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Preliminaries

1.1 Probability and Bayes’ Theorem

1.1.1 Notation

The notation will be kept simple as possible, but it is useful to express statements
about probability in the language of set theory.You probably know most of the symbols
undermentioned, but if you do not you will find it easy enough to get the hang of this
useful shorthand. We consider sets A, B, C, . . . of elements x, y, z, . . . and we use
the word ‘iff’ to mean ‘if and only if’. Then we write

x ∈ A iff x is a member of A;

x /∈ A iff x is not a member of A;

A = {x, y, z} iff A is the set whose only members are x, y and z (and similarly for
larger or smaller sets);

A = {x ; S(x)} iff A is the set of elements for which the statement S(x) is true;

∅ = {x ; x �= x} for the null set, that is the set with no elements;

x /∈ ∅ for all x;

A ⊂ B (i.e. A is a subset of B) iff x ∈ A implies x ∈ B;

A ⊃ B (i.e. A is a superset of B) iff x ∈ A is implied by x ∈ B;

∅ ⊂ A, A ⊂ A and A ⊃ A for all A;

A ∪ B = {x ; x ∈ A or x ∈ B} (where ‘P or Q’ means ‘P or Q or both’) (referred
to as the union of A and B or as A union B);

AB = A ∩ B = {x ; x ∈ A and x ∈ B} (referred to as the intersection of A and B
or as A intersect B);

A and B are disjoint iff AB = ∅;

A\B = {x ; x ∈ A, but x /∈ B} (referred to as the difference set A less B).
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Let (An) be a sequence A1, A2, A3, . . . of sets. Then
⋃∞

n=1 An = {x ; x ∈ An for one or more n};
⋂∞

n=1 An = {x ; x ∈ An for all n};
(An) exhausts B if

⋃∞
i=1 An ⊃ B;

(An) consists of exclusive sets if Am An = ∅ for m �= n;

(An) consists of exclusive sets given B if Am An B = ∅ for m �= n;

(An) is non-decreasing if A1 ⊂ A2 ⊂ . . . , that is An ⊂ An+1 for all n;

(An) is non-increasing if A1 ⊃ A2 ⊃ . . . , that is An ⊃ An+1 for all n.

We sometimes need a notation for intervals on the real line, namely

[a, b] = {x ; a � x � b};
(a, b) = {x ; a < x < b};
[a, b) = {x ; a � x < b};
(a, b] = {x ; a < x � b}

where a and b are real numbers or +∞ or −∞.

1.1.2 Axioms for probability

In the study of probability and statistics, we refer to as complete a description of the
situation as we need in a particular context as an elementary event.

Thus, if we are concerned with the tossing of a red die and a blue die, then a typical
elementary event is ‘red three, blue five’, or if we are concerned with the numbers of
Labour and Conservative MPs in the next parliament, a typical elementary event is
‘Labour 350, Conservative 250’. Often, however, we want to talk about one aspect of
the situation. Thus, in the case of the first example, we might be interested in whether
or not we get a red three, which possibility includes ‘red three, blue one’, ‘red three,
blue two’, etc. Similarly, in the other example, we could be interested in whether
there is a Labour majority of at least 100, which can also be analyzed into elementary
events. With this in mind, an event is defined as a set of elementary events (this has
the slightly curious consequence that, if you are very pedantic, an elementary event
is not an event since it is an element rather than a set). We find it useful to say that
one event E implies another event F if E is contained in F. Sometimes it is useful
to generalize this by saying that, given H, E implies F if E H is contained in F. For
example, given a red three has been thrown, throwing a blue three implies throwing
an even total.

Note that the definition of an elementary event depends on the context. If we were
never going to consider the blue die, then we could perfectly well treat events such
as ‘red three’ as elementary events. In a particular context, the elementary events in
terms of which it is sensible to work are usually clear enough.

Events are referred to above as possible future occurrences, but they can also de-
scribe present circumstances, known or unknown. Indeed, the relationship which
probability attempts to describe is one between what you currently know and
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something else about which you are uncertain, both of them being referred to as
events. In other words, for at least some pairs of events E and H there is a number
P(E |H ) defined which is called the probability of the event E given the hypothesis
H. I might, for example, talk of the probability of the event E that I throw a red three
given the hypothesis H that I have rolled two fair dice once, or the probability of the
event E of a Labour majority of at least 100 given the hypothesis H which consists
of my knowledge of the political situation to date. Note that in this context, the term
‘hypothesis’ can be applied to a large class of events, although later on we will find
that in statistical arguments, we are usually concerned with hypotheses which are
more like the hypotheses in the ordinary meaning of the word.

Various attempts have been made to define the notion of probability. Many early
writers claimed that P(E |H ) was m/n where there were n symmetrical and so equally
likely possibilities given H of which m resulted in the occurrence of E. Others have
argued that P(E |H ) should be taken as the long run frequency with which E happens
when H holds. These notions can help your intuition in some cases, but I think
they are impossible to turn into precise, rigourous definitions. The difficulty with
the first lies in finding genuinely ‘symmetrical’ possibilities – for example, real dice
are only approximately symmetrical. In any case, there is a danger of circularity in
the definitions of symmetry and probability. The difficulty with the second is that we
never know how long we have to go on trying before we are within, say, 1% of the
true value of the probability. Of course, we may be able to give a value for the number
of trials we need to be within 1% of the true value with, say, probability 0.99, but this
is leading to another vicious circle of definitions. Another difficulty is that sometimes
we talk of the probability of events (e.g. nuclear war in the next 5 years) about which
it is hard to believe in a large numbers of trials, some resulting in ‘success’ and some
in ‘failure’. A good, brief discussion is to be found in Nagel (1939) and a fuller, more
up-to-date one in Chatterjee (2003).

It seems to me, and to an increasing number of statisticians, that the only satis-
factory way of thinking of P(E |H ) is as a measure of my degree of belief in E given
that I know that H is true. It seems reasonable that this measure should abide by the
following axioms:

P1 P(E |H ) � 0 for all E, H.
P2 P(H |H ) = 1 for all H.
P3 P(E ∪ F |H ) = P(E |H ) + P(F |H ) when E F H = ∅.
P4 P(E |F H ) P(F |H ) = P(E F |H ).

By taking F = H\E in P3 and using P1 and P2, it easily follows that

P(E |H ) � 1 for all E , H,

so that P(E |H ) is always between 0 and 1. Also by taking F = ∅ in P3 it follows
that

P(∅|H ) = 0.
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Now intuitive notions about probability always seem to agree that it should be a
quantity between 0 and 1 which falls to 0 when we talk of the probability of something
we are certain will not happen and rises to 1 when we are certain it will happen (and
we are certain that H is true given H is true). Further, the additive property in P3
seems highly reasonable – we would, for example, expect the probability that the red
die lands three or four should be the sum of the probability that it lands three and the
probability that it lands four.

Axiom P4 may seem less familiar. It is sometimes written as

P(E |F H ) = P(E F |H )

P(F |H )

although, of course, this form cannot be used if the denominator (and hence the
numerator) on the right-hand side vanishes. To see that it is a reasonable thing to
assume, consider the following data on criminality among the twin brothers or sisters
of criminals [quoted in his famous book by Fisher (1925b)]. The twins were classified
according as they had a criminal conviction (C) or not (N) and according as they were
monozygotic (M) (which is more or less the same as identical – we will return to this
in Section 1.2) or dizygotic (D), resulting in the following table:

C N Total

M 10 3 13
D 2 15 17
Total 12 18 30

If we denote by H the knowledge that an individual has been picked at random from
this population, then it seems reasonable to say that

P(C |H ) = 12/30,

P(MC |H ) = 10/30.

