed, the number of cooling towers, and
the types of products. In general, inputs may be quantitative, that is, measurements
such as temperature or amount, or they may be qualitative, indicating the presence
or absence of a factor or the type of product. The observations may arise as a result
of a carefully designed experiment. For example, if we wish to assess the effects of
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temperature on the strength of a product, we could conduct a controlled experiment in
which the production process is run at different temperatures while keeping all other
factors at fixed values. Alternatively, the data may arise in an observational study.
In such situations, measurements are taken on a random sample of individuals, or
experimental units, from a given population. For example, we may select a random
sample of female students in a specified age group and measure their percentage of
body fat and certain physical characteristics. In this case, the objective is to develop a
model to predict body fat from the more easily measured characteristics. We will treat
each of these situations in the same way, recognizing that in the designed experiment,
the departure from the assumed model may only be caused by natural variability in
the material, whereas in the observational study, the departure may be cause by other
factors that we have not included as inputs.

Our analysis of statistical models will include assessing the adequacy of the model,
making inferences about the unknown parameters, and using the model to predict
future observations.

1.3 DEFINITION OF THE LINEAR MODEL

In the discussion of statistical models in Section 1.2, we indicated a general functional
form of the relation between the input and output variables. For the purpose of making
inferences, it is useful to restrict the class of functions. In particular, we will be
interested in functions that are linear in the parameters. Thus, for a model with p
input variables, we write the mean function as

E[y] =
m∑

j=0

β j x j . (1.6)

In this expression, the unknown parameters are given by β j, j = 0, . . . , m, y denotes
the response, and xj, j = 0, . . . , m, denote the inputs. For example, in a production
process it may be assumed that the response, y = strength, is a linear function of the
input, x = temperature. Thus, we write

E[y] = β0 + β1x . (1.7)

Relating this expression to our general expression in (1.6), we see that the input
variable x0 is the constant 1. This is often the case as we allow for a nonzero intercept
in our response function. We use the parameter β0 as the coefficient for this constant
term. We may encounter cases where we will want to force β0 = 0.

While it is true that the response function in (1.7) is linear in temperature, that is
not the linearity of concern. Rather, it is the fact that the function is linear in β0 and
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β1. To emphasize the linearity assumption, note that the expected response could be
a quadratic function of temperature, written as

E[y] = β0 + β1x + β2x2. (1.8)

In this case, the response function is linear in β0, β1, and β2 as required by the
definition. Such a function is often considered if the company is trying to determine
an optimum operating temperature for the process.

Continuing with this example, it may be suspected that the strength of the product
also depends on the time of exposure, s. In this case we may consider the following
form of the response where the expected value is linear in both temperature and time.
Thus, we write

E[y] = β0 + β1x + β2s. (1.9)

Further, we might consider a model that is quadratic in both input variables. This
response function might be written as

E[y] = β0 + β1x + β11x2 + β2s + β22s2 + β12xs. (1.10)

The term xs is just the product of the time and the speed variables for a given case.
This term allows for an interaction between the two variables and will be examined
in detail in later chapters.

For our analyses, we will assume that we have n observations on a process with
mean function of the form (1.6). The data are described by the (m + 2)-tuple, (yi, xi0,
xi1, xi2, . . . , xim), for i = 1, . . . , n, where yi denotes the response to the inputs, xij. For
the purpose of describing the models in this chapter and for performing computations
in subsequent chapters, it is convenient to use the notation and methods of matrix
algebra. (A summary of the basic results in matrix algebra is found in Appendix A.) In
this book all vectors will be column vectors and are denoted by lower case, boldface
letters. Row vectors will be indicated by the transpose symbol, superscript T. Thus,
the n responses may be described by a row vector, yT = (y1, . . . , yn) with elements yi

or as a column vector

y =

⎡

⎢⎣
y1
...

yn

⎤

⎥⎦ . (1.11)

For the development of our theoretical results, y is viewed as a random vector, that
is, a vector of random variables. Later, when we illustrate the theory with numerical
examples, y will denote the observed data, that is, a realization of these random
variables. The proper interpretation will be clear from the context.
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The inputs will be denoted by the vectors xj for j = 0, 1, . . . , m, where

x j =

⎡

⎢⎣
x1 j
...

xnj

⎤

⎥⎦ . (1.12)

The inputs will be displayed in the design matrix X, that is, an n × (m + 1) matrix

X = (xij, i = 1, . . . , n, and j = 0, . . . , m)
= (x0, x1 . . . , xm).