If on the other hand, we consider an individual picked at random from among the
twins with a criminal conviction in the population, we see that

P(M |C H ) = 10/12

and hence

P(M |C H )P(C |H ) = P(MC |H ),

so that P4 holds in this case. It is easy to see that this relationship does not depend
on the particular numbers that happen to appear in the data.

In many ways, the argument in the preceding paragraph is related to derivations
of probabilities from symmetry considerations, so perhaps it should be stressed that
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while in certain circumstances we may believe in symmetries or in equally probable
cases, we cannot base a general definition of probability on such arguments.

It is convenient to use a stronger form of axiom P3 in many contexts, namely,

P3* P

( ∞⋃

n=1

En | H

)

=
∞∑

n=1

P(En|H )

whenever the (En) are exclusive events given H. There is no doubt of the mathematical
simplifications that result from this assumption, but we are supposed to be modelling
our degrees of belief and it is questionable whether these have to obey this form of the
axiom. Indeed, one of the greatest advocates of Bayesian theory, Bruno de Finetti,
was strongly against the use of P3*. His views can be found in de Finetti (1972,
Section 5.32) or in de Finetti (1974–1975, Section 3.11.3).

There is certainly some arbitrariness about P3*, which is sometimes referred to
as an assumption of σ -additivity, in that it allows additivity over some but not all
infinite collections of events (technically over countable but not over uncountable
collections). However, it is impossible in a lot of contexts to allow additivity over
any (arbitrary) collection of events. Thus, if we want a model for picking a point
‘completely at random’ from the unit interval

[0, 1] = {x ; 0 � x � 1},

it seems reasonable that the probability that the point picked is in any particular
sub-interval of the unit interval should equal the length of that sub-interval. However,
this clearly implies that the probability of picking any one particular x is zero (since
any such x belongs to intervals of arbitrarily small lengths). But the probability that
some x is picked is unity, and it is impossible to get one by adding a lot of zeroes.

Mainly because of its mathematical convenience, we shall assume P3* while
being aware of the problems.

1.1.3 ‘Unconditional’ probability

Strictly speaking, there is, in my view, no such thing as an unconditional probability.
However, it often happens that many probability statements are made conditional
on everything that is part of an individual’s knowledge at a particular time, and
when many statements are to be made conditional on the same event, it makes for
cumbersome notation to refer to this same conditioning event every time. There are
also cases where we have so much experimental data in circumstances judged to
be relevant to a particular situation that there is a fairly general agreement as to
the probability of an event. Thus, in tossing a coin, you and I both have experience
of tossing similar coins many times and so are likely to believe that ‘heads’ is
approximately as likely as not, so that the probability of ‘heads’ is approximately 1

2
given your knowledge or mine.
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In these cases we write

P(E) for P(E |�),

P(E |F) for P(E |F�),

where � is the set of possibilities consistent with the sum total of data available to the
individual or individuals concerned. We usually consider sets F for which F ⊂ �, so
that F� = F . It easily follows from the axioms that

0 � P(E) � 1,

P(�) = 1, P(∅) = 0,

P

( ∞⋃

n=1

En

)

=
∞∑

n=1

P(En)

whenever the (En) are exclusive events (or more properly whenever they are exclusive
events given �), and

P(E |F) P(F) = P(E F).

Many books begin by asserting that unconditional probability is an intuitive notion
and use the latter formula in the form

P(E |F) = P(E F)/P(F) (provided P(F) �= 0)

to define conditional probability.

1.1.4 Odds

It is sometimes convenient to use a language more familiar to bookmakers to express
probabilistic statements. We define the odds on E against F given H as the ratio

P(E |H )/P(F |H ) to 1

or equivalently

P(E |H ) to P(F |H ).

A reference to the odds on E against F with no mention of H is to be interpreted as
a reference to the odds on E against F given �, where � is some set of background
knowledge as above.

Odds do not usually have properties as simple as probabilities, but sometimes,
for example, in connection with Bayesian tests of hypotheses, they are more natural
to consider than separate probabilities.
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1.1.5 Independence

Two events E and F are said to be independent given H if

P(E F |H ) = P(E |H ) P(F |H ).

From axiom P4, it follows that if P(F |H ) �= 0 this condition is equivalent to

P(E |F H ) = P(E |H ),

so that if E is independent of F given H then the extra information that F is true does
not alter the probability of E from that given H alone, and this gives the best intuitive
idea as to what independence means. However, the restriction of this interpretation
to the case where P(F |H ) �= 0 makes the original equation slightly more general.

More generally, a sequence (En) of events is said to be pairwise independent
given H if

P(Em En|H ) = P(Em |H ) P(En|H ) for m �= n

and is said to consist of mutually independent events given H if for every finite subset
of them

P(En1 En2 . . . Enk |H ) = P(En1 |H ) P(En2 |H ) . . . P(Enk |H ).

You should be warned that pairwise independence does not imply mutual indepen-
dence and that

P(E1 E2 . . . En|H ) = P(E1|H ) P(E2|H ) . . . P(En|H )

is not enough to ensure that the finite sequence E1, E2, . . . , En consists of mutually
independent events given H.

Naturally, if no conditioning event is explicitly mentioned, the probabilities con-
cerned are conditional on � as defined above.

1.1.6 Some simple consequences of the axioms; Bayes’ Theorem

We have already noted a few consequences of the axioms, but it is useful at this point
to note a few more. We first note that it follows simply from P4 and P2 and the fact
that H H = H that

P(E |H ) = P(E H |H )

and in particular

P(E) = P(E�).
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Next note that if, given H, E implies F, that is E H ⊂ F and so E F H = E H , then
by P4 and the aforementioned equation

P(E |F H ) P(F |H ) = P(E F |H ) = P(E F H |H ) = P(E H |H ) = P(E |H ).

From this and the fact that P(E |F H ) � 1 it follows that if, given H, E implies F,
then

P(E |H ) � P(F |H ).

In particular, if E implies F then

P(E |F) P(F) = P(E),

P(E) � P(F).

For the rest of this subsection, we can work in terms of ‘unconditional’ probabilities,
although the results are easily generalized. Let (Hn) be a sequence of exclusive and
exhaustive events, and let E be any event. Then

P(E) =
∑

n

P(E |Hn)P(Hn)

since by P4 the terms on the right-hand side are P(E Hn), allowing us to deduce the
result from P3*. This result is sometimes called the generalized addition law or the
law of the extension of the conversation.

The key result in the whole book is Bayes’ Theorem. This is simply deduced as
follows. Let (Hn) be a sequence of events. Then by P4

P(Hn|E)P(E) = P(E Hn) = P(Hn)P(E |Hn),

so that provided P(E) �= 0

P(Hn|E) ∝ P(Hn) P(E |Hn).

This relationship is one of several ways of stating Bayes’ Theorem, and is probably
the best way in which to remember it. When we need the constant of proportionality,
we can easily see from the above that it is 1/P(E).