(1.13)

Our convention is that matrices will be written in upper case, boldface letters, the
one exception being that J will denote the column vector of ones. Thus the design
matrices for equations (1.7), (1.8). (1.9), and (1.10), respectively, may be written as
X = (J x), X = (J xx2), X = (J x s), and X = (J xx2ss2xs). Here, x and s are the
vectors of temperature and associated speeds and x2, s2 and xs are the vectors of
squared times, squared speeds, and the products of the times and speeds.

Using this matrix notation, the model equations, describing the model and the
data, are written as

y = Xβ + e, (1.14)

where y is the n-vector of responses, X the n × (m + 1)-dimensional design matrix,
β the (m + l)-vector of parameters, and e the n-vector of errors.

To describe the assumptions about the expected value of the responses, we intro-
duce the concept of the expected value of a matrix of random variables. Thus, if M is
a matrix, whose elements, mij, are random variables, we define the expected value of
M as follows.

Definition 1.1 The expected value of a random matrix M, with elements mij, is
defined to be the matrix of expected values of its elements. That is,

E[M] = (E[mij]).

Using matrix notation we then write our assumptions about the mean response as

E[ y] = (E[yi ]) =
⎛

⎝
m∑

j=0

β j xij

⎞

⎠ = Xβ. (1.15)

The term design matrix reflects the fact that, in some applications, the matrix
reflects the design of the experiment that led to the data. We use this terminology
for convenience in our general description, recognizing that X simply denotes the
matrix of input variables in our expression. We assume that X has full column rank,
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r(X) = m + 1, which means that the columns of X are linearly independent and
implies that n ≥ m + 1.

In many applications, the responses are assumed to be independent, or at least
uncorrelated, with common variance, σ 2. To write this assumption in matrix form, we
define the covariance matrix, V = Var[y], as the symmetric matrix whose diagonal
elements vii denote the variance of v1 and whose off-diagonal elements vik are the
covariances between yi and yk. We may then write the assumptions of independence
and constant variance as

Var[ y] = σ 2 I, (1.16)

where I is the identity matrix (ones on the diagonal and zeros elsewhere). To relate
this to our definition of the expected value of a matrix, suppose that the matrix M
has elements mik = (yi − E[yi])(yk − E[yk]). Note that the expected value of mik is
the covariance between yi and yk if i �= k, and the variance of yi if i = k. Letting
V = (vij), we write V = E[M]. The matrix M is conveniently written by considering
the product of the vector y − E[y] and its transpose. Thus,

M = ( y − E[ y])( y − E[ y])T . (1.17)

These observations are summarized in the following definition.

Definition 1.2 The covariance matrix V = Var[y] of the random vector y is given
by

V = Var( y) = (vik) = E(( y − E[ y])( y − E[ y])T ).

In general, the variance may not be constant and the covariances may not be zero.
In the discussion of mixed models in Part 2 on the analysis of variance, we will be
encounter situations where there is a linear structure on the covariance matrix. We
will assume that the variances, Var[yi], and covariances, Cov[yi, yk], are known linear
functions of unknown parameters. Thus, we will write

Var(yi ) = vii =
c∑

t=1
φt vtii,

Cov(yi , yk) = vik =
c∑

t=1
ψt vtik.

(1.18)

(Note: When more than one expression appears in a display as in (1.18), the equation
number will refer to the collection of expressions, not just the last one.) Here the vtik

are known constants that are determined by the process. The φt and ψ t are unknown
parameters that are called variance components.

The linear structure on the second moments described in (1.18) may be written in
matrix notation. To do so, let Vt, t = 1, . . . , c, denote known, symmetric matrices
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with elements vtik. It follows that the matrix of variances and covariances can be
written as

V =
c∑

t=1

φt V t . (1.19)

For example, we might assume that all variances are equal to φ1 and that all covari-
ances are equal to φ2. Letting, U denote the matrix all of whose elements are equal
to 1, we may write this covariance structure as

V = φ1 I + φ2(U − I). (1.20)

Referring to the parameters in this matrix as variance components simply reflects
the fact that they are components of the covariance matrix. Since V is a covariance
matrix, it must be positive definite, and this places a natural set of constraints on the
parameters. These constraints will be indicated in specific examples later in the book.

Note that the linearity assumptions (1.15) and (1.19) are not restrictive in the sense
that any mean vector and covariance matrix may be written in these forms. To see
this, let xj = uj denote the unit vector with a 1 in position j and zeros elsewhere, then
the design matrix in (1.15) is the identity. In this case n = m + 1, and the parameters
are just the expected values of the observations, that is, E[y] = β. Similarly, the
matrices Vt in (1.19) could just be the indicator matrices having either vtii = 1 and
zeros elsewhere, or vtik = vtki = 1 and zeros elsewhere. In this case the parameters are
just the variances and covariances of the observations. Our interest will be in cases
where the number of parameters in β is small relative to n and the model is described
in terms of a small number of variance components.

To summarize our assumptions and to distinguish the special case defined by
(1.16), we make the following definition.

Definition 1.3 The random vector y is said to have a general linear model if E[y]
and Var[y] are given by (1.15) and (1.19), respectively. It is called a simple linear
model if Var[y] = σ 2I.

We will see that it is possible to estimate the parameters of our linear model
without making further assumptions about the probability distribution. However, in
order to make inferences, in the form of tests of hypotheses, confidence intervals,
or prediction intervals, it is necessary to specify the distribution of the data. A
common assumption is that the elements of y follow a normal distribution. There
are several motivations for this assumption, not the least of which is that it leads to
very elegant theoretical results. The assumption is further justified by the fact that
many situations are approximately modeled by the normal distribution, or that some
function of the observations is approximately normal. In the most general situation,
y is assumed to follow the multivariate normal density function. Familiarity with the
normal distribution is assumed. A detailed discussion of the normal distribution is
given in Appendix B.I.1.
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Assuming that y is normally distributed, the linear model described in Definition
1.3 may be written compactly as y ∼ N(Xβ, V). Alternatively, the distribution of the
error vector, e = y − Xβ, is e ∼ N (0, V).

The equation form of the model is generally favored in the literature. It is often
more informative, particularly in regression models, to think of the locus of means,
defined by the expected value, as a function that is describing the data apart from a
random error. We will find that both forms of the model are useful. These ideas are
summarized in the following definition.

Definition 1.4 The vector y is said to follow a normal linear model if y ∼ N(Xβ, V)
or, equivalently, y = Xβ + e and e ∼ N(0, V). It follows a simple, normal linear
model if e ∼ N(0, σ 2I).

1.4 EXAMPLES OF REGRESSION MODELS

In the regression model, the expected value of the response is a function of one or
more input variables known as regressors, predictors, or independent variables.
Typically, these are quantitative variables such as temperature, speed, and size, but
qualitative variables such as gender, department, and breed can be included. The
output is known as the response or dependent variable. Several examples are given
to illustrate the concepts. We consider first the case of one quantitative regressor to
fix the ideas and then extend to the general case.

1.4.1 Single-Variable, Regression Model

Example 1.1 Golf Tournament Results The data shown in Figure 1.1 are the
results of an amateur golf tournament. The input variable is the competitors’ score
on the first 9 holes and the response is the score for the 18 hole tournament. The
objective is to predict the 18 hole score based on the results from the first 9 holes.
This is an example of an observational study in which no other factors such as age or
experience were controlled. This example is examined in Exercise 1.7.

Example 1.2 Particle Board Study To introduce the concept of a designed exper-
iment we consider the results of a study by a company that makes particle boards that
are used in construction. Particle boards are made by mixing small wood particles
with an adhesive, forming them into sheets and then baking them in an oven. The
company is interested in studying the strength of the boards as a function of the bak-
ing temperature with the possible objective of determining an optimum temperature.
An experiment was conducted that consisted of running the process at six different
temperatures, with 10 boards produced at each temperature. The temperatures and
associated breaking strengths were recorded. A plot of the data is shown in Figure 1.3
where the inputs, xi, denote the baking temperature and the response, yi is a measure
of the strength. Here, i = 1, . . . , 60.
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Figure 1.3 Plot of particle board data.