It should be clearly understood that there is nothing controversial about Bayes’
Theorem as such. It is frequently used by probabilists and statisticians, whether or
not they are Bayesians. The distinctive feature of Bayesian statistics is the application
of the theorem in a wider range of circumstances than is usual in classical statistics.
In particular, Bayesian statisticians are always willing to talk of the probability of a
hypothesis, both unconditionally (its prior probability) and given some evidence (its
posterior probability), whereas other statisticians will only talk of the probability of
a hypothesis in restricted circumstances.
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When (Hn) consists of exclusive and exhaustive events, we can combine the last
two results to see that

P(Hn|E) = P(Hn) P(E |Hn)
∑

m P(Hm) P(E |Hm)
.

A final result that we will find useful from time to time is the generalized multiplica-
tion law, which runs as follows. If H1, H2, . . . , Hn are any events then

P(H1 H2 . . . Hn) = P(H1) P(H2|H1) P(H3|H1 H2) . . .

P(Hn|H1 H2 . . . Hn−1)

provided all the requisite conditional probabilities are defined, which in practice they
will be provided P(H1 H2 . . . Hn−1) �= 0. This result is easily proved by repeated
application of P4.

1.2 Examples on Bayes’ Theorem

1.2.1 The Biology of Twins

Twins can be either monozygotic (M) (i.e. developed from a single egg) or dizygotic
(D). Monozygotic twins often look very similar and then are referred to as identical
twins, but it is not always the case that one finds very striking similarities between
monozygotic twins, while some dizygotic twins can show marked resemblances.
Whether twins are monozygotic or dizygotic is not, therefore, a matter which can be
settled simply by inspection. However, it is always the case that monozygotic twins
are of the same sex, whereas dizygotic twins can be of opposite sex. Hence, assuming
that the two sexes are equally probable, if the sexes of a pair of twins are denoted
GG, B B or G B (note G B is indistinguishable from BG)

P(GG|M) = P(B B|M) = 1
2 , P(G B|M) = 0,

P(GG|D) = P(B B|D) = 1
4 , P(G B|D) = 1

2 .

It follows that

P(GG) = P(GG|M)P(M) + P(GG|D)P(D)

= 1
2 P(M) + 1

4 {1 − P(M)}

from which it can be seen that

P(M) = 4P(GG) − 1,



P1: TIX/XYZ P2: ABC
JWST188-c01 JWST188-Lee May 2, 2012 11:5 Trim: 229mm × 152mm

10 BAYESIAN STATISTICS

so that although it is not easy to be certain whether a particular pair are monozygotic
or not, it is easy to discover the proportion of monozygotic twins in the whole
population of twins simply by observing the sex distribution among all twins.

1.2.2 A political example

The following example is a simplified version of the situation just before the time
of the British national referendum as to whether the United Kingdom should remain
part of the European Economic Community which was held in 1975. Suppose that at
that date, which was shortly after an election which the Labour Party had won, the
proportion of the electorate supporting Labour (L) stood at 52%, while the proportion
supporting the Conservatives (C) stood at 48% (it being assumed for simplicity that
support for all other parties was negligible, although this was far from being the case).
There were many opinion polls taken at the time, so we can take it as known that
55% of Labour supporters and 85% of Conservative voters intended to vote ‘Yes’ (Y)
and the remainder intended to vote ‘No’ (N). Suppose that knowing all this you met
someone at the time who said that she intended to vote ‘Yes’, and you were interested
in knowing which political party she supported. If this information were all you had
available, you could reason as follows:

P(L|Y ) = P(Y |L)P(L)

P(Y |L)P(L) + P(Y |C)P(C)

= (0.55)(0.52)

(0.55)(0.52) + (0.85)(0.48)

= 0.41.

1.2.3 A warning

In the case of Connecticut v. Teal [see DeGroot et al. (1986, p. 9)], a case of
alleged discrimination on the basis of a test to determine eligibility for promotion
was considered. It turned out that of those taking the test 48 were black (B) and 259
were white (W), so that if we consider a random person taking the test

P(B) = 48/307 = 0.16, P(W ) = 259/307 = 0.84.

Of the blacks taking the test, 26 passed (P) and the rest failed (F), whereas of the
whites, 206 passed and the rest failed, so that altogether 232 people passed. Hence,

P(B|P) = 26/232 = 0.11, P(W |P) = 206/232 = 0.89.

There is a temptation to think that these are the figures which indicate the possibility of
discrimination. Now there certainly is a case for saying that there was discrimination
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in this case, but the figures that should be considered are

P(P|B) = 26/48 = 0.54, P(P|W ) = 206/259 = 0.80.

It is easily checked that the probabilities here are related by Bayes’ Theorem. It is
worth while spending a while playing with hypothetical figures to convince yourself
that the fact that P(B|P) is less than P(W |P) is irrelevant to the real question as to
whether P(P|B) is less than P(P|W ) – it might or might not be depending on the rest
of the relevant information, that is on P(B) and P(W ). The fallacy involved arises as
the first of two well-known fallacies in criminal law which are both well summarized
by Aitken (1996) (see also Aitken and Taroni, 2004, and Dawid, 1994) as follows:

Suppose a crime has been committed. Blood is found at the scene for
which there is no innocent explanation. It is of a type which is present in
1% of the population. The prosecutor may then state:

‘There is a 1% chance that the defendant would have the crime blood
type if he were innocent. Thus, there is a 99% chance that he is guilty’.

Alternatively, the defender may state:

‘This crime occurred in a city of 800,000 people. This blood type would
be found in approximately 8000 people. The evidence has provided a
probability of 1 in 8000 that the defendant is guilty and thus has no
relevance.’

The first of these is known as the prosecutor’s fallacy or the fallacy of the
transposed conditional and, as pointed out above, in essence it consists in quoting
the probability P(E |I ) instead of P(I |E). The two are, however, equal if and only if
the prior probability P(I ) happens to equal P(E), which will only rarely be the case.

The second is the defender’s fallacy which consists in quoting P(G|E) without
regard to P(G). In the case considered by Aitken, the prior odds in favour of guilt are

P(G)/P(I ) = 1/799 999,

while the posterior odds are

P(G|E)/P(I |E) = 1/7 999.

Such a large change in the odds is, in Aitken’s words ‘surely of relevance’. But, again
in Aitken’s words, ‘Of course, it may not be enough to find the suspect guilty’.

As a matter of fact, Bayesian statistical methods are increasingly used in a legal
context. Useful references are Balding and Donnelly (1995), Foreman, Smith and
Evett (1997), Gastwirth (1988) and Fienberg (1989).
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1.3 Random variables

1.3.1 Discrete random variables

As explained in Section 1.1, there is usually a set � representing the possibilities
consistent with the sum total of data available to the individual or individuals con-
cerned. Now suppose that with each elementary event ω in �, there is an integer
m̃(ω) which may be positive, negative or zero. In the jargon of mathematics, we have
a function m̃ mapping � to the set Z of all (signed) integers. We refer to the function
as a random variable or an r.v.

A case arising in the context of the very first example we discussed, which was
about tossing a red die and a blue die, is the integer representing the sum of the spots
showing. In this case, ω might be ‘red three, blue two’ and then m̃(ω) would be 5.
Another case arising in the context of the second (political) example is the Labour
majority (represented as a negative integer should the Conservatives happen to win),
and here ω might be ‘Labour 350, Conservative 250’ in which case m̃(ω) would
be 100.