Discussion of Example 1.2 Since there are six different temperatures with 10
replicates at each temperature, we might consider using two subscripts to denote the
data. For example, xij, i = 1, . . . , 6 and i = 1, . . . , 10. This is not necessary in this
example but later, especially in analysis of variance models, we will use multiple
subscripts.

Referring to Figure 1.3, we note the variability of the responses for a given
temperature. A useful tool for examining the distribution of the data for a given
temperature is the box-plot (see Milton and Arnold (1990) for a discussion of box-
plots). These plots give an indication of the location and spread of the data at each
temperature. The line within the box indicates the average strength of the boards
produced at that temperature and the limits of the box indicate the 25th and 75th
quantiles. In Figure 1.4, we show these plots for each temperature. Based on casual

65

70

75

1 2 3 4 5 6

TEMP

S
T
R

80

Figure 1.4 Box-plots of particle board data.
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Figure 1.5 Particle board data with lines imposed.

inspection of this plot It seems reasonable to accept the assumption of a common
variability for each value of TEMP.

It is of interest to examine the linear model assumptions in terms of Example 1.2.
The box-plots suggest that the spread of data for a given temperature is about the
same for each temperature and we will assume that the data were collected in such
a way as to justify the assumption of uncorrelated responses. Thus, the simple linear
model with V = σ 2I is reasonable. Examination of histograms for the data might
justify the assumption of normality.

Figure 1.5 shows the particle board data with two approximating lines imposed.
Examination of this figure shows that the strengths are increasing with temperature
and that the increase is approximately linear, although the rate on increase may be
declining with increasing temperature. This suggests that the response function may
be linear in temperature and we might initially consider the model

yi = β0 + β1xi + ei (1.21)

for i = 1, . . . , 60. As noted earlier, we use β0 to denote the intercept.
There are several advantages to this model. For example, (1) it is intuitively simple

to think of mean strength increasing in this way, (2) we can interpolate or extrapolate
to infer mean strengths at other than the experimental temperatures, (3) we will see
that we can make inferences about the slope and intercept. For example, we will
consider the hypothesis H0: β1 = 0. This is equivalent to the hypothesis that mean
strength does not depend on temperature. The design matrix for this reduced model
consists of the column of ones and the response vector is the column of strengths.

This model is known as the simple, linear regression model. It is a simple linear
model, by Definition 1.3, since the mean structure is linear in the parameters and
V = σ 2I. In addition, the implication of this terminology, in the class of linear
regression models, is that the model depends on only one regressor and that the locus
of means is linear in that variable. We might further argue that the departure from
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linearity is caused by random sources such as natural variability in the material and
that this does not depend on the temperature. We summarize our discussion in the
following definition.

Definition 1.5 The response, y, has a simple linear regression on the input, x, if the
observed pairs (yi, xi) are related by the equation

yi = β0 + β1xi + ei ,

where the random errors are independent, N(0, σ 2).

In the particle board study, it was reasonable to assume that the mean strength is
some function of temperature, but typically, we have no idea as to the nature of
that function. In fact, a substantial part of the effort in a regression analysis will
be directed toward the identification of this function. If the model that is linear in
temperature is not acceptable, we might consider the quadratic model in (1.8). A
second degree line is also shown in Figure 1.5. We see that this line might be more
appropriate for this data. In this example, the experimenter may have been interested
in estimating the temperature that yields the maximum strength. The quadratic model
allows us to do that, but we must be aware of the danger of extrapolating beyond
the range of the experimental data. Other models that are not linear in x include the
following:

(a) E[y] = β0 + β1

(
1

x

)
,

(b) E[y] = β0exp(β1x),

(c) E[y] = β0xβ1 ,

(1.22)

Model (a) is linear in the parameters and hence is a linear model in the sense of
Definition 1.3 even though the model is not a linear function of x. We will see
that this nonlinearity in the input variable does not complicate the analysis but it
is reflected in the interpretation of the model. Models (b) and (c) are not linear in
the parameters and hence fall outside of the scope of our linear model analysis.
Such models will be discussed separately in Chapter 8. In both of these models,
the logarithm of the response function can be expressed as a linear function of
the parameters. This suggests that the model could have been developed using the
logarithm of the response. Using natural logarithms, we might have considered one
of the following models:

(d) E[ln(y)] = α0 + β1x,

(e) E[ln(y)] = α0 + β1 ln(x1),
(1.23)

where ao = ln(β0). The point here is that the model might be linear if we measure
our response in a different scale. Regardless of the form of the model that is selected,
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it is important to justify our assumptions about the distribution of the errors. There
are other models for which the mean function can be linearized by some appropriate
transformation, but in most cases it is not possible. The problem of transforming the
data will be discussed in more detail in Chapter 3.