Rather naughtily, probabilists and statisticians tend not to mention the elementary
event ω of which m̃(ω) is a function and instead just write m̃ for m̃(ω). The reason is
that what usually matters is the value of m̃ rather than the nature of the elementary
event ω, the definition of which is in any case dependent on the context, as noted
earlier, in the discussion of elementary events. Thus, we write

P(m̃ = m) for P({ω; m̃(ω) = m})

for the probability that the random variable m̃ takes the particular value m. It is a
useful convention to use the same lower-case letter and drop the tilde (˜) to denote
a particular value of a random variable. An alternative convention used by some
statisticians is to use capital letters for random variables and corresponding lower
case letters for typical values of these random variables, but in a Bayesian context we
have so many quantities that are regarded as random variables that this convention is
too restrictive. Even worse than the habit of dropping mention of ω is the tendency
to omit the tilde and so use the same notation for a random variable and for a typical
value of it. While failure to mention ω rarely causes any confusion, the failure to
distinguish between random variables and typical values of these random variables
can, on occasion, result in real confusion. When there is any possibility of confusion,
the tilde will be used in the text, but otherwise it will be omitted. Also, we will use

p(m) = P(m̃ = m) = P({ω; m̃(ω) = m})

for the probability that the random variable m̃ takes the value m. When there is only
one random variable we are talking about, this abbreviation presents few problems,
but when we have a second random variable ñ and write

p(n) = P(̃n = n) = P({ω; ñ(ω) = n})
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then ambiguity can result. It is not clear in such a case what p(5) would mean, or
indeed what p(i) would mean (unless it refers to p(̃i = i) where ĩ is yet a third
random variable). When it is necessary to resolve such an ambiguity, we will use

pm̃(m) = P(m̃ = m) = P({ω; m̃(ω) = m}),

so that, for example, pm̃(5) is the probability that m̃ is 5 and pñ(i) is the probability
that ñ equals i. Again, all of this seems very much more confusing than it really is –
it is usually possible to conduct arguments quite happily in terms of p(m) and p(n)
and substitute numerical values at the end if and when necessary.

You could well object that you would prefer a notation that was free of ambiguity,
and if you were to do so, I should have a lot of sympathy. But the fact is that constant
references to m̃(ω) and pm̃(m) rather than to m and p(m) would clutter the page and
be unhelpful in another way.

We refer to the sequence (p(m)) as the (probability) density (function) or pdf of
the random variable m (strictly m̃). The random variable is said to have a distribution
(of probability) and one way of describing a distribution is by its pdf. Another is by
its (cumulative) distribution function, or cdf or df , defined by

F(m) = Fm̃(m) = P(m̃ � m) = P({ω; m̃(ω) � m}) =
∑

k�m

pm̃(k).

Because the pdf has the obvious properties

p(m) � 0,
∑

m

p(m) = 1

the df is (weakly) increasing, that is

F(m) � F(m ′) if m � m ′

and moreover

lim
m→−∞ F(m) = 0, lim

m→∞ F(m) = 1.

1.3.2 The binomial distribution

A simple example of such a distribution is the binomial distribution (see Appendix
A). Suppose, we have a sequence of trials each of which, independently of the others,
results in success (S) or failure (F), the probability of success being a constant π (such
trials are sometimes called Bernoulli trials). Then the probability of any particular
sequence of n trials in which k result in success is

π k(1 − π )n−k,
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so that allowing for the
(n

k

)
ways in which k successes and n−k failures can be ordered,

the probability that a sequence of n trials results in k successes is

(
n

k

)

π k(1 − π )n−k (0 � k � n).

If then k (strictly k̃) is a random variable defined as the number of successes in n
trials, then

p(k) =
(

n

k

)

π k(1 − π )n−k .

Such a distribution is said to be binomial of index n and parameter π , and we write

k ∼ B(n, π )

[or strictly k̃ ∼ B(n, π )].
We note that it follows immediately from the definition that if x and y are inde-

pendent and x ∼ B(m, π ) and y ∼ B(n, π ) then x + y ∼ B(m + n, π ).

1.3.3 Continuous random variables

So far, we have restricted ourselves to random variables which take only integer
values. These are particular cases of discrete random variables. Other examples of
discrete random variables occur, for example, a measurement to the nearest quarter-
inch which is subject to a distribution of error, but these can nearly always be changed
to integer-valued random variables (in the given example simply by multiplying by
4). More generally, we can suppose that with each elementary event ω in � there is a
real number x̃(ω). We can define the (cumulative) distribution function, cdf or df of
x̃ by

F(x) = P(̃x � x) = P({ω; x̃(ω) � x}).

As in the discrete case the df is (weakly) increasing, that is

F(x) � F(x ′) if x � x ′

and moreover

lim
x→−∞ F(x) = 0, lim

x→∞ F(x) = 1.
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It is usually the case that when x̃ is not discrete there exists a function p(x), or more
strictly px̃ (x), such that

F(x) =
∫ x

−∞
px̃ (ξ )dξ

in which case p(x) is called a (probability) density (function) or pdf. When this
is so, x (strictly x̃) is said to have a continuous distribution (or more strictly an
absolutely continuous distribution). Of course, in the continuous case p(x) is not
itself interpretable directly as a probability, but for small δx

p(x)δx ∼= P(x < x̃ � x + δx) = P({ω; x < x̃(ω) � x + δx}).

The quantity p(x)δx is sometimes referred to as the probability element. Note that
letting δx → 0 this implies that

P(̃x = x) = 0

for every particular value x, in sharp contrast to the discrete case. We can also use the
above approximation if y is some one-to-one function of x, for example

y = g(x).

Then if values correspond in an obvious way

P(y < ỹ � y + δy) = P(x < x̃ � x + δx)

which on substituting in the above relationship gives in the limit

p(y) |dy| = p(x) |dx |

which is the rule for change of variable in probability densities. (It is not difficult to
see that, because the modulus signs are there, the same result is true if F is a strictly
decreasing function of x). Another way of getting at this rule is by differentiating the
obvious equation

F(y) = F(x)

[strictly Fỹ(y) = Fx̃ (x)] which holds whenever y and x are corresponding values, that
is y = g(x). We should, however, beware that these results need modification if g is
not a one-to-one function. In the continuous case, we can find the density from the
df by differentiation, namely

p(x) = F ′(x) = dF(x)/dx .
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Although there are differences, there are many similarities between the discrete and
the continuous cases, which we try to emphasize by using the same notation in both
cases. We note that

F(x) =
∑

ξ�x

px̃ (ξ )

in the discrete case, but

F(x) =
∫ x

−∞
px̃ (ξ ) dξ

in the continuous case. The discrete case is slightly simpler in one way in that no
complications arise over change of variable, so that

p(y) = p(x)

if y and x are corresponding values, that is y = g(x).

1.3.4 The normal distribution

The most important example of a continuous distribution is the so-called normal or
Gaussian distribution. We say that z has a standard normal distribution if

p(z) = (2π )−
1
2 exp

(− 1
2 z2

)

and when this is so we write

z ∼ N(0, 1).

The density of this distribution is the familiar bell-shaped curve, with about two-thirds
of the area between −1 and 1, 95% of the area between −2 and 2 and almost all of it
between −3 and 3. Its distribution function is

�(z) =
∫ z

−∞
(2π )−

1
2 exp

(− 1
2ζ 2) dζ .