The quadratic model (1.8) might be more satisfactory than the simple linear model
and it is tempting to consider higher ordered polynomial models, for example, the
cubic model

yi = β0 + β1xi + β2x2
i + β3x3

i + ei . (1.24)

In this polynomial model there is a single input x but three regressors, x, x2, and x3.
The terms regressor and predictor will be used to describe these quantities as well
as other inputs such as speed, pressure, and time, that might be a part of the model.
It should be clear from the context whether the regressor is a distinct variable or
a function of another variable. The extension to higher ordered polynomial models
should be clear. Such models are considered in Chapter 7.

1.4.2 Regression Models with Several Inputs

In the particle board study, it might be suspected that strength could depend on other
factors such as the speed of the conveyor belt as it carries the material through the
baking oven. To introduce the conveyor speed into the analysis, we might conjecture
that the mean response is a linear function of temperature and speed. For notational
simplicity, we again avoid the use of multiple subscripts and view the data as a set
of n-tuples, (yi, ti, si), where ti and si indicate the temperature and speed that led to
response yi. Thus a candidate model, in equation form, is

yi = β0 + β1ti + β2si + ei , (1.25)

(note: to conduct an experiment using all combinations of six temperatures and five
speeds with 10 observations made at each temperature–speed combination would
require n = 300 runs, a dramatic increase over the earlier experiment).

A model often used in this setting is the extension of the single-input, quadratic
model to include all second-order terms in the two inputs as shown in (1.10). Note
that the two inputs lead to five regressors. This quadratic model may provide a
reasonable, local approximation over a limited range on temperature and speed. It
has the advantage of being simple to analyze, and the parameters have meaningful
interpretations. It is one of the fundamental models in a methodology called response
surface analysis, that we discuss in Chapter 7. The form of the design matrix for
this model should be clear. With this motivation we now define the multiple, linear
regression model as follows.
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Definition 1.6 Given n observations, on a response y, with m regressors x1, x2, . . . ,
xm, the model that expresses the mean of y as a linear function of these regressors is
called the multiple linear regression model and is written as

yi = β0 +
m∑

j=1

β j xij + ei

or, in matrix form, as

Y = Xβ + e,

where the ith row of the design matrix is (1, xi1, xi2, . . . , x, ) and the parameter vector
is βT = (β0, β1, . . . , βm). The columns of X will be denoted by J and xj, j = 1, . . . ,
m, and it is generally assumed that e is normally distributed with a scalar covariance
matrix. Note that we have included the intercept term in our definition. This term
may not be included in some studies.

In this definition the regressors have been simply denoted as xj, but the implication
is they may represent functions of a set of inputs. For example, in (1.10), we have
x1 = t, x2 = s, x3 = t2, x4 = s2, and x5 = ts. Thus, the regressors may be the inputs
that we have measured, such as temperature and speed, or they may be functions of
them such as powers, reciprocals, exponentials, logarithms, products, and ratios. It is
also possible that the response may be some function of the output that we actually
measured.

In our discussion of the particle board and the golf tournament data, we distin-
guished between the case where the data arose from a carefully designed experiment
as opposed to an observational study. In many applications of regression models, the
data arise in this latter way. That is, the data consist of a vector of observations on
each of n experimental units but the values of the inputs are not specified in advance.
The following example illustrates another such a situation and we will use it to raise
several potential problems with the analysis.

Example 1.3 A company makes a product from sheets of stainless steel purchased
from a supplier. It is observed that the number of units obtained from a sheet varies
considerably. This variation is felt to depend on three factors, the width, the density,
and the tensile strength of the sheet. To investigate this relation, n sheets were
selected at random and the values of the response, (PROD) and the three inputs,
(WID), (DENS), and (STR) were observed.