More generally, we say that x has a normal distribution, denoted

x ∼ N(μ, φ)

if

x = μ + z
√

φ
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where z is as aforementioned, or equivalently if

p(x) = (2πφ)−
1
2 exp

{− 1
2 (x − μ)2/φ

}
.

The normal distribution is encountered almost at every turn in statistics. Partly
this is because (despite the fact that its density may seem somewhat barbaric at first
sight) it is in many contexts the easiest distribution to work with, but this is not the
whole story. The Central Limit Theorem says (roughly) that if a random variable
can be expressed as a sum of a large number of components no one of which is
likely to be much bigger than the others, these components being approximately
independent, then this sum will be approximately normally distributed. Because of
this theorem, an observation which has an error contributed to by many minor causes
is likely to be normally distributed. Similar reasons can be found for thinking that
in many circumstances we would expect observations to be approximately normally
distributed, and this turns out to be the case, although there are exceptions. This
is especially useful in cases where we want to make inferences about a population
mean.

1.3.5 Mixed random variables

While most commonly occurring random variables are discrete or continuous, there
are exceptions, for example the time you have to wait until you are served in a queue,
which is zero with a positive probability (if the queue is empty when you arrive), but
otherwise is spread over a continuous range of values. Such a random variable is said
to have a mixed distribution.

1.4 Several random variables

1.4.1 Two discrete random variables

Suppose that with each elementary event ω in �, we can associate a pair of integers
(m̃(ω), ñ(ω)). We write

p(m, n) = P(m̃ = m, ñ = n) = P({ω; m̃(ω) = m, ñ(ω) = n}).

Strictly speaking, p(m, n) should be written as pm̃ ,̃n(m, n) for reasons discussed
earlier, but this degree of pedantry in the notation is rarely necessary. Clearly

p(m, n) � 0,
∑

m

∑

n

p(m, n) = 1.

The sequence (p(m, n)) is said to be a bivariate (probability) density (function) or
bivariate pdf and is called the joint pdf of the random variables m and n (strictly m̃
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and ñ). The corresponding joint distribution function, joint cdf or joint df is

F(m, n) =
∑

k�m

∑

l�n

pm̃ ,̃n(k, l).

Clearly, the density of m (called its marginal density) is

p(m) =
∑

n

p(m, n).

We can also define a conditional distribution for n given m (strictly for ñ given
m̃ = m) by allowing

p(n|m) = P(̃n = n | m̃ = m) = P({ω; ñ(ω) = n} | {ω; m̃(ω) = m})
= p(m, n)/p(m), provided p(m) �= 0

to define the conditional (probability) density (function) or conditional pdf . This
represents our judgement as to the chance that ñ takes the value n given that m̃ is
known to have the value m. If it is necessary to make our notation absolutely precise,
we can always write

pm̃ |̃n(m|n),

so, for example, pm̃ |̃n(4|3) is the probability that m is 4 given ñ is 3, but pñ|m̃(4|3) is
the probability that ñ is 4 given that m̃ takes the value 3, but it should be emphasized
that we will not often need to use the subscripts. Evidently

p(n|m) � 0,
∑

p(n|m) = 1,

and

p(n) =
∑

p(m, n) =
∑

p(m)p(n|m).

We can also define a conditional distribution function or conditional df by

F(n|m) = P(̃n � n | m̃ = m) = P({ω; ñ(ω) � n} | {ω; m̃(ω) = m})
=

∑

k�n

pñ|m̃(k|m).

1.4.2 Two continuous random variables

As in Section 1.4, we have begun by restricting ourselves to integer values, which is
more or less enough to deal with any discrete cases that arise. More generally, we can
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suppose that with each elementary event ω in �, we can associate a pair (̃x(ω), ỹ(ω))
of real numbers. In this case, we define the joint distribution function or joint df as

F(x, y) = P(̃x � x, ỹ � y) = P({ω; x̃(ω) � x, ỹ(ω) � y}).

Clearly the df of x is

F(x,+∞),

and that of y is

F(+∞, y).

It is usually the case that when neither x nor y is discrete there is a function p(x, y)
such that

F(x, y) =
∫ x

−∞

∫ y

−∞
px̃ ,̃y(ξ, η) dξ dη,

in which case p(x, y) is called a joint (probability) density (function) or joint pdf .
When this is so, the joint distribution is said to be continuous (or more strictly to be
absolutely continuous). We can find the density from the df by

p(x, y) = ∂2 F(x, y)/∂x∂y.

Clearly,

p(x, y) � 0,

∫∫

p(x, y)dx dy = 1

and

p(x) =
∫

p(x, y) dy.

The last formula is the continuous analogue of

p(m) =
∑

n

p(m, n)

in the discrete case.
By analogy with the discrete case, we define the conditional density of y given x

(strictly of ỹ given x̃ = x) as

p(y|x) = p(x, y)/p(x),
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provided p(x) �= 0. We can then define the conditional distribution function by

F(y|x) =
∫ y

−∞
p(η|x) dη.

There are difficulties in the notion of conditioning on the event that x̃ = x because
this event has probability zero for every x in the continuous case, and it can help
to regard the above distribution as the limit of the distribution which results from
conditioning on the event that x̃ is between x and x + δx , that is

{ω; x < x̃(ω) � x + δx}

as δx → 0.

1.4.3 Bayes’ Theorem for random variables

It is worth noting that conditioning the random variable y by the value of x does not
change the relative sizes of the probabilities of those pairs (x, y) that can still occur.
That is to say, the probability p(y|x) is proportional to p(x, y) and the constant of
proportionality is just what is needed, so that the conditional probabilities integrate
to unity. Thus,

p(y|x) � 0,

∫

p(y|x) dy = 1.

Moreover,

p(y) =
∫

p(x, y) dx =
∫

p(x)p(y|x) dx .

It is clear that

p(y|x) = p(x, y)/p(x) = p(y)p(x |y)/p(x),

so that

p(y|x) ∝ p(y)p(x |y).

This is, of course, a form of Bayes’ Theorem, and is in fact the commonest way in
which it occurs in this book. Note that it applies equally well if the variables x and y
are continuous or if they are discrete. The constant of proportionality is

1/p(x) = 1

/∫

p(y)p(x |y) dy
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in the continuous case or

1/p(x) = 1

/ ∑

y

p(y)p(x |y)

in the discrete case.

1.4.4 Example

A somewhat artificial example of the use of this formula in the continuous case is
as follows. Suppose y is the time before the first occurrence of a radioactive decay
which is measured by an instrument, but that, because there is a delay built into the
mechanism, the decay is recorded as having taken place at a time x > y. We actually
have the value of x, but would like to say what we can about the value of y on the
basis of this knowledge. We might, for example, have

p(y) = e−y (0 < y < ∞),
p(x |y) = ke−k(x−y) (y < x < ∞).

Then

p(y|x) ∝ p(y)p(x |y)

∝ e(k−1)y (0 < y < x).

Often we will find that it is enough to get a result up to a constant of proportionality,
but if we need the constant, it is very easy to find it because we know that the integral
(or the sum in the discrete case) must be one. Thus, in this case

p(y|x) = (k − 1)e(k−1)y

e(k−1)x − 1
(0 < y < x).

1.4.5 One discrete variable and one continuous variable

We also encounter cases where we have two random variables, one of which is
continuous and one of which is discrete. All the aforementioned definitions and
formulae extend in an obvious way to such a case provided we are careful, for
example, to use integration for continuous variables but summation for discrete
variables. In particular, the formulation

p(y|x) ∝ p(y)p(x |y)

for Bayes’ Theorem is valid in such a case.
It may help to consider an example (again a somewhat artificial one). Suppose

k is the number of successes in n Bernoulli trials, so k ∼ B(n, π ), but that the value



P1: TIX/XYZ P2: ABC
JWST188-c01 JWST188-Lee May 2, 2012 11:5 Trim: 229mm × 152mm

22 BAYESIAN STATISTICS

of π is unknown, your beliefs about it being uniformly distributed over the interval
[0, 1] of possible values. Then

p(k|π ) =
(n

k

)
π k(1 − π )n−k (k = 0, 1, . . . , n),

p(π ) = 1 (0 � π � 1),

so that

p(π |k) ∝ p(π )p(k|π ) =
(

n

k

)

π k(1 − π )n−k

∝ π k(1 − π )n−k .

The constant can be found by integration if it is required. Alternatively, a glance at
Appendix A will show that, given k, π has a beta distribution

π |k ∼ Be(k + 1, n − k + 1)

and that the constant of proportionality is the reciprocal of the beta function B(k +
1, n − k + 1). Thus, this beta distribution should represent your beliefs about π after
you have observed k successes in n trials. This example has a special importance in
that it is the one which Bayes himself discussed.

1.4.6 Independent random variables

The idea of independence extends from independence of events to independence of
random variables. The basic idea is that y is independent of x if being told that x
has any particular value does not affect your beliefs about the value of y. Because
of complications involving events of probability zero, it is best to adopt the formal
definition that x and y are independent if

p(x, y) = p(x)p(y)

for all values x and y. This definition works equally well in the discrete and the
continuous cases (and indeed in the case where one random variable is continuous
and the other is discrete). It trivially suffices that p(x, y) be a product of a function of
x and a function of y.

All the above generalizes in a fairly obvious way to the case of more than two
random variables, and the notions of pairwise and mutual independence go through
from events to random variables easily enough. However, we will find that we do not
often need such generalizations.



P1: TIX/XYZ P2: ABC
JWST188-c01 JWST188-Lee May 2, 2012 11:5 Trim: 229mm × 152mm

PRELIMINARIES 23

1.5 Means and variances

1.5.1 Expectations

Suppose that m is a discrete random variable and that the series

∑
mp(m)

is absolutely convergent, that is such that

∑
|m|p(m) < ∞.

Then the sum of the original series is called the mean or expectation of the random
variable, and we denote it

Em (strictly Em̃).

A motivation for this definition is as follows. In a large number N of trials, we would
expect the value m to occur about p(m)N times, so that the sum total of the values
that would occur in these N trials (counted according to their multiplicity) would be
about

∑
mp(m)N ,

so that the average value should be about

∑
mp(m)N/N = Em.

Thus, we can think of expectation as being, at least in some circumstances, a form
of very long term average. On the other hand, there are circumstances in which it
is difficult to believe in the possibility of arbitrarily large numbers of trials, so this
interpretation is not always available. It can also be thought of as giving the position
of the ‘centre of gravity’ of the distribution imagined as a distribution of mass spread
along the x-axis.

More generally, if g(m) is a function of the random variable and
∑

g(m)p(m) is
absolutely convergent, then its sum is the expectation of g(m). Similarly, if h(m, n)
is a function of two random variables m and n and the series

∑ ∑
h(m, n)p(m, n) is

absolutely convergent, then its sum is the expectation of h(m, n). These definitions are
consistent in that if we consider g(m) and h(m, n) as random variables with densities
of their own, then it is easily shown that we get these values for their expectations.

In the continuous case, we define the expectation of a random variable x by

Ex =
∫

xp(x) dx
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provided that the integral is absolutely convergent, and more generally define the
expectation of a function g(x) of x by

Eg(x) =
∫

g(x)p(x) dx

provided that the integral is absolutely convergent, and similarly for the expectation
of a function h(x, y) of two random variables. Note that the formulae in the discrete
and continuous cases are, as usual, identical except for the use of summation in the
one case and integration in the other.

1.5.2 The expectation of a sum and of a product

If x and y are any two random variables, independent or not, and a, b and c are
constants, then in the continuous case

E{ax + by + c} =
∫∫

(ax + by + c)p(x, y) dx dy

= a
∫∫

xp(x, y) dx dy + b
∫∫

yp(x, y) dx dy + c
∫∫

p(x, y) dx dy

= a
∫

xp(x) dx + b
∫

yp(y) dy + c

= aEx + bEy + c

and similarly in the discrete case. Yet more generally, if g(x) is a function of x and
h(y) a function of y, then

E{ag(x) + bh(y) + c} = aEg(x) + bEh(y) + c.

We have already noted that the idea of independence is closely tied up with multi-
plication, and this is true when it comes to expectations as well. Thus, if x and y are
independent, then

Exy =
∫∫

xy p(x, y) dx dy

=
∫∫

xy p(x)p(y) dx dy

=
(∫

xp(x) dx

) (∫

yp(y) dy

)

= (Ex)(Ey)
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and more generally if g(x) and h(y) are functions of independent random variables x
and y, then

Eg(x)h(y) = (Eg(x))(Eh(y)).

1.5.3 Variance, precision and standard deviation

We often need a measure of how spread out a distribution is, and for most purposes
the most useful such measure is the variance V x of x, defined by

V x = E(x − Ex)2.

Clearly if the distribution is very little spread out, then most values are close to one
another and so close to their mean, so that (x − Ex)2 is small with high probability and
hence V x is small. Conversely, if the distribution is well spread out then V x is large.
It is sometimes useful to refer to the reciprocal of the variance, which is called the
precision. Further, because the variance is essentially quadratic, we sometimes work
in terms of its positive square root, the standard deviation, especially in numerical
work. It is often useful that

V x = E(x − Ex)2

= E
(
x2 − 2(Ex)x + (Ex)2

)

= Ex2 − (Ex)2.

The notion of a variance is analogous to that of a moment of inertia in mechanics,
and this formula corresponds to the parallel axes theorem in mechanics. This analogy
seldom carries much weight nowadays, because so many of those studying statistics
took it up with the purpose of avoiding mechanics.

In discrete cases, it is sometimes useful that

V x = Ex(x − 1) + Ex − (Ex)2.

1.5.4 Examples

As an example, suppose that k ∼ B(n, π ). Then

Ek =
n∑

k=0

k

(
n

k

)

π k(1 − π )n−k .

After a little manipulation, this can be expressed as

Ek = nπ

n−1∑

j=0

(
n − 1

j

)

π j (1 − π )n−1− j .
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Because the sum is a sum of binomial B(n − 1, π ) probabilities, this expression
reduces to nπ , and so

Ek = nπ.

Similarly,

Ek(k − 1) = n(n − 1)π2

and so

V k = n(n − 1)π2 + nπ − (nπ )2

= nπ (1 − π ).

For a second example, suppose x ∼ N(μ, φ). Then

Ex =
∫

x(2πφ)−
1
2 exp

{− 1
2 (x − μ)2/φ

}
dx

= μ +
∫

(x − μ)(2πφ)−
1
2 exp

{− 1
2 (x − μ)2/φ

}
dx .

The integrand in the last expression is an odd function of x − μ and so vanishes, so
that

Ex = μ.