Discussion of Example 1.3 As a first attempt at developing a model, we might
consider the model

PRODi = β0 + β1(WID)i + β2(DENS)i + β3(STR)i + ei . (1.26)
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If we make the usual assumptions about the random errors, this model is included
under Definition 1.6, and our analysis would be the same as if the data arose from a
designed experiment. However, there are potential hidden hazards. Since we have no
control over the ranges or the relative values of the regressor variables, it is possible
that we could obtain a few samples in which the values of one or more of the inputs
differ markedly from those in the rest of the observations. Or, by chance, the values
of the inputs in the sample may have been restricted to only a subset of the possible
values.

The situations mentioned in this example are not uncommon in observational
studies, and they offer a potential for misleading analyses. We will devote some
time in Chapters 5 and 6 to describing techniques for detecting such problems and
modifying the analyses.

In some applications, the regressors may be discrete variables, such as zero or one,
used to indicate the presence or absence of a qualitative characteristic. The following
extension of Example 1.2 will illustrate this concept.

Example 1.4 Suppose that the experiment on the manufacture of particle boards
included two different types of glue. An experiment is run using six different temper-
atures for each type of glue holding all other factors fixed. Ten different boards were
made at each temperature–glue combination for a total of 120 boards. Of interest is
the effect of the different glues as well as the temperature.

Discussion of Example 1.4 We could consider applying the simple, linear regres-
sion model for each type of glue to assess the effect of temperature for each glue, but
that does not allow for an obvious way to test for glue differences. A single model
that allows for this comparison uses an indicator variable to distinguish between
glue types. To describe this model, let x be the vector of the temperatures and let z
be a vector whose elements are 1 if the response is for glue 1 and zero if for glue 2.
The model is then written as

yi = β0 + β1xi + β2zi + ei . (1.27)

Note that this model describes two parallel lines, each having slope β1 but different
intercepts. For glue 1, the intercept is β0 + β2 and for glue 2 it is β0. Thus, the
model assumes that the effect of temperature is the same for either type of glue. We
will study this model allowing for different slopes in Chapter 7.

Our definition of the multiple linear regression model makes the assumption of a
scalar covariance matrix, but this need not be the case. For example, the particle board
study could have included data from two different factories, and we might allow
for different variability at each factory. Thus, regression models extend naturally
to include general covariance structures. The following example indicates another
source of nonscalar covariance matrices.
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Example 1.5 In a study to determine the factors that influence the amount of
water used by an oil refinery, data are collected from a large number of refineries.
The response is the amount of water used in a month, and data are taken over a
period of 2 years. The predictors include a measure of size or capacity of the refinery,
indicator variables for the types of processes, and quantitative measures of the levels
of production of various products. The assumption of a scalar covariance matrix in
this case should certainly be questioned. It seems quite likely that the variability
might be a function of the size of the refinery and likely would be an increasing
function of size. In addition, the responses from a given refinery may be correlated
and that correlation could be a function of the size or complexity of the refinery. In
this case, the analysis would involve the estimation of the regression coefficients and
the variance components. The use of the model for predictive purposes must also
recognize this covariance structure.

1.4.3 Discrete Response Variables

In some problems, the response may be discrete, invalidating the assumption of a
normal distribution. Consider, for example, the situation where the response takes on
one of two values, say, zero or 1. For example, the response may indicate the success
or failure of a particular medication. This type of response requires the development
of new models and a more complex analysis. There are, however, linear model aspects
of the problem, as will be discussed in Chapter 8. Specifically, we will look at logistic
regression models that are appropriate for this dichotomous response situation and
we will briefly consider a class of generalized linear models.

1.4.4 Multivariate Linear Models

Our primary focus in this book is on the univariate linear model, that is, the response
y is assumed to be a scalar, or equivalently y is a column vector. The basic concepts to
be introduced extend to the case where the response is a matrix, say Y, of size N × t,
in which each row is a t-vector of responses on an experimental unit. This situation
is illustrated by the following example.

Example 1.6 A study is to be conducted to compare medications for controlling
high blood pressure. For the study a random sample of n patients who have high
blood pressure are assigned to each of the p treatments. For each of the patients,
the response is measured at the end of each of t time periods. The data matrix Y
consists of N = pn rows of length t, where the data in a row are the observations on
a given patient. It seems natural to assume that the responses on a given object are
correlated over time and that the variance may be a function of time. In general, let
V0 denote the covariance matrix associated with the observations on a given subject,
and assume that this same matrix is applicable for all patients under each treatment.
The covariance structure is defined by assuming that the rows of Y are independent
with covariance matrix V0. This is analogous to the assumption of constant variance
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in the univariate case. The data could be arrayed as a vector of length tpn and we
would have a univariate model, but for reasons of convenience and interpretation, it
is usually better to retain the multivariate formulation. We will return to a discussion
of this concept in Chapter 8.