Moreover,

V x =
∫

(x − μ)2(2πφ)−
1
2 exp

{− 1
2 (x − μ)2/φ

}
dx,

so that on writing z = (x − μ)/
√

φ

V x = φ

∫

z2(2π )−
1
2 exp

(− 1
2 z2

)
dz.

Integrating by parts (using z as the part to differentiate), we get

V x = φ

∫

(2π )−
1
2 exp

(− 1
2 z2

)
dz

= φ.
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1.5.5 Variance of a sum; covariance and correlation

Sometimes we need to find the variance of a sum of random variables. To do this,
note that

V (x + y) = E{x + y − E(x + y)}2

= E{(x − Ex) + (y − Ey)}2

= E(x − Ex)2 + E(y − Ey)2 + 2E(x − Ex)(y − Ey)

= V x + V y + 2C (x, y),

where the covariance C (x, y) of x and y is defined by

C (x, y) = E(x − Ex)(y − Ey)

= Exy − (Ex)(Ey).

More generally,

V (ax + by + c) = a2V x + b2V y + 2ab C (x, y)

for any constants a, b and c. By considering this expression as a quadratic in a for fixed
b or vice versa and noting that (because its value is always positive) this quadratic
cannot have two unequal real roots, we see that

(C (x, y))2 � (V x)(V y).

We define the correlation coefficient ρ(x, y) between x and y by

ρ(x, y) = C (x, y)
√

(V x)(V y)
.

It follows that

−1 � ρ(x, y) � 1

and indeed a little further thought shows that ρ(x, y) = 1 if and only if

ax + by + c = 0

with probability 1 for some constants a, b and c with a and b having opposite signs,
while ρ(x, y) = −1 if and only if the same thing happens except that a and b have
the same sign. If ρ(x, y) = 0 we say that x and y are uncorrelated.

It is easily seen that if x and y are independent then

C (x, y) = Exy − (Ex)(Ey) = 0

from which it follows that independent random variables are uncorrelated.
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The converse is not in general true, but it can be shown that if x and y have a
bivariate normal distribution (as described in Appendix A), then they are independent
if and only if they are uncorrelated.

It should be noted that if x and y are uncorrelated, and in particular if they are
independent

V (x ± y) = V x + V y

(observe that there is a plus sign on the right-hand side even if there is a minus sign
on the left).

1.5.6 Approximations to the mean and variance of a function of
a random variable

Very occasionally, it will be useful to have an approximation to the mean and variance
of a function of a random variable. Suppose that

z = g(x).

Then if g is a reasonably smooth function and x is not too far from its expectation,
Taylor’s theorem implies that

z ∼= g(Ex) + (x − Ex)g′(Ex).

It, therefore, seems reasonable that a fair approximation to the expectation of z is
given by

Ez = g(Ex)

and if this is so, then a reasonable approximation to V z may well be given by

V z = V x{g′(Ex)}2.

As an example, suppose that

x ∼ B(n, π )

and that z = g(x), where

g(x) = sin−1
√

(x/n),

so that

g′(x) = 1
2 n−1[(x/n){1 − (x/n)}]− 1

2 ,
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and thus g′(Ex) = g′(nπ ) = 1
2 n−1[π (1 − π )]−

1
2 . The aforementioned argument then

implies that

Ez ∼= sin−1 √
π, V z ∼= 1/4n.

The interesting thing about this transformation, which has a long history [see Eisen-
hart et al. (1947, Chapter 16) and Fisher (1954)], is that, to the extent to which the
approximation is valid, the variance of z does not depend on the parameter π . It is
accordingly known as a variance-stabilizing transformation. We will return to this
transformation in Section 3.2 on the ‘Reference Prior for the Binomial Distribution’.

1.5.7 Conditional expectations and variances

If the reader wishes, the following may be omitted on a first reading and then returned
to as needed.

We define the conditional expectation of y given x by

E(y|x) =
∫

yp(y|x) dy

in the continuous case and by the corresponding sum in the discrete case. If we wish
to be pedantic, it can occasionally be useful to indicate what we are averaging over
by writing

Eỹ |̃x (̃y|x)

just as we can write pỹ |̃x (y|x), but this is rarely necessary (though it can slightly clarify
a proof on occasion). More generally, the conditional expectation of a function g(y)
of y given x is

E(g(y)|x) =
∫

g(y)p(y|x) dy.

We can also define a conditional variance as

V (y|x) = E[{y − E(y|x)}2 | x]

= E(y2|x) − {E(y|x)}2.

Despite some notational complexity, this is easy enough to find since after all a
conditional distribution is just a particular case of a probability distribution. If we are
really pedantic, then E(̃y|x) is a real number which is a function of the real number
x, while E(̃y |̃x) is a random variable which is a function of the random variable x̃ ,
which takes the value E(̃y|x) when x̃ takes the value x. However, the distinction,
which is hard to grasp in the first place, is usually unimportant.
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We may note that the formula

p(y) =
∫

p(y|x)p(x)dx

could be written as

p(y) = Ep(y |̃x)

but we must be careful that it is an expectation over values of x̃ (i.e. Ex̃ ) that occurs
here.

Very occasionally we make use of results like

Eỹ = Ex̃ {Eỹ |̃x (̃y |̃x)},
V ỹ = Ex̃V ỹ |̃x (̃y |̃x) + V x̃Eỹ |̃x (̃y |̃x).

The proofs are possibly more confusing than helpful. They run as follows:

E{E(̃y |̃x)} =
∫

E(̃y|x)p(x)dx

=
∫ (∫

yp(y|x) dy

)

p(x)dx

=
∫∫

yp(x, y) dydx

=
∫

yp(y) dy

= Eỹ.

Similarly, we get the generalization

E{E(g(̃y)|̃x)} = Eg(̃y)

and in particular

E{E(̃y2 |̃x)} = Eỹ2,

hence

EV (̃y |̃x) = E{E(̃y2 |̃x)} − E{E(̃y |̃x)}2

= Eỹ2 − E{E(̃y |̃x)}2
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while

V E(̃y |̃x) = E{E(̃y |̃x)}2 − [E{E(̃ỹ|x)}]2

= E{E(̃y |̃x)}2 − E(̃y)2

from which it follows that

EV (̃y |̃x) + V E(̃y |̃x) = Eỹ2 − (Eỹ)2 = V ỹ.

1.5.8 Medians and modes

The mean is not the only measure of the centre of a distribution. We also need to
consider the median from time to time, which is defined as any value x0 such that

P(̃x � x0) � 1
2 and P(̃x � x0) � 1

2 .

In the case of most continuous random variables there is a unique median such that

P(̃x � x0) = P(̃x � x0) = 1
2 .

We occasionally refer also to the mode, defined as that value at which the pdf is a
maximum. One important use we shall have for the mode will be in methods for
finding the median based on the approximation

mean − mode = 3 (mean − median )

or equivalently

median = (2 mean + mode )/3

(see the preliminary remarks in Appendix A).

1.6 Exercises on Chapter 1

1. A card came is played with 52 cards divided equally between four players,
North, South, East and West, all arrangements being equally likely. Thirteen of
the cards are referred to as trumps. If you know that North and South have ten
trumps between them, what is the probability that all three remaining trumps are
in the same hand? If it is known that the king of trumps is included among the
other three, what is the probability that one player has the king and the other the
remaining two trumps?
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2. (a) Under what circumstances is an event A independent of itself?