1.5 CONCLUDING COMMENTS

In this chapter we have introduced the concept of linear models and described a
variety of situations where regression models are appropriate. Chapters 2–8 contain
detailed discussions of the analysis of the models introduced here and more complex
models and illustrate the concepts with numerical examples. A unique feature of the
discussion of linear models in this book is that the design matrix has full column
rank. In the regression models this is a standard assumption and simply implies that
we have not included predictors that are linear combinations of other predictors.
(We will treat, in detail, the often confusing situation where the regression model
contains near linear dependencies in X.). In the analysis of variance models, the
full rank assumption is not common. The assumption of a full rank design matrix
in our presentation of analysis of variance models differs from that made for the
classical, over-parameterized model as used in most standard texts. The relation
between these two approaches will be established. We will see that the cell means
formulation removes much of the confusion generally associated with analysis of
variance models. However, the classical presentation has advantages, and we will
learn to move easily from one form to the other.

EXERCISES

Section 1.3

1.1 Write the design matrices for the mean structures described by equations (1.8),
(19), and (1.10) for the case of four different temperatures and three different
speeds.

1.2 Let yi, i = 1, 2, 3, be random variables with means μi, variances vii, and
covariances vij. Write the matrix M as described in (1.17) and note that
E[M] = V= (vij).

1.3 Suppose all variances are equal, Var[yi] = φ1, and all covariances are equal,
Cov[yi, yk] = φ2. Verify that the matrices V1 = I and V2 = (U − I) allow us to
write the covariance matrix in the form of (1.20).

1.4 Let V = (vij) be an arbitrary covariance matrix of size 3. Write V in the form of
(1.19) using indicator matrices.
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Section 1.4

1.5 For the simple linear regression model, suppose we have data (yi, xi), i =
l, . . . , 5.

a. Determine the inner product JTx.

b. Suppose we let wi = xi − x̄i , where x̄ is the sample mean of the xi. Consider
the model E[y] = α0 + α1w, and relate the coefficients in this model to β0

and β1 in (1.21).

c. Compute JTw.

d. Suppose the inputs are equally spaced, xi + 1 = xi + c, for i = 1, . . . , 5.
Compute x̄ . Let wi = xi − x̄ and compute JTw, JTw2, and wTw2. Here, w2

has elements that are the squares of the elements of w.

1.6 The line shown in Figure 1.1 gives an approximation to the relation between y
and x for the golf tournament data described in Example 1.1. The equation is
given by y = 15.4 + 1.6x.

a. Estimate the final score for an individual who had a score of 32 on the front
nine. Repeat for a score of 38.

b. How does these scores compare with the estimates of twice the score on the
front nine?

c. What does the equation imply about an individual who does well on the
front nine and one who does poorly?

d. Assuming that the mean value of the predictor is 34.67, how do you interpret
the constant term in the equation y = 67.4 + 1.5(x − 34.7)?

1.7 In the particle board data described in Example 1.2, the equations for the linear
and quadratic approximations are given by STR = 63.9 + 2.8(TEMP) and
STR = 65.3 + 2.8(TEMP) − 0.48((TEMP) − 3.5)2.

a. Write the linear equation in the form STR = b0 + 2.8((TEMP) − 3.5) where
3.5 is the average of the values of TEMP. How do you interpret the constant
terms in these two forms of the equation.

b. Rewrite the quadratic equation as STR = b0 + b1(TEMP) + b2(TEMP)2

and compare coefficients.

c. Using the quadratic equation, estimate the value of TEMP that would give
maximum STR. How would you feel about recommending that temperature
for the process?

1.8 Write the design matrix for the model in (1.27) for Example 1.4 assuming four
observations on glue one and three observations on glue 2.

a. Verify the interpretation of β0, β1, and β1 given for that example.

b. Compute JTx, JTz, and xTz.

c. Repeat (a) and (b) if we define the indicator as z = 1 for glue 1 and z = −1
for glue 2.