(b) By considering events concerned with independent tosses of a red die and
a blue die, or otherwise. give examples of events A, B and C which are not
independent, but nevertheless are such that every pair of them is independent.

(c) By considering events concerned with three independent tosses of a coin and
supposing that A and B both represent tossing a head on the first trial, give ex-
amples of events A, B and C which are such that P(ABC) = P(A)P(B)P(C)
although no pair of them is independent.

3. Whether certain mice are black or brown depends on a pair of genes, each of
which is either B or b. If both members of the pair are alike, the mouse is said to
be homozygous, and if they are different it is said to be heterozygous. The mouse
is brown only it it is homozygous bb. The offspring of a pair of mice have two
such genes, one from each parent, and if the parent is heterozygous, the inherited
gene is equally likely to be B or b. Suppose that a black mouse results from a
mating between two heterozygotes.

(a) What are the probabilities that this mouse is homozygous and that it is
heterozygous?

Now suppose that this mouse is mated with a brown mouse, resulting in
seven offspring, all of which turn out to be black.

(b) Use Bayes’ Theorem to find the probability that the black mouse was ho-
mozygous B B.

(c) Recalculate the same probability by regarding the seven offspring as seven
observations made sequentially, treating the posterior after each observation
as the prior for the next (cf. Fisher, 1959, Section II.2).

4. The example on Bayes’ Theorem in Section 1.2 concerning the biology of twins
was based on the assumption that births of boys and girls occur equally frequently,
and yet it has been known for a very long time that fewer girls are born than boys
(cf. Arbuthnot, 1710). Suppose that the probability of a girl is p, so that

P(GG|M) = p, P(B B|M) = 1 − p, P(G B|M) = 0,

P(GG|D) = p2, P(B B|D) = (1 − p)2, P(G B|D) = 2p(1 − p).

Find the proportion of monozygotic twins in the whole population of twins in
terms of p and the sex distribution among all twins.

5. Suppose a red and a blue die are tossed. Let x be the sum of the number showing
on the red die and twice the number showing on the blue die. Find the density
function and the distribution function of x.

6. Suppose that k ∼ B(n, π ) where n is large and π is small but nπ = λ has an
intermediate value. Use the exponential limit (1 + x/n)n → ex to show that
P(k = 0) ∼= e−λ and P(k = 1) ∼= λe−λ. Extend this result to show that k is such
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that

p(k) ∼= λk

k!
exp(−λ)

that is, k is approximately distributed as a Poisson variable of mean λ (cf.
Appendix A).

7. Suppose that m and n have independent Poisson distributions of means λ and μ

respectively (see question 6) and that k = m + n.

(a) Show that P(k = 0) = e−(λ+μ) and P(k = 1) = (λ + μ)e−(λ+μ).

(b) Generalize by showing that k has a Poisson distribution of mean λ + μ.

(c) Show that conditional on k, the distribution of m is binomial of index k and
parameter λ/(λ + μ).

8. Modify the formula for the density of a one-to-one function g(x) of a random
variable x to find an expression for the density of x2 in terms of that of x, in
both the continuous and discrete case. Hence, show that the square of a standard
normal density has a chi-squared density on one degree of freedom as defined in
Appendix A.

9. Suppose that x1, x2, . . . , xn are independently and all have the same continuous
distribution, with density f (x) and distribution function F(x). Find the distribu-
tion functions of

M = max{x1, x2, . . . , xn} and m = min{x1, x2, . . . , xn}

in terms of F(x), and so find expressions for the density functions of M and m.

10. Suppose that u and v are independently uniformly distributed on the interval
[0, 1], so that the divide the interval into three sub-intervals. Find the joint
density function of the lengths of the first two sub-intervals.

11. Show that two continuous random variables x and y are independent (i.e.
p(x, y) = p(x)p(y) for all x and y) if and only if their joint distribution function
F(x, y) satisfies F(x, y) = F(x)F(y) for all x and y. Prove that the same thing is
true for discrete random variables. [This is an example of a result which is easier
to prove in the continuous case.]

12. Suppose that the random variable x has a negative binomial distribution NB(n, π )
of index n and parameter π , so that

p(x) =
(

n + x − 1

x

)

πn(1 − π )x

Find the mean and variance of x and check that your answer agrees with that
given in Appendix A.
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13. A random variable X is said to have a chi-squared distribution on ν degrees of
freedom if it has the same distribution as

Z2
1 + Z2

2 + · · · + Z2
ν

where Z1, Z2, . . . , Zν are independent standard normal variates. Use the facts that
EZi = 0, EZ2

i = 1 and EZ4
i = 3 to find the mean and variance of X. Confirm

these values using the probability density of X, which is

p(X ) = 1

2ν/2�(ν/2)
X ν/2−1 exp(− 1

2 X ) (0 < X < ∞)

(see Appendix A).

14. The skewness of a random variable x is defined as γ1 = μ3/(μ2)
3
2 where

μn = E(x − Ex)n

(but note that some authors work in terms of β1 = γ 2
1 ). Find the skewness of a

random variable X with a binomial distribution B(n, π ) of index n and parameter
π .

15. Suppose that a continuous random variable X has mean μ and variance φ. By
writing

φ =
∫

(x − μ)2 p(x)dx �
∫

{x ; |x−μ|�c}
(x − μ)2 p(x)dx

and using a lower bound for the integrand in the latter integral, prove that

P(|x − μ| � c) � φ

c2
.

Show that the result also holds for discrete random variables. [This result is
known as Čebyšev’s Inequality (the name is spelt in many other ways, including
Chebyshev and Tchebycheff).]

16. Suppose that x and y are such that

P(x = 0, y = 1) = P(x = 0, y = −1) = P(x = 1, y = 0)

= P(x = −1, y = 0) = 1
4 .

Show that x and y are uncorrelated but that they are not independent.

17. Let x and y have a bivariate normal distribution and suppose that x and y both
have mean 0 and variance 1, so that their marginal distributions are standard
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normal and their joint density is

p(x, y) =
{

2π
√

(1 − ρ2)
}−1

exp
{− 1

2 (x2 − 2ρxy + y2)/(1 − ρ2)
}
.

Show that if the correlation coefficient between x and y is ρ, then that between
x2 and y2 is ρ2.

18. Suppose that x has a Poisson distribution (see question 6) P(λ) of mean λ and
that, for given x, y has a binomial distribution B(x, π ) of index x and parameter
π .

(a) Show that the unconditional distribution of y is Poisson of mean

λπ = Ex̃Eỹ |̃x (̃y |̃x).

(b) Verify that the formula

V ỹ = Ex̃V ỹ |̃x (̃y |̃x) + V x̃Eỹ |̃x (̃y |̃x)

derived in Section 1.5 holds in this case.

19. Define

I =
∫ ∞

0
exp(− 1

2 z2) dz

and show (by setting z = xy and then substituting z for y) that

I =
∫ ∞

0
exp(− 1

2 (xy)2) y dx =
∫ ∞

0
exp(− 1

2 (zx)2) z dx .

Deduce that

I 2 =
∫ ∞

0

∫ ∞

0
exp{− 1

2 (x2 + 1)z2} z dz dx .

By substituting (1 + x2)z2 = 2t, so that z dz = dt/(1 + x2) show that I =√
π/2, so that the density of the standard normal distribution as defined in

Section 1.3 does integrate to unity and so is indeed a density. (This method is
due to Laplace, 1812, Section 24.)


